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Exploratory data analysis

One of the main challenges in modern data science is that:
Big high-dimensional data are being produced everywhere
Limited numbers of domain scientists have to process such
data into useful knowledge

This challenge requires exploratory data analysis to produce
human-interpretable data representations by

1 Inferring structure from collected data
2 Using this structure to process data features to become

accessible for analysis

New frontier for data science & machine learning, beyond traditional
predictive & generative tasks.
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Exploratory data analysis
Example (high throughput single cell technologies)

scRNA-seq: cells × genes
CyTOF: cells × proteins

Big volumes of data
High dimensional
feature space
Nontrivial noise &
collection artifacts
Multiresolution
structures & processes
Exploration often
targets sparse data
regions
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Descriptive exploration in genomics & proteomics

Single-cell data:

Gene counts

Protein counts

Clusters

Transitions
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Visualizing progression & transitions in data

Progression & Transition
Structures

High-dimensional
Measurements

How can we reveal progression & transitions in data?
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Manifold learning

Question: is cellular development really a high-dimensional process?
Consider the following key properties:

1 Cells develop progressively via small incremental steps (e.g.,
differentiation and mutation)

2 Variations in each step have limited degrees of freedom

Conclusion: this progression can be modeled as a collection of
smoothly varying, locally low-dimensional, data patches.
Such models are similar to the mathematical formulation of a
manifold, and can be inferred by manifold learning methods.

More details in “Manifold learning-based methods for analyzing single-cell
RNA-sequencing data” by K.R. Moon, J.S. Stanley, D. Burkhardt, D. van Dijk,
G.W., and S. Krishnaswamy, Current Opinion in Systems Biology, 7:36–46, 2018.
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Diffusion geometry
Manifold learning with random walks

Local affinities g(x , y) ⇒ transition probs. Pr[x↝y] = g(x ,y)
∥g(x ,⋅)∥1

Markov chain/process ⇒ random walks on data manifold
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Diffusion geometry
Random walks reveal intrinsic neighborhoods
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Diffusion geometry
Geodesic vs. diffusion distances

Are geodesic distances sufficient for faithful intrinsic embedding?

Diffusion-based notions enable robust intrinsic data geometry.
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Diffusion geometry
Diffusion & potential distances

DM (Coifman & Lafon):
embedded distanceÌ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ

∥Φt(x) − Φt(y)∥ ≈
diffusion distanceÌ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ

∥P t
(x ,⋅) − P t

(y ,⋅)∥L2(∥q∥1/q)

PHATE (Moon et al.): ∥Φt(x) − Φt(y)∥
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

embedded distance

≈ ∥log P t
(x ,⋅) − log P t

(y ,⋅)∥ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
potential distance

g(u, v) = local affinity
q(u) = ∥g(u, ⋅)∥1

P(u,v) = g(u, v)/q(u)
Pt

(u,v) = Pr[u
t steps
⟿ v]

Φt ∶ data→ Rd (small d)
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Data visualization PHATE (Moon et al., Nat. Biotech. 2019)
Overview
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Affinities via adaptive α-decaying kernel

g̃(x , y) = exp [− (∥x − y∥
εx

)
α

] ↦ g(x , y) = g̃(x , y) + g̃(y , x)
2

Where
εx = distance from x to its k-th nearest neighbor
α controls the decay rate of g̃ w.r.t ∥x − y∥/εx



Data visualization PHATE (Moon et al., Nat. Biotech. 2019)
Overview
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Diffusion time tuning with spectral entropy

Spectral entropy at time t:

−∑j
λ

t
j

∥λt∥1
log λ

t
j

∥λt∥1

where λt
= {λt

0, λ
t
1, λ

t
2, . . .}

are the eigenvalues of Pt .



Data visualization PHATE (Moon et al., Nat. Biotech. 2019)
Overview
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Information-geometry distance
distij = ∥∆(+1)

(xi ,yj)∥2 where

∆(γ)
(x ,y)(z) = −∫

pt
y (z)

pt
x (z)

u−
γ+1

2 du

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pt
x(z) − pt

y(z) γ = −1
log pt

x(z) − log pt
y(z) γ = +1

2
1−γ [(pt

x(z))
1−γ

2 − (pt
y(z))

1−γ
2 ] otherwise



Data visualization PHATE (Moon et al., Nat. Biotech. 2019)
Overview
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Data visualization PHATE (Moon et al., Nat. Biotech. 2019)
Example #1: artificial tree

40 dimensions, dense regions at
branch- and end-points

PCA:
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Data visualization PHATE (Moon et al., Nat. Biotech. 2019)
Example #2: exploring differentiation trajectories in Embryoid Bodies

New single-cell RNA-sequencing
measured over 27-day timecourse

PCA:
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Data visualization PHATE (Moon et al., Nat. Biotech. 2019)
Example #2: exploring differentiation trajectories in Embryoid Bodies

New single-cell RNA-sequencing
measured over 27-day timecourse

PHATE:

ESC

Mesoderm

NCC Prog.

