
Chapter 5
Nonlinear Dimension Reduction and Diffusion
Maps

Nonlinear dimension reduction: Diffusion maps, manifold learning, intrinsic geom-
etry of data

5.0.7 Diffusion Maps

Diffusion Maps will allows us to represent (weighted) graphs G = (V,E,W ) in Rd ,
i.e. associating, to each node, a point in Rd . As we will see below, oftentimes when
we have a set of data points x1, . . . ,xn 2 Rp it will be beneficial to first associate to
each a graph and then use Diffusion Maps to represent the points in d-dimensions,
rather than using something like Principal Component Analysis.

Before presenting Diffusion Maps, we’ll introduce a few important notions.
Given G = (V,E,W ) we consider a random walk (with independent steps) on the
vertices of V with transition probabilities:

Prob{X(t +1) = j|X(t) = i}=
wi j

deg(i)
,

where deg(i) = Â j wi j. Let M be the matrix of these probabilities,

Mi j =
wi j

deg(i)
.

It is easy to see that Mi j � 0 and M1 = 1 (indeed, M is a transition probability
matrix). Defining D as the diagonal matrix with diagonal entries Dii = deg(i) we
have

M = D�1W.

If we start a random walker at node i (X(0) = 1) then the probability that, at step
t, is at node j is given by

Prob{X(t) = j|X(0) = i}=
�

Mt�

i j .
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66 5 Nonlinear Dimension Reduction and Diffusion Maps

In other words, the probability cloud of the random walker at point t, given that it
started at node i is given by the row vector

Prob{X(t)|X(0) = i}= eT
i Mt = Mt [i, :].

Remark 5.1. A natural representation of the graph would be to associate each vertex
to the probability cloud above, meaning

i ! Mt [i, :].

This would place nodes i1 and i2 for which the random walkers starting at i1 and i2
have, after t steps, very similar distribution of locations. However, this would require
d = n. In what follows we will construct a similar mapping but for considerably
smaller d.

M is not symmetric, but a matrix similar to M, S = D
1
2 MD� 1

2 is, indeed S =

D� 1
2 WD� 1

2 . We consider the spectral decomposition of S

S =VLV T
,

where V = [v1, . . . ,vn] satisfies V TV = In⇥n and L is diagonal with diagonal ele-
ments Lkk = lk (and we organize them as l1 � l2 � · · ·� ln). Note that Svk = lkvk.
Also,

M = D� 1
2 SD

1
2 = D� 1

2 VLV T D
1
2 =

⇣

D� 1
2 V

⌘

L

⇣

D
1
2 V

⌘T
.

We define F = D� 1
2 V with columns F = [j1, . . . ,jn] and Y = D

1
2 V with columns

Y = [y1, . . . ,yn]. Then
M = FLY

T
,

and F ,Y form a biorthogonal system in the sense that F

T
Y = In⇥n or, equivalently,

j

T
j yk = d jk. Note that jk and yk are, respectively right and left eigenvectors of M,

indeed, for all 1  k  n:

Mjk = lkjk and y

T
k M = lky

T
k .

Also, we can rewrite this decomposition as

M =
n

Â
k=1

lkjky

T
k .

and it is easy to see that

Mt =
n

Â
k=1

l

t
kjky

T
k . (5.1)

Let’s revisit the embedding suggested on Remark 5.1. It would correspond to

vi ! Mt [i, :] =
n

Â
k=1

l

t
kjk(i)yT

k ,
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it is written in terms of the basis yk. The Diffusion Map will essentially consist of
the representing a node i by the coefficients of the above map

vi ! Mt [i, :] =

2

6

6

6

4

l

t
1j1(i)

l

t
2j2(i)

...
l

t
njn(i)

3

7

7

7

5

, (5.2)

Note that M1 = 1, meaning that one of the right eigenvectors jk is simply a multiple
of 1 and so it does not distinguish the different nodes of the graph. We will show
that this indeed corresponds to the the first eigenvalue.

Proposition 5.1. All eigenvalues lk of M satisfy |lk| 1.

Proof.
Let jk be a right eigenvector associated with lk whose largest entry in magnitude

is positive jk (imax). Then,

lkjk (imax) = Mjk (imax) =
n

Â
j=1

Mimax, jjk ( j) .

