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In this lecture we introduce the diffusion maps framework for dimen-
sionality reduction and data analysis. Recall the motivating problem for
clustering data points that belong to two separated rings:

We intuitively see here two clusters corresponding to the two rings. Al-
though the Euclidean distance between A and C is larger than the Euclidean
distance between B and C, we would like A and C to belong to the same
cluster. We therefore need to introduce a new metric, other than the Eu-
clidean metric, that will assign a small distance between A and C and a
larger distance between B and C.

Notation: n denotes the number of data points and x1, x2, . . . , xn stand
for the data points themselves. The data points can be points in a Euclidean
space, e.g., the points in R

2 shown above, or abstract data objects such as
web pages, or Facebook users for which it is not obvious how to represent
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them as vectors of real numbers. When considering data points in a Eu-
clidean space, we denote the dimension of the ambient space by p, that is,
x1, . . . , xn ∈ R

p. Typically p is large, for example, 10 mega-pixels photos
can be viewed as vectors in R

p with p = 107.

Weighted undirected graph. We describe the affinity or similarity be-
tween xi and xj by a real number wij. We require that the similarity is
symmetric, that is, wij = wji and also non-negative wij ≥ 0. All similarities
are organized in an n × n symmetric matrix W whose ij entry is wij . The
similarities are user defined. A popular way to define similarities for points
in R

p is using a non-negative function K : R+ → R and a parameter ǫ > 0
as

wij = K

(‖xi − xj‖Rp√
ǫ

)

.

The function K satisfies K(u) ≥ 0, is usually monotonic decreasing and
assumed to decay to 0. Examples include the Gaussian function K(u) =
e−u2/2 and the characteristic function K = 1[0,1]. This means that the
similarity between xi and xj is O(1) if ‖xi−xj‖Rp is O(

√
ǫ), and is negligible

otherwise (that is, for ‖xi−xj‖Rp ≫ √
ǫ). For abstract data sets other ways

are used to define similarities. For example, we may say that two web pages
have high similarity if there is a hyperlink between them, or two Facebook
users are similar if one is a friend of the other.

This description of the data is equivalent to a weighted undirected graph
G = (V,E,W ), where V are the vertices of the graph, E is the edge set and
W are the weights. There are n vertices, corresponding to the data points.
We put edges between data points with strictly positive similarity between
them and each edge (i, j) is weighted by wij.

Random walk over the data points. We now construct a discrete ran-
dom walk (Markov chain) that corresponds to the weighted graph. There
are n states corresponding to the vertices, and our random walker can jump
in a single time step from one node to another only if they are linked by an
edge. The probability to jump from xi to xj is proportional to wij . Denote
X(t) the location, or state, of the random walker at time t. Then,

Pr{X(t+ 1) = xj|X(t) = xi} =
wij

di
,

where

di =

n
∑

k=1

wik
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is the weighted degree of node i. Set A to be the n × n Markov transition
probability matrix with

aij =
wij

di
.

(we assume there are no isolated nodes, i.e., di > 0 for all i = 1, . . . , n) A is
indeed a transition probability matrix, since aij ≥ 0 and

∑n
j=1 aij = 1 for

i = 1, 2, . . . , n. We say that A was obtained from W by a row stochastic
normalization.

Now, let’s do some linear algebra. Clearly, we can rewrite the matrix A
as

A = D−1W, (1)

where D is an n × n diagonal matrix with Dii = di. Although A is not
symmetric, it is similar to the symmetric matrix S given by

S = D−1/2WD−1/2 (2)

through
A = D−1/2(D−1/2WD−1/2)D1/2 = D−1/2SD1/2. (3)

Since S is symmetric, it has a complete set of orthonormal eigenvectors and
real eigenvalues. Suppose

Svl = λlvl, for l = 1, 2, . . . , n.

We organize the orthonormal eigenvectors as columns of an n × n matrix
V and set Λ to be a diagonal matrix with the eigenvalues on its diagonal.
Then,

SV = V Λ,

or
S = V ΛV T , (4)

where we used orthonormality:

V V T = V TV = I.

The spectral decomposition of S is therefore given by

S =

n
∑

l=1

λlvlv
T
l .

From (3) and (4) we see that

A = D−1/2SD1/2 = D−1/2V ΛV TD1/2.

