Geometry-based Data Exploration with Manifold Learning & Diffusion Geoemtry

Guy Wolf

Université de Montréal Mila – Quebec Al Institute

guy.wolf@umontreal.ca

2020

M

2020 1 / 29

One of the main challenges in modern data science is that:

- Big high-dimensional data are being produced everywhere
- Limited numbers of domain scientists have to process such data into useful knowledge

This challenge requires **exploratory data analysis** to produce human-interpretable data representations by

- Inferring structure from collected data
- Using this structure to process data features to become accessible for analysis

New frontier for data science & machine learning, beyond traditional predictive & generative tasks.

Exploratory data analysis

Example (high throughput single cell technologies)

scRNA-seq: cells × genes
CyTOF: cells × proteins

- Big volumes of data
- High dimensional feature space
- Nontrivial noise & collection artifacts
- Multiresolution structures & processes
- Exploration often targets sparse data regions

Guy Wolf (UdeM)

Descriptive exploration in genomics & proteomics

Visualizing progression & transitions in data

Progression & Transition Structures

High-dimensional Measurements

How can we reveal progression & transitions in data?

2020 4 / 29

Visualizing progression & transitions in data

4 / 29

Question: is cellular development really a high-dimensional process? Consider the following key properties:

- Cells develop progressively via small incremental steps (e.g., differentiation and mutation)
- **②** Variations in each step have **limited degrees of freedom**

Conclusion: this progression can be modeled as a collection of **smoothly varying, locally low-dimensional, data patches**.

Such models are similar to the mathematical formulation of a manifold, and can be **inferred by manifold learning methods**.

More details in *"Manifold learning-based methods for analyzing single-cell RNA-sequencing data"* by K.R. Moon, J.S. Stanley, D. Burkhardt, D. van Dijk, G.W., and S. Krishnaswamy, *Current Opinion in Systems Biology*, 7:36–46, 2018.

Diffusion geometry

Manifold learning with random walks

• Local affinities $g(x, y) \Rightarrow$ transition probs. $\Pr[x \rightsquigarrow y] = \frac{g(x, y)}{\|g(x, \cdot)\|_1}$

2020 6 / 29

Diffusion geometry

Manifold learning with random walks

Local affinities g(x, y) ⇒ transition probs. Pr[x→y] = g(x,y) ||g(x,·)||₁
 Markov chain/process ⇒ random walks on data manifold

Guy Wolf (UdeM)

Diffusion geometry

Random walks reveal intrinsic neighborhoods

Are geodesic distances sufficient for faithful intrinsic embedding?

< 47 >

Are geodesic distances sufficient for faithful intrinsic embedding?

< 47 >

Are geodesic distances sufficient for faithful intrinsic embedding?

Diffusion-based notions enable robust intrinsic data geometry.

Guy Wolf (UdeM)

Geometry-based Data Exploration

2020 8 / 29

Are geodesic distances sufficient for faithful intrinsic embedding?

Diffusion-based notions enable robust intrinsic data geometry.

Guy Wolf (UdeM)

Geometry-based Data Exploration

< 🗗 >

Are geodesic distances sufficient for faithful intrinsic embedding?

Diffusion-based notions enable robust intrinsic data geometry.

Guy Wolf (UdeM)

Geometry-based Data Exploration

2020 8 / 29

Diffusion geometry Diffusion & potential distances

$$\begin{array}{l} \begin{array}{l} \begin{array}{c} \begin{array}{c} \mbox{embedded distance} \\ \mbox{iffusion distance} \end{array} \end{array} & \begin{array}{c} \mbox{diffusion distance} \\ \mbox{iffusion distance} \end{array} \end{array} \\ \begin{array}{c} \mbox{off} \\ \mbox{iffusion distance} \end{array} \end{array} \\ \begin{array}{c} \mbox{iffusion distance} \end{array} \end{array} & \begin{array}{c} \mbox{iffusion distance} \end{array} \end{array} \\ \begin{array}{c} \mbox{ifusion distance} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \mbox{ifusion distance} \end{array} \end{array} \\ \begin{array}{c} \mbox{ifusion distance} \end{array} \\ \end{array} \\ \begin{array}{c} \mbox{ifusion distance} \end{array} \end{array} \\ \begin{array}{c} \mbox{ifusion distance} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \mbox{ifusion distance} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \mbox{ifusion distance} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \mbox{ifusion distance} \end{array} \\ \begin{array}{c} \mbox{ifusion distance} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \end{array}$$

PHATE (Moon et al., Nat. Biotech. 2019)

Overview

2020 10 / 29

Overview

Overview

2020 10 / 29

PHATE (Moon et al., Nat. Biotech. 2019)

Overview

PHATE (Moon et al., Nat. Biotech. 2019)

Overview

2020 10 / 29

Data visualizationPHATE (Moon et al., Nat. Biotech. 2019)Example #1: artificial tree

