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Notes on this Version and Current Status

This is a preprint of a book in preparation by the authors.

We anticipate the focus and content of this manuscript not to
change drastically and it can already by used for a graduate course
in Mathematics of Data Science; it has been used as such by the authors
at their home institutionms.

We welcome suggestions and comments, and would like to learn about
any possible errors and typos.

Please contact the authors at bandeira@math.ethz.ch, strohm
er@math.ucdavis.edu, or amits@math.princeton.edu. In fact, this
version was improved using many suggestions sent from, and typos found
by, many students and readers. Thank you!

Thank you,
Afonso, Thomas, and Amit.
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Introduction

1.1 Origins

The idea of this book emerged from the classes on “mathematics of data sci-
ence” that the authors have been teaching at their home institutions Prince-
ton University (AS), UC Davis (TS), and MIT, NYU, and ETH (ASB)!. The
lecture notes eventually became the basis to this book. While there are spe-
cialized books and many advanced research papers on each and every topic
covered in this book, we believe it fills in the gap of being a single source
that provides an accessible entry point at an advanced undergraduate level to
mathematics of data science. The book can serve readers as a segue to those
more advanced and specialized topis. In that light, one of the main purposes
of this book is to be used as a textbook at both the (advanced) undergraduate
and graduate levels. This book also differs from most texts in the way that it
interweaves mathematical theory with some of its applications in data science.

1.2 The data science revolution

The data science revolution is one of the most profound shifts in modern his-
tory, reshaping industries, economies, and societies with unprecedented speed
and scale. At its core, the data science revolution is driven by the exponen-
tial growth in data, advances in computing power, and the development of
sophisticated analytical techniques.

Data science and its cousin artificial intelligence have become a corner-
stone of modern decision-making and innovation, penetrating almost all as-
pects of our life. In healthcare, for example, data science is driving personal-
ized medicine and predictive analytics. By analyzing patient data, healthcare

Lecture notes from these classes also contain a list of mathematical open prob-
lems [29], which has now helped inspire a mathematical blog of open problems
at https://randomstrassel01.math.ethz.ch/. The open problems of 2024 are
available at [31].
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providers can tailor treatments to individual needs, predict potential health is-
sues before they arise, and improve patient outcomes. In finance, data science
is revolutionizing risk management, fraud detection, and investment strate-
gies. Algorithms analyze market trends, assess creditworthiness, and identify
unusual transactions to mitigate risks and enhance decision-making.

Retailers leverage data science to understand consumer behavior, opti-
mize supply chains, and personalize marketing efforts. The transportation
industry benefits from data science through advancements in autonomous ve-
hicles, route optimization, and predictive maintenance. Companies use data
to enhance logistics, reduce costs, and improve safety. The energy sector uses
data science to optimize resource allocation, predict equipment failures, and
enhance energy efficiency. Data-driven insights help in managing renewable
energy sources and reducing environmental impact.

From the statistical techniques that form the basis of data analysis to the
complex algorithms that power machine learning and artificial intelligence,
mathematics is at the heart of data science. Understanding the connection
between data science and mathematics is crucial for appreciating the depth
and breadth of this revolution.

1.3 Mathematics as a foundation of data science

Data science is an inherently interdisciplinary field that merges techniques
from mathematics, statistics, computer science, signal processing, and domain-
specific knowledge to extract insights from data. However, at its core, data
science is fundamentally about understanding and leveraging patterns in data.
This understanding is built on a complex and nuanced foundation of mathe-
matical principles that enable the development of models and algorithms ca-
pable of making sense of complex datasets. This book aims to unravel many
of these mathematical principles and provide a thorough grounding in the
essentials of data science from a rigorous, mathematical perspective.

Mathematics provides the language and framework for formalizing the
processes involved in data analysis, from data collection and preprocessing to
modeling and evaluation. It offers the tools necessary for designing effective
algorithms, making precise predictions, visualizing complex datasets, quanti-
fying uncertainty, and interpreting the results of data-driven experiments. As
the field of data science keeps evolving at a rapid speed, new algorithms and
techniques are constantly being developed. A strong mathematical foundation
enables practitioners to quickly understand and adopt these innovations be-
cause they can grasp the underlying principles rather than just following black-
box implementations. Moreover, with a solid grasp of mathematics, learning
new methods becomes easier.

Also, when algorithms fail to produce correct results in real world appli-
cations, we would like to know why they failed. Is it because of mistakes in
the experimental setup, did we gather the wrong kind of data, do we have
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insufficient data, is it because of corrupted measurements, calibration errors,
or incorrect modeling assumptions, or perhaps due to fundamentally unreal-
istic expectations, or is it due to a deficiency of the algorithm itself? If it is
the latter, can it be fixed by a better initialization, a more careful tuning of
the parameters, or by choosing a different algorithm? Or is a more funda-
mental modification required, such as developing a different model, including
additional prior information, taking more measurements, or a better compen-
sation of calibration errors? How reliable are our algorithms to small changes
in the input data and can we explain why an algorithm arrives at a certain
prediction?

As we are dealing with larger datasets and we aim for faster and faster
throughput, it becomes increasingly important to address the aforementioned
challenges in a systematic and principled manner. Thus, a rigorous and thor-
ough study of computational algorithms both from a theoretical and numerical
viewpoint is not a luxury, but emerges as an imperative ingredient towards
effective data-driven discovery.

While a thorough mathematical framework can never completely avoid
some guessing and trial-and-error, it dramatically can reduce the time and
resources we spend on trial-and-error. Good mathematical theory can help in
predicting if a problem is solvable at all in feasible time. Moreover, funda-
mental mathematical analysis often leads to new discoveries such as faster or
more robust algorithms, and it may reveal hitherto unknown connections to
other, already well studied problems.

At the heart of data science lies a rich tapestry of mathematical concepts.
Key areas include statistics and probability, linear algebra, optimization, nu-
merical algorithms, analysis, and graph theory, but this list is by no means
exhaustive. This book emphasizes the geometric viewpoint of data sets. Specif-
ically, it is a very powerful way to think about a dataset as a point cloud in a
high dimensional space for a wide range of analysis tasks such as clustering,
classification, dimension reduction, prediction, denoising, outlier detection,
and more. In this geometric viewpoint, linear models of data are interpreted
as linear subspaces in a Euclidean space, while non-linear models are viewed
as manifolds embedded in the ambient space. Equally powerful is the repre-
sentation of data points and their interconnections and similarities as a graph
and learning using graph algorithms and analysis. In particular, the graph rep-
resentation provides a powerful way to extend classical methods for function
approximation and interpolation to the setting of complex and high dimen-
sional setting of modern data sets. The computational machinery provided by
classical harmonic analysis on Euclidean spaces such as Fourier analysis can
be extended in this way to more complex geometries and networks.

As data science continues to evolve, new mathematical techniques and
approaches will emerge, expanding the possibilities for analyzing and inter-
preting data. This book provides a solid foundation upon which readers can
build their expertise, adapt to new developments, and contribute to the ad-
vancement of the field.
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Data science also opens a new playground for Mathematics, motivating
new questions and new areas of mathematical inquiry. For this reason, an-
other goal of this book is to motivate mathematicians (and, in particular,
mathematics students) to engage with these topics and to create new mathe-
matics motivated by questions arising from data and computation.

1.4 Whom is this book for?

Many of the concepts, algorithms, and methods presented in this book do not
only belong in the toolbox of a well trained data scientist, but are also found
in the standard repertoire of researchers and practitioners of machine learning
and Al

The purpose of this book is twofold. On the one hand. the book is designed
to guide readers through many of the mathematical foundations of data sci-
ence in a structured and accessible manner. It assumes a basic familiarity
with mathematical concepts and aims to build upon this foundation to ex-
plore more advanced topics relevant to data science. On the other hand, the
selection of data science topics for this book is also guided by our desire to
demonstrate how data science leads to deep and exciting mathematical prob-
lems, and how (sometimes seemingly unrelated) mathematical concepts can
provide key insight into data science tasks. This mutual enrichment is akin
to how physics and mathematics have had a vibrant cross-fertilization over
many centuries.

What prerequisites should a reader have? An undergraduate level knowl-
edge of linear algebra and probability is assumed.

What is covered in this book and what not? This book does not cover
everything related to mathematics of data science. Indeed, there are many
topics not included to keep the book at a manageable length. Thus, while this
book is not an encyclopedia of data science, it does contain the material that
one might want to teach in either a year-long course or a one-semester course
on the mathematical foundations of data science.

The book covers both linear and non-linear dimension reduction methods.
The linear methods include the singular value decomposition (SVD) and prin-
cipal component analysis (PCA) as well as random projections. The latter also
serve as an important ingredient to the computationally efficient randomized
SVD algorithm. Furthermore, the book covers the essential background in
probability, in particular, concentration of measure and large deviation the-
ory that are used to explain the effectiveness of convex relaxations in data
science methodologies such as clustering in the stochastic block model and
compressive sensing. In addition, the book focuses on spectral methods in
data analysis, ranging from spectral clustering to Laplacian eigenmaps and
diffusion maps for non-linear dimension reduction to the PageRank algorithm
for ranking.
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There are many mathematical topics related to data science that are not
covered in this book. Perhaps the most notable omissions are relevant top-
ics from statistics such as parameter estimation (e.g., maximum likelihood
estimation, Bayesian inference, etc.) and optimization (first order methods,
second order methods, stochastic optimization). There are already excellent
textbooks dedicated to these topics, which are also being typically taught
in separate courses. Such courses in optimization and statistics are of course
recommended to those interested in data science, and can be taken either be-
fore, after, or in parallel to a course based on this book. Currently, the book
also does not cover Deep Learning, although we plan to add an introductory
chapter on Deep Learning in a future version.

1.5 Organization

The book is separated in ten chapters, an effort was made to intertwine math-
ematical techniques and motivating applications. It starts with a description
of the curious phenomena of high dimensional geometry, taking the opportu-
nity to introduce and recall some probability theory in Chapter 2. It proceeds
to discussing linear dimension reduction techniques (such as PCA and trun-
cated SVD) and doing a recap of several linear algebra concepts in Chapter 3.
It moves on to graph theory (including spectral graph theory, and spectral
clustering in Chapter 4) and non-linear dimension reduction (including diffu-
sion maps in Chapter 5), continuing to highlight how central the spectrum of
matrices formed from data are to understanding the data geometry. of said
data. Chapter 6 focus on dimension reduction via randomized methods, in-
cluding a brief introduction to randomized linear algebra. The concept and
power of convex relaxations is illustrated via the community detection prob-
lem in Chapter 7. Chapters 8 and 9 are devoted to probability, the first to
Gaussian analysis and concentration of measure, and the second to matrix
concentration inequalities. Chapter 10 is dedicated to Compressive Sensing.
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Curses, Blessings, and Surprises in High
Dimensions

Most of the material in this book will naturally “live” in the context of high
dimensions, either motivated by the analysis of high dimensional data or by
associating with networks a space whose dimension is the number of network
nodes, to name a few. This chapter is about High Dimensions. It discusses the
curse of dimensionality, but also many of its blessings. The first is caused by
the exponential increase in volume associated with adding extra dimensions
to Euclidean space. The latter is a manifestation of an intriguing phenomenon
called the concentration of measure. This concentration phenomenon will give
rise to many surprising facts about high dimensional geometry that we will
discuss. Since several of the results discussed in this chapter require basic tools
from probability, we will also review some fundamental probabilistic concepts.

The curse of dimensionality

The curse of dimensionality refers to the fact that many algorithmic ap-
proaches to problems in R? become exponentially more difficult as the di-
mension d grows. The expression “curse of dimensionality” was coined by
Richard Bellman to describe the problem caused by the exponential increase
in volume associated with adding extra dimensions to Euclidean space [35].

For instance, if we want to sample the unit interval such that the distance
between adjacent points is at most 0.01, then 100 evenly-spaced sample points
suffice; an equivalent sampling of a five-dimensional unit hypercube with a grid
with a spacing of 0.01 between adjacent points would require 10'° sample
points. Thus, a modest increase in dimensions results in a dramatic increase
in required data points to cover the space at the same density.

Intimately connected to the curse of dimensionality is the problem of over-
fitting and underfitting. Here, overfitting refers to the issue that an algorithm
may show good performance on the training data, but poor generliazation
to other data. Underfitting in turn, corresponds to poor performance on the
training data (and poor generalization to other data). This problem manifests
itself in many machine learning algorithms.
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We will discuss a toy example from image classification in more detail to
illustrate the underlying issues. Assume we want to classify images into two
groups, cars and bicycles, say. From the vast number of images depicting cars
or bicycles, we are only able to obtain a small number of training images, say
five images of cars and five images of bicycles. We want to train a simple linear
classifier based on these ten labeled training images to correctly classify the
remaining unlabeled car/bicycle images. We start with a simple feature, e.g.
the amount of red pixels in each image. However, this is unlikely to give a lin-
ear separation of the training data. We add more features and eventually the
training images become linearly separable. This might suggest that increas-
ing the number of features until perfect classification of the training data is
achieved, is a sound strategy. However, as we linearly increase the dimension
of the feature space, the density of our training data decreases exponentially
with the feature dimension.

In other words, to maintain a comparable density of our training data,
we would need to increase the size of the datset exponentially — the curse of
dimensionality. Thus, we risk producing a model that could be very good at
predicting the target class on the training set, but it may fail miserably when
faced with new data. This means that our model does not generalize from the
training data to the test data.

2.1 Geometry of spheres and balls in high dimension

When we peel an orange, then after having removed the rind we are still left
with the majority of the orange. Suppose now we peel a d-dimensional or-
ange for large d, then after removing the orange peel we would be left with
essentially nothing. The reason for this — from a healthy nutrition viewpoint
discouraging — fact is that for a d-dimensional unit ball almost all of its volume
is concentrated near the boundary sphere. This is just one of many surpris-
ing phenomena in high dimensions. Many of these surprises are actually a
manifestation of some form of concentration of measure that we will analyze
in more detail in the next section (and then these surprises are no longer so
startling).

When introducing data analysis concepts, we typically use only a few di-
mensions in order to facilitate visualization. However, our intuition about
space, which is naturally based on two and three dimensions, can often be
misleading in high dimensions. Many properties of even very basic objects
become counterintuitive in higher dimensions. Understanding these paradox-
ical properties is essential in data analysis as it allows us to avoid pitfalls in
the design of algorithms and statistical methods for high-dimensional data.
It is therefore instructive to analyze the shape and properties of some basic
geometric forms that we understand very well in dimensions two and three,
in high dimensions.
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To that end, we will look at some of the properties of the sphere and the
cube as the dimension increases. The d-dimensional hyperball of radius R is
defined by

BYR)={zcR?: 2 4 .. 4+ 22 < R*},

the d-dimensional hypersphere (or d-sphere) of radius R is given by
Sd,l(R) :{xGRd:x%+...+x3:R2},

and the d-dimensional hypercube with side length 2R is the subset of R¢
defined as the d-fold product of intervals [—R, R]:

CYR)=[-R,R] x --- x [-R,R].

d times

If there is no danger of confusion, we may write B¢ for the unit ball B%(1),
S9=1 for the unit sphere S¢~!(1), and C? for the unit hypercube C?(3).

High Dimensional Geometry and High Dimensional Probability

In the rest of this section we will establish a variety of (at first) surprising
properties of high dimensional geometry. To illustrate the connections be-
tween geometry and probability we will derive some of the results first using
analytical tools (computing volumes and integrals) and then using tools from
Probability, namely concentration inequalities (which the reader might agree
gives more elegant arguments). The goal here is not to get the best bounds,
but to illustrate these properties and showcase the duality between geometry
and probability.

2.1.1 Volume of the hyperball

Proposition 2.1. The volume of BY(R) is given by

d
w2 RY
Vol(B4(R)) = . (2.1)
$I()
Proof. The volume of B4(R) is given by
R d
R
Vol(B(R)) :/0 sqrildr = de , (2.2)

where s4 denotes the (hyper-)surface area of a unit d-sphere. A unit d-sphere
must satisfy

oo

o0 2 o0 o0 2 2 2 d
Sd/ e " rdldr :/ / e~ Bt T o drg = (/ e " dx) .
0 — 00 —0o0 —0o0

d times
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Recall that the Gamma function is given by

I'(n) :/ r"_le_Tdr:2/ e "2,
0 0

ol

2 (2)°

[N

d
hence %sdf(g = F(l)} = (W%)d, and thus sg = 12]7 Plugging this ex-

(2.3)

a

Recall that for even d, we have I'(d/2) = (d/2—1)!. To understand the as-
symptotic behavior Vol(B¢(R)) we can use the celebrated Stirling’s Formula,

ro =22 (2)

we obtain an approximation for the volume of the unit d-ball for large d

Vol(BY) ~ &({:6)3,

where =~ means that the quotient goes to 1 as the relevant parameter, in this
case d, goes to co.

Since the denominator in the parenthesis of equation (2.4) goes to infinity,
the volume of the unit d-sphere goes rapidly to 0 as the dimension d increases
to infinity, see also Figure 2.1. Notice that this would still be the case for any
fixed radius R.

