Work supported by the National Science Foundation
Compressible Fluids
-
I. NEAL, S. SHKOLLER and V. VICOL,
Gradient catastrophes and an infinite hierarchy of Hölder cusp singularities for 1D Euler, (2024),
arXiv:2412.21040
-
J. CHEN, G. CIALDEA, S. SHKOLLER
and V. VICOL,
Vorticity blowup in 2D compressible Euler equations, (2024),
arXiv:2407.06455
-
S. SHKOLLER
and V. VICOL,
The geometry of maximal development and shock formation for the Euler equations in multiple space dimensions,
Invent. Math., 237, 871--1252, (2024), https://doi.org/10.1007/s00222-024-01269-x or
arXiv:2310.08564
-
I. NEAL, C. RICKARD, S. SHKOLLER
and V. VICOL,
A new type of stable shock formation in gas dynamics, Communications on Pure and Applied Analysis, (2023),
Doi: 10.3934/cpaa.2023118 or
arXiv:2303.16842
-
I. NEAL, S. SHKOLLER
and V. VICOL,
A characteristics approach to shock formation in 2D Euler with azimuthal symmetry and entropy, (2023),
arXiv:2302.01289
-
T. BUCKMASTER, T. DRIVAS, S. SHKOLLER
and V. VICOL,
Simultaneous development of shocks and cusps for 2D Euler with azimuthal symmetry from smooth data, Annals of PDE,
8:26, 1--199, (2022),
arXiv:2106.02143
-
T. BUCKMASTER, S. SHKOLLER
and V. VICOL,
Shock formation and vorticity creation for 3d Euler,
Comm. Pure Appl. Math., 76 , 1965--2072, (2023),
https://doi.org/10.1002/cpa.22067,
arXiv:2006.14789
-
T. BUCKMASTER, S. SHKOLLER
and V. VICOL,
Formation of point shocks for 3D compressible
Euler,
Comm. Pure Appl. Math., 76 , 2069--2120, (2023),
https://doi.org/10.1002/cpa.22068,
arXiv:1912.04429
-
T. BUCKMASTER, S. SHKOLLER
and V. VICOL,
Formation of shocks for 2D isentropic compressible
Euler,
Comm. Pure Appl. Math., 75 , 2069--2120, (2022),
https://doi.org/10.1002/cpa.21956,
arXiv:1907.03784
-
S. SHKOLLER
and T. SIDERIS,
Global existence of near-affine solutions to the
compressible Euler equations,
Arch. Rational Mech. Anal., 234, 115--180, (2019),
ArXiv.
-
M. HADZIC, S. SHKOLLER,
and J. SPECK,
A priori estimates for solutions to the relativistic Euler equations
with a moving vacuum boundary,
Comm. Partial Differential Equations, 44, 859--906, (2019), ArXiv.
-
D. COUTAND, J. HOLE and
S. SHKOLLER,
Well-posedness of the free-boundary compressible 3-D Euler equations with
surface tension and the zero surface tension limit,
SIAM J. Math. Anal., 45, 3690--3767, (2013),
PDF.
- D. COUTAND and S. SHKOLLER,
Well-posedness in smooth function spaces for the moving-boundary
3-D compressible Euler equations in physical vacuum,
Arch. Rational Mech. Anal., 206 , 515--616,
(2012), PDF.
- D. COUTAND and S. SHKOLLER,
Well-posedness in smooth function spaces for the moving-boundary
1-D compressible Euler equations in physical vacuum,
Comm. Pure Appl. Math., 64 , 328--366, (2011),
PDF.
- D. COUTAND, H. LINDBLAD, and S. SHKOLLER,
A priori estimates for the free-boundary 3-D
compressible Euler equations in physical vacuum, Commun. Math. Phys.,
296, (2010), 559--587.
PDF.
Numerical methods and asymptotic models for fluid interfaces, Rayleigh-Taylor instabilities, shocks, and contact discontinuities
-
R. RAMANI
and
S. SHKOLLER,
A fast dynamic smooth adaptive meshing scheme with
applications to compressible flow, Journal of Computational Physics,
490, 112280, (2023), PDF.