This means, by triangular inequality that, that

|lk|=
n

Â
j=1

�

�Mimax, j
�

�

|jk ( j)|
|jk (imax)|


n

Â
j=1

�

�Mimax, j
�

�= 1.

2

Remark 5.2. It is possible that there are other eigenvalues with magnitude 1 but only
if G is disconnected or if G is bipartite. Provided that G is disconnected, a natural
way to remove potential periodicity issues (like the graph being bipartite) is to make
the walk lazy, i.e. to add a certain probability of the walker to stay in the current
node. This can be conveniently achieved by taking, e.g.,

M0 =
1
2

M+
1
2

I.

By the proposition above we can take j1 = 1, meaning that the first coordinate
of (5.2) does not help differentiate points on the graph. This suggests removing that
coordinate:

Definition 5.1 (Diffusion Map). Given a graph G = (V,E,W ) construct M and its
decomposition M = FLY

T as described above. The Diffusion Map is a map jt :
V ! Rn�1 given by
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jt (vi) =

2

6

6

6

4

l

t
2j2(i)

l

t
3j3(i)

...
l

t
njn(i)

3

7

7

7

5

.

This map is still a map to n� 1 dimensions. But note now that each coordinate
has a factor of l

t
k which, if lk is small will be rather small for moderate values of t.

This motivates truncating the Diffusion Map by taking only the first d coefficients.

Definition 5.2 (Truncated Diffusion Map). Given a graph G = (V,E,W ) and di-
mension d, construct M and its decomposition M = FLY

T as described above. The
Diffusion Map truncated to d dimensions is a map jt : V ! Rd given by

j

(d)
t (vi) =

2

6

6

6

4

l

t
2j2(i)

l

t
3j3(i)

...
l

t
d+1jd+1(i)

3

7

7

7

5

.

In the following theorem we show that the euclidean distance in the diffusion map
coordinates (called diffusion distance) meaningfully measures distance between the
probability clouds after t iterations.

Theorem 5.1. For any pair of nodes vi1 , vi2 we have

kjt (vi1)�jt (vi2)k
2 =

n

Â
j=1

1
deg( j)

[Prob{X(t) = j|X(0) = i1}�Prob{X(t) = j|X(0) = i2}]2 .

Proof.
Note that Ân

j=1
1

deg( j) [Prob{X(t) = j|X(0) = i1}�Prob{X(t) = j|X(0) = i2}]2

can be rewritten as

n

Â
j=1

1
deg( j)

"

n

Â
k=1

l

t
kjk(i1)yk( j)�

n

Â
k=1

l

t
kjk(i2)yk( j)

#2

=
n

Â
j=1

1
deg( j)

"

n

Â
k=1

l

t
k (jk(i1)�jk(i2))yk( j)

#2

and

n

Â
j=1

1
deg( j)

"

n

Â
k=1

l

t
k (jk(i1)�jk(i2))yk( j)

#2

=
n

Â
j=1

"

n

Â
k=1

l

t
k (jk(i1)�jk(i2))

yk( j)
p

deg( j)

#2

=

�

�

�

�

�

n

Â
k=1

l

t
k (jk(i1)�jk(i2))D� 1

2
yk

�

�

�

�

�

2

.

Note that D� 1
2
yk = vk which forms an orthonormal basis, meaning that
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�

�

�

�

�

n

Â
k=1

l

t
k (jk(i1)�jk(i2))D� 1

2
yk

�

�

�

�

�

2

=
n

Â
k=1

�

l

t
k (jk(i1)�jk(i2))

�2

=
n

Â
k=2

�

l

t
kjk(i1)�l

t
kjk(i2)

�2
,

where the last inequality follows from the fact that j1 = 1 and concludes the
proof of the theorem.

2

5.0.7.1 A couple of examples

The ring graph is a graph on n nodes {1, . . . ,n} such that node k is connected to k�1
and k+1 and 1 is connected to n. Figure 5.1 has the Diffusion Map of it truncated
to two dimensions

Fig. 5.1: The Diffusion Map of the ring graph gives a very natural way of displaying
(indeed, if one is asked to draw the ring graph, this is probably the drawing that most
people would do). It is actually not difficult to analytically compute the Diffusion
Map of this graph and confirm that it displays the points in a circle.

Another simple graph is Kn, the complete graph on n nodes (where every pair of
nodes share an edge), see Figure 5.2.