3



We define
Φ = D−1/2V,

and
Ψ = D1/2V,

so
A = ΦΛΨT . (5)

Notice that
ΦTΨ = V TD−1/2D1/2V = V TV = I. (6)

This means that the columns of Φ, denoted φ1, . . . , φn and the columns of
Ψ, denoted ψ1, . . . , ψn form a bi-orthogonal system. That is,

φl = D−1/2vl,

ψl = D1/2vl,

and
〈φl, ψm〉 = δlm.

From (5) and (6) it follows that

AΦ = ΦΛ

and
ΨTA = ΛΨT .

In other words, φl are the right eigenvectors of A

Aφl = λlφl,

ψl are the left eigenvectors of A

ψT
l A = λlψ

T
l ,

and A has the decomposition

A =

n
∑

l=1

λlφlψ
T
l .

We notice that there is one eigenvector/eigenvalue pair which is easy
to obtain regardless of the specific form of A. Indeed, the all-ones vector
1 = (1 1 · · · 1)T satisfies

A1 = 1,

which means that 1 is an eigenvector of A and the associated eigenvalue is
λ = 1. The corresponding left eigenvector is ψ1 = (d1, d2, . . . , dn)

T . Next,
we show that all eigenvalues of A are in the interval [−1, 1].
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Fact: All the eigenvalues of A satisfy |λ| ≤ 1.

Proof: Let λ be an eigenvalue for A associated to the eigenvector φ. Con-
sider i0 = argmax1≤i≤n |φ(i)|. Then,

λφ(i0) =

n
∑

j=1

ai0jφ(j)

and

|λ| ≤
n
∑

j=1

ai0j

∣

∣

∣

∣

φ(j)

φ(i0)

∣

∣

∣

∣

≤
n
∑

j=1

ai0j = 1.

Definition of Diffusion Map. We are now ready to define the diffusion
mapping. Let t > 0 and suppose the eigenvalues are sorted in decreasing
order of magnitude: 1 = λ1 ≥ |λ2| ≥ |λ3| ≥ . . . ≥ |λn|. The diffusion map
Φt : V 7→ R

n is defined as

Φt(xi) =











λt1φ1(i)
λt2φ2(i)

...
λtnφn(i)











. (7)

The diffusion map assigns to each data point n coordinates, given by the
evaluation of the eigenvectors at that point (and scaled by the eigenvalues to
the t power). As such, for large data sets there is not much of dimensionality
reduction happening, since n can be quite large. We notice that the first
coordinate is redundant, since φ1 is proportional to the all-ones vector, all
data points share the same first coordinate. We can therefore neglect this
coordinate as it does not help us to differentiate between data points. So
we can equivalently consider the diffusion mapping Φt : V 7→ R

n−1:

Φt(xi) =











λt2φ2(i)
λt3φ3(i)

...
λtnφn(i)











. (8)

In order to substantially reduce the dimensionality, we define the truncated
diffusion mapping Φδ

t : V 7→ R
m−1, wherem is a function of t and δ is defined
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as the largest integer for which |λm|t > δ and 0 < δ < 1, so |λm+1|t ≤ δ

Φδ
t (xi) =











λt2φ2(i)
λt3φ3(i)

...
λtmφm(i)











. (9)

Examples

In order to get some intuition about the diffusion map, we first consider a
few simple examples.

The ring graph. The ring graph on n vertices has n edges: (1, 2), (2, 3), . . . , (n−
1, n) and (n, 1). The edges are of the form (i, i+1) where addition is modulo
n. Suppose that all edges are associated with the same weight. Then, the
corresponding n× n Markov transition matrix A has the form:

A =





















0 1
2 0 · · · 0 1

2
1
2 0 1

2 0 · · · 0

0 1
2 0 1

2

. . .
...

...
. . .

. . .
. . . 0 0

0 · · · 0 1
2 0 1

2
1
2 0 · · · 0 1

2 0





















(10)

We notice that A is a cyclic matrix, that is, all rows are cyclic shifts of the
first row. As a result, the eigenvectors of this matrix is the Fourier basis.

Fact: The vectors vl (l = 1, . . . , n) given by

vl(r) = e2πilr/n

are eigenvectors of A, that is, Avl = λlvl.

Proof:

(Avl)(r) =
1

2
e2πil(r+1)/n +

1

2
e2πil(r−1)/n = cos

(

2πl

n

)

vl(r).