Thus, unit spheres in high dimensions have almost no volume—compare
this to the unit cube, which has volume 1 in any dimension. For B¢(R) to
have volume equal to 1, its radius R must be approximately (asymptotically)

equal to ,/ﬁ.

2.1.2 Concentration of the volume of a ball near its equator

(2.4)

If we take an orange and cut it into slices, then the slices near the center
are larger since the sphere is wider there. This effect increases dramatically
(exponentially with the dimension) with increasing dimension. Assume we
want to cut off a slab around the “equator!” of the d-unit ball such that 99%
of its volume is contained inside the slab. In two dimensions the width of the

1To define the “equator” of a the d-dimensional ball, we need to pick a “north
pole” as reference. Without loss of generality we could pick the unit vector in the
x1-direction as defining “north”.
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0 10 20 30 40 50
Dimension

Fig. 2.1: The volume of the unit d-ball using the exact formula in equa-
tion (2.3). The volume reaches its maximum for d = 5 and decreases rapidly
to zero with increasing dimension d.

slab has to be almost 2, so that 99% of the volume are captured by the slab.
But as the dimension increases the width of the slab gets rapidly smaller.
Indeed, in high dimensions only a very thin slab is required, since nearly all
the volume of the unit ball lies a very small distance away from the equator.
The following theorem makes the considerations above precise.

Fact 2.2 Almost all the volume of BY(R) lies near its equator.

Proof. 1t suffices to prove the result for the unit d-ball. Without loss of gen-
erality we pick as “north” the direction x;. The intersection of the sphere
with the plane x; = 0 forms our equator, which is formally given by the
d — 1-dimensional region {x : ||z|| < 1,21 = 0}. This intersection is a sphere
of dimension d — 1 with volume Vol(B?~!) given by the (d — 1)-analog of
formula (2.3) with R = 1.

We now compute the volume of B? that lies between 1 = 0 and z1 = po.
Let Py = {z : ||z|]| < 1,21 > po} be the “polar cap”, i.e., part of the sphere
above the slab of width 2py around the equator. To compute the volume of
the cap P we will integrate over all slices of the cap from py to 1. Each such
slice will be a sphere of dimension d — 1 and radius /1 — p2, hence its volume

is (1 — p2)% Vol(B9~1). Therefore

1 —

Vol(P) = / (1- P2)% Vol(B4~!) dp = Vol(Bd_l)/ (1- p2)dT dp.

Po Po
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Using e* > 1+ z for all x we can upper bound this integral by

Vol(P) < Vol(Bd‘l)/pO e TP dp = Vol(Bd—l),/dil/po - e du

IS d—1
= VO](Bd_l) m erfc <p0 2) ’

where erfc(z) = % f;o e~ du is the complementary error function. The
o2
upper bound erfc(z) < S gives

d—1, 2 d—1_2
T e” "z Po Vol(B4=1) e="2 o

-1y fir AT

d
Recall, from (2.3) that Vol(B%) = 5224, so, for d large enough (since

Vol(P) < Vol(B%™1)

g (9’
F%) ~ g)
r¢&t) T Veh
-2 (g d—1
Vol(B4™1) = ”(H (Ez Vol(B?) < —— Vol(B?).
T ') 2

Finally, a simple calculation shows that the ratio between the volume of the
polar caps and the entire hypersphere is bounded by

— exp 5

2Vol(P) 2Vol(P) 1 d-—1 ,
< < - Po |-
Vol(B?) — Vol(B4-1) = p,

The expression above shows that this ratio decreases exponentially as both d
and p increase, proving our claim that the volume of the sphere concentrates
strongly around its equator. O

2.1.3 Concentration of the volume of a ball on shells

We consider two concentric balls B4(1) and B¢(1 — ¢). Using equation (2.3),
the ratio of their volumes is

d

M =(1- E)d. (2.5)

Vol (B%(1))
Clearly, for every e this ratio tends to zero as d — oo. This implies that the
spherical shell given by the region between B4(1) and B?(1 — ) will contain
most of the volume of B%(1) for large enough d even if ¢ is very small. How
quickly does the volume concentrate at the surface of B%(1)? We choose ¢ as
a function of d, e.g. € = 5, then
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Vol(B%(1 —¢)) B t\d 4
Vol(BI(1)) (1’&> e

Thus, almost all the volume of B?(R) is contained in an annulus of width
R/d.

Therefore, if we peel a d-dimensional orange and even if we peel it very
carefully so that we remove only a very thin layer of its peel, we will have
removed most of the orange and are left with almost nothing.

2.1.4 Geometry of the hypercube

We have seen that most of the volume of the hypersphere is concentrated
near its surface. A similar result also holds for the hypercube, and it is in-
deed a tendency for high-dimensional geometric objects. Yet, the hypercube
exhibits an even more interesting volume concentration behavior, which we
will establish below.

We start with a basic observation.

Proposition 2.3. The hypercube C% has volume 1 and diameter \/d.

The above proposition, although mathematically trivial, hints already at a
somewhat counterintuitive behavior of the cube in high dimensions. Its cor-
ners seem to get “stretched out” more and more, while the rest of the cube
must “shrink” to keep the volume constant. This property becomes even more
striking when we compare the cube with the sphere as the dimension increases.

Fig. 2.2: 2-dimensional unit sphere and unit cube, centered at the origin.

In two dimensions (Figure 2.2), the unit square is completely contained in
the unit sphere. The distance from the center to a vertex (radius of the circum-
scribed sphere) is g and the apothem (radius of the inscribed sphere) is 1. In
four dimensions (Figure 2.3), the distance from the center to a vertex is 1, so
the vertices of the cube touch the surface of the sphere. However, the apothem

is still % The result, when projected in two dimensions no longer appears
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convex, however all hypercubes are convex. This is part of the strangeness of
higher dimensions - hypercubes are both convex and “pointy.” In dimensions

greater than 4 the distance from the center to a vertex is @ > 1, and thus
the vertices of the hypercube extend far outside the sphere, cf. Figure 2.4.

<>
<_Z

Fig. 2.3: Projections of the 4-dimensional unit sphere and unit cube, centered
at the origin (4 of the 16 vertices of the hypercube are shown).

Vd/2

<
>

Fig. 2.4: Projections of the d-dimensional unit sphere and unit cube, centered
at the origin (4 of the 2¢ vertices of the hypercube are shown).

The considerations above suggest the following observation:

Fact 2.4 Most of the volume of the high-dimensional cube is located in its
corners.

Proof. Let C?% denote the unit hypercube. The subset Qg of C¢ of points x €
R? whose distance to the center is smaller that R (Qr = {x € C?: ||z|| < R})
is given by Q = C? N BY(R). Thus
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1 2meR?\ %
:vol(Q)gBd(R)zﬁ( ; )

which goes to zero as long as R < 4/ 2%@' This shows that most of the volume
of C'% lies in points at distance of order v/d of the center. O

vol(Qr)
vol(C?)

2.2 Basic concepts from probability

We briefly review some fundamental concepts from probability theory, which
are helpful or necessary to understand the blessings of dimensionality and
some of the surprises encountered in high dimensions. More advanced proba-
bilistic concepts will be presented in Chapter ?7. We assume that the reader is
familiar with elementary probability as is covered in introductory probability
courses (see, for example [71, 152]).

The two most basic concepts in probability associated with a random
variable X are expectation (or mean) and variance, denoted by

E[X] and  Var(X):=E[(X —E[X])?],

respectively. An important tool to describe probability distributions is the
moment generating function of X, defined by

Mx(t) =E[eX], teR, (2.6)

the choice of nomenclature can be easily justified by expanding Mx(t) in a
series. The p-th moment of X is defined by E[X?] for p > 0 and the p-th
absolute moment is E[| X [?].

We can introduce LP-norms of random variables by taking the p-th root
of moments, i.e.,

1
Xz = (B[ X)), pe 0,00,
with the usual extension to p = oo by setting
I X|oo := esssup | X]|.

Let (£2, X,P) be a probability space, where X denotes a o-algebra on the
sample space {2 and P is a probability measure on ({2, X). For fixed p the
vector space LP(£2, X, P) consists of all random variables X on {2 with finite
LP-norm, i.e.,

LP(2, 2. P) ={X : | X||zr < 00}.
We will usually not mention the underlying probability space. For example,
we will often simply write LP for LP(£2, X, P).

The case p = 2 deserves special attention since L? is a Hilbert space with

inner product and norm
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1
(X,Y) 2 = E[XY], 1 X2 = (E[X?])?,
respectively. Note that the standard deviation o(X) := y/Var(X) of X can be

written as

o(X) = |1 X — E[X]]| 2.
The covariance of the random variables X and Y is
cov(X,Y) =E[(X —EX))(Y —E[Y])] =(X —E[X],Y —E[Y])2. (2.7)

We recall a few classical inequalities for random variables. Hélder’s in-
equality states that for random variables X and Y on a common probability
space and p,q > 1 with 1/p+ 1/¢ = 1, there holds

[EXY]| < [1X[|ze [Y]lza- (2.8)

The special case p = q = 2 is the Cauchy-Schwarz inequality

[E[XY]| < VE[X]PIE[Y]. (2.9)

Jenssen’s inequality states that for any random variable X and a convex
function ¢ : R — R, we have

o(E[X]) < E[p(X)]. (2.10)

Since () = 29/? is a convex function for ¢ > p > 0, it follows immediately
from Jenssen’s inequality that

| X zr <1 X||La for 0 <p<g<oo.

Minkovskii’s inequality states that for any p € [0,00] and any random
variables X, Y, we have

X +Yle <[ Xze + Y |Lr, (2.11)

which can be viewed as the triangle inequality.

The cumulative distribution function of X is defined by
Fx(t)=P(X <t), teR.

We have P{X >t} =1 — Fx(t), where the function ¢t — P{|X| > t} is called
the tail of X. The following lemma establishes a close connection between
expectation and tails.

Proposition 2.5 (Integral identity). Let X be a non-negative random vari-
able. Then

E[X] = /Ooo PIX > ¢} dt.

The two sides of this identity are either finite or infinite simultaneously.

Given an event E with non-zero probability,P(-|E) denotes conditional
probability, furthermore for a random variable X we use E[X|E] to denote
the conditional expectation.
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2.2.1 Tail bounds

Markov’s inequality is a fundamental tool to bound the tail of a random vari-
able in terms of its expectation.

Proposition 2.6. For any non-negative random variable X : S — R we have
E[X
P{X >t} < % for allt > 0. (2.12)
We provide two versions of the same proof, one using the language of
conditional expectations.
Proof. Let T denote the event {X > ¢}. Then
E[X] = p(s)X(s) = > p(s)X(s)+ Y _ p(s)X(s),
ses seT seZe

where p(s) denotes the probability of s; in case of continuous variables this
should be replaced with the density function and ) with an integral.
Since X is non-negative, it holds > p(s)X(s) > 0 and

s€Z¢
E[X]> Y p(s)X(s) >ty p(s) = tP{T}.
seT seZ

Proof (Using the language of conditional expectation,).
E[X]=P(X < )E[X|X < t]+P(X > )E[X|X > ¢],

where we take the product to be zero if the probability is zero.
Since X is non-negative, it holds P(X < ¢)E[X|X < t] > 0. Also, E[X|X >
t] > t. Hence,

E[X] > P(X > )E[X|X > t] > tP(X > t).

An important consequence of Markov’s inequality is Chebyshev’s inequal-
1ty.

Corollary 2.7. Let X be a random variable with mean u and variance o2.

Then, for anyt >0
2

g
PUX —ul 21} < 7 (2.13)

Chebyshev’s inequality, which follows by applying Markov’s inequality to
the non-negative random variable Y = (X —E[X])?, is a form of concentration
inequality, as it guarantees that X must be close to its mean p whenever the
variance of X is small. Both, Markov’s and Chebyshev’s inequality are sharp,
i.e., in general they cannot be improved.

Markov’s inequality only requires the existence of the first moment. We can
say a bit more if in addition the random variable X has a moment generating



20 2 Curses, Blessings, and Surprises in High Dimensions

function in a neighborhood around zero, that is, there is a constant b >
0 such that E[e*X~#)] exists for all A € [0,b]. In this case we can apply
Markov’s inequality to the random variable Y = e*X~#) and obtain the
generic Chernoff bound

E[BA(X fu)]

P{X —p >t} = () > Ny < =g

(2.14)
In particular, optimizing over A in order to obtain the tightest bound in (2.14)
gives

logP{X —pn >t} < — sup {At — logE[e*X—M]}.
A€[0,b]

Gaussian random variables are among the most important random vari-
ables. A Gaussian random variable X with mean p and standard deviation o
has a probability density function given by

W(t) = \/;T7€Xp (—(t 2_0’;)2) . (2.15)

We write X ~ N (u,0?). We call a Gaussian random variable X with E[X] = 0
and E[X?] = 1 a standard Gaussian or standard normal (random variable).
In this case we have the following tail bound.

Proposition 2.8 (Gaussian tail bounds). Let X ~ N (u,?). Then for all
t>0
P(X >p+t)<e /2 (2.16)

Proof. Without loss of generality we consider ¢ = 0 and ¢ = 1, as it is
straightforward to extend to the general case with a change of variables. We
use the moment-generating function A — E[e*X]. A simple calculation gives

E[e*X] = I Ja—e?/2 g L\ > o (@E=N?/2 g0 _ N2
V2T J o \% —o0 ’

2T

where we have used the fact that [~ e~ @=X7/2 4z is just the entire Gaus-
sian integral shifted and therefore its value is v/27. We now apply Chernoff’s

bound (2.14) and obtain P(X > t) < E[e*¥X]e~*!. Minimizing this expression
over A gives A = t and thus P(X > t) < e='"/2,

2.2.2 Sub-gaussian random variables

Definition 2.9. A random wvariable X with mean p = E[X] is called sub-
Gaussian if there is a positive number o such that

E[eMX 1) < em N2, for all X e R.
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Note that o2 is not necessarily the variance of X. If X satisfies the above
definition, we also say that X is sub-Gaussian with parameter o, or X is
(14, o) sub-Gaussian in case we want to emphasize p as well. Clearly, owing to
the symmetry in the definition, —X is sub-Gaussian if and only if X is sub-
Gaussian. Obviously, any Gaussian random variable with variance o2 is sub-
Gaussian with parameter o. We refer to [185] for other, equivalent, definitions
of sub-Gaussian random variables.

Combining the moment condition in Definition 2.9 with calculations simi-
lar to those that lead us to the Gaussian tail bounds in 2.8, yields the following
concentration inequality for sub-Gaussian random variables.

Proposition 2.10 (Sub-Gaussian tail bounds). Assume X is sub-Gaussian
with parameter . Then for all t > 0

P(|X — p| >t) <2e77/2°  forallt €R. (2.17)

An important example of non-Gaussian, but sub-Gaussian random vari-
ables are Rademacher random wvariables. A Rademacher random variable e
takes on the values 1 with equal probability and is sub-Gaussian with pa-
rameter o.Indeed, any bounded random variable is sub-Gaussian (see Re-
mark 2.16).

While many important random variables have a sub-Gaussian distribu-
tion, this class does not include several frequently occurring distributions with
heavier tails. A classical example is the chi-squared distribution, which we will
discuss at the end of this chapter.

2.2.3 Sub-exponential random variables

Relaxing slightly the condition on the moment-generating function in Defini-
tion 2.9 leads to the class of sub-ezponential random variables.

Definition 2.11. A random variable X with mean p = E[X] is called sub-
exponential if there are parameters v,b such that

1
E[eMX M) < 6”2)\2/2, for all |\ < 3

Clearly, a sub-Gaussian random variable is sub-exponential (set v = o and
b = 0, where 1/b is interpreted as +00). However, the converse is not true.
Take for example X ~ A(0,1) and consider the random variable Z = X?. For
A< % it holds that

Ejerz-] = L / T A eatzg (g
\/ﬁ o 1—2\

However, for A > % the moment-generating function does not exist, which
implies that X? is not sub-Gaussian. But X? is sub-exponential. Indeed, a
brief computation shows that
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-

e 22 4222
——— <t =e , for all |A\| < 1/4,
VI—2x~ Al=1/
which in turn implies that X2 is sub-exponential with parameters (v,b) =

(2,4).

Following a similar procedure that yielded sub-Gaussian tail bounds pro-
duces concentration inequalities for sub-exponential random variables. How-
ever, in this case we see two different types of concentration emerging, de-
pending on the value of ¢.

Proposition 2.12 (Sub-exponential tail bounds). Assume X is sub-
exponential with parameters (v,b). Then

e—t2/21/2 Zfogté VT;27

PX>u+t) < 2.19

Both the sub-Gaussian property and the sub-exponential property is pre-
served under summation for independent random variables, and the associated
parameters transform in a simple manner (see Remark 2.16).

2.3 Concentration of measure, a “blessing of
dimensionality”

Suppose we wish to predict the outcome of an event of interest. One natural
approach would be to compute the expected value of the object. However, how
can we tell how good the expected value is to the actual outcome of the event?
Without further information of how well the actual outcome concentrates
around its expectation, the expected value is of little use. We would like to
have an estimate for the probability that the actual outcome deviates from its
expectation by a certain amount. This is exactly the role that concentration
inequalities play in probability and statistics.