Neural Prog.

Mix of Meso.
and NCC

Cardiac Prog.

Neuroectoderm
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Data visualization PHATE (Moon et al., Nat. Biotech. 2019)
Example #2: exploring differentiation trajectories in Embryoid Bodies
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Data visualization PHATE (Moon et al., Nat. Biotech. 2019)
Evaluation & comparisons

Noiseless
simulation

Noisy
simulation

Geodesic
distances

Euclidean
distances2D embeddings

PCA, PHATE, t-SNE, etc.

Splatter Paths

Splatter Groups

. . .

. . .

Spearman
correlation

A

B
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Drug data exploration PhEMD (Chen et al., Nat. Meth. 2020)
Embedding cell distributions with EMD-based diffusion maps (Coifman & Lafon, 2006)

Guy Wolf (UdeM) Geometry-based Data Exploration 2020 14 / 29



Drug data exploration PhEMD (Chen et al., Nat. Meth. 2020)
Embedding cell distributions with EMD-based diffusion maps (Coifman & Lafon, 2006)

Guy Wolf (UdeM) Geometry-based Data Exploration 2020 14 / 29



Drug data exploration PhEMD (Chen et al., Nat. Meth. 2020)
Embedding cell distributions with EMD-based diffusion maps (Coifman & Lafon, 2006)

Earth-Mover’s Distances (EMD) between samples quantify the
intrinsic difference in cell distribution over the data manifold.

Diffusion maps embedding of samples:
1 Pairwise EMD → sample neighborhoods → sample-wise diffusion
2 Eigendecomposition of P t

→ diffusion coordinates of samples
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Diffusion coordinates
Eigenvals of P: 1 = λ0 ≥ λ1 ≥ λ2 ≥ ⋯ ≥ λδ > 0

Eigenvecs of P:
#

sa
m

pl
es

φ0 φ1 φ2 ⋯ φδ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Diffusion Map at time t:

S ↦ Φt(S) ≜ [λt
1φ1(S) , λt

2φ2(S) , . . . , λt
δφδ(x)]T



Drug data exploration PhEMD (Chen et al., Nat. Meth. 2020)
Embedding cell distributions with EMD-based diffusion maps (Coifman & Lafon, 2006)
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Data generation SUGAR (Lindenbaum et al., NeurIPS 2018)
Walk toward the data manifold from randomly generated points

Generate random points:

Walk towards the data manifold with diffusion: x ↦ ∑
y∈data

y ⋅ pt(x , y)
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Data generation SUGAR (Lindenbaum et al., NeurIPS 2018)
Traditional models: density based data generation

Generative models typically infer distribution from collected data, and
sample it to generate more data.

⇐

⇐

Biased by sampling density
May miss rare populations
Does not preserve the geometry
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Data generation SUGAR (Lindenbaum et al., NeurIPS 2018)
New approach: geometry based data generation
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Data generation SUGAR (Lindenbaum et al., NeurIPS 2018)
Correct density with MGC kernel (Bermanis et al., ACHA 2016)

Separate density/geometry with new kernel: k(x ,y)= ∑
r∈data

g(x ,r) g(y ,r)
∥g(r ,⋅)∥1

Use new diffusion process p(x , y) = k(x ,y)
∥k(x ,⋅)∥1

to walk to the manifold
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Data generation SUGAR (Lindenbaum et al., NeurIPS 2018)
Fill sparse areas to create uniform distribution

Question: How should we initialize new points to end up with
uniform sampling from the data manifold?
Answer: For each x ∈ data, initialize ˆ̀(x) points sampled from
N (x ,Σx); set ˆ̀ as the mid-point between the upper & lower bounds
in the following proposition.

Proposition
The generation level ˆ̀(x) required to equalize density is bounded by

det (I + Σx
2σ2 )

1
2 max(d̂(⋅))−d̂(x)

d̂(x)+1 − 1 ≤ ˆ̀(x) ≤ det (I + Σx
2σ2 )

1
2 [max(d̂(⋅)) − d̂(x)] ,

where σ is a scale used when defining Gaussian neighborhoods g(x , y) for the
diffusion geometry, and d̂(x) = ∥g(x , ⋅)∥1 estimates local density.
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Data generation SUGAR (Lindenbaum et al., NeurIPS 2018)
Illuminate hypothetical cell types in single-cell data from Velten et al. (2017)

Recovering originally-undersampled lineage in early hematopoeisis:

B-cell maturation trajectory
enhanced by SUGAR

SUGAR equalizes the total cell
distribution
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Data generation SUGAR (Lindenbaum et al., NeurIPS 2018)
Recover gene-gene relationships in single-cell data from Velten et al. (2017)

SUGAR improves module correlation and MI identified by Velten et al.