It is easy to check that v1, . . . , vn are linearly independent since they are
orthogonal vectors. The eigenvalues are λl = cos

(

2πl
n

)

. We see that all
eigenvalues are between −1 and 1 as expected, the eigenvalue λ = 1 is
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simple (corresponding to l = 0, or equivalently, l = n), the eigenvalue −1
appears whenever n is even, and all other eigenvalues (beside 1 and -1) have
multiplicity 2 (corresponding to l and −l). The eigenvectors vl are complex
valued, but due to the multiplicity 2 we can generate the eigenvectors 1

2(vl+

v−l) = cos(2πlrn ) and 1
2i(vl − v−l) = sin(2πlrn ). In particular, the truncated

diffusion mapping of a point xr using the two eigenvectors corresponding to
l = 1 gives

xr 7→
(

λt1 cos(
2πr
n )

λt1 sin(
2πr
n )

)

, for r = 1, 2, . . . , n.

This mapping traces a circle in R
2, in agreement with the ring structure of

this graph.
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The complete graph. The complete graph on n nodes has all possible
(n
2

)

edges. Suppose all edges are assigned the same weight. The matrix A
is given by

A =















0 1
n−1

1
n−1 · · · 1

n−1
1

n−1 0 1
n−1 · · · 1

n−1
...

. . .
. . .

. . .
...

1
n−1 · · · 1

n−1 0 1
n−1

1
n−1 · · · 1

n−1
1

n−1 0















Again, we see that A is a cyclic matrix so we can conclude the form of its
eigenvectors as before, but here we can make a simple observation about the
matrix A:

A =
1

n− 1
11T − 1

n− 1
I.

The matrix 11T is the all-ones matrix and is of rank 1. We conclude that the
all-ones vector 1 is an eigenvector whose eigenvalue is 1, and all vectors in
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the n− 1-dimensional orthogonal subspace are eigenvectors with eigenvalue
λ = − 1

n−1 . Since diffusion map disregards the all-ones vector, and all other
eigenvalues are the same, it would need to make use of all remaining (n− 1)
eigenvectors. This means that no dimensionality reduction can be achieved
for the complete graph: all n−1 coordinates are needed, and the embedding
is a simplex (e.g., for n = 3 we get a triangle in R

2, for n = 4 a tetrahedron
in R

3, etc.). In the embedding, all nodes are equidistant from one another,
in agreement with the fact that each node is connected to all other nodes
and there is no notion of ordering or structure.
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Ring graph with a shortcut. Suppose n is even and add one edge to the
ring graph between nodes 1 and n

2 +1. We assign equal weights to all edges
as before, so the jump probabilities from nodes 1 and n

2+1 are (1/3, 1/3, 1/3)
while the jump probabilities from all other nodes are (1/2, 1/2). The diffu-
sion map cannot be calculated analytically as before, so we use MATLAB
to find the embedding in R

2 (see Figure).
We see that compared to the circular embedding of the ring graph, nodes

1 and n
2 +1 get closer together. In fact, when increasing the number of nodes

from n = 10 to n = 100, this pair of nodes get even closer. Notice that in
the embedding, the length associated to all edges is more or less the same,
expressing the equal weights assigned to all edges. Increasing the number
of nodes shortens this length and brings the end nodes of the shortcut edge
closer together. (Can you make this hand-waving mathematically rigorous?)

Two disjoint ring graphs. We finish with our motivating example of
two disjoint rings graphs, that is, there are no edges linking the two rings.
Suppose that one ring has n1 nodes, while the other has n2 nodes. The
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(a) n = 10
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(b) n = 100

matrix A takes the form of a block matrix

A =

(

A1 0
0 A2

)

,

where A1 is n1×n1 and A2 is n2×n2 (and 0 stands for block matrices of ze-

ros). As such, the eigenvectors of A take the form

(

v1
0

)

where v1 is some

eigenvector of A1 and 0 is a zero vector of length n2, or

(

0
v2

)

where v2 is

some eigenvector of A2 and 0 is a zero vector of length n1. It follows that
the eigenvalue λ = 1 has multiplicity 2, corresponding to the eigenvectors
(1, 1, . . . , 1, 0, 0, . . . , 0)T and (0, 0, . . . , 0, 1, 1, . . . , 1)T . In diffusion maps, we
usually declare the all-ones vector to be the first eigenvector φ1, so choosing
the second eigenvector orthogonal to 1 in this case gives (a normalized ver-
sion of) (n2, n2, . . . , n2,−n1,−n1, . . . ,−n1)T . We see that this vector cluster
all nodes of the first ring to a single point (whose coordinate is n2) and all
nodes of the second ring to a single point (whose coordinate is −n1). Thus,
the first coordinate of the diffusion mapping automatically picks the dom-
inant intrinsic structure. The third and fourth eigenvectors correspond to
the ring graph that has more nodes, thus revealing the secondary structure
of this graph. The structure of the smaller ring is expressed in the remaining
eigenvectors, but cannot be visualized using the diffusion map embedding
in 3D.