• 40 dimensions, dense regions at branch- and end-points

Data visualizationPHATE (Moon et al., Nat. Biotech. 2019)Example #1: artificial tree

• 40 dimensions, dense regions at branch- and end-points

Data visualizationPHATE (Moon et al., Nat. Biotech. 2019)Example #1: artificial tree

2020 11 / 29

• New single-cell RNA-sequencing measured over 27-day timecourse

2020 12 / 29

• New single-cell RNA-sequencing measured over 27-day timecourse

• New single-cell RNA-sequencing measured over 27-day timecourse

< (F) >

• New single-cell RNA-sequencing measured over 27-day timecourse

2020 12 / 29

PHATE (Moon et al., Nat. Biotech. 2019)

Evaluation & comparisons

Guy Wolf (UdeM)

Geometry-based Data Exploration

Guy Wolf (UdeM)

2020 14 / 29

< 47 →

Guy Wolf (UdeM)

2020 14 / 29

Earth-Mover's Distances (EMD) between samples quantify the intrinsic difference in cell distribution over the data manifold.

Diffusion maps embedding of samples:

- **1** Pairwise EMD \rightarrow sample neighborhoods \rightarrow sample-wise diffusion
- 2 Eigendecomposition of $P^t \rightarrow$ diffusion coordinates of samples

< 47 →

Data generation SUGAR (Lindenbaum et al., NeurIPS 2018) Walk toward the data manifold from randomly generated points

Generate random points:

< 47 →

Data generation SUGAR (Lindenbaum et al., NeurIPS 2018) Walk toward the data manifold from randomly generated points

Generate random points:

Walk towards the data manifold with diffusion: $x \mapsto \sum_{y \in data} y \cdot p^t(x, y)$

< 47 →

Data generation SUGAR (Lindenbaum et al., NeurIPS 2018) Traditional models: density based data generation

Generative models typically infer distribution from collected data, and sample it to generate more data.

- Biased by sampling density
- May miss rare populations
- Does not preserve the geometry

2020 17 / 29

2020 17 / 29

2020 17 / 29

2020 17 / 29

2020 17 / 29

Data generation SUGAR (Lindenbaum et al., NeurIPS 2018) Correct density with MGC kernel (Bermanis et al., ACHA 2016)

Separate density/geometry with new kernel: $k(x,y) = \sum_{r \in data} \frac{g(x,r)g(y,r)}{\|g(r,\cdot)\|_1}$

Use new diffusion process $p(x, y) = \frac{k(x, y)}{\|k(x, \cdot)\|_1}$ to walk to the manifold

Data generation SUGAR (Lindenbaum et al., NeurIPS 2018) Correct density with MGC kernel (Bermanis et al., ACHA 2016)

Separate density/geometry with new kernel: $k(x,y) = \sum_{r \in data} \frac{g(x,r)g(y,r)}{\|g(r,\cdot)\|_1}$

Use new diffusion process
$$p(x, y) = \frac{k(x, y)}{\|k(x, \cdot)\|_1}$$
 to walk to the manifold

< 47 →

Question: How should we initialize new points to end up with uniform sampling from the data manifold?

Answer: For each $x \in$ data, initialize $\hat{\ell}(x)$ points sampled from $\mathcal{N}(x, \Sigma_x)$; set $\hat{\ell}$ as the mid-point between the upper & lower bounds in the following proposition.

Proposition

The generation level $\hat{\ell}(x)$ required to equalize density is bounded by

$$\det\left(I+\frac{\Sigma_x}{2\sigma^2}\right)^{\frac{1}{2}}\frac{\max(\hat{d}(\cdot))-\hat{d}(x)}{\hat{d}(x)+1}-1\leq\hat{\ell}(x)\leq\det\left(I+\frac{\Sigma_x}{2\sigma^2}\right)^{\frac{1}{2}}\left[\max(\hat{d}(\cdot))-\hat{d}(x)\right],$$

where σ is a scale used when defining Gaussian neighborhoods g(x, y) for the diffusion geometry, and $\hat{d}(x) = ||g(x, \cdot)||_1$ estimates local density.

Data generationSUGAR (Lindenbaum et al., NeurIPS 2018)Illuminate hypothetical cell types in single-cell data from Velten et al. (2017)

Recovering originally-undersampled lineage in early hematopoeisis:

B-cell maturation trajectory enhanced by SUGAR

SUGAR equalizes the total cell distribution

< 47 →

Data generationSUGAR (Lindenbaum et al., NeurIPS 2018)Recover gene-gene relationships in single-cell data from Velten et al. (2017)

SUGAR improves module correlation and MI identified by Velten et al.