-
G. PANDYA
and
S. SHKOLLER,
Interface models for three-dimensional Rayleigh-Taylor instability, Journal of Fluid Mechanics, 959, A10, (2023), ArXiv:2201.04538, DOI
-
R. RAMANI
and
S. SHKOLLER,
A multiscale model for Rayleigh-Taylor and
Richtmyer-Meshkov instabilities,
Journal of Computational Physics, 405, 109177, (2020), ArXiv.
-
A. CHENG,
R. GRANERO-BELINCHON,
S. SHKOLLER,
and J. WILKENING,
Rigorous asymptotic models of water waves,
Water Waves, 1 , 71--130, (2019), ArXiv.
-
R. RAMANI,
J. REISNER,
AND S. SHKOLLER,
A space-time smooth artificial viscosity method with wavelet noise indicator and shock
collision scheme, Part 1: the 1-D case,
Journal of Computational Physics, 387, (2019), 81--116,
ArXiv.
-
R. RAMANI,
J. REISNER,
AND S. SHKOLLER,
A space-time smooth artificial viscosity method with wavelet noise indicator and shock
collision scheme, Part 2: the 2-D case,
Journal of Computational Physics, 387, (2019), 45--80,
ArXiv.
-
R. GRANERO-BELINCHON
and S. SHKOLLER,
A model for Rayleigh-Taylor
mixing and interface turn-over,
Multiscale Model. Simul.,
15 , 274--308, (2017),
PDF.
-
J. REISNER,
J. SERENCSA,
AND S. SHKOLLER,
A Space-time Smooth Artificial Viscosity Method For Nonlinear Conservation
Laws ,
Journal of Computational Physics, 235, (2013), 912--933, PDF.
Convex integration and nonuniqueness
-
T. BUCKMASTER, S. SHKOLLER,
and V. VICOL,
Nonuniqueness of weak solutions to the
SQG equation,
Comm. Pure Appl. Math.,
72(9), 1809--1874, (2019),
ArXiv.
Elliptic systems on Sobolev-class domains
-
A. CHENG and S. SHKOLLER,
Solvability and regularity
for an elliptic system prescribing the curl,
divergence, and partial trace of a vector field on Sobolev-class
domains, J. Math. Fluid Mech. 19, 375--422, (2017),
PDF.
Incompressible Euler and Navier-Stokes Free-Boundary Problems
-
J. ROBERTS, S. SHKOLLER,
and T. SIDERIS,
Affine motion of 2d incompressible fluids and flows
in SL(2,R), Commun. Math. Phys.,
375, 1003--1040, (2020),
ArXiv.
-
D. COUTAND and S. SHKOLLER,
On the splash singularity
for the free-surface of a Navier-Stokes fluid,
Ann. I.H.Poincare--AN,
36 , 475--503, (2019),
PDF.
-
D. COUTAND and S. SHKOLLER,
Regularity of the velocity field for Euler vortex
patch evolution,
Trans. AMS,
370 , 3689--3720, (2018),
PDF.
-
D. COUTAND and S. SHKOLLER,
On the impossibility of finite-time splash
singularities for vortex sheets,
Arch. Rational Mech. Anal.,
221 , 987--1033, (2016),
PDF.
-
D. COUTAND and S. SHKOLLER,
On the finite-time splash and splat singularities for
the 3-D free-surface Euler equations,
Commun. Math. Phys., 325 , 143--183, (2014),
PDF.
- D. COUTAND and S. SHKOLLER,
A simple proof of well-posedness for the free-surface
incompressible Euler equations, Discrete Contin. Dyn. Syst. Ser. S,
3, 429--449, (2010),
PDF.
- A. CHENG, D. COUTAND, and S. SHKOLLER,
On the limit as the density ratio tends to zero
for two perfect incompressible 3-D fluids
separated by a surface of discontinuity,
Comm. Partial Differential
Equations, 35, 817--845, (2010).
PDF.
d
- A. CHENG, D. COUTAND AND S. SHKOLLER,
On the Motion of Vortex Sheets with Surface Tension in the 3D Euler
Equations with Vorticity, Comm. Pure Appl. Math.,
61(12), (2008), 1715--1752.
PDF.