Diffusion Distance. Recall that we view the data points x1, x2, . . . , xn
as nodes of a weighted undirected graph G = (V,E), where the weight wij

is a measure of the similarity between xi and xj . We further defined a
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Markov probability transition matrix A as A = D−1W . We used the right
eigenvectors of A and the corresponding eigenvalues to define the diffusion
map in the following way: if Aφl = λlφl, then the diffusion map Φt : V 7→ R

n

is defined as

Φt(xi) =











λt1φ1(i)
λt2φ2(i)

...
λtnφn(i)











.

The diffusion map is an embedding of a data set in an Euclidean space
which is equipped with an inner product:

〈Φt(xi),Φt(xj)〉Rn =
n
∑

l=1

λ2tl φl(i)φl(j). (11)

We see that the Grammatrix B of inner products, i.e., Bij = 〈Φt(xi),Φt(xj)〉Rn

is given by
B = ΦΛ2tΦT . (12)

The matrix B is positive semidefinite (PSD), i.e., it is a symmetric matrix
and all its eigenvalues are non-negative, or alternatively, it defines a non-
negative quadratic form. The converse is also true, every PSD matrix is a
Gram matrix of points in Euclidean space whose dimension is the rank of
the matrix.

We would now like to understand the meaning of the Euclidean distances
‖Φt(xi) − Φt(xj)‖Rn to which we refer as the diffusion distances denoted
Dt(xi, xj):

Dt(xi, xj) = ‖Φt(xi)− Φt(xj)‖Rn .

Specifically, we will show the following probabilistic interpretation of the
diffusion distance: The diffusion distance between xi and xj is a weighted ℓ2
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distance between the probability clouds after t time steps of random walks
that start at xi and xj.

From the interpretation of the matrix A as a Markov transition proba-
bility matrix

aij = Pr{X(t + 1) = xj|X(t) = xi}
it follows that

atij = Pr{X(t) = xj |X(0) = xi}.
That is, the elements of At give us the probability to get from one state to
another in t time steps. For example,

a2ij =

n
∑

k=1

aikakj

=

n
∑

k=1

Pr{X(1) = xk|X(0) = xi}Pr{X(2) = xj|X(1) = xk}

= Pr{X(2) = xj |X(0) = xi}.

We refer to the i’th row of the matrix At, denoted At
i,· as the probability

cloud of a random walk that starts at xi after t steps. We can express At

using the decomposition of A. Indeed, from

A = ΦΛΨT

and the fact that ΨTΦ = I (i.e., {φl}nl=1 and {ψl}nl=1 form a bi-orthogonal
system) we get

A2 = ΦΛΨTΦΛΨT = ΦΛ2ΨT ,

and generally,
At = ΦΛtΨT .

Written componentwise, this is equivalent to

atik =

n
∑

l=1

λtlφl(i)ψl(k).

We now calculate the weighted ℓ2 distance between the probability clouds
At

i,· and A
t
j,·. For the weights we choose 1/dk, that is, inversely proportional

to the vertex degrees, so nodes with higher degrees have a lesser weight in
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this weighted ℓ2 space:

‖At
i,· −At

j,·‖2ℓ2(Rn,1/d) =
n
∑

k=1

(atik − atjk)
2 1

dk

=

n
∑

k=1

[

n
∑

l=1

λtlφl(i)ψl(k)− λtlφl(j)ψl(k)

]2
1

dk

=

n
∑

k=1

n
∑

l,r=1

λtlλ
t
r(φl(i)− φl(j))(φr(i)− φr(j))

ψl(k)ψr(k)

dk

=
n
∑

l,r=1

λtlλ
t
r(φl(i)− φl(j))(φr(i) − φr(j))

n
∑

k=1

ψl(k)ψr(k)

dk

=
n
∑

l,r=1

λtlλ
t
r(φl(i)− φl(j))(φr(i) − φr(j))δlr

=

n
∑

l=1

λ2tl (φl(i)− φl(j))
2

= D2
t (xi, xj).

Thus, we proved

Dt(xi, xj) = ‖At
i,· −At

j,·‖ℓ2(Rn,1/d). (13)
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