The concentration of measure phenomenon was put forward by Vitali Mil-
man in the asymptotic geometry of Banach spaces regarding probabilities on
product spaces in high dimensions [125, 112].

The celebrated law of large numbers of classical probability theory is the
most well known form of concentration of measure; it states that sums of in-
dependent random variables are, under very mild conditions, close to their
expectation with a large probability. We will see various quantitative ver-
sions of such concentration inequalities throughout this course. Some deal
with sums of scalar random variables, others with sums of random vectors
or sums of random matrices. Such concentration inequalities are instances of
what is sometimes called Blessings of dimensionality (cf. [68]). This expression
refers to the fact that certain random fluctuations can be well controlled in
high dimensions, while it would be very complicated to make such predictive
statements in moderate dimensions.
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2.3.1 Large deviation inequalities

Concentration and large deviations inequalities are among the most useful
tools when understanding the performance of some algorithms. We start with
two of the most fundamental results in probability. We refer to Sections 1.7
and 2.4 in [71] for the proofs and variations.

Theorem 2.13 (Strong law of large numbers). Let X1, Xo,... be a se-
quence of i.i.d. random variables with mean p. Denote

Sp=X1+-+ X,

Then, as n — 0o

S
;n — almost surely. (2.20)

The celebrated central limit theorem tells us that the limiting distribution
of a sum of i.i.d. random variables is always Gaussian. The best known version
is probably due to Lindeberg-Lévy.

Theorem 2.14 (Lindeberg-Lévy Central limit theorem). Let X1, X, ...
be a sequence of i.i.d. random variables with mean . and variance o2. Denote

Sn :X1++Xn7

and consider the normalized random variable Z,, with mean zero and variance
one, given by

S, —E[S,] 1 <
Zn = = X,L — .
VVar S, ovn ;( 2
Then, as n — oo
Z, - N(0,1) in distribution. (2.21)

The strong law of large numbers and the central limit theorem give us
qualitative statements about the behavior of a sum of i.i.d. random variables.
In many applications it is desirable to be able to quantify how such a sum
deviates around its mean. This is where concentration inequalities come into
play.

The intuitive idea is that if we have a sum of independent random variables

X=X+ + Xy,

where X; are i.i.d. centered random variables, then while the value of X can
be of order O(n) it will very likely be of order O(y/n) (note that this is
the order of its standard deviation). The inequalities that follow are ways of
very precisely controlling the probability of X being larger (or smaller) than
O(y/n). While we could use, for example, Chebyshev’s inequality for this, in
the inequalities that follow the probabilities will be exponentially small, rather
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than just quadratically small, which will be crucial in many applications to
come. Moreover, unlike the classical central limit theorem, the concentration
inequalities below are non-asymptotic in the sense that they hold for all fixed
n and not just for n — oo (but the larger the n, the stronger the inequalities
become).

Theorem 2.15 (Hoeffding’s Inequality). Let X1, Xo, ..., X,, be indepen-
dent bounded random variables, i.e., |X;| < a; and E[X;] = 0. Then,

i=1

The inequality implies that fluctuations larger than O (y/n) have small
probability. For example, if a; = a for all i, setting t = a+/2nlogn yields that
the probability is at most %
Proof. We prove the result for the case |X;| < a, the extension to the case
| X;| < a; is straightforward. We first get a probability bound for the event
Z?:l X; > t. The proof, again, will follow from Markov. Since we want an
exponentially small probability, we use a classical trick that involves exponen-
tiating with any A > 0 and then choosing the optimal .

n
e
i=1

]E[e)‘ Z?:l XI]
— etA

= e " [ ElM], (2.22)
i=1

where the penultimate step follows from Markov’s inequality and the last
equality follows from independence of the X;’s.

We now use the fact that | X;| < a to bound E[e*¥{]. Because the function
f(x) = e’ is convex,

e)\x < a+wez\a+ a_xe—)\a’
2a 2a

for all x € [—a,al.

Since, for all i, E[X;] = 0 we get

a+ X; a—X; 1
E[eMi] < B | S 2iAa 4 87 2 =ha| — 2 (pha 4 o=Aa) — cogh(Na
[ J< 2a + 2a 2 ( + ) (Aa)
Note that?
2This follows immediately from the Taylor expansions: cosh(z) = 20:0 7(317;!7

n

2 2
e” /2 =3 (2 and (2n)! > 2"nl.
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cosh(z) < e”/2 forallz €R

)

Hence,
E[e?] < ePa)/2, (2.23)

Together with (2.22), this gives

P {Z X’L Z t} < eft/\ He()\a)Q/Z
=1 i=1
_ e—tken()\a)z/Q

This inequality holds for any choice of A > 0, so we choose the value of A
that minimizes a2
min {n( @) — t)\}
A 2

Differentiating readily shows that the minimizer is given by

t

b
na?

which satisfies A > 0. For this choice of A,

1/ ¢ t2 t?
n()\a)2/2—t)\:< - ) =5,

n \2a? a2

Thus,

n t2
P{in > t} < e mma?
=1

By using the same argument on Y., (—X;), and union bounding over
the two events we get,
I[D {

Remark 2.16 (Hoeffding’s inequality and sub-Gaussianity). It is useful to dis-
sect the proof of Hoeffding’s inequality, and notice that it was done by showing
two things: (i) that the sum of independent sub-Gaussian random variables
is sub-Gaussian with parameter whose square is the sum of the squares of
the sub-Gaussian parameters of the original random variables (this is effec-
tively what is proven in (2.22)), and (ii) that bounded random variables are
sub-Gaussian (shown in (2.23)).

>

i=1

t2
>t < 2e 2na?

O
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Remark 2.17. Hoeffding’s inequality is suboptimal in a sense we now describe.
Let’s say that we have random variables 71, ..., r, i.i.d. distributed as

—1 with probability p/2
ri = 0 with probability 1 —p
1 with probability p/2.

Then, E(r;) = 0 and |r;| < 1 so Hoeffding’s inequality gives:

n 2
]P’{ E T >t}<2exp<—;).
n

i=1
Intuitively, the smaller p is, the more concentrated |y, r;| should be,
however Hoeffding’s inequality does not capture this behaviour.

A natural way to attempt to capture this behaviour is by noting that the
variance of ) ", 7; depends on p as Var(r;) = p. The inequality that follows,
Bernstein’s inequality, uses the variance of the summands to improve over
Hoeffding’s inequality.

The way this is going to be achieved is by strengthening the proof above,
more specifically in step (2.22) we will use the bound on the variance to get
a better estimate on E[e*¥¢] essentially by realizing that if X; is centered,
EX2? = 02, and |X;| < a then, for k > 2, EXF < E|X;|* < o 2E|X;|?2 <

2
ab—20?% = (Z—z) ak.

Theorem 2.18 (Bernstein’s Inequality).
Let X1, Xo, ..., X, be independent centered bounded random variables sat-
isfying | X;| < a and E[X?] = o%. Then,

t2
P >ty <2ex —_ .
{ - } - p( 2n02+§at>

Remark 2.19. Before proving Bernstein’s inequality, note that on the example

of Remark 2.17 we get
t2
>ty <2exp (—2> )

"

which exhibits a dependence on p and, for small values of p is considerably
smaller than what Hoeffding’s inequality gives.

n

> X

i=1

n
> 7

i=1

Proof.
As before, we will prove

PIS X, >\ < "),
{Z - } = o < 2no? + gat)

=1



2.3 Concentration of measure, a “blessing of dimensionality” 27

and then union bound with the same result for — > | X;, to prove the The-
orem.
For any A\ > 0 we have

n
IP’{ZXi > t} = P{ =X > M)
i=1

]E[e)‘z Xz]
=T o

n
_ e—)\t HE[e)\Xf]
i=1
The following calculations reveal the source of the improvement over Ho-
effding’s inequality.

— ATX"
m!

E[e*] =E |14+ X, +
m=2

o0 )\mam720,2

<1+ m; —

Therefore,

n

n 2
P{in > t} <e M [1+ % (e* —1— )
i=1

We will use a few simple inequalities (that can be easily proved with cal-
culus) such as® 1+ z < e®, for all z € R.
This means that,

which readily implies

n
TLUQ
P{ZXi > t} < e Mela

i=1

(eM—1—Xa)

As before, we try to find the value of A > 0 that minimizes

x

3In fact y = 1 4+ = is a tangent line to the graph of f(z) = e®.
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2
min {—)\t + %(e)‘“ -1- )\a)}
A a
Differentiation gives

1 t
N = = log <1+ag>
a no
If we set ;
a
= 2.24
v no?’ ( )
then A* = L log(1 + u).
Now, the value of the minimum is given by
., MO, e, . no?
—)\t—i—a—Z(e —1—)\a):—?[(l—i—u)log(l—i—u)—u].
This means that
- no?
P ;Xi >ty <exp —G—Q{(l + u)log(l + u) — u}
The rest of the proof follows by noting that, for every u > 0,
(1+u)log(l+u) —u > 5, (2.25)
v T3
which implies:

a22

+3

n 2
P{ZXi>t}§exp<—ng Y )
i=1

u

t2
=exp|————5— -
P ( 2no? + gat>

We refer to [185] for several useful variations of Bernstein’s inequality.

2.3.2 The geometry of the hypercube revisited

Equipped with the probabilistic tools from the previous sections, we will give
an alternative proof for Fact 2.4.
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Theorem 2.20. [See Fact 2.4] Let x be a random, uniformly drawn, point in
C?. We have that ||z| > % with high probability (meaning with probability
1—o0(1)).

The proof of this statement will be based on a probabilistic argument,
thereby illustrating (again) the nice and fruitful connection between geome-
try and probability in high dimension. Pick a point at random in C'?¢, which

corresponds to [—3 l]d. We want to upperbound the probability that the

273
point is also in the sphere or radius R.
Let © = (x1,...,24) € R? and each z; € [—%, %] is chosen uniformly at

random. The event that x also lies in the sphere of radius R corresponds to
the inequality

]2 =

Let z; = 2?2 and note that

1 [Y? (1/2?% 1
—1/2

which implies E[||z]|3] = £. Since the random variables z; — E[zz] = zz = are
independent, centered, and bounded (|z; — E[z;]| < max {ﬁ, i-51=32)
we can use Hoeffding’s inequality (Theorem 2.15). This gives

P(|lz]l3 < R?) = (Zx < R2> =P (Z( —E[z]) < R? — é)

i=1

< exp [—(é _ RQ)T = exp [—(d - 12R2)2

2
2d (35) 8d

Taking R = ‘f gives P <||a;||2 < ‘f) < exp [—cod] for a universal constant cg

. o 1-12)*
(which can be computed in this case to be ¢g = ( 816) = 128, but that’s not
important).

Since we now have gained a better understanding of the properties of the
cube in high dimensions, we can use this knowledge to our advantage. For
instance, this “pointiness” of the hypercube (in form of the ¢;-ball) turns out
to very useful in the areas of compressive sensing and sparse recovery, see
Chapter 10.

2.3.3 Tail bounds for the chi-squared distribution

If X1,...,X, are independent, standard normal random variables, then the
sum of their squares, Z = 22:1 X7 is distributed according to the chi-squared
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distribution with n degrees of freedom. We denote this by Z ~ x2(n). Its
probability density function is

t%71€7%
=== t>0.
olt) = { 2T
0, else.
Since the X,f, k =1,...,n are subexponential with parameters (2,4) and in-

dependent, Z = >"]'_, X} is subexponential with parameters (2y/n,4) (anal-
ogously to Remark 2.16). Therefore, using (2.19), we obtain the x? tail bound
1 n
LS xio

2" /8  for t € (0,1).
IP’( >t><{e ort €(0,1) (2.26)
n
k=1

2e~nt/8 if ¢ > 1.

A very useful variation of this bound, commonly known as “Lemma 1 in
Laurent and Massart [111]” is the following Theorem.

Theorem 2.21 ( [111]). Let X;,..., X, be i.i.d. standard Gaussian random

variables (N'(0,1)), and a1, . . ., a, non-negative numbers and not all zero. Let
Z=Y a(X;-1).
k=1

The following inequalities hold for any x > 0:

e P{Z>2[|a]2v7 + 2[|a] oz} < exp(—u),
o P{Z < —2|a|l2v/x} < exp(—zx),

where ||al|3 =Y p_, ai and ||a||oc = maxi<p<n |akl.

Note that if ap = 1, for all k, then Z is a x2 random variable with n degrees
of freedom, so this theorem immediately gives a deviation inequality for xo
random variables, readily comparable to (2.26).

2.3.4 How to generate random points on a sphere

How can we sample a point uniformly at random from S%~1? The first ap-
proach that may come to mind is the following method to generate random
points on a unit circle. Independently generate each coordinate uniformly at
random from the interval [—1, 1]. This yields points that are distributed uni-
formly at random in a square that contains the unit ball. We could now project
all points onto the unit ball. However, the resulting distribution will not be
uniform since more points fall on a line from the origin to a vertex of the
square, than fall on a line from the origin to the midpoint of an edge due to
the difference in length of the diagonal of the square to its side length.

To remedy this problem, we could discard all points outside the unit ball
and project the remaining points onto the sphere. However, if we generalize
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this technique to higher dimensions, the analysis in the previous section has
shown that the ratio of the volume of S¢71(1) to the volume of C¢(1) decreases
rapidly. This makes this process not practical, since almost all the generated
points will be discarded in this process and we end up with essentially no
points inside (and thus, after projection, on) the sphere.

Instead we can proceed as follows: Recall that the multivariate Gaussian
distribution is rotation invariant about the origin. This means that we can
simply construct a vector in R? whose entries are independently drawn from
a univariate Gaussian distribution, and then normalize it to lie on the sphere.
This gives a distribution of points that is uniform over the sphere.

Having a method of generating points uniformly at random on S?~! at our
disposal, we can now give a probabilistic proof that points on S%~! concentrate
near its equator.

Theorem 2.22. Let = be a point randomly, and uniformly, drawn in the
sphere in d dimensions S. For any p > 0 and d large enough, ||z|| > /5
has probability > 1 — e 5.

Without loss of generality, we pick the first canonical basis vector e
to represents the “north pole”, and the intersection of the sphere with the
plane z; = 0 forms our equator. We create a random vector by sampling

(21,---,24) ~ N(0,1;) and normalize the vector to get z = (x1,...,24) =
———(21,...,2q). Because z is on the sphere, it holds that [|z||> = 1.
k=1 %k

We are interested in understanding the random variable x%. Notice that
1= ZZ:1 3 = E [ZZ:1 xi} = dEx; since all coordinates are identically
distributed (but not independent), this means that Ez} = é for all coordinates
x. Our goal is to upperbound the probability that xy = ——£.— is large,

k g PP p y 1 m g
we will do that by union bounding the events that z; is large (in absolute
value) and that ZZ:1 z2 is small (which can be done with (2.26)). We will
not attempt to derive the strongest possible bound, but rather to showcase
an useful argument. Let p > 0 and 0 < € < 1 be parameters that we will set
later (perhaps depending on d). We have

where in the last inequality we used the Gaussian tail bound (Proposition 2.8)
in the first term and the x? bound (2.26) in the second.
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For d large enough, taking ¢ sufficiently small we have

P (|x1| > \/g) <exp|-£],

where the 3 could be replaced by any real larger than 2. a

Remark 2.28 (Random vectors in high dimensions). The results shown in this
chapter give us valuable insight about the behavior of random vectors in high
dimensions. The results showing that most of the ball is near the boundary,
together with the concentration of the norm of the gaussian vector z ~ N (0, )
give us the crucial insight that lengths of random high dimensional vectors
tend to concentrate. The theorems that establish that most of the sphere is
near the equator give us a perhaps even more valuable insight: two random
vectors in high dimensions are almost always almost orthogonal. Indeed, we
can take one of them to be the “north pole” without loss of generality and
(in the case in which they are uniformly drawn in the sphere) Theorem 2.22
states that their inner product is in the order of ﬁ smaller than the product
of their norms, which corresponds to an angle very close to perpendicular.

We will dive deeper into the topic of probability in high dimensions in
Chapters 8 and 9. There are several excellent texts about different aspects of
high dimensional probability, two notable examples are [180] and [185].



3

Singular Value Decomposition and Principal
Component Analysis

Data is most often represented as a matrix, even network data and graphs are
often naturally represented by their adjacency matrix. For this reason Linear
Algebra is one of the key tools in data analysis. Perhaps more surprising is the
fact that spectral properties of matrices representing data play a crucial role
in data analysis. We illustrate this importance with a discussion of the Sin-
gular Value Decomposition (SVD) and Principal Component Analysis (PCA)
that are often used for data compression, denoising, and dimension reduction.
Tools from random matrix theory are then utilized to better understand the
performance of SVD and PCA in the high dimensional regime.

3.1 Singular Value Decomposition

We recommend the reader [93] and [81] as base references in Linear Algebra.
The SVD is one of the most useful tools for analyzing data. Given a matrix
A € R™ " the SVD of A is given by

A=UxVvT, (3.1)

where U € O(m), V € O(n) are orthogonal matrices (meaning that UTU =
UUT = Lyxm and VIV = VVT = 1,,,) and ¥ € R™*" is a matrix with
non-negative entries on its diagonal and otherwise zero entries.