Velten et al., Nature Cell Biology 19 (2017)

Guy Wolf (UdeM)

Data generation SUGAR (Lindenbaum et al., NeurIPS 2018) Recover gene-gene relationships in single-cell data from Velten et al. (2017)

Generated cells also follow canonical marker correlations

Li et al., Nature communications 7 (2016)

Guy Wolf (UdeM)

2020 21 / 29

Imputation & denoising

MAGIC (van Dijk et al., Cell 2018)

MAGIC Before MAGIC After MAGIC Diffusion: t = 1= 3 t = 5cells Imputation: genes Gene Archetypal Population Interactions Analysis Analysis m Before Gene MAGIC Gene A Gene B After MAGIC Gene A Transcription Factor—Target Prediction Zeb1 Snai2 Twist1 Snai1 Target1 Target2 Target3 Target8 Target4 Target5 Target6 Target7

Overview

Guy Wolf (UdeM)

Geometry-based Data Exploration

2020 22 / 29

Imputation & denoising MAGIC (van Dijk et al., Cell 2018) Recovering gene interactions in EMT data

2020 23 / 29

Imputation & denoising MAGIC (van Dijk et al., Cell 2018) Recovering gene interactions in EMT data

2020 23 / 29

Understanding diffusion geometry

Harmonic analysis on data manifold / foundations of graph signal processing

The diffusion operator $P^t \longrightarrow$ heat kernel $e^{t\Delta}$ when # data points $\rightarrow \infty$, neighborhood radius $\rightarrow 0$, up to density normalization.

• The eigenvectors / eigenfunctions of *P*^t form **generalized Fourier harmonics** over the data geometry

• The eigenvalues of
$$P^t$$
 take the form of $e^{-t \cdot (\text{frequency})^2}$

•
$$f(x) \mapsto P^t f(x)$$
 acts as a lowpass filter

Harmonic analysis interpretation of presented methods:

- SUGAR / MAGIC based on lowpass filtering of data features
- PHATE / DM based on impulse responses of lowpass filters

Beyond lowpass - diffusion filters over intrinsic data geometry:

• $f(x) \mapsto (I - P^t)f(x)$ – highpass filter

•
$$f(x) \mapsto P^t(I - P^t)f(x)$$
 - bandpass filter / diffusion wavelet

Geometric scattering

(Gao et al., ICML 2019)

Deep diffusion-based filter bank for graph / manifold representation

- Provides whole-graph representation for graph data analysis
- Mathematical framework for geometric deep learning
 - Analogous to Euclidean scattering by Mallat (CPAM, 2012)
- New notion of deformation stability using rigid motions & distribution variations on manifolds (Perlmutter et al., NeurIPS DLT workshop 2018)

Geometric scattering Feature extraction for graph data analysis

Scattering features embed graphs with signals over their vertices to a Euclidean feature space indexed by scattering paths (i.e., j, j', q)

• Multiple signals handled by concatenation of scattering features

Guy Wolf (UdeM)

2020 26 / 29

< A >

(Gao et al., ICML 2019)

Geometric scattering

(Gao et al., ICML 2019)

Example: exploring enzyme class exchange preferences

Inferring EC exchange preferences in enzyme evolution:

Observed by Cuesta et al. (Biophysical Journal, 2015)

Inferred via geometric scattering features

Exchange pref. inference

Compute pref(EC-*i*, EC-*j*) :=

$$w_j \cdot \left[\min\left\{\frac{D(i,j)}{D(i,i)}, \frac{D(j,i)}{D(j,j)}\right\}\right]^{-1}$$

$$\begin{split} w_j &= \text{portion of enzymes in EC-} \\ j \text{ that choose another EC as their} \\ \text{nearest subspace; } & D(i,j) = \text{mean} \\ \text{dist. of enzymes in EC-} i \text{ from PCA} \\ (90\% \text{ exp. var.}) \text{ subspace of EC-} j \,. \end{split}$$

- Geometric scattering features extracted from ENZYMES (Borgwardt et al., Bioinformatics 2005) containing 100 enzyme graphs from each EC.
- PCA over scattering: EC subspaces of 5-7 dims. ; full space of 16 dims.

2020 27 / 29

Exploratory data analysis, especially in genonmics/proteomics, often requires to separate data geometry from distribution.

Diffusion geometry enables a multitude of tools highly suitable for geometry-based analysis:

- PHATE data visualization with diffusion geometry
- PhEMD learning drug perturbation manifold
- SUGAR geometry-based data generation
- Geometric scattering graph/manifold-level representations

Additional work includes, for example:

- MAGIC data imputation & denoising (van Dijk et al., 2018)
- Data fusion with harmonic alignment (Stanley et al., 2019)

< 67 ►

Acknowledgements

Yale Applied Math Program:

Jay Stanley Raphy Coifman

Yale School of Medicine:

Smita Krishnaswamy Scott Gigante Will Chen Dan Burkhardt David van Dijk Zheng Wang Natalia Ivanova **Utah State University:**

Kevin Moon

Michigan State University: Matt Hirn Fong Gao Mike Perlmutter University of Zurich: Nevena Zivanovic Bernd Bodenmiller Memorial Sloan Kettering **Cancer Center:** Dana Pe'er Roshan Sharma

###