5.0.7.2 Diffusion Maps of point clouds

Very often we are interested in embedding in Rd a point cloud of points x1, . . . ,xn 2
Rp and necessarily a graph. One option (as discussed before in the course) is to
use Principal Component Analysis (PCA), but PCA is only designed to find linear
structure of the data and the low dimensionality of the dataset may be non-linear. For
example, let’s say our dataset is images of the face of someone taken from different
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Fig. 5.2: The Diffusion Map of the complete graph on 4 nodes in 3 dimensions ap-
pears to be a regular tetrahedron suggesting that there is no low dimensional struc-
ture in this graph. This is not surprising, since every pair of nodes is connected we
don’t expect this graph to have a natural representation in low dimensions.

angles and lighting conditions, for example, the dimensionality of this dataset is
limited by the amount of muscles in the head and neck and by the degrees of freedom
of the lighting conditions (see Figure ??) but it is not clear that this low dimensional
structure is linearly apparent on the pixel values of the images.

Let’s say that we are given a point cloud that is sampled from a two dimensional
swiss roll embedded in three dimension (see Figure 5.3). In order to learn the two
dimensional structure of this object we need to differentiate points that are near
eachother because they are close by in the manifold and not simply because the
manifold is curved and the points appear nearby even when they really are distant
in the manifold (see Figure 5.3 for an example). We will achieve this by creating a
graph from the data points.

Fig. 5.3: A swiss roll point cloud (see, for example, [150]). The points are sampled
from a two dimensional manifold curved in R3 and then a graph is constructed
where nodes correspond to points.

Our goal is for the graph to capture the structure of the manifold. To each data
point we will associate a node. For this we should only connect points that are
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close in the manifold and not points that maybe appear close in Euclidean space
simply because of the curvature of the manifold. This is achieved by picking a small
scale and linking nodes if they correspond to points whose distance is smaller than
that scale. This is usually done smoothly via a kernel K

e

, and to each edge (i, j)
associating a weight

wi j = K
e

(kxi � x jk2) ,

a common example of a Kernel is K
e

(u) = exp
�

� 1
2e

u2�, that gives essentially zero
weight to edges corresponding to pairs of nodes for which kxi�x jk2 �

p
e . We can

then take the the Diffusion Maps of the resulting graph.

5.0.7.3 A simple example

A simple and illustrative example is to take images of a blob on a background in
different positions (image a white square on a black background and each data
point corresponds to the same white square in different positions). This dataset is
clearly intrinsically two dimensional, as each image can be described by the (two-
dimensional) position of the square. However, we don’t expect this two-dimensional
structure to be directly apparent from the vectors of pixel values of each image; in
particular we don’t expect these vectors to lie in a two dimensional affine subspace!

Let’s start by experimenting with the above example for one dimension. In that
case the blob is a vertical stripe and simply moves left and right. We think of our
space as the in the arcade game Asteroids, if the square or stripe moves to the right
all the way to the end of the screen, it shows up on the left side (and same for
up-down in the two-dimensional case). Not only this point cloud should have a one
dimensional structure but it should also exhibit a circular structure. Remarkably, this
structure is completely apparent when taking the two-dimensional Diffusion Map of
this dataset, see Figure 5.4.

Fig. 5.4: The two-dimensional diffusion map of the dataset of the datase where each
data point is an image with the same vertical strip in different positions in the x-axis,
the circular structure is apparent.
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For the two dimensional example, we expect the structure of the underlying
manifold to be a two-dimensional torus. Indeed, Figure 5.5 shows that the three-
dimensional diffusion map captures the toroidal structure of the data.

Fig. 5.5: On the left the data set considered and on the right its three dimensional
diffusion map, the fact that the manifold is a torus is remarkably captured by the
embedding.

5.0.7.4 Similar non-linear dimensional reduction techniques

There are several other similar non-linear dimensional reduction methods. A partic-
ularly popular one is ISOMAP [?]. The idea is to find an embedding in Rd for which
euclidean distances in the embedding correspond as much as possible to geodesic
distances in the graph. This can be achieved by, between pairs of nodes vi, v j find-
ing their geodesic distance and then using, for example, Multidimensional Scaling
to find points yi 2 Rd that minimize (say)

min
y1,...,yn2Rd Â

i, j

�

kyi � y jk2 �d

2
i j
�2
,

which can be done with spectral methods (it is a good exercise to compute the
optimal solution to the above optimization problem).

