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“One of the principal objects of theoretical research is to find  
the point of view from which the subject appears in the greatest simplicity.”

(Gibbs, 1881)

In science, we understand things when we can draw them.
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“One of the principal objects of theoretical research is to find  
the point of view from which the subject appears in the greatest simplicity.”

(Gibbs, 1881)

In science, we understand things when we can draw them.


If a system corresponds to a ensemble of states , we want to characterize  x = (x1, …, xN) P(x)

log Pθ(x) = ∑
j

λj θj(x) + cst

For some constraints , the Maximum Entropy Principle gives⟨θj(x)⟩ = 0



statistical description

analysis

synthesis

- keep the informative variation

- discard the irrelevant one

- stable

- compact - communicable


- interpretable

(key properties in science)

Interacting with data

scientific understanding exists in papers that are human readable
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data model residuals



data modeldata

catalog of objects

brightness

position


size

ellipticity


colors

…





What is the texture of the Universe?


density?

amplitude of fluctuations?

rate of expansion?


 the cosmological parameters→

Cosmology

10 100 1,000 10,000 100,000 1 million



stationary fields or texture

10 100 1,000 10,000 100,000 1 million



Power spectrum

• Invariant to translation (& possibly rotations)

• Conservation of energy

• Separation of scales

• All information extracted if Gaussian random field


 properties:P(k)

∫ | I0(x) |2 dx = ∫ | Ĩ0(k) |2 dk

P(k1) = ⟨ | I0 * ei k1x |2 ⟩Let’s pick a frequency ⃗k 1

L2 norm = P(k1)

modulus phase

discarded

=

I0

convolution by ei k1 x

real & imaginary



1D power spectrum
seismogram
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~15s: ocean waves hitting coastlines

~7s: reflected waves interacting 
with incoming ones and the 
sea floor

https://arxiv.org/pdf/1202.4826.pdf



3D power spectrum in cosmology

> the gravitational potential energy (per unit volume)



Power spectrum

I0
P(k) = ⟨ | I0 * eikx |2 ⟩

x
High-order moments amplify the tail: ⟨ x ⟩, ⟨ x2 ⟩, ⟨ x3 ⟩, . . .

Higher-order statistics
B(k1, k2, k3) = ⟨(I0 * eik1x) (I0 * eik2x) (I0 * eik3x)⟩

The limitations of moment-based approaches
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scattering

covariance

phase harmonic

transform

Convolutional 
neural network

motivated by physics, 

perturbation theory


but too limited and unstable

motivated by the mathematics

of neural networks

driven by performance 
on complex tasks

but “black boxes”

neural networks have had a great effect on science They have pushed us to think deeper, to think differently about data



How to design a mathematical network?

kernels learned in AlexNet

(Krizhevsky, Sutskever, & Hinton 2012)

Let’s organize them

kx 

ky 

Fourier representation

Gaussians

 Gabor wavelets → ψ(x)

 family of scaled & rotated 

Gaussians 

→
ψ̃(k)



⟨ ⋅ ⟩ = S1(k)

modulus

⟨ ⋅2 ⟩ = P(k)

phase

I1 ≡ I0 ⋆ ψ1 S2 = ⟨I2⟩

scale 2

I2 ≡ | I0 ⋆ ψ1 | ⋆ ψ2

Power spectrum vs scattering transform

power spectrum

scattering transform



Scattering transform = ⟨ I ⋆ ψ ⟩S1(k1)

= ⟨ | | | I * ψk1
| * ψk2

|… * ψkn
|⟩

…
= ⟨ | | I * ψk1

| * ψk2
|⟩S2(k1, k2)

Sn(k1, …, kn)

Properties: 

• The filters are not learned 

• Invariant to translation (+rotation) 

• Stable to deformations

• Preserves energy

• Contracting

Bruna & Mallat 2013 Sifre & Mallat 2013

texture classificationMNIST classification

Mallat 2012

• synthesis

• parameter inference

• exploratory data analysis

What can it do for scientific data analyses?