- D. COUTAND AND S. SHKOLLER,
Well-posedness
of the free-surface incompressible Euler equations with or without surface
tension, J. Amer. Math. Soc.,
20(3), (2007), 829--930.
PDF.
Stefan Problem
-
M. HADZIC, G. NAVARRO,
and S. SHKOLLER,
Local well-posedness and global stability of the
two-phase Stefan problem,
SIAM J. Math. Anal.
49 , 4942--5006, (2017),
PDF.
-
M. HADZIC
AND S. SHKOLLER,
Global stability of steady states in the classical Stefan problem for general
boundary shapes,
Philos. Trans. Roy. Soc. London Ser. A,
373 , 20140284, (2015),
http://dx.doi.org/10.1098/rsta.2014.0284,
PDF.
-
M. HADZIC AND S. SHKOLLER,
Global stability and decay for the classical Stefan Problem,
Comm. Pure Appl. Math,
68 , 689--757, (2015),
PDF.
-
M. HADZIC AND S. SHKOLLER,
Well-posedness for the classical Stefan problem and the zero surface
tension limit, ,
Arch. Rational Mech. Anal., 223 , 213--264, (2017),
PDF.
Muskat and Hele-Shaw Problems
-
R. GRANERO-BELINCHON
and S. SHKOLLER,
Well-posedness and decay to equilibrium for the Muskat
problem with discontinuous permeability ,
Trans. AMS, 372, 2255--2286, (2019),
ArXiv.
-
A. CHENG,
R. GRANERO-BELINCHON
AND S. SHKOLLER,
Well-posedness of the Muskat problem with
H2
initial data,
Adv. Math., 286 , 32--104, (2016),
PDF.
-
A. CHENG, D. COUTAND, AND S. SHKOLLER,
Global existence and decay for solutions of the Hele-Shaw flow with
injection,
Interfaces and Free Boundaries, 16 , 297--338, (2014),
PDF.
Fluid-Structure Interaction Problems
- A. CHENG AND S. SHKOLLER,
The interaction of the 3D Navier-Stokes equations with a moving nonlinear
Koiter elastic shell, SIAM J. Math. Anal., 42 , (2010),
1094--1155. PDF.
- A. CHENG, D. COUTAND AND S.
SHKOLLER,
Navier-Stokes equations interacting with a
nonlinear elastic biofluid shell,
SIAM J. Math. Anal., 39 , (2007),
742--800. PDF.
- D. COUTAND AND S. SHKOLLER,
On the
interaction between quasilinear elastodynamics and the Navier-Stokes
equations,
Arch. Rational Mech. Anal.
179(3), (2006), 303--352.
PDF.
- D. COUTAND AND S. SHKOLLER,
Motion
of an elastic solid inside of an incompressible viscous fluid,
Arch. Rational Mech. Anal. 176(1), (2005), 25--102.
PDF.
Analysis of Friction, Liquid crystals, and non-Newtonian fluids
-
A. CHENG,
L. KELLOG,
S. SHKOLLER,
AND D. TURCOTTE,
A liquid-crystal model for friction, Proc. Natl. Acad. Sci. USA,
105, (2008), 7930--7935.
PDF.
- D. COUTAND AND S. SHKOLLER,
Well-posedness of the full Ericksen-Leslie model of
nematic liquid crystals, C. R. Acad. Sci. Paris Ser. I Math., 333,
(2001), 919-924.
PDF.
- S. SHKOLLER,Well-posedness and global attractors
for liquid crystals on Riemannian manifolds,
Comm. Partial Differential
Equations, 27, (2002), 1103-1137.
PDF.
- M. OLIVER AND S. SHKOLLER, The vortex blob method
as a second-grade non-Newtonian fluid, Comm. Partial Differential Equations,
26, (2001), 295-314.
PDF.
Lagrangian averaged Navier-Stokes and Euler equations
- D. COUTAND AND S. SHKOLLER, Turbulent
channel flow in weighted Sobolev spaces using the anisotropic Lagrangian
averaged Navier-Stokes (LANS-α)
equations,
Commun. Pure Appl. Anal., 3, (2004), 1--23.
PDF.
- J.E. MARSDEN AND S. SHKOLLER, The anisotropic Lagrangian
averaged Euler and Navier-Stokes equations,
Arch. Rational Mech. Anal., 166, (2003), 27-46.