5.0.8 Semi-supervised learning

Classification is a central task in machine learning. In a supervised learning setting
we are given many labelled examples and want to use them to infer the label of a
new, unlabeled example. For simplicity, let’s say that there are two labels, {�1,+1}.

Let’s say we are given the task of labeling point “?” in Figure 5.9 given the
labeled points. The natural label to give to the unlabeled point would be 1.
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Fig. 5.6: The two dimensional represention of a data set of images of faces as ob-
tained in [150] using ISOMAP. Remarkably, the two dimensionals are interpretable

Fig. 5.7: The two dimensional represention of a data set of images of human hand
as obtained in [150] using ISOMAP. Remarkably, the two dimensionals are inter-
pretable

However, let’s say that we are given not just one unlabeled point, but many, as in
Figure 5.10; then it starts being apparent that �1 is a more reasonable guess.

Intuitively, the unlabeled data points allowed us to better learn the geometry of
the dataset. That’s the idea behind Semi-supervised learning, to make use of the
fact that often one has access to many unlabeled data points in order to improve
classification.

The approach we’ll take is to use the data points to construct (via a kernel K
e

) a
graph G = (V,E,W ) where nodes correspond to points. More precisely, let l denote



74 5 Nonlinear Dimension Reduction and Diffusion Maps

Fig. 5.8: The two dimensional represention of a data set of handwritten digits as ob-
tained in [150] using ISOMAP. Remarkably, the two dimensionals are interpretable

Fig. 5.9: Given a few labeled points, the task is to label an unlabeled point.

Fig. 5.10: In this example we are given many unlabeled points, the unlabeled points
help us learn the geometry of the data.

the number of labeled points with labels f1, . . . , fl , and u the number of unlabeled
points (with n = l + u), the first l nodes v1, . . . ,vl correspond to labeled points and
the rest vl+1, . . . ,vn are unlabaled. We want to find a function f : V ! {�1,1} that
agrees on labeled points: f (i) = fi for i = 1, . . . , l and that is “as smooth as possible”
the graph. A way to pose this is the following

min
f :V!{�1,1}: f (i)= fi i=1,...,l

Â
i< j

wi j ( f (i)� f ( j))2
.
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Instead of restricting ourselves to giving {�1,1} we allow ourselves to give real
valued labels, with the intuition that we can “round” later by, e.g., assigning the
sign of f (i) to node i.

We thus are interested in solving

min
f :V!R: f (i)= fi i=1,...,l

Â
i< j

wi j ( f (i)� f ( j))2
.

If we denote by f the vector (in Rn with the function values) then we are can
rewrite the problem as

Â
i< j

wi j ( f (i)� f ( j))2 = Â
i< j

wi j [(ei � e j) f ] [(ei � e j) f ]T

= Â
i< j

wi j

h

(ei � e j)
T f

iT h
(ei � e j)

T f
i

= Â
i< j

wi j f T (ei � e j)(ei � e j)
T f

= f T

"

Â
i< j

wi j (ei � e j)(ei � e j)
T

#

f

The matrix Âi< j wi j (ei � e j)(ei � e j)
T will play a central role throughout this

course, it is called the graph Laplacian [51].

LG := Â
i< j

wi j (ei � e j)(ei � e j)
T
.

Note that the entries of LG are given by

(LG)i j =

⇢

�wi j if i 6= j
deg(i) if i = j,

meaning that
LG = D�W,

where D is the diagonal matrix with entries Dii = deg(i).

Remark 5.3. Consider an analogous example on the real line, where one would want
to minimize ˆ

f 0(x)2dx.

Integrating by parts
ˆ

f 0(x)2dx = Boundary Terms�
ˆ

f (x) f 00(x)dx.

Analogously, in Rd :
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ˆ
k— f (x)k2 dx=

ˆ d

Â
k=1

✓

∂ f
∂xk

(x)
◆2

dx=B. T.�
ˆ

f (x)
d

Â
k=1

∂

2 f
∂x2

k
(x)dx=B. T.�

ˆ
f (x)D f (x)dx,

which helps motivate the use of the term graph Laplacian.