The columns of U and V are referred to, respectively, as the left and right
singular vectors of A and the diagonal elements of X as the singular values of
A. Through the SVD, any matrix can be written as a sum of rank-1 matrices

A= Z Jkukvz, (32)
k=1

where o1 > 09 > o, > 0 are the non-zero singular values of A, and wuy
and v are the corresponding left and right singular vectors. In particular,
rank(A) = r, that is, the number of non-zero singular values r is the rank of

A.
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Remark 3.1. The SVD of a complex valued matrix A € C™*™ is given by
A=UXV* where U € C™*™ and V € C"*™ are unitary matrices (UU* =
U*U = Lyxm and VV* = V*V = 1,,4,,) and X is the same as in the real
case (i.e., X' € R™*" is a matrix with non-negative entries on its diagonal and
otherwise zero entries). We focus our presentation on the SVD of real valued
matrices as they are more common in data science, but everything can be
straightforwardly extended to the complex case.

Remark 3.2. Say m < n, it is easy to see that we can also think of the SVD
as having U € R™*" where UUT =1, ¥ € R™*" a diagonal matrix with
non-negative entries and V € O(n).

3.1.1 Matrix norms

A very powerful modelling tool in data science is low rank matrices. As
already suggested in the expansion (3.2) the SVD will play an important role
in this, being used to provide low rank approximation of data matrices.

In order to be able to talk about low rank approximations of matrices, we
need a notion of distance between matrices. Just like with vectors, the distance
between matrices can be measured using a suitable norm of the difference. One
popular norm is the Frobenius norm, or the Hilbert-Schmidt norm, defined as

1Alr = [ a3, (3.3)
i

where a;; are the entries of the matrix A. This norm is simply the Euclidean
norm of a vector of length mn comprised of the matrix elements. The Frobe-
nius norm can also be expressed in terms of the singular values. To see this,
first express the Frobenius norm in terms of the trace of AT A as

1AIZ = af; = Te(AT4), (3-4)
i

where we recall that the trace of a square matrix A is defined as

A particularly important property of the trace is that for any A of size m x n
and B of size n x m
Tr(AB) = Tr(BA). (3.6)

Note that this implies that, e.g., Tr(ABC) = Tr(C AB), but it does not imply
that, e.g., Tr(ABC) = Tr(ACB) which is not true in general. Now, plugging
the SVD (3.1) into (3.4) gives

Al = Tr(ATA) = e (VETUTULVT) = Te(278) =) o7, (3.7)
k=1
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where we used the orthogonality of U and V' and the trace property (3.6). We
conclude that the Frobenius norm of a matrix equals the Euclidean norm of
its vector of singular values.

A different way to define the size of a matrix is by viewing it as an operator
and measuring by how much it can dilate vectors. For example, the operator
2-norm is defined as

|42 = sup [Az]. (3.8)
llzll=1

This operator norm can also be succinctly expressed in terms of the singular
values. Indeed, for any z € R"”

Az = Z opur(viz). (3.9)

k=1

Using the orthogonality of the left singular vectors u we get
T T n
[Az|* =" oi(vog,@)® < of Y (o,2)* <of ) (og,2)? = of||z]?, (3.10)
k=1 k=1 k=1

where the last equality is due to the orthogonality of the right singular vectors
vi. Moreover, we get equality by choosing = v;. We conclude that the 2-
norm is simply the largest singular value

[All2 = o1. (3.11)

Before proceeding we briefly recall Holder’s inequality

Proposition 3.3. For p,q € (0,00) such that % + % =1, and z,y € R", we

have )

n n D n %
Z |zkyx| < (Z |xk|p> (Z |yk|q> .
k=1 k=1 k=1

The following useful form is equivalent:

n r+s n T n s
(ch|ak|r|bkls> < <Z |Ck||ak|r+s> (Zcﬂbkl”S) . (312)
k=1 k=1 k=1

for non-negative r and s.

3.1.2 Existence of the SVD

The matrix 2-norm plays an important role in proving that any matrix has
an SVD.
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Theorem 3.4. If A is a real mxn matriz, then there exist orthogonal matrices
U=lul,...,up] €0(m) and V =[v1,...,v,] € O(n)

such that
UTAV = diag(oy,...,0,) € R™"  p=min{m,n}
where 01 > 09 > -+ > 0p > 0.

Proof. We will use induction to prove the existence of SVD. Let x € R™ and
y € R™ be unit 2-norm vectors that satisfy Az = oy where o = ||A]|2, the
2-norm of A. There exist matrices Vo € R**("=1 and U, € R™*(m—1) gych
that V = [z,V5] € R™*™ and U = [y, Us] € R™*™ are orthogonal matrices
(this follows from a simple result in linear algebra that given a basis of a
subspace, it is possible to extend it to a basis of the whole space). Consider
now the matrix U7 AV which has the following structure

UwT

UTAV = {O B} = A;.

A short explanation: we can write U7 AV = [y, Us]T A[w, V3]. Thus, the top left
element in the resulting matrix is y* Az = yToy = o (because Ar = oy and
lly|| = 1). The leftmost column underneath o is all 0’s, as we have U Az =
oU¥y = 0 by orthogonality of Us and y. The topmost column to the right of
o is some vector wT, and the bottom right of the matrix is represented by a
smaller matrix B € R(7=Dx("=1) Since

Lo =1 5

Bw
we have ||A1||3 > (02 + ||w||?). However, ||A1||*> = ||A||2 = o2, because

the matrix 2-norm is invariant under orthogonal transformations. Therefore,
|w]|? = 0 and

2

2
] > (0 + Jul?)?

T o o0
orar=[79]

The proof is completed by applying induction on the smaller matrix B, result-
ing in the next largest o on the diagonal in each iteration, and we eventually
end up with UT AV = diag(o4,...,0,) with oq > --- > 0, > 0.

3.1.3 Low rank matrix approximation

A very important property of the SVD is that it provides the best low rank ap-
proximation of a matrix, when the approximation error is measured in terms of
either the operator norm or the Frobenius norm. Specifically, for any 0 < s < r
consider the rank-s matrix Ay = ;_; opukvf. Then, among all matrices of
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rank s, A best approximates A in terms of the operator norm (or Frobenius
norm) error. When measuring error using the operator norm, the approxima-
tion error equals 051, which is the largest singular value among the remaining
r — s smallest singular values

A— Ay = inf A—Blly= 0511 3.13
[A=Ada=,  inf A= Blo=0un (3.13)

A similar result holds for the Frobenius norm, with the approximation error
given in terms of the remaining r — s smallest singular values as

Sy o (3.14)

k=s+1

A= Asllr = inf A= B|r=

BeR™ X" rank(B)<s

In fact, A, is the best low rank approximation for any univariate matrix norm
satisfying |[UAV| = ||A]| for any U € O(m),V € O(n), that is, norms that
are invariant to multiplication by orthogonal matrices [126].

We prove the low rank approximation property for the operator norm case.

Theorem 3.5. Let the SVD of a matriz A € R™*" be A = UXVT. If s <
r = rank(A4) and we have the rank-s matriz As,

S
A, = g U;cukva
k=1

then
i A—Blls =||A— A2 = 0s41.

i [l Bla = 4 - A = 0w
Proof. Since Ag; and A have the same left and right singular vectors and the
same s leading singular values, it follows that U7 A,V = diag(o4,...,0s,0,...,0)
and UT(A — A,)V = diag(0,...,0,0541,...,0p), where p = min{m,n}. This
implies ||[A — As||2 = 0511, the largest remaining singular value. Now, suppose
we have a matrix B € R™*" with rank(B) = s. We can find an orthonormal
basis for the null space of B, i.e. orthonormal vectors z1,...,2,_, such that
null(B) = span{z1,...,Z,_s}. By a dimension argument, we have that

span{zi,...,Zn—s} Nspan{vy,...,vs41} # {0},

since these are two subspaces of R™ of dimension n — s and s + 1. Take a
unit vector z in this intersection; for this vector, we know that Bz = 0 and
Az = 301 Gpu (o] 2). Therefore,

s+1 s+1

1A= Bl 2 I(A = B)2|l” = | Az]* = Y o (v 2)* 2 0211 Y _(vi2)* = 07,y
k=1 k=1

which completes the proof.
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For the Frobenius norm case, the low rank approximation property follows
from von Neumann’s trace inequality [187]:

Theorem 3.6. If A and B are complez-valued n X n matrices with singular
values o1(A),...,0n(A) and 01(B),...,0,(B), then

| Te(AB)| <) own(A)ow(B).
k=1

The reader is referred to [127] for a proof of Theorem 3.6. We are now ready to
prove that the SVD provides the best low rank approximation in the Frobenius
norm.

Theorem 3.7. Let the SVD of a matriz A € R™*" be A = UXVT. If s <
r = rank(A) and we have the rank-s matriz As,

S
A, = E crk.ukv,?
k=1
then

min _ [|[A—Bllp = A - As]lr =
rank(B)<s

k=1 k=1

By von Neumann’s trace inequality (whose statement for square matrices
implies the general case of rectangular matrices)

Tr(ATB) < Z op(A)ok(B).

k=1
Therefore,
|A=BlE > oi(A) + Y oi(B) =2 ox(A)ow(B)
k=1 k=1 k=1
= Y (A + > (0k(A) — ox(B))?
k=s+1 k=1

\%
]
2
E

which establishes the lower bound. Finally, the lower bound is clearly attained
for B = A,.
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The low rank approximation property has a wide ranging implication on
data compression. The storage size of an m x n data matrix is mn. If that
matrix is of rank r, then storage size reduces from mn to (n +m + 1)r (for
storing r left and right singular vectors and values). For r < min{n,m}
this reduction can be quite dramatic. For example, if » = 10 and n = m =
108, then storage reduces from 10'? entries to just 2 - 107. But even if the
matrix is not precisely of rank r, but only approximately, in the sense that
or41 < 01, then we are guaranteed by the above approximation results to
incur only a small approximation error due to compression using the top r
singular vectors and values. In many cases, the singular values of large data
matrices decay very quickly, motivating this type of low rank approximation
which oftentimes is the only way to handle massive data sets that otherwise
cannot be stored and/or manipulated efficiently. Remarkably, even treating
an image as a matrix of pixel intensity values and compressing it this way
yields good image compression and de-noising algorithms (as it mitigates the
noise corresponding to singular values that are truncated). This is illustrated
using a photo of size 1224 x 1632 pixels taken at Prospect Garden in Princeton
University on April 28, 2015 by Amit Singer.

The original photo (left panel) is considered as three matrices (one for each
RGB color channel). The main features of the image appear already in the
rank-10 approximation (center panel), although many fine details are clearly
missing and there are also some visible artifacts (such as striping, smearing,
etc.). The rank-100 approximation (right panel) has exceptional resemblance
with the original photo. Of course there are still differences between the two
images (such as artifacts on the curbstone) but these are less visible to the
naked eye on first inspection. Note that compression using » = 10 and r» = 100
require less than 1% and 10%, respectively, storage of the original image. The
decay of the singular values of the three matrices is illustrated below (in red,
green, and blue). We use logarithmic scale due to the rapid decay of singular
values. Notice that the singular values of the three matrices are very similar.
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Remark 3.8. The computational complexity of computing the SVD of a matrix
of size m x n with m > n is O(mn?). This cubic scaling could be prohibitive
for massive data matrices, in a future version of this manuscript we plan to
discuss numerical algorithms that use randomization to efficiently compute
the low rank approximation of such large matrices more efficiently.

Remark 3.9. The SVD plays a critical role in sensitivity analysis of linear
systems of the form Ax = b. In particular, the error is bounded in terms of
the condition number x(A) which is the ratio of the largest singular value and
the smallest singular value. A rigorous treatment of this important topic is
beyond the scope of this book and can be found in other texts on numerical
linear algebra [82].

3.1.4 Spectral Decomposition
If M € R™*"™ is symmetric then it admits a spectral decomposition
M=vVAVT,

where V € O(n) is a matrix whose columns vy, are the eigenvectors of M and
A is a diagonal matrix whose diagonal elements A\, are the eigenvalues of M.
Similarly, we can write

n
M = Z )\kvkv{.
k=1
When all of the eigenvalues of M are non-negative we say that M is positive
semidefinite and write M > 0. In that case we can write

T

M= (val2) (var?) .

A decomposition of M of the form M = UU? (such as the one above) is

called a Cholesky decomposition (oftentimes, in a Cholesky decomposition, the

matrix U is required to be triangular, here we do not make this requirement).
For symmetric matrices, the operator 2-norm is also known as the spectral

norm, given by

|M]} = max [Ar(M)].
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3.1.5 Quadratic forms

In both this and following chapters, we will be interested in solving problems
of the type
max Tr (VTMV) ,
VeR™*4
VIV=I4xa
where M is a symmetric n X n matrix.
Note that this is equivalent to

max Zv,{ka, (3.15)

where ¢ is the Kronecker delta (§,; = 1 for ¢ = j and 6;; = 0 otherwise).
When d = 1 this reduces to the more familiar

max v? Mu. (3.16)
”’Uﬁ]R”l
Vil2=

It is easy to see (for example, using the spectral decomposition of M)
that (3.16) is maximized by the leading eigenvector of M and

max v Mv = Amax(M).
vER™
lvfla=1

Furthermore (3.15) is maximized by taking v1,...,vq to be the d leading
eigenvectors of M and its value is simply the sum of the d largest eigenvalues
of M. This follows, for example, from a Theorem of Fan (see page 3 of [131]).
A fortunate consequence is that the solution to (3.15) can be computed se-
quentially: we can first solve for d = 1, computing v;, then update the solution
for d = 2 by simply computing v without changing the first vector.

Remark 3.10. All of the tools and results above have natural analogues when
the matrices have complex entries (and are Hermitian instead of symmetric).

3.1.6 SVD and the Moore-Penrose Pseudoinverse

The SVD is intimately connected to the Moore-Penrose pseudoinverse of a
matrix [36]. The Moore-Penrose pseudoinverse (named after mathematicians
E. H. Moore and Roger Penrose) of A, denoted as Af, is a generalization
of the matrix inverse to matrices that may not be square, or if square, may
not have full rank. For an invertible matrix, the pseudoinverse is identical
to the standard inverse. However, for a rectangular or rank-deficient square
matrix, the pseudoinverse provides a unique solution that satisfies a set of four
specific conditions known as the Penrose conditions, that uniquely define the
pseudoinverse Af for any matrix A. These conditions are a generalization of
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the properties of a standard matrix inverse. A matrix A" is the pseudoinverse
of A if and only if it satisfies all four of the following equations:

AATA = A,
ATAAT = AT,
(AATT = AAT,
(ATA)T = ATA.

These conditions ensure that the pseudoinverse acts “as much as possible”
as an inverse for matrices that are not invertible, including rectangular or
rank-deficient square matrices. The above four conditions are equivalent to
the matrices AAT and ATA being orthogonal projectors onto the range of A
and the range of AT respectively.

The primary purpose of the pseudoinverse is to find “best-fit” solution to
a system of linear equations Ax = b when a unique solution does not exist.
In cases where the system has multiple solutions, the pseudoinverse provides
the one with the minimum Euclidean norm. For systems with no exact solu-
tion (an overdetermined system), it provides the least-squares solution, which
minimizes the error ||Az — b||2. This makes the pseudoinverse a tremendously
useful tool in fields like numerical mathematics, statistics, machine learning,
and signal processing.

The SVD provides a straightforward and computationally stable way to
calculate AT. That is, the pseudoinverse of A is given by the formula.

AT =vXiuT, (3.17)

where the matrix X1 is found by taking the reciprocal of every non-zero singu-
lar value on the diagonal of Y. This method is particularly powerful because it
works for any matrix—square or rectangular, full rank or rank-deficient—and
is numerically robust, avoiding the issues with ill-conditioned matrices that
can plague other inversion methods. Indeed, in the practical computation of
Xt one usually chooses a threshold 7, such that all singular values less than
T are treated as zero.

3.2 Principal Component Analysis and dimension
reduction

When faced with a high dimensional dataset, a natural approach is to attempt
to reduce its dimension, either by projecting it to a lower dimensional space
or by finding a better representation for the data using a small number of
meaningful features. Beyond data compression and visualization, dimension
reduction facilitates downstream analysis such as clustering and regression
that perform significantly better in lower dimensions. We will explore a few
different ways of reducing the dimension, both linearly and non-linearly.
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We start with the classical Principal Component Analysis (PCA). PCA
continues to be one of the most effective and simplest tools for exploratory
data analysis. It dates back to a 1901 paper by Karl Pearson [143] and was
rediscovered several times by different research communities where it is also
known under different names such as the proper orthogonal decomposition
(POD) and the Karhunen-Loeve transform (KLT) among others.

Suppose we have n data points x1,...,z, in RP, and we are interested in
(linearly) projecting the data to d < p dimensions. This is particularly useful
if, say, one wants to visualize the data in two or three dimensions (d = 2, 3).
There are a couple of seemingly different criteria we can use to choose this
projection:

1. Finding the d-dimensional affine subspace for which the projections of
z1,...,T, on it best approximate the original points x1, ..., z,.