Velten et al., Nature Cell Biology 19 (2017)
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Data generation SUGAR (Lindenbaum et al., NeurIPS 2018)
Recover gene-gene relationships in single-cell data from Velten et al. (2017)

Generated cells also follow canonical marker correlations

Li et al., Nature communications 7 (2016)
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Imputation & denoising MAGIC (van Dijk et al., Cell 2018)
Overview
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Imputation & denoising MAGIC (van Dijk et al., Cell 2018)
Recovering gene interactions in EMT data
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Understanding diffusion geometry
Harmonic analysis on data manifold / foundations of graph signal processing

The diffusion operator P t
⟶ heat kernel et∆ when # data

points →∞, neighborhood radius → 0, up to density normalization.
The eigenvectors / eigenfunctions of P t form generalized
Fourier harmonics over the data geometry

The eigenvalues of P t take the form of e−t⋅(frequency)2

f (x)↦ P t f (x) acts as a lowpass filter
Harmonic analysis interpretation of presented methods:

SUGAR / MAGIC – based on lowpass filtering of data features
PHATE / DM – based on impulse responses of lowpass filters

Beyond lowpass - diffusion filters over intrinsic data geometry:
f (x)↦ (I − P t)f (x) – highpass filter
f (x)↦ P t(I − P t)f (x) – bandpass filter / diffusion wavelet
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Geometric scattering (Gao et al., ICML 2019)
Deep diffusion-based filter bank for graph / manifold representation

f

∥ . . .∥q
q

P2j−1
I − P2j−1 ∣ . . . ∣ ∥ . . .∥q

q

P2j−1
I − P2j−1 ∣ . . . ∣ P2j ′−1

I − P2j ′−1 ∣ . . . ∣ ∥ . . .∥q
q

Sf

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Ψj

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Ψj ′

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
1≤q≤Q

Provides whole-graph representation for graph data analysis
Mathematical framework for geometric deep learning

Analogous to Euclidean scattering by Mallat (CPAM, 2012)
New notion of deformation stability using rigid motions &
distribution variations on manifolds (Perlmutter et al., NeurIPS
DLT workshop 2018)
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Geometric scattering (Gao et al., ICML 2019)
Feature extraction for graph data analysis

Scattering features embed graphs with signals over their vertices to a
Euclidean feature space indexed by scattering paths (i.e., j , j ′, q)

G = (V ,E ,W )
f ∶ V → R Adjacency matrix

:

A(v i,
v j)

Signal vector:
f (vi )

Diffusion wavelets:

Ψj = P2j−1
− P2j

P =
1
2 (I +D−1A)

Ψj

Scattering
f ↦ Sf

Traditional
Euclidean
algorithms

(e.g., SVM/PCA)

Multiple signals handled by concatenation of scattering features
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Geometric scattering (Gao et al., ICML 2019)
Example: exploring enzyme class exchange preferences

Inferring EC exchange preferences in enzyme evolution:

Observed by Cuesta et al.

(Biophysical Journal, 2015)

Inferred via geometric

scattering features

Exchange pref. inference
Compute pref(EC-i ,EC-j) ∶=

wj ⋅ [min {D(i , j)
D(i , i) ,

D(j , i)
D(j , j)}]

−1

wj = portion of enzymes in EC-
j that choose another EC as their
nearest subspace; D(i , j)=mean
dist. of enzymes in EC-i from PCA
(90% exp. var.) subspace of EC-j .

Geometric scattering features extracted from ENZYMES (Borgwardt et al.,
Bioinformatics 2005) containing 100 enzyme graphs from each EC.
PCA over scattering: EC subspaces of 5–7 dims. ; full space of 16 dims.
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Conclusion
Exploratory data analysis, especially in genonmics/proteomics, often
requires to separate data geometry from distribution.

Diffusion geometry enables a multitude of tools highly suitable for
geometry-based analysis:

PHATE - data visualization with diffusion geometry
PhEMD - learning drug perturbation manifold
SUGAR - geometry-based data generation
Geometric scattering - graph/manifold-level representations

Additional work includes, for example:
MAGIC - data imputation & denoising (van Dijk et al., 2018)
Data fusion with harmonic alignment (Stanley et al., 2019)
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