Let us consider our problem

min
f :V!R: f (i)= fi i=1,...,l

f T LG f .

We can write

D=



Dl 0
0 Du

�

, W =



Wll Wlu
Wul Wuu

�

, LG =



Dl �Wll �Wlu
�Wul Du �Wuu

�

, and f =


fl
fu

�

.

Then we want to find (recall that Wul =W T
lu )

min
fu2Ru

f T
l [Dl �Wll ] fl �2 f T

u Wul fl + f T
u [Du �Wuu] fu.

by first-order optimality conditions, it is easy to see that the optimal satisfies

(Du �Wuu) fu =Wul fl .

If Du �Wuu is invertible1 then

f ⇤u = (Du �Wuu)
�1 Wul fl .

Remark 5.4. The function f function constructed is called a harmonic extension.
Indeed, it shares properties with harmonic functions in euclidean space such as the
mean value property and maximum principles; if vi is an unlabeled point then

f (i) =
⇥

D�1
u (Wul fl +Wuu fu)

⇤

i =
1

deg(i)

n

Â
j=1

wi j f ( j),

which immediately implies that the maximum and minimum value of f needs to be
attained at a labeled point.

5.0.8.1 An interesting experience and the Sobolev Embedding Theorem

Let us try a simple experiment. Let’s say we have a grid on [�1,1]d dimensions
(with say md points for some large m) and we label the center as +1 and every
node that is at distance larger or equal to 1 to the center, as �1. We are interested
in understanding how the above algorithm will label the remaining points, hoping

1 It is not difficult to see that unless the problem is in some form degenerate, such as the unlabeled
part of the graph being disconnected from the labeled one, then this matrix will indeed be invertible.
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that it will assign small numbers to points far away from the center (and close to the
boundary of the labeled points) and large numbers to points close to the center.

Fig. 5.11: The d = 1 example of the use of this method to the example described
above, the value of the nodes is given by color coding. For d = 1 it appears to
smoothly interpolate between the labeled points.

Fig. 5.12: The d = 2 example of the use of this method to the example described
above, the value of the nodes is given by color coding. For d = 2 it appears to
smoothly interpolate between the labeled points.

See the results for d = 1 in Figure 5.11, d = 2 in Figure 5.12, and d = 3 in
Figure 5.13. While for d  2 it appears to be smoothly interpolating between the
labels, for d = 3 it seems that the method simply learns essentially �1 on all points,
thus not being very meaningful. Let us turn to Rd for intuition:

Let’s say that we want to find a function in Rd that takes the value 1 at zero
and �1 at the unit sphere, that minimizes

´
B0(1)

k— f (x)k2dx. Let us consider the
following function on B0(1) (the ball centered at 0 with unit radius)



78 5 Nonlinear Dimension Reduction and Diffusion Maps

Fig. 5.13: The d = 3 example of the use of this method to the example described
above, the value of the nodes is given by color coding. For d = 3 the solution appears
to only learn the label �1.

f
e

(x) =
⇢

1�2 |x|
e

if|x| e

�1 otherwise.

A quick calculation suggest that
ˆ

B0(1)
k— f

e

(x)k2dx =
ˆ

B0(e)

1
e

2 dx = vol(B0(e))
1
e

2 dx ⇡ e

d�2
,

meaning that, if d > 2, the performance of this function is improving as e ! 0,
explaining the results in Figure 5.13.

Fig. 5.14: The d = 3 example of the use of this method with the extra regularization
f T L2 f to the example described above, the value of the nodes is given by color
coding. The extra regularization seems to fix the issue of discontinuities.

One way of thinking about what is going on is through the Sobolev Embedding
Theorem. Hm �

Rd� is the space of function whose derivatives up to order m are
square-integrable in Rd , Sobolev Embedding Theorem says that if m>

d
2 then, if f 2

Hm �

Rd� then f must be continuous, which would rule out the behavior observed in
Figure 5.13. It also suggests that if we are able to control also second derivates of f
then this phenomenon should disappear (since 2 >

3
2 ). While we will not describe
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it here in detail, there is, in fact, a way of doing this by minimizing not f T L f but
f T L2 f instead, Figure 5.14 shows the outcome of the same experiment with the
f T L f replaced by f T L2 f and confirms our intuition that the discontinuity issue
should disappear (see, e.g., [113] for more on this phenomenon).