2. Finding the d-dimensional projection of z1, ..., z, that preserves as much
variance of the data as possible.

As we will see below, these two approaches are equivalent and they corre-
spond to Principal Component Analysis.
Before proceeding, we recall a couple of simple statistical quantities asso-

ciated with x1,...,x,, that will reappear below.
Given z1,...,z, we define its sample mean as
1 n
= — Tk, 3.18
Mo n ; k ( )

and its sample covariance as

R T
X, = — Z (g — pn) (T — pin)” (3.19)
k=1
Remark 3.11. If x4, ..., x, are independently sampled from a distribution, p,

and X, are unbiased estimators for, respectively, the mean and covariance of
the distribution.

PCA as the best d-dimensional affine fit

We start with the first interpretation of PCA and then show that it is equiv-
alent to the second. We are trying to approximate each xj by

d
o p+ Y (Br); v, (3.20)
i=1
where vy, ...,vq is an orthonormal basis for the d-dimensional subspace, i €

RP represents the translation, and 8, € R? corresponds to the coefficients of
x. Without loss of generality we take
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> B =0, (3.21)

k=1

as any joint translation of 8y can be absorbed into p.
If we represent the subspace by V = [vy---vg] € RP*? then we can
rewrite (3.22) as
T~ p+ VP, (3.22)

where VTV = I;.4, because the vectors v; are orthonormal.
We will measure goodness of fit in terms of least squares and attempt to
solve

n
min > [k — (u+ VB3 (3.23)
w, V, B
vTy=1 k=1

We start by optimizing for u. It is easy to see that the first order condition
for p corresponds to

VS lon = (VA2 = 0= 3 (an — (u+ VB) = 0.
k=1 k=1

Thus, the optimal value p* of p satisfies

() ()

Since we assumed in (3.21) that Y_;_, 8, = 0, we have that the optimal yx is

given by
* 1 -
W=y k=,
k=1

the sample mean.
We can then proceed to finding the solution for (3.23) by solving

n
min Y [lok — pn — VBl (3:24)
V, Bk
vTy=rk=1

Let us proceed by optimizing for §j. The problem almost fully decouples
in each k, the only constraint coupling them being (3.21). We will ignore this
constraint, solve the decoupled problems, and verify that it is automatically
satisfied. Hence we focus on, for each k,

d

T — HUn — Z (ﬂk)z (%

i=1

(3.25)

min ||z — pn — VﬂkH; = min
Bk Bk )
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Since vy, ..., vq are orthonormal, it is easy to see that the solution is given by
(B); = vi (z — pn) which can be succinctly written as 8 = VT (2 — ),
which satisfies (3.21). Thus, (3.24) is equivalent to

n

. 2
VR 2 [ = pn) = VVT (2 = i) - (3.26)

Note that

@x = ) = VVT (@ = ) = (@ = )" (@x = o)
=2 (zp — i) VVT (k= pin)
+(z— )V (VIV) VT (2 — 1)
= (@ — pn)" (2k = pin)
— (@ — ) VT (2 — pi) -

Since (zx — )" (2 — ptn) does not depend on V, minimizing (3.26) is
equivalent to
n
Jmax (2 — )" VVT (2 — pin) - (3.27)
k=1
A few algebraic manipulations using properties of the trace yields:

n

> @ =) VYT (0 = i) = YT [ (@ — ) VT (= )]

k=1

b
=

[
NE

Tr {VT (z1 — pn) (T — pin)” V}

>
Il

1

n

VT Z (xkr - ,U/n) (.’L’k - Mn)T Vv
k=1

=m-)Tr [V, V].

=Tr

This means that the solution to (3.27) is given by the solution of

max Tr [VTX,V]. (3.28)
VTV=1
As we saw above (recall (3.15)) the solution is given by V' = [vy, - - , v4] where
v1,...,0q correspond to the d leading eigenvectors of X,.

PCA as the d-dimensional projection that preserves the most
variance

We now show that the alternative interpretation of PCA, of finding the d-
dimensional projection of x1,...,z, that preserves the most variance, also
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arrives to the optimization problem (3.28). We aim to find an orthonormal
basis v1,...,vq (organized as V = [v1,...,v4] with VTV = Izyq) of a d-
dimensional space such that the projection of x1,...,x, onto this subspace
has the most variance. Equivalently we can ask for the points

U?mk
T

Vg Tk k=1

to have as much variance as possible. Hence, we are interested in solving

n 2

1
Vg, — - > via, (3.29)

Note that
n
k=1

showing that (3.29) is equivalent to (3.28) and that the two interpretations of
PCA are indeed equivalent.

=SV (@ — )| = (- )T (VI £,V
k=1

1 n
VT — -~ Z VT,
r=1

Finding the Principal Components

When given a dataset zi,...,z, € RP, in order to compute the Principal
Components one needs to compute the leading eigenvectors of

1 n
Yp = n_IZ(xk_ﬂn)(xk_ﬂn)T
k=1

A naive way of doing this is to construct X, (which takes O(np?) work) and
then finding its spectral decomposition (which takes O(p*) work). This means
that the computational complexity of this procedure is O (max {an, p3})
(see [93] or [81]).

An alternative is to use the Singular Value Decomposition (3.1). Let X =
[21 - x,], and recall that

1 _ T _ T
Zn_n—l(X ,unl)(X ,unl).

Let us take the SVD of \/% (X — pp17) = UL DUE with Ug, € O(p), D

diagonal, and UEUR = 1. Then,

1
n—1

2, = (X = pn1") (X = p1")" = U, DUEURDUT = U, DU},
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meaning that Uy, corresponds to the eigenvectors of Y. Computing the
SVD of X — p, 1T takes O(min{n?p, p>n}) work but if one is interested in
simply computing the top d eigenvectors then this computational cost re-
duces to O(dnp). This can be further improved with randomized algorithms.
There are randomized algorithms that compute an approximate solution in
@] (pn logd + (p + n)d2) time (We plan to discuss this in more detail in a fu-
ture version of this manuscript. Nonetheless, you can read more about this
in [88, 150, 135]).

Numerical stability is another important reason why computing the prin-
cipal components using the SVD is preferable. Since the eigenvalues of X,
are proportional to the squares of the singular values of X — y, 17, prob-
lems arise when the ratio of singular values exceeds 108, causing the ratio
of the corresponding eigenvalues of X,, to be larger than 10'. In this case,
the smaller eigenvalue would be rounded to zero (due to machine precision),
which is certainly not desirable.

Which d should we pick?

Given a dataset, if the objective is to visualize it then picking d = 2 or d = 3
might make the most sense. However, PCA is useful for many other purposes,
for example:

1. Denoising: often times the data belongs to a lower dimensional space but
is corrupted by high dimensional noise. In such cases, PCA helps reduce
the noise while keeping the signal.

2. Downstream analysis: One may be interested in running an algorithm
(clustering, regression, etc.) that would be too computationally expen-
sive or too statistically insignificant to run in high dimensions. Dimension
reduction using PCA may help there.

In these applications (and many others) it is not clear how to pick d. A fairly
popular heuristic is to try to choose the cut-off at a component that has
significantly more variance than the one immediately after. Since the total

variance is Tr(X,) = > ¥ _; Ak, the proportion of variance in the i’th compo-
nent is nothing but ﬁ A plot of the values of the ordered eigenvalues,

also known as a scree plot, helps identify a reasonable choice of d. Here is an
example:



48 3 Singular Value Decomposition and Principal Component Analysis

T T T T T

o
6

It is common to then try to identify an “elbow” on the scree plot to choose
the cut-off. In the next Section we will look into Random Matrix Theory to
better understand the behavior of the eigenvalues of X, and gain insight into
choosing cut-off values.

3.3 PCA in high dimensions and Marcenko-Pastur law

Let us assume that the data points z1,...,z, € RP are independent draws
of a zero mean Gaussian random variable g ~ A/(0, X) with some covariance
matrix Y € RP*P, In this case, when we use PCA we are hoping to find
a low dimensional structure in the distribution, which should correspond to
the large eigenvalues of X (and their corresponding eigenvectors). For that
reason, and since PCA depends on the spectral properties of X, we would
like to understand whether the spectral properties of the sample covariance
matrix X, (eigenvalues and eigenvectors) are close to those of X, also known
as the population covariance.

Since EX,, = Y| if p is fixed and n — oo the law of large numbers guar-
antees that indeed Y,, — Y. However, in many modern applications it is not
uncommon to have p of the same order as n (or, sometimes, even larger). For
example, if our dataset is composed of images then n is the number of images
and p the number of pixels per image; it is conceivable that the number of
pixels and the number of images are comparable. Unfortunately, in that case,
it is no longer clear that X,, — Y. Dealing with this type of difficulties is an
important goal of high dimensional statistics.

For simplicity we will try to understand the spectral properties of

1
S, =-XXT,
n
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where z1,...,z, are the columns of X. Since z ~ N(0,Y) we know that
pin — 0 (and, clearly, -5 — 1), hence the spectral properties of S,, will be
essentially the same as X,,.!

Let us start by looking into a simple example, Y = I. In that case, the
distribution has no low dimensional structure, as the distribution is rotation
invariant. The following is a normalized histogram (left panel) and a scree
plot (right panel) of the eigenvalues of a realization of S,, (when X = I) for
p = 500 and n = 1000. The red line is the eigenvalue distribution predicted
by the Marc¢enko-Pastur distribution (3.30), that we will discuss below.
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As one can see in the figure, there are many eigenvalues considerably larger
than 1, as well as many eigenvalues significantly smaller than 1. Notice that,
if given this profile of eigenvalues of X, one could potentially be led to believe
that the data has low dimensional structure, when in truth the distribution
it was drawn from is isotropic.

Understanding the distribution of eigenvalues of random matrices is at
the core of Random Matrix Theory (there are many good books on Random
Matrix Theory, e.g. [17, 169, 13]). This particular limiting distribution was
first established in 1967 by Maréenko and Pastur [122] and is now referred to
as the Marcenko-Pastur distribution. They showed that, if p and n both grow
indefinitely to oo with their ratio fixed p/n = v < 1, the sample distribution
of the eigenvalues of S,, (like the histogram above), in the limit, will be

1O =N -
dF,(\) = o o Ly oy (A)dA, (3.30)
with support [y, 7], where y— = (1 —/7)%, 74 = (1+/7)? and vy = p/n.
This is plotted as the red line in the figure above.

Remark 3.12. We will not provide the proof of the Maréenko-Pastur law here
(you can see, for example, [16] for several different proofs of it), but an ap-
proach to a proof is using the so-called moment method. The central idea is
to note that one can compute moments of the eigenvalue distribution in two
different ways and note that (in the limit) for any &,

1

1 T g k k s k
pIETY[(nXX ) ] g (SK) ZA :/ ARAEL (M),

'In this case, S, is actually the maximum likelihood estimator for X.
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and that the quantities %IETr {(%X X T)k} can be estimated (these estimates

rely essentially on combinatorics). The distribution dF,()) can then be com-
puted from its moments.

3.3.1 Spike models and the BBP phase transition

What if there actually is some (linear) low dimensional structure in the data?
When can we expect to capture it with PCA? A particularly simple, yet
relevant, example to analyze is when the covariance matrix Y is a rank-1
perturbation of the identity matrix and is of the form X = I + fuu”, where
u is a unit norm vector and S > 0. This is a particular case of a spike model.

One way to think about this spike model is that each data point x consists
of a signal part v/Bgou where gq is a scalar standard Gaussian N(0,1) (i.e.
a normally distributed multiple of a fixed vector v/Su) and a noise part g ~
N(0,I) (independent of gg). Then z = g + /Bgou is a Gaussian random
variable

x~ N0, T+ BuuT).

Whereas the signal part v/Bgou resides on a central line in the direction of u,
the noise part is high dimensional and isotropic. We therefore refer to 5 as
the signal-to-noise ratio (SNR). Indeed, 3 is the ratio of the signal variance
(in the u-direction) to the noise variance (in each direction).

A natural question is whether this rank-1 perturbation can be seen in S,.
In other words, is it possible to detect the direction of the line u from noisy
measurements in high dimension? Let us build some intuition with an exam-
ple. The following is the histogram of the eigenvalues of a random realization
of S, for p = 500, n = 1000, u is the first element of the canonical basis
u=-ey, and 8 = 1.5:

0.127

0.1~ J

The histogram suggests that there is an eigenvalue of S,, that “pops out”
of the support of the Marcenko-Pastur distribution (below we will estimate
the location of this eigenvalue, and that estimate corresponds to the red “x”).
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It is worth noting that the largest eigenvalues of X' is simply 1+ 8 = 2.5 while
the largest eigenvalue of S,, appears considerably larger than that. Let us try
now the same experiment with 5 = 0.5:

0.12

0.1~ 1

It appears that, for § = 0.5, the histogram of the eigenvalues is indistinguish-
able from when Y = I. In particular, no eigenvalue is separated from the
Marcéenko-Pastur distribution.

This motivates the following question:

Question 3.13. For which values of «v and 8 do we expect to see an eigenvalue
of S, popping out of the support of the Mar¢enko-Pastur distribution, and
what is the limiting value that we expect it to take?

As we will see below, there is a critical value of 3, denoted ., below which
we do not expect to see a change in the distribution of eigenvalues and above
which we expect one of the eigenvalues to pop outside of the support. This
phenomenon is known as the BBP phase transition (after Baik, Ben Arous,
and Péché [18]). There are many very nice papers about this and similar
phenomena, including [141, 97, 18, 142, 19, 98, 37, 38]. 2

In what follows we will find the critical value 5. and estimate the location
of the largest eigenvalue of S, for any 8. While the argument we will use
can be made precise (and is borrowed from [141]) we will be ignoring a few
details for the sake of exposition. In other words, the argument below can be
transformed into a rigorous proof, but it is not one at the present form.

We want to understand the behavior of the leading eigenvalue of the sample

covariance matrix
n
1
T
S, = — E TiT;
n “
=1

2Notice that the Maréenko-Pastur theorem does not imply that all eigenvalues
are actually in the support of the Marcenko-Pastur distribution, it just rules out
that a non-vanishing proportion are. However, it is possible to show that indeed, in
the limit, all eigenvalues will be in the support (see, for example, [141]).
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Since z ~ N(0, I 4 Buu®) we can write z = (I + fuu’)'/?z where z ~ N(0, 1)
is an isotropic Gaussian. Then,

1 n
Sp = — Z(I—&—BuuT)l/inziT(I—i—,é’uuT)l/z = (I + puu™)Y?Z, (I + puu’)*/?,
n
i=1
where Z, = %2?21 zlzzT is the sample covariance matrix of independent

isotropic Gaussians. The matrices S, = (I + Buu™)/2Z, (I + fuu”)/? and
Zn(I + Buu®) are related by a similarity transformation, and therefore have
exactly the same eigenvalues. Hence, it suffices to find the leading eigenvalue
of the matrix Z, (I + Buu”), which is a rank-1 perturbation of Z,, (indeed,
Zn(I + Buu?) = Z, + BZ,uuT). We already know that the eigenvalues of
Z,, follow the Marcenko-Pastur distribution, so we are left to understand the
effect of a rank-1 perturbation on its eigenvalues.
To find the leading eigenvalue \ of Z,,(I+Buu”), let v be the corresponding
eigenvector, that is,
Zn(I + Buu v = v

Subtract Z,v from both sides to get
BZnuutv = (N — Z,)v.

Assuming \ is not an eigenvalue of Z,,, we can multiply by (Al — Z,)~! to
get3
BN — Z,) ' Zpuuv = v.

Our assumption also implies that u”v # 0, for otherwise v = 0. Multiplying
by u” gives
BuT (N = Z,) " Zpyu(uTv) = uTv.

Dividing by SuTv (which is not 0 as explained above) yields

1
ut (N — Z,)" Zyu = 5 (3.31)
Suppose wi, ..., w, are orthonormal eigenvectors of Z,, (with corresponding
eigenvalues A1,...,\,), and expand u in that basis:
P
u = Z o;W;.
i=1
Plugging this expansion in (3.31) gives
P
Ai o 1
S =— 3.32

3Intuitively, X is larger than all the eigenvalues of Z,, because it corresponds to
a perturbation of Z,, by a positive definite matrix Suu”; yet, a formal justification
is beyond the present discussion.
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For large p, each o concentrates around its mean value E[a] = % (again,
this statement can be made rigorous), and (3.32) becomes

lim — == 3.33
e p A=A B (3:33)
Since the eigenvalues Aq,..., A, follow the Marcenko-Pastur distribution, the
limit on the left hand side can be replaced by the integral
Tt oapw =l (3.34)
t = — .
A=t T B
Using an integral table (or an integral software), we find that
5= [T 350 = ¢ [A- G- ) - 2/B 00 )
3= LAt LA - T 7+ T- T+ -
(3.35)

For A = ~4, that is, when the top eigenvalue touches the right edge of
the Marcenko-Pastur distribution, (3.35) becomes %(mr — 7_). This is the
critical point that one gets the pop out of the top eigenvalue from the bulk of
the Marcenko-Pastur distribution. To calculate the critical value §., we recall

that v = (1 — \/7)? and 74 = (14 /7)?, hence

5= (VAP - -7, (336)

Therefore, the critical SNR is

mtﬁ—¢ﬁ (3.37)

When g > \/g one can observe the pop out of the top eigenvalue from the
bulk.