PDF.
- J.E. MARSDEN AND S. SHKOLLER,
Global well-posedness for the
Lagrangian averaged Navier-Stokes (LANS-α)
equations
on bounded domains, Phil. Trans. R. Soc. Lond. A, 359, (2001),
1449-1468.
PDF.
- K. MOHSENI, B. KOSOVIC, S. SHKOLLER, AND J.E. MARSDEN,
Numerical simulations of the Lagrangian averaged Navier-Stokes
(LANS-α)
equations for homogeneous isotropic turbulence,
Physics of Fluids, 15, (2003), 524--544.
PDF.
- S. SHKOLLER,
The Lagrangian averaged Euler (LAE-α)
equations
with free-slip or mixed boundary conditions,
Geometry, Mechanics, and Dynamics, eds. P. Holmes, P. Newton,
A. Weinstein, Special Volume, Springer-Verlag, 2002, 169--180.
PS.
Analysis on diffeomorphism groups
- S. SHKOLLER, Analysis on groups of diffeomorphisms of
manifolds with boundary and the averaged motion of a fluid,
J. Differential Geom., 55, (2000), 145-191.
PDF.
- J.E. MARSDEN, T. RATIU, AND S. SHKOLLER, The geometry
and analysis of the averaged Euler equations and a new diffeomorphism group,
Geom. Funct. Anal., 10, (2000), 582-599.
PDF.
- S. SHKOLLER, Geometry and curvature of diffeomorphism
groups with H1
metric and mean hydrodynamics, J. Funct. Anal., 160,
(1998), 337-365.
PDF.
Multisymplectic geometry and geometric integrators
- J. MARSDEN, S. PEKARSKY, S. SHKOLLER, AND
M. WEST, On a multisymplectic approach to continuum mechanics,
J. Geom. Phys., 38, (2001), 253-284.
PDF.
- S. KOURANBAEVA AND S. SHKOLLER, A variational
approach to second-order multisymplectic field theory, J. Geom. Phys.,
35, (2000), 333-366.
PDF.
- M. CASTRILLON, T. RATIU AND S. SHKOLLER, Reduction in
principal fiber bundles: covariant Euler-Poincaré equations,
Proc. Amer. Math. Soc. 128 (2000), 2155-2164.
PDF.
- J.E. MARSDEN, S. PEKARSKY, AND S. SHKOLLER, Symmetry
reduction of discrete Lagrangian mechanics on Lie groups, J. Geom. Phys.,
36, (2000), 139-150.
PDF.
- J.E. MARSDEN, S. PEKARSKY, AND S. SHKOLLER, Discrete
Euler-Poincaré and Lie-Poisson Algorithms, Nonlinearity, 12,
(1999), 1647-1662.
PDF.
- J. MARSDEN AND S. SHKOLLER, Multisymplectic geometry,
covariant Hamiltonians, and water waves, Math. Proc. Camb. Phil. Soc.,
125, (1999), 553-575.
PDF.
- J. MARSDEN, G. PATRICK AND S. SHKOLLER,
Multisymplectic geometry, variational integrators, and nonlinear
PDEs, Comm. Math. Phys., 199, (1998), 351-391.
PDF.
Dynamical systems
- D.A. JONES AND S. SHKOLLER, Persistence of invariant
manifolds for nonlinear PDEs, Studies in Appl. Math, 102, (1999), 27-67.
PDF.
- S. SHKOLLER AND J.B. MINSTER, Reduction of
Dieterich-Ruina attractors to unimodals maps, J. Nonlinear Processes
in Geophysics, 4, (1997), 63-69.
PDF.
Homogenization theory in material science
- S. SHKOLLER, On an approximate homogenization
scheme for nonperiodic materials, Comp. Math. Appl., 33, (1997),
15-34.
PDF.
- S. SHKOLLER AND A. MAEWAL, A model for defective
fibrous composites, J. Mech. Phys. Solids, 44, (1996), 1929-1951.
PDF.
- S. SHKOLLER AND G. HEGEMIER,
Homogenization of Plain Weave Composites
Using Two-Scale Convergence, Int. J. Sol. Str., 32, (1995), 783-794.
PDF.