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To Predict or Explain?

Machine learning textbooks still focus on learning models that can predict.

Yet there is increasing attention to the task of learning models that can explain
(Spirtes et al. 1993, Pearl 2000, Shmueli 2010):

giving causal explanations,

thereby making counterfactual predictions, which is required for policy making
That is,

We first acquire data D generated from an unknown probability distribution P.

In light of D, we want to learn a causal model M.

Then we want to use M to predict what would (most likely) happen under a
counterfactual probability distribution P* rather than the actual one P, where
P* is the distribution that P would be changed to if we were to manipulate some
variables in M in a certain way.


https://link.springer.com/book/10.1007/978-1-4612-2748-9
https://bayes.cs.ucla.edu/BOOK-2K/
https://projecteuclid.org/journals/statistical-science/volume-25/issue-3/To-Explain-or-to-Predict/10.1214/10-STS330.full

But Learning Causal Models Is Hard

Reason: the problem of non-identifiability.
Very often, there are two different parameter values 6 and 6’ in ® such that

« causal models M, and M, are distinct, making distinct counterfactual
predictions and recommending distinct policies,

= but Py = Py, making it impossible to distinguish between the two models from
observational data.

Upshot: it is impossible to achieve
+ (model selection) consistency

# 1.e., convergence in probability to the true model at every parameter value in

©.

Good News: To restore consistency, we only need to make an assumption to rule
out “almost no” parameter values:

# 1n the topological sense of “nowhere dense”

# or in the measure-theoretic sense of “Lebesgue-measure zero” if the parameter
space is small enough to be finite dimensional.



An Old Solution for the Hardness

There is an old, standard solution:

There is an old, standard solution (Spirtes et al. 1993).

That is, when we have two causal models M, and M, with non-identifiability

P, = P, , let’s rule out the more complex model a priori and design a learning

algorithm that sacrifice consistency for that model, using Ockham’s razor (in
jargon, making the Causal Faithfulness Assumption).

But that raises an issue:

Why use Ockham’s razor?

That is, why sacrifice consistency at the parameter values that correspond to
relatively complex causal models


https://link.springer.com/book/10.1007/978-1-4612-2748-9

An New Solution for the Hardness

Jiji Zhang and I propose a new solution (Lin & Zhang 2020).

Think about a hierarchy of evaluative standards:

High: consistency at every parameter value
(too strong to be achievable)

Middle: consistency at almost all parameter values + some robustness

Low: consistency at almost all parameter values
(too weak to tell where to sacrifice consistency)

They prove that, for learning causal Bayes nets with categorical variables without
ruling out models a priori,

it is possible for a learning algorithm to achieve the middle standard,

any learning method achieving it must sacrifice consistency at the parameter
values that correspond to relatively complex causal models.

“Almost all” = all but a nowhere dense set.
“Robust” = preservation of good learning performance under perturbation of parameter values.


https://proceedings.mlr.press/v117/lin20a/lin20a.pdf

Extension of the New Solution?

The extension to real-valued variables might be problematic. Crux:

The above assumes that we can learn/test conditional independence without facing
the problem of non-identifiability.

Bad News 1

Shah and Peters (2020) show that it is hard to test the conditional independence
between two variables X and Y given a real-valued variable Z, when there is no
assumption on the joint probability density function over X, Y, and Z. That is, if we

require that the chance of Type I error be bounded from above by a small & (which is

a sort of uniform consistency over just the null hypothesis of conditional independence), then

the worst-case chance of Type II error must be high, as high as | — a.

Bad News 2

[ am already able to strengthen the result: it is impossible to achieve consistency at
every parameter value.

[ conjecture (with high confidence) that, even if we assume that the joint dentist
is smooth, it is impossible to achieve consistency at almost all parameter values
(in a rigorous, topological sense).


https://arxiv.org/abs/1804.07203

Open Problem

Think about a Hierarchy of Modes of Convergence as Evaluative Criteria:

(1) uniform consistency (at every parameter value)

(2) pointwise consistency at every parameter value

(3) pointwise consistency at almost all parameter values + some robustness
(4) pointwise consistency at almost all parameter values

The idea is that, in each learning problem, we ought to strive for the highest achievable
criterion.

Open Problem: For each evaluative criterion C, characterize the class of learning
problems in which C is achievable (i.e., achieved by at least one learning algorithm).

Progress for (1) in classification: Vapnik & Chervonenkis (1971) and Valiant
(1984), known as the Fundamental Theorem of Statistical Learning

Progress for (2) in hypothesis testing: Dembo & Peres (1994), A Topological
Criterion for Hypothesis Testing

I would love to have more a more comprehensive, systematic result:

for a variety of different tasks: classification, regression, hypothesis testing,
model selection, etc.

for each of those modes of convergence (1)-(4), and possibly more.


https://link.springer.com/chapter/10.1007/978-3-319-21852-6_3
https://dl.acm.org/doi/pdf/10.1145/1968.1972
https://dl.acm.org/doi/pdf/10.1145/1968.1972
https://projecteuclid.org/journals/annals-of-statistics/volume-22/issue-1/A-Topological-Criterion-for-Hypothesis-Testing/10.1214/aos/1176325360.full

Thank You!