Turing pattern Ising model sea temperature solar surface cosmic matter

Cheng & Ménard, 2021

Syntheses with 2nd order scattering transform (+ min,max values)

 for many physical fields, it captures most of the information→



Parameter inference in cosmology — the texture of the Universe

Roman Space TelescopesRubin Observatory (LSST) Euclid &Subaru HSC survey

σ8, Ωmimage
galaxy 
catalog

mass map

x1, y1, ϵ1
x2, y2, ϵ2
x3, y3, ϵ3
x4, y4, ϵ4…



from the Columbia Univ. lensing group. See Matilla Zorrilla et al. 2016, Gupta et al. 2018 

Simulated weak lensing mass maps

P(k)

k

P(k)

k
512 weak lensing maps x 100 cosmologies



Scattering coefficients vs. power spectrum
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Cheng & BM, 2021
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P(l)0.9
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P(l) scattering transform
(2nd order)

Bispectrum + P(l)

Using scales from 1 arcmin to 3.5 deg

Scattering coefficients vs. bispectrum

Cheng & BM, 2021



Scattering transform performance with noise
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scattering coefficients
CNN (Ribli+19)

peak count

power spectrum

DES HSC,LSST,Euclid,WFIRST noiseless

noise level

scattering transform: 37

CNN: millions

: 20P(k)

How many coefficients were used?

Cheng & BM, 2021



Scattering transform: interpretability

scattering transform: 37

CNN: millions

: 20P(k)

How many coefficients were used?

structure shape s22 ≡ S∥
2 / S⊥

2

structure sparsity s21 ≡ S2 / S1

Cheng & BM, 2021



Exploratory data analysis

CNN analysis by Prochaska, Cornillon, Reiman (2021)

Sea Surface Temperature [deg C]



Exploratory data analysis

CNN analysis by Prochaska, Cornillon, Reiman (2021)

Sea Surface Temperature [deg C]



Exploratory data analysis

Cheng & BM, 2021



Exploratory data analysis

Cheng & BM, 2021



image credit: Sloan Digital Sky Survey Sihao Cheng

Exploratory data analysis: objects



with companions

edge-on

spiral galaxies

sharp coreelliptical galaxies

UMAP 1

U
M

A
P 

2

arranged by scattering coefficientsExploratory data analysis: objects

Cheng & BM, 2021
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“mathematical” neural networks

neural networks have had a great effect on science They have pushed us to think deeper, to think differently about data

texture classification

synthesis of physical fields

parameter inference

exploratory data analysis

A guide to the Scattering Transform
arXiv:2112.01288Cheng & Ménard (2021)

https://arxiv.org/abs/2112.01288


What limits the scattering transform?
⟨ | | I * ψk1

| * ψk2
|⟩

kx 

ky 

phase harmonic transform

kx 

ky 
 covar( [I ⋆ ψ1]p , [I ⋆ ψ2]q )

Mallat, Zhang & Rochette 2018

Zhang & Mallat 2019

Allys et al. 2020



scattering covariance estimates

original

synthesized

original

synthesized

Cheng, Allys, Morel, et al. (in prep)



UnderreviewasaconferencepaperatICLR2022

ObservationPS(3.2k/17k)RF(525k)Ours(35k/320k)VGG(177k)

Figure3:Visualcomparisonbetweenthegray-scaleandcolormodels.’Ours’denotestheALPHAI

modelforgray-scaleimagesandtheALPHACmodelforcolorimages.

EthicsStatementTheauthorsacknowledgethatnopotentialconflictsofinterest,discrimination,
bias,fairnessconcernsorresearchintegrityissueshavebeenraisedduringthecompletionofthis
work.
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original

with 30k to 300k coefficients

synthesized

phase harmonic transform

original

with ~6,000 coefficients

measured from 30 simulations

synthesized

Allys et al (2020)

Brochard & Mallat 

(submitted)

phase harmonic with spatial shifts

In some cases, dimensionality reduction may provide us with a compact description
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phase harmonic transforms CNNs

For scientific data analysis, one wants to

- maximize expressivity

- minimize the number of parameters

“mathematical” neural networks: how to use them?

 there is a sweet spot somewhere→  dimensionality reductions may

compactify the description
→

These transforms are data agnostic.

To be generic, they produce a lot of coefficients
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intrinsic complexity

slope = −1 text, DNA

music, natural images


 biological systems→

all we can do is to learn moreinterpretable

On interpretability and the limits of science

disorderedordered
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Key points

• A class of systems appear to exhibit unbounded intrinsic complexity. 
Their summary statistics/models can be arbitrarily large and beyond human scale. 
Do they still fall within the scope of Science?

10 100 1,000 10,000 100,000 million

• We now have a range of statistical estimators for stationary fields

mathematical networksmoment-based trained neural networks

• For scientific analyses, we want to - maximize expressivity

- minimize the number of parameters