Eq. (3.37) illustrates the interplay of the SNR £, the number of samples
n, and the dimension p. Low SNR, small sample size, and high dimensionality
are all obstacles for detecting linear structure in noisy high dimensional data.

More generally, inverting the relationship between 5 and A given by (3.35)
(which simply amounts to solving a quadratic), we find that the largest eigen-
value A of the sample covariance matrix S, has the limiting value

B+1)(14+2) for 8> ./7,
Ao (1+3) v (3.38)

(14+7)*  for B< .7
In the finite sample case A will be fluctuating around that value.

Notice that the critical SNR value, 8. = /7 is buried deep inside the
support of the Marcenko-Pastur distribution, because /7 < v = (14 /7).
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In other words, the SNR, does not have to be greater than the operator norm
of the noise matrix in order for it to pop out. We see that the noise effectively
pushes the eigenvalue to the right (indeed, A > f3).

The asymptotic squared correlation |(u,v)|? between the top eigenvector
v of the sample covariance matrix and true signal vector u can be calculated
in a similar fashion. The limiting correlation value turns out to be

|(v, u)|? — # (3.39)
0 for B< 7

Notice that the correlation value tends to 1 as § — oo, but is strictly less
than 1 for any finite SNR.

3.3.2 Wigner matrices

Another very important random matrix model is the Wigner matrix (and it
will make appearances in Chapters 8, 9 and 7). Given an integer n, a standard
Gaussian Wigner matrix W € R™*™ is a symmetric matrix with independent
N(0,1) off-diagonal entries (except for the fact that W;; = Wj;) and jointly
independent A(0,2) diagonal entries. In the limit, the eigenvalues of %W
are distributed according to the so-called semi-circular law

dSC(z) = %\/ 4 — 2215 g (x)dx, (3.40)

and there is also a BBP like transition for this matrix ensemble [75]. More
precisely, if v is a unit-norm vector in R™ and £ > 0 then the largest eigenvalue
of ﬁW + &vvT satisfies

o If¢<1 then

Amax <\/17€W + fva> — 2,

e and if £ > 1 then

Amax (\}EW + f?}UT) =&+ % (3.41)

The typical correlation, with v, of the leading eigenvector vyax of ﬁW +
&vvT is also known:
o If¢ <1 then
| (Vmax; U>|2 — 0,
e and if £ > 1 then

|<UmaX7v>|2 —1-

&
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From a statistical viewpoint, a central question is to understand for differ-
ent distributions of matrices, when it is possible to detect and estimate a spike
in a random matrix [144]. When the underlying random matrix corresponds
to the adjacency matrix of a random graph and the spike to a bias on the
distribution of the graph edges, corresponding to structural properties of the
graph, the estimates above are able to predict important phase transitions in
community detection in networks, as we will see in Chapter 7.

3.3.3 Rank and covariance estimation

The spike model and random matrix theory thus offer a principled way for
determining the number of principal components, or equivalently of the rank
of the hidden linear structure: simply count the number of eigenvalues to the
right of the Marcenko-Pastur distribution. In practice, this approach for rank
estimation is often too simplistic for several reasons. First, for actual datasets,
n and p are finite, and one needs to take into account non-asymptotic correc-
tions and finite sample fluctuations [104, 105]. Second, the noise may be het-
eroskedastic (that is, noise variance is different in different directions). More-
over, the noise statistics could also be unknown and it can be non-Gaussian
[117]. In some situations it might be possible to estimate the noise statistics
directly from the data and to homogenize the noise (a procedure sometimes
known as “whitening”) [115]. These situations call for careful analysis, and
many open problems remain in the field.

Another popular method for rank estimation is using permutation meth-
ods. In permutation methods, each column of the data matrix is randomly
permutated, so that the low-rank linear structure in the data is destroyed
through scrambling, while only the noise is preserved. The process can be
repeated multiple times, and the statistics of the singular values of the scram-
bled data matrices are then used to determine the rank. In particular, only
singular values of the original (unscrambled) data matrix that are larger than
the largest singular value of the scrambled matrices (taking fluctuations into
account of course) are considered as corresponding to signal and are counted
towards the rank. The mathematical analysis of permutation methods is an-
other active field of research [64, 65].

In some applications, the objective is to estimate the low rank covariance
matrix of the clean signal X' from the noisy measurements. We saw that in
the spike model, the eigenvalues of the sample covariance matrix are inflated
due to noise. It is therefore required to shrink the computed eigenvalues of S,
in order to obtain a better estimate of the eigenvalues of Y. That is, if

P
Sn: E )\i’l)i’U;-r
i=1

is the spectral decomposition of S;,, then we seek an estimator of X', denoted
X’ of the form
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P
2= Zn(/\i)viviT.
i=1

The scalar nonlinearity n : RT — RT is known as the shrinkage function.
An obvious shrinkage procedure is to estimate § = n(\) from the computed
A by inverting (3.38) (and setting 8 = 0 for A < v4). It turns out that this
particular shrinker is optimal in terms of the operator norm loss. However,
for other loss functions (such as the Frobenius norm loss), the optimal shrink-
age function takes a different form [69]. The reason why the shrinker depends
on the loss function is that the eigenvectors of S, are not perfectly corre-
lated with those of X' but rather make some non-trivial angle, as in (3.39). In
other words, the eigenvectors are noisy, and it may require more aggressive
shrinkage to account for that error in the eigenvector. It can be shown that
the eigenvector v of the sample covariance is uniformly distributed in a cone
around u whose opening angle is given by (3.39). While we can improve the
estimation of the eigenvalue via shrinkage, it is however unclear how to im-
prove the estimation of the eigenvector (without any a priori knowledge about
it). Finally, we remark that eigenvalue shrinkage also plays an important role
in denoising.
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Graphs, Networks, and Clustering

A crucial part of data science consists of the studying of networks. Network
science, or graph theory, unifies the study of diverse types of networks, such
as social networks, protein-protein interaction networks, gene-regulation net-
works, and the internet. In this chapter we introduce graph theory and treat
the problem of clustering, to identify similar data points, or vertices, in (net-
work) data.

4.1 PageRank

Before we introduce the formalism of graph theory, we describe the celebrated
PageRank algorithm. This algorithm is a principal component! behind the
web search algorithms, in particular in Google. The goal of PageRank is to
quantitatively rate the importance of each page on the web, allowing the
search algorithm to rank the pages and thereby present to the user the more
important pages first. Search engines such as Google have to carry out three
basic steps:?

e Crawl the web and locate all, or as many as possible, accessible webpages.

e Index the data of the webpages from step 1, so that they can be searched
efficiently for relevant key words or phrases.

e Rate the importance of each page in the database, so that when a user
does a search and the subset of pages in the database with the desired
information has been found, the more important pages can be presented
first.

Here, we will focus on the third step. We follow mainly the derivation in [43].
We aim to develop a score of importance for each webpage. A score will be a

Tt is difficult to resist using this pun.
2Another important component of modern search engines is personalization,
which we do not discuss here.
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non-negative number. A key idea in assigning a score to any given webpage is
that the page’s score is derived from the links made to that page from other
webpages — “A person is important not if it knows a lot of people, but if a
lot of people know that person”.

Suppose the web of interest contains n pages, each page indexed by an
integer k, 1 < k < n. A typical example is illustrated in Figure 4.1, in which
an arrow from page k to page j indicates a link from page k to page j. Such
a web is an example of a directed graph. The links to a given page are called
the backlinks for that page. We will use xj to denote the importance score
of page k in the web. x; is nonnegative and z; > x; indicates that page j is
more important than page k.

2 4

Fig. 4.1: A toy example of the Internet

A very simple approach is to take x; as the number of backlinks for page
k. In the example in Figure 4.1, we have x1 = 2,25 = 1,23 = 3, and x4 = 2, so
that page 3 is the most important, pages 1 and 4 tie for second, and page 2 is
least important. A link to page k becomes a vote for page k’s importance. This
approach ignores an important feature one would expect a ranking algorithm
to have, namely, that a link to page k from an important page should boost
page k’s importance score more than a link from an unimportant page. In the
web of Figure 4.1, pages 1 and 4 both have two backlinks: each links to the
other, but the second backlink from page 1 is from the seemingly important
page 3, while the second backlink for page 4 is from the relatively unimportant
page 2. As such, perhaps the algorithm should rate the importance of page 1
higher than that of page 4.

As a first attempt at incorporating this idea, let us compute the score of
page j as the sum of the scores of all pages linking to page j. For example,
consider the web in our toy example. The score of page 1 would be determined
by the relation z; = x3 + x4. However, since x3 and x4 will depend on x,
this seems like a circular definition, since it is self-referential (it is exactly
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this self-referential property that will establish a connection to eigenvector
problems!).

We also seek a scheme in which a webpage does not gain extra influence
simply by linking to lots of other pages. We can do this by reducing the impact
of each link, as more and more outgoing links are added to a webpage. If page
j contains n; links, one of which links to page k, then we will boost page
k’s score by x;/n;, rather than by ;. In this scheme, each webpage gets a
total of one vote, weighted by that web page’s score, that is evenly divided
up among all of its outgoing links. To quantify this for a web of n pages, let
Ly € {1,2,...,n} denote the set of pages with a link to page k, that is, Ly, is
the set of page k’s backlinks. For each k we require

€T
E J
"L‘k,: E

n
jeLy 7

where n; is the number of outgoing links from page j.

If we apply these scheme to the toy example in Figure 4.1, then for page
1 we have z1 = 23/1 4 x4/2, since pages 3 and 4 are backlinks for page 1 and
page 3 contains only one link, while page 4 contains two links (splitting its vote
in half). Similarly, 2o = x1/3, 25 = x1/3+22/2+24/2, and x4 = x1/3 +x2/2.
These conditions can be expressed as linear system of equations Ax = x,
where x = [x1, T2, 23, 74]T and

N

I
W—W—WI= O
N O O
OO O
O~ Ol

Thus, we end up with an eigenvalue/eigenvector problem: Find the eigenvector
x of the matrix A, associated with the eigenvalue 1. We note that A is a
column-stochastic matrix, since it is a square matrix for which all of its entries
are nonnegative and the entries in each column sum to 1. If we build a random
walk on the internet where each link is clicked with equal probability then A;;
is the probability that a random walked in page j goes to page ¢. Later, in
Chapter 5, we will use random walks on (undirected) graphs in order to embed
their nodes in euclidean space, we note that, in that context, we will mostly
work with M = AT the matrix for which M;; corresponds to the probability
of taking step from 7 to j. Stochastic matrices arise in the study of Markov
chains and in a variety of modeling problems in economics and operations
research. See e.g. [94] for more details on stochastic matrices. The fact that 1
is an eigenvalue of A is not just coincidence in this example, but holds true
in general for stochastic matrices.

Theorem 4.1. A column-stochastic matriz A has an eigenvalue equal to 1
and 1 is also its largest eigenvalue.
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Proof. Let A be an n X n column-stochastic matrix. We first note that A
and AT have the same eigenvalues (their eigenvector will usually be different
though). Let 1 = [1,1,...,1]7 be the vector of length n which has all ones as
entries. Since A is column-stochastic, we have AT1 = 1 (since all columns of A
sum up to 1). Hence 1 is an eigenvector of AT (but not of A) with eigenvalue
1. Thus 1 is also an eigenvalue of A.

To show that 1 is the largest eigenvalue of A we apply the Gershgorin
Circle Theorem [94] to AT. Consider row k of AT. Let us call the diagonal
element ay, ;, and the radius will be Z#k lak,i| = Z#k a.; since ay ; > 0. This
is a circle with its center at ay i € [0, 1] and with radius E#k ak; =1 —agp.
Hence, this circle has 1 on its perimeter. This holds for all Gershgorin circles
for this matrix. Thus, since all eigenvalues lie in the union of the Gershgorin
circles, all eigenvalues \; satisfy |\;| < 1.

In our example, we obtain as eigenvector x of A associated with eigenvalue
1 the vector x = [z, xo, 3, 74]7 with entries 21 = %,xg = %,Z‘g = 3?—1, and
Ty = 3%. Hence, perhaps somewhat surprisingly, page 3 is no longer the most
important one, but page 1. This can be explained by the fact, that the in
principle quite important page 3 (which has three webpages linking to it) has
only one outgoing link, which gets all its “voting power”, and that link points
to page 1.

In reality, A can easily be of size a billion times a billion. Fortunately, we
do not need compute all eigenvectors of A, only the eigenvector associated
with the eigenvalue 1, which, as we know, is also the largest eigenvalue of A.
This in turn means we can resort to standard power iteration to compute x
fairly efficiently (and we can also make use of the fact that A will be a sparse
matrix, i.e., many of its entries will be zero). The actual PageRank algorithms
adds some minor modifications, but the essential idea is as described above.

The idea to use eigenvectors for ranking dates back to the late 1800s to
the work of Edmund Landau in the context of ranking in chess tournaments,
it was actually Landau’s first mathematical paper when he was 18 years old.
You can read about this nice story in [158].

4.2 Graph theory

We now introduce the formalism for undirected® graphs, one of the main
objects of study in what follows. A graph G = (V, E) contains a set of nodes
V = {v1,...,v,} and edges E C (‘2/) An edge (i,j) € E if v; and v; are
connected. Figure 4.2 depicts one of the graph theorists’ favorite examples,
the Petersen graph?.

3The previous Chapter featured directed graphs, in which edges (links) have a
meaningful direction. In what follows we will focus in undirected graphs in which
an edge represents a connection, without meaningful direction.

4The Petersen graph is often used as a counter-example in graph theory.
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Fig. 4.2: The Petersen graph

Let us recall some concepts about graphs that we will need.

e A graph is connected if, for all pairs of vertices, there is a path between
these vertices in the graph. The number of connected components is simply
the size of the smallest partition of the nodes into connected subgraphs.
The Petersen graph is connected (and thus it has only 1 connected com-
ponent).

e A clique of a graph G is a subset S of its nodes such that the subgraph
corresponding to it is complete. In other words S is a clique if all pairs of
vertices in S share an edge. The clique number ¢(G) of G is the size of the
largest clique of G. The Petersen graph has a clique number of 2.

e An independent set of a graph G is a subset S of its nodes such that no
two nodes in S share an edge. Equivalently it is a clique of the complement
graph G¢ := (V, E¢). The independence number of G is simply the clique
number of S¢. The Petersen graph has an independence number of 4.

A particularly useful way to represent a graph is through its adjacency ma-
trix. Given a graph G = (V, E) on n nodes (|V| = n), we define its adjacency
matrix A € R"*" as the symmetric matrix with entries

L [1ifGg) eB,
7771 0 otherwise.

Sometimes, we will consider weighted graphs G = (V, E, W), where edges
may have weights w;; that are non-negative w;; > 0 and symmetric w;; = wj;.

Much of the sequel will deal with graphs. Chapter 5 will treat (network)
data visualization, dimension reduction, and embeddings of graphs in Eu-
clidean space. Chapter 7 will introduce and study important random graph
models. The rest of this Chapter will be devoted to spectral graph theory,
clustering, and graph metrics.
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4.3 Clustering

Clustering is one of the central tasks in machine learning. Given a set of data
points, or nodes of a graph, the purpose of clustering is to partition the data
into a set of clusters where data points assigned to the same cluster correspond
to similar data points (depending on the context, it could be for example
having small distance to each other if the points are in Euclidean space, or
having high connectivity if on a graph). We will start with an example of
clustering points in Euclidean space, and later move back to graphs.
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Fig. 4.3: Examples of points separated into clusters.

4.3.1 k-means Clustering

One the most popular methods used for clustering is k-means clustering. Given
Z1,...,Ty € RP the k-means clustering partitions the data points into clusters
S1U---U S with centers puq, ..., ur € RP as the solution to:

g g Z S flas — (4.1)

partition i :Hk I=14€S;
Note that, given the partition, the optimal centers are given by
l 1€ES]

Lloyd’s algorithm [118] (also sometimes known as the k-means algorithm),
is an iterative algorithm that alternates between
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e Given centers u1, ..., g, assign each point x; to the cluster S; with nearest
center
l= argminlzly__,’k lzi — pull -

e Update the centers u; = Ilel ZiESl ;.

Unfortunately, Lloyd’s algorithm is not guaranteed to converge to the so-
lution of (4.1). Indeed, Lloyd’s algorithm oftentimes gets stuck in local optima
of (4.1). In the sequel we will discuss convex relaxations for clustering, which
can be used as an alternative algorithmic approach to Lloyd’s algorithm, but
since optimizing (4.1) is N P-hard there is no polynomial time algorithm that
works in the worst-case (assuming the widely believed conjecture P # NP,
see also Chapter 7.1)

While popular, k-means clustering has some potential issues:

e One needs to set the number of clusters a priori (a typical way to overcome
this issue is by trying the algorithm for different number of clusters).

e The way (4.1) is defined it needs the points to be defined in an Euclidean
space, oftentimes we are interested in clustering data for which we only
have some measure of affinity between different data points, but not nec-
essarily an embedding in R? (this issue can be overcome by reformulat-
ing (4.1) in terms of distances only).

e The formulation is computationally hard, so algorithms may produce sub-
optimal instances.

e The solutions of k-means are always convex clusters. This means that k-
means may have difficulty in finding cluster such as in Figure 4.4.
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Fig. 4.4: Because the solutions of k-means are always convex clusters, it is not
able to handle some cluster structures.
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4.3.2 Spectral Clustering

A natural way to try to overcome the issues of k-means depicted in Figure 4.4

is by transforming the data into a graph and cluster the graph: Given the data

points we can construct a weighted graph G = (V, E, W) using a similarity
1

kernel K., such as K. (u) = exp (*2?”2)7 by associating each point to a vertex

and, for which pair of nodes, set the edge weight as
wij = Ke (||lzi — ;) -

Another popular procedure to transform data into a graph is by constructing
a graph where data points are connected if they correspond to the nearest
neighbors. We note that this procedure only needs a measure of distance, or
similarity, of data points and not necessarily that they lie in an Euclidean
space. Given this motivation, and the prevalence of network data, we will now
address the problem of clustering the nodes of a graph.

Normalized Cut

Given a graph G = (V, E, W), the goal is to partition the graph into clusters
in a way that keeps as many of the edges, or connections, within the clusters
and has as few edges as possible across clusters. We will focus on the case
of two clusters, and briefly address extensions at the end of this Chapter. A
natural way to measure a vertex partition (S,.5°) is

Cut(S) = Z Z Wi -
i€S jES®

If we represent the partition by a vector y € {£1}" where y; = 1 if
1 € S, and y; = —1 otherwise, then the cut is a quadratic form on the Graph
Laplacian.

Definition 4.2 (Graph Laplacian and Degree Matrix). Let G = (V, E, W)
be a graph and W the matriz of weights (or adjacency matriz if the graph is
unweighted). The degree matriz D is a diagonal matriz with diagonal entries

Dj; = deg(i) = Zwij-
J

The graph Laplacian of G is given by
Le=D-W.

Equivalently

LG = Z’U}ij (61‘ — €j) (61‘ — ej)T .

i<j
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Note that the entries of Lg are given by

(Le)i; = {deg(i) if i = j.
If SCVandye {£1}" such that y; =1 if i € S, and y; = —1 otherwise,
then it is easy to see that

cut(S) = %szj(yi —y;)°

1<j

The following proposition establishes
L
cut(S) = 1Y Lgy, (4.2)

for y € {£1}"™ such that y; = 1 if and only if ¢ € S.

Proposition 4.3. Let G = (V, E, W) be a graph and L¢ its graph Laplacian.
For any x € R"
' Loz = Zwu(m, — xj)Q.

i<j

Proof.

Zwij (@ — )" = wa [T (ei — )] [(ei —ej)" f”}
= wia" (ei —e;) (ei — ;)" @

i<j
=T Zwij (ei—e;) (e —e))" | .

O
Note that Proposition 4.3 implies that the graph Laplacian Lg is a positive
semidefinite (PSD) matrix, since 7 Lz > 0 for all # (assuming non-negative
weights w;; > 0). This property can also be deduced directly from Definition
4.2 of L¢ as the (non-negative) weighted sum of rank-1 PSD matrices.
While cut(S) is a good way of measuring the fit of a partition, it has a
major drawback: the minimum cut is achieved for S = ) (since cut(()) = 0)
which is a rather meaningless choice of partition. Constraining the partition
to be non-trivial would not overcome this drawback, because very unbalanced
partitions would still be favored (e.g., partitions with |S| = 1 containing just
a single node). Below we discuss how to promote more balanced partitions.

Remark 4.4. One simple way to address this is to simply ask for an exactly
balanced partition, |\S| = |S¢| (let us assume the number of vertices n = |V] is
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even). We can then identify a partition with a label vector y € {£1}" where
y; = 1if i € S, and y; = —1 otherwise. Also, the balanced condition can be
written as >~ ; y; = 0. This means that we can write the minimum balanced
cut as 1

min cut(S)=- min TLay,

Scv () 4 ye{-1,1}" yoray

[S|=15° 1Ty=0

which is suggestive of the connection between clustering and spectral proper-
ties of L. This connection will be made precise below.

Asking for the partition to be exactly balanced is too restrictive in many
cases. There are several ways to evaluate a partition that are variations of
cut(S) that take into account the intuition that one wants both S and S° not
to be too small (although not necessarily equal to |V|/2). A prime example is
Cheeger’s cut.

Definition 4.5 (Cheeger’s cut). Given a graph and a vertex partition
(S,5°), the Cheeger cut (also known as conductance, or expansion) of S is
given by

cut(S)

h(S) = min{vol(S), vol(5¢)}’

where vol(S) = Y7, _ s deg(i).
Also, the Cheeger’s constant of G is given by

hg = Iin h(S).

A similar object is the Normalized Cut, Ncut, which is given by

cut(S) = cut(S°)
vol(S) T vol(59)"

Ncut(S) =

Note that Ncut(S) and h(S) are tightly related, in fact it is easy to see
that:
h(S) < Neut(S) < 2h(S5).

Normalized Cut as a spectral relaxation

Below we will show that Ncut can be written in terms of a minimization of a
quadratic form involving the graph Laplacian Lg, analogously to the balanced
partition as described in Remark 4.4.

Recall that the cut value of a balanced partition can be written as

1 T

— min Lay.

4y6{—1,1}"y oy
1Ty=0
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An intuitive way to relax the balanced condition is to allow the labels y to
take values in two different real values a and b (e.g. y; =aifi € Sand y; =b
if i ¢ S) but not necessarily 1. We can then use the notion of volume of a
set to ensure a less restrictive notion of balanced by asking that

avol (S) + bvol (5¢) =0, (4.3)

where

vol(S) = Z deg(i). (4.4)

i€s
Thus (4.3) corresponds to 17 Dy = 0.
We also need to fix a scale for a and b:

a®vol (8) 4 b*vol (§¢) =1,

which corresponds to y? Dy = 1.
This suggests considering
: T
min Lgy.
yelob)” Yy Lgy
1TDy:O7 yTDyzl
As we will see below, this corresponds precisely to Ncut.

Proposition 4.6. For a and b to satisfy avol(S) + bvol(S¢) = 0 and
a?vol (S) + b?vol (S¢) = 1 it must be that

corresponding to

N

vol(S¢ .
(vol(S)(vol)(G)> ifieS
vol(S oo c
- (vol(SC)(vo)l(G)> ifie 5

Note that vol is defined in (4.4).

Y =

N|=

Proof. The proof involves only doing simple algebraic manipulations together
with noticing that vol(S) + vol(S¢) = vol(G). O

Proposition 4.7.
Ncut(S) = y* Lay,

where y is given by

vol(S€) B .
(vol(S) vol(G)) ifie S

Yi 1
vol(S) 2 c
- (vol(SC)vol(G)> ifi e S°.
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Proof.
yTLGy =3 Z wzy
= Z Z wis (y

€S jeSe

= VOI(S) : vol(9) 3
_ 1 vol(S¢)  vol(S)
= Z Z Wi ol(GQ) [vol( S) + vol(S¢) * 2]

€S jeS©

<

_ 1 vol(S¢)  wvol(S) = wvol(S) = vol(S9)
B Z Z Wis ol(G) [vol( S) + vol(S¢) + vol(S) * vol(SC)]

<

i€S jES©

=55 v | * s

i€S jeS©

1 1
= cut(S) {vo1(5) + vol(SC)}
= Ncut(S5).

This means that finding the minimum Ncut corresponds to solving

min y” Lay

s. t. y € {a,b}™ for some a and b
y'Dy =1
y'D1 = 0.

(4.5)

Since solving (4.5) is, in general, NP-hard, we consider a similar problem
where the constraint that y can only take two values is removed:

min yT Lay
s.t.y e R”
y"D1=0.

Given a solution of (4.6) we can round it to a partition by setting a thresh-
old 7 and taking S = {i € V : y; < 7}. We will see below that (4.6) is an
eigenvector problem (for this reason we call (4.6) a spectral relaxation).

In order to better see that (4.6) is an eigenvector problem (and thus com-

putationally tractable), set z = D2y and

Loc=D2LgD 2, (4.7)
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then (4.6) is equivalent

min 27 Laz
s.t.z€eR”
||2H2 =1 (4.8)

(D%1)Tz —0.

Note that Lo = I —D~2WD~z. We order its eigenvalues in increasing or-
der 0 = A1 (Lg) < X2 (Lg) < -+ < A (Lg). The eigenvector associated with
the smallest eigenvalue is given by Dz1. By the variational interpretation of
the eigenvalues, it follows that the minimum of (4.8) is Az (L) and the min-
imizer is given by the second smallest eigenvector of L5 = I — D*%WD’%,
which we call v5. Note that this corresponds also to the second largest eigen-
vector of D=3WD~%. This means that the optimal y in (4.6) is given by
Y2 = D~ 2v,y. This motivates Algorithm 4.1, which is often referred to as
Spectral Clustering;:

Algorithm 4.1 Spectral Clustering

Given a graph G = (V, E, W), let v2 be the eigenvector corresponding to the second
smallest eigenvalue of the normalized Laplacian L, as defined in (4.7). Let @2 =
Df%vg. Given a threshold 7 (one can try all different possibilities, or run k-means
for k = 2), set

S={ieV:p(i) <7}

4.3.3 Cheeger’s Inequality

Because the relaxation (4.6) is obtained from (4.5) by removing a constraint
we immediately have that

X2 (Lg) < min Ncut(95).

This means that )
5)\2 (,Cg) < hg.

In what follows we will show a performance guarantee for Algorithm 4.1.
Lemma 4.8. There is a threshold T producing a partition S such that
h(S) < V/2X2 (La).

This implies in particular that

h(S) < \/4hg,
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meaning that Algorithm 4.1 is suboptimal at most by a square-root factor.
Note that this also directly implies the famous Cheeger’s Inequality, stated
next.

Theorem 4.9 (Cheeger’s Inequality). Recall the definitions above. The

following holds:
1
5)\2 (Lg) < hg <V/2X\ (Lg).

Cheeger’s inequality was first established for manifolds by Jeff Cheeger in
1970 [54], and the graph version is due to Noga Alon and Vitaly Milman [8, 10]
in the mid 80s. Cheeger’s inequality for a closed manifold M gives a bound
on the area of a hypersurface F, that partitions M into two disjoint parts.

Theorem 4.10 (Cheeger’s Inequality (Cheeger 1970)). Let hys be the
Cheeger isoperimetric constant of M, defined as

b — inf area of E
M 7B min{vol(A), vol(B)}

where E is a smooth submanifold of M of n—1 dimensions that divides it into
two disjoint submanifolds A and B. Let Ay be the smallest positive eigenvalue
of the Laplacian, or Laplace-Bertrami operator, on M. Then
h2
v > —M

Bounding the diameter of a graph using A2(Lg)

Before proving Cheeger’s inequality for graphs, we first discuss another eigen-
value inequality, that gives a flavor of the connection between the second
eigenvalue of the normalized graph Laplacian and the geometry of the graph.
Associate a cost ¢(u,v) for each pair of nodes inversely proportional to the
weight between them:
wL for (u,v) € E,
c(u,v) = (4.9)
+oo for (u,v) ¢ E.

A path of length k connecting v and v is of the form
P=(u=v,v9,...,0, =v).

The cost associated with this path is

k—1

c(P) =" c(vi, vig1).

i=1
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The geodesic distance or shortest path between u and v is the minimum of the
cost over all possible paths connecting them:

dg(u,v) = min{c(P) [ P(1) = u, P(k) = v, |P| =k}
The diameter of the graph G is the largest geodesic distance

diam(G) = maxd,(u,v).
We demonstrate that for A\y(Lg), the second smallest eigenvalue of the
normalized graph Laplacian Lo = D~Y2LgD~1/2,

diam(G) > !

= SO (La) (4.10)

That is, a small second eigenvalue implies that the diameter of the graph must
be large. We already know that \y(Lg) = 0 implies that the graph is discon-
nected and the diameter is infinite. The bound (4.10) is more quantitative
from that standpoint.

Proof: Taking f to be an eigenfunction achieving the Rayleigh quotient
characterization

e AT we )~ fw)?
SVE S R SO P

Choose vg, ug such that

f(v0) = max| £(v)].

and
f(uo) < 07

> fw)d, =0.

which exist since

Now, suppose
P = (up = v1,v2,...,0 = p)

is the shortest path from ug to vg. We have
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% Zu,u wuv(f(v) - f(u))2
2 f(v)?dy
Zk 11 W vy

- fv

Ay =

(vi) = f(vi41))?
S d,
(v

(f

0)?
o S o (F@1) = F(0i11))? dy (w0, v0)
- f(vo)2vol(G) diam(G)
N W (F00) = F041)) T w3k,

f(v9)?vol(G) diam(QG)
N (E:Z;?f(vﬁ —ifUH+1))2
f(vo)?vol(G)diam(G)
() — f())?
f(v9)?vol(G)diam(G)
1

= Sol(G)diam(G)’

there the second-to-last inequality is an application of Cauchy-Schwarz in-
equality in dimension k — 1 (and relies on the fact that the weights wy, v, ,
are positive).

The upper bound in Cheeger’s inequality (corresponding to Lemma 4.8)
is more interesting but more difficult to prove, and it is often referred to as
the “the difficult part” of Cheeger’s inequality. We will prove this Lemma
in what follows. There are several proofs of this inequality (see [56] for four
different proofs!). The proof that follows is an adaptation of the proof in this
blog post [172] for the case of weighted graphs.

Proof. [of Lemma 4.8]
We will show that given y € R" satisfying

T

L
chyS&
yt' Dy

R(y) :==

and yT D1 = 0, there is a “rounding of it”, meaning a threshold 7 and a
corresponding choice of partition

S={ieV.:y <7}

such that

h(S) < V26.

Since y = @9 satisfies the conditions with § = Ay (L), this proves the Lemma.
‘We will pick this threshold at random and use the probabilistic method to
show that at least one of the thresholds works.
First we can, without loss of generality, assume that y; < --- <y, (we can
simply relabel the vertices). Also, note that scaling of y does not change the
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value of R(y). Also, if y” D1 = 0 adding a multiple of 1 to y can only decrease
the value of R(y): the numerator does not change and the denominator (y +
c)TD(y + cl) = y" Dy + 217 D1 > yT Dy.

This means that we can construct (from y by adding a multiple of 1 and
scaling) a vector x such that

T <<y, Ty, =0, andz%Jraci:l,

and
2T Lox
zT Dz
where m be the index for which vol({1,...,m — 1}) < vol({m,...,n}) but
vol({1,...,m}) >vol{m +1,...,n}).
We consider a random construction of S with the following distribution.
S={i eV :ux <7} where 7 € [x1,2,] is drawn at random with the
distribution

<4,

P{Te[a,b]}:/ 2l7|dr,

where v1 < a <b < x,.
It is not difficult to check that

|b? — a?| if @ and b have the same sign
a® +b* if a and b have different signs

]P’{Te[a,b]}z{

Let us start by estimating E cut(S).

1
ECUt(S) = E§ Z Z wijl(S,SC) cuts the edge (%,5)
i€V jev

_ % Z Z w;;P{(S, 5¢) cuts the edge (i,j)}

i€V jEV

Note that P{(S,S¢) cuts the edge (i,7)} is |27 — 23| if 2; and z; have

the same sign and z? + x? otherwise. Both cases can be conveniently upper
bounded by |x; — x;| (|z;| + |z;]). This means that

1
Ecut(S) < 3 sz‘j |wi — @] (|@:] + |2;])

i,J

1
< 3 qu;j(.ﬁi—xj)2 Zwij(\xi\+|$j\)2»
ij ij

where the second inequality follows from the Cauchy-Schwarz inequality.
From the construction of x we know that

Zwij(xi — arj)2 = 22" Lax < 2627 Da.
i
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Also,

Zwij(|xi|+|xj|)2 < Zwij(Zx?—l-Qm?) =2 <Z deg(i)x?) +2 Zdeg(j)x? =427 Da.
ij ©j % 7

This means that

1
Ecut(S) < 5\/2(5$TD.’L'\/4$TD:L‘ = V262" Da.

On the other hand,

E min{vol S, vol S°} = Z deg(i)P{z; is in the smallest set (in terms of volume)},

=1

to break ties, if vol(S) = vol(S¢) we take the “smallest” set to be the one with
the first indices.

Note that m is always in the largest set. Any vertex j < m is in the
smallest set if z; < 7 < x,, = 0 and any j > m is in the smallest set if
0 = z,, <7 < ;. This means that,

P{x; is in the smallest set (in terms of volume)} = 7.

Which means that
E min{vol S, vol S°} = Z deg(i)z? = 27 Da.
i=1

Hence,

E cut(S)
< .
E min{vol S, vol S¢} — V2

E cut(S)
E min{vol S,vol S¢}
Therefore, we do not necessarily have

cut(.9)
< .
min{vol S, vol S¢} — V2

cut(S)

is not necessarily the same as Em

Note, however, that

However, since both random variables are positive,
E cut(S) < Emin{vol S, vol $¢}v/24,
or equivalently
E [cut(S) — min{vol S, vol $°}v/28| < 0,

which guarantees, by the probabilistic method, the existence of S such that
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cut(S) < min{vol S, vol S¢}v/24,

which is equivalent to

cut(.9) —
= <
nS) min{vol S, vol S¢} — 20,

which concludes the proof of the Lemma. O

Remark 4.11. Spectral clustering can also be viewed from the perspective of
random walks. In fact, Proposition 5.7 shows that spectral clustering can be
viewed as attempting to find clusters so as to minimize the probability of the
random walker to jump from one cluster to the other.

Multiple Clusters

Much of the above can be easily adapted to multiple clusters. Algorithm 4.2
is a natural extension of spectral clustering to multiple clusters.®

Algorithm 4.2 Spectral Clustering

Given a graph G = (V, E, W), let va, ..., v be the eigenvectors corresponding to the
second through k’th eigenvalues of the normalized Laplacian L, as defined in (4.7).
Let om = D_%vm. Consider the map ¢ : V — R*~! defined as

pa(1)
(i) =]
o (1)

Cluster the n points in k£ — 1 dimensions into k clusters using k-means.

There is also an analogue of Cheeger’s inequality. A natural way of evalu-
ating k-way clustering is via the k-way expansion constant (see [114]):

cut(Sy)
VO](SZ) } ’

k)= i
pok) =  min m{

where the maximum is over all choice of k disjoint subsets of V' (but not
necessarily forming a partition).
Another natural definition is
) cut(S)
min .
SZVOISS% vol(G) VOI(S)

va(k) =

>We will see in Chapter 5 that the map ¢ : V — R*™! defined in Algorithm 4.2
can also be used for data visualization, not just clustering.
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It is easy to see that
va(k) < pc(k).
The following are analogues of Cheeger’s inequality for multiple clusters.

Theorem 4.12 ([114]). Let G = (V, E, W) be a graph and k a positive inte-
ger

pa(k) < O (k) /A (4.11)
Also,

pa(k) < O (Vo logh)
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Nonlinear Dimension Reduction and Diffusion
Maps

In Chapter 3 we discussed dimension reduction via Principal Component
Analysis. Many datasets however have low dimensional structure that is not
linear. In this chapter we will discuss nonlinear dimension reduction tech-
niques. Just as with Spectral Clustering in Chapter 4 we will focus on graph
data while noting that most types of data can be transformed into a weighted
graph by means of a similarity kernel (Section 5.1.1). The goal of this chapter
is to embed the nodes of a graph in Euclidean space in a way that best pre-
serves the intrinsic geometry of the graph (or the data that gave rise to the

graph).

5.1 Diffusion Maps

Diffusion Maps will allows us to represent (weighted) graphs G = (V, E, W) in
R?, i.e. associating, to each node, a point in R%. Before presenting Diffusion
Maps, we’ll introduce a few important notions. The reader may notice the
similarities with the objects described in the context of PageRank in Chap-
ter 4, the main difference is that here the connections between graphs have
no direction, meaning that the weight matrix W is symmetric; this will be
crucial in the derivations below.

Given G = (V, E, W) we consider a random walk (with independent steps)
on the vertices of V' with transition probabilities:

wij
deg(i)’
where deg(i) =Y ; Wiz Let M be the matrix of these probabilities,

P{X(t+1)=jXt) =i}=

Wis
M;; = —_.

7 deg(i)

It is easy to see that M;; > 0 and M1 =1 (indeed, M is a transition proba-
bility matrix). Recalling that D is the diagonal matrix with diagonal entries

(5.1)
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D;; = deg(i) we have
M =D"'W.

If we start a random walker at node ¢ (X(0) = 1) then the probability
that, at step ¢, is at node j is given by
P{X(t) = j|X(0) =i} = (Mt)ij'
In other words, the probability cloud of the random walker at point ¢, given
that it started at node 7 is given by the row vector

P{X(t)|X(0) =i} =e] M' = M'[i,].

Remark 5.1. A natural representation of the graph would be to associate each
vertex to the probability cloud above, meaning

i— M'i, .

This would place nodes i; and iy for which the random walkers starting at i,
and o have, after ¢ steps, very similar distribution of locations. However, this
would require d = n. In what follows we will construct a similar mapping but
for considerably smaller d.

M is not symmetric, but a matrix similar to M, S = D:MD™ 2 is, indeed
S =D 2WD~ 2. We consider the spectral decomposition of .S

S=vavT, (5.2)

where V = [vq,...,v,] satisfies VIV = I,,«,, and A is diagonal with diagonal
elements Agr = A (and we organize them as \y > Ay > --- > A,,). Note that
Svk = )\kvk. AISO,

T
A{:LT%SD%::D*%VAVTLﬁ::(D*%V)A(Dév)
We define @ = D=2V with columns & = [py,...,¢,] and ¥ = D2V with
columns ¥ = [¢)q,...,1,]. Then
M = AT,

and @, ¥ form a biorthogonal system in the sense that #T¥ = Iy, or,
equivalently, @?ka = 0;x. Note that ¢ and 1)y are, respectively right and
left eigenvectors of M, indeed, for all 1 < k < n:

Mo = Ao, and ¢f M = M\

Also, we can rewrite this decomposition as

M =" Aeprtir

k=1
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and it is easy to see that

Z Aortf - (5.3)

Let’s revisit the embedding suggested on Remark 5.1. It would correspond
to

v; — M'[i, Z/\k<ﬂk 7%’

it is written in terms of the basis 1. The Diffusion Map will essentially consist
of the representing a node ¢ by the coefficients of the above map

Azﬂpl(i)
Azep2(i)
Vi — . s (54)
Aon (i)
Note that M1 = 1, meaning that one of the right eigenvectors y, is simply a

multiple of 1 and so it does not distinguish the different nodes of the graph.
We will show that this indeed corresponds to the the first eigenvalue.

Proposition 5.2. All eigenvalues A\, of M satisfy |\g| < 1.

Proof.
Let ¢ be a right eigenvector associated with Ay whose largest entry in
magnitude is positive g (imax). Then,

n
)\k@k (imax) M‘Pk ’Lma,x Z Mzmax,] ka
Jj=1

This means, by triangular inequality that, that

\<Pk
IM\—ZI Mi ZI M.l =

“Pk Zmax | o

O

Remark 5.3. It is possible that there are other eigenvalues with magnitude 1
but only if G is disconnected or if G is bipartite. Provided that G is a connected
graph, a natural way to remove potential periodicity issues (like the graph
being bipartite) is to make the walk lazy, i.e. to add a certain probability of
the walker to stay in the current node. This can be conveniently achieved by
taking, e.g.,

1 1
M =-M+-1I.
TR
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By the proposition above we can take ¢; = 1, meaning that the first coor-
dinate of (5.4) does not help differentiate points on the graph. This suggests
removing that coordinate:

Definition 5.4 (Diffusion Map). Given a graph G = (V,E,W) construct
M and its decomposition M = PAPT as described above. The Diffusion Map
is a map oy : V — R given by

0
O
Ao (1)

This map is still a map to n — 1 dimensions. But note now that each
coordinate has a factor of Al which, if A is small will be rather small for
moderate values of t. This motivates truncating the Diffusion Map by taking
only the first d coefficients.

Definition 5.5 (Truncated Diffusion Map). Given a graph G = (V, E, W)
and dimension d, construct M and its decomposition M = SAPT as described
above. The Diffusion Map truncated to d dimensions is a map @, : V — R?
given by

A%@Q(i)
Asep3(17)
d 3
ot (vi) = .
Ni1Pa+1(7)

In the following theorem we show that the euclidean distance in the dif-
fusion map coordinates (called diffusion distance) meaningfully measures dis-
tance between the probability clouds after ¢ iterations.

Theorem 5.6. For any pair of nodes v;,, v;, we have

IP’{X( ) = JIX(0) =i} — P{X(t) = jIX(0) = iz}]”.

”3025 (vil) Pt Ulz Z

Proof. Note that Z] 1 deg(]) [P{X(t) = j|X(0) =iy} —P{X(t) = j|X(0) = is}]

can be rewritten as

2
Z deg [Z Nk (i) ¥k (3 ZM% i2) K (J )] =
=2 e

[Z 1 (Px(i) — or(ia)) wk(ﬁ]
k=1



5.1 Diffusion Maps 81

and
Z deg lz M (o (i1) @k(h))%(j)] =JZ:; L:)\L (i) — pi(iz)) %]
= DM (n(in) = (i) D™ 24y
k=1

Note that D_%’l/Jk = v, which forms an orthonormal basis, meaning that

2

Z (A} (or(in) — @k(i2)))2

k=1

> AL (orlin) — @i(in) D™ 24
k=

(Nopr(in) — Nopr(ia)

I
NE

T
[ V)

where the last equality follows from the fact that ¢; = 1. The proof of the
theorem is complete.
O

Plot of the Graph

Fig. 5.1: The Diffusion Map of the ring graph gives a very natural way of
displaying (indeed, if one is asked to draw the ring graph, this is probably the
drawing that most people would do). It is actually not difficult to analytically
compute the Diffusion Map of this graph and confirm that it displays the
points in a circle.

5.1.1 Diffusion Maps of point clouds

Very often we are interested in embedding in R¢ a point cloud of points
Z1,...,Z, € RP and not necessarily a graph. One option is to use Principal
Component Analysis (PCA), but PCA is only designed to find linear structure
of the data and the low dimensionality of the dataset may be non-linear. For
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example, let us say that our dataset is images of the face of someone taken
from different angles and lighting conditions, for example, the dimensionality
of this dataset is limited by the amount of muscles in the head and neck and
by the degrees of freedom of the lighting conditions (see Figure 5.5) but it is
not clear that this low dimensional structure is linearly apparent on the pixel
values of the images.

Let us consider a point cloud that is sampled from a two dimensional swiss
roll embedded in three dimension (see Figure 5.2). In order to learn the two
dimensional structure of this object we need to differentiate points that are
near each other because they are close by in the manifold and not simply
because the manifold is curved and the points appear nearby even when they
really are distant in the manifold (see Figure 5.2 for an example). We will
achieve this by creating a graph from the data points.

Fig. 5.2: A swiss roll point cloud (see, for example, [170]). The points are
sampled from a two dimensional manifold curved in R? and then a graph is
constructed where nodes correspond to points.

Our goal is for the graph to capture the structure of the manifold. To
each data point we will associate a node. For this we should only connect
points that are close in the manifold and not points that maybe appear close
in Euclidean space simply because of the curvature of the manifold. This is
achieved by picking a small scale and linking nodes if they correspond to points
whose distance is smaller than that scale. This is usually done smoothly via
a kernel K., and to each edge (4,7) associating a weight

wi; = Ke (|7 — x4ll2),

a common example of a Kernel is K. (u) = exp (—iuz), that gives essentially
zero weight to edges corresponding to pairs of nodes for which [|z; — x;[]2 >
/€. We can then take the the Diffusion Maps of the resulting graph.
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5.1.2 An illustrative simple example

A simple and illustrative example is to take images of a blob on a background
in different positions (imagine a white square on a black background and each
data point corresponds to the same white square in different positions). This
dataset is clearly intrinsically two dimensional, as each image can be described
by the (two-dimensional) position of the square. However, we don’t expect this
two-dimensional structure to be directly apparent from the vectors of pixel
values of each image; in particular we don’t expect these vectors to lie in a
two dimensional affine subspace!

Plot of the Graph

025
025 02 015 01 005 0 005 01 015 02 025

Fig. 5.3: The two-dimensional diffusion map of the dataset of the datase where
each data point is an image with the same vertical strip in different positions
in the x-axis, the circular structure is apparent.

Let’s start by experimenting with the above example for one dimension.
In that case the blob is a vertical stripe and simply moves left and right. We
think of our space as the one in many arcade games, if the square or stripe
moves to the right all the way to the end of the screen, it shows up on the
left side (and same for up-down in the two-dimensional case). Not only should
this point cloud have a one dimensional structure but it should also exhibit
a circular structure. Remarkably, this structure is completely apparent when
taking the two-dimensional Diffusion Map of this dataset, see Figure 5.3.

For the two dimensional example, we expect the structure of the underlying
manifold to be a two-dimensional torus. Indeed, Figure 5.4 shows that the
three-dimensional diffusion map captures the toroidal structure of the data.

5.1.3 Similar non-linear dimensional reduction techniques

There are several other similar non-linear dimensional reduction methods. A
particularly popular one is ISOMAP [170]. The idea is to find an embedding
in Ry for which euclidean distances in the embedding correspond as much as
possible to geodesic distances in the graph. This can be achieved by, between
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Plot of the Graph
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Fig. 5.4: On the left the data set considered and on the right its three di-
mensional diffusion map, the fact that the manifold is a torus is remarkably
captured by the embedding.

pairs of nodes v;, v; finding their geodesic distance and then using, for ex-
ample, Multidimensional Scaling to find points y; € R? that minimize (for

example)
min_ S (|ly — 517 = 62)°,
Y1y €RT = J

)

which can be done with spectral methods (it is a good exercise to compute
the optimal solution to the above optimization problem).

Up—clawn pase
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Lefi—right pose

[T Lighting direction

Fig. 5.5: The two dimensional represention of a data set of images of faces
as obtained in [170] using ISOMAP. Remarkably, the two dimensionals are
interpretable
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Fngar axtanzian

Wrisl roialion

Fig. 5.6: The two dimensional represention of a data set of images of human
hand as obtained in [170] using ISOMAP. Remarkably, the two dimensionals
are interpretable

Bottorn bop articulation

Tap arch articulatian

Fig. 5.7: The two dimensional represention of a data set of handwritten digits
as obtained in [170] using ISOMAP. Remarkably, the two dimensionals are
interpretable

5.2 Connections between Diffusion Maps and Spectral
Clustering

Diffusion maps are tightly connected to Spectral Clustering (described in
Chapter 4). In fact, Spectral Clustering can be understood as simply per-
forming k-means on the embedding given by Diffusion Maps truncated to
k — 1 dimensions.
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A natural way to try to overcome the issues of k-means depicted in
Figure 4.4 is by using Diffusion Maps: Given the data points we construct
a weighted graph G = (V,E,W) using a kernel K., such as K.(u) =
exp (—%uQ), by associating each point to a vertex and, for which pair of
nodes, set the edge weight as

wij = Ke ([|vi — x4 -

Recall the construction of a matrix M = D~ as the transition matrix
of a random walk
deg(i)

where D is the diagonal with D;; = deg(¢). The d-dimensional Diffusion Map
is given by

P{X(t+1) =jIX(t) = i}

R

Abpa(i)
d)g. .
(i) = ; :
Agr1pa+1 (i)
where M = $APT where A is the diagonal matrix with the eigenvalues of M
and @ and ¥ are, respectively, the right and left eigenvectors of M (note that
they form a bi-orthogonal system, #T¥ = I).

If we want to cluster the vertices of the graph in k clusters, then it is
natural to truncate the Diffusion Map to have k — 1 dimensions (since in k— 1
dimensions we can have k linearly separable sets). If indeed the clusters were
linearly separable after embedding then one could attempt to use k-means on
the embedding to find the clusters, this is precisely the motivation for Spectral
Clustering.

Algorithm 5.1 Spectral Clustering described using Diffusion Maps.

Spectral Clustering: Given a graph G = (V, E, W) and a number of clusters k (and
t), Spectral Clustering consists in taking a (k — 1) dimensional Diffusion Map

Asp2(4)
k—1) . )
PO
AL (4)

and clustering the points apikil)(l),wikfl)@), . .,ap%kil)(n) € R*~! using, for ex-

ample, k-means clustering. Usually, the scaling of AL, is ignored (corresponding to
t=0).

In order to show that this indeed coincides with Algorithm 4.2, it is enough
to show that ¢, = D_%vm where v, is the eigenvector associated with the m-
th smallest eigenvalue of Lg. This follows from the fact that S = D WD~ 3
as defined in (5.2) is related to Lg by
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Lo=1-8,
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Fig. 5.8: For two clusters, spectral clustering consists in assigning to each
vertex i a real number ¢5(i), then setting a threshold 7 and taking S =
{i € V1 ¢a(i) < 7}. This real number can both be interpreted through the
spectrum of Lg as in Algorithm 4.1 or as the Diffusion Map embedding as in
Algorithm 5.1.

and ¢ = D~1/2V.

Proposition 5.7 below establishes a connection between Ncut (as described
in Chapter 4) and the random walks introduced above. Let M as defined
in (5.1) denote the matrix of transition probabilities. Recall that M1 = 1,
corresponding to M, = ¢y, which means that T M = I where

Y1 = D?vy = Dy = [deg(i)]1<i<y, -

g . deg (i)
This means that [VOI(G)} 1<i<n

walk. Indeed it is easy to check that, if X (¢) has a certain distribution p,; then
X(t+ 1) has a distribution p;4; given by pf,, = p{ M

is the stationary distribution of this random

Proposition 5.7. Given a graph G = (V, E, W) and a partition (S, S¢) of V,
Neut(S) corresponds to the probability, in the random walk associated with G,
that a random walker in the stationary distribution goes to S¢ conditioned on
being in S plus the probability of going to S condition on being in S¢, more
explicitly:

Neut(S) =P{X(t+1) € S°94X(t) e S} +P{X(t+1) € S|X(t) € S},
where P{X (t) =i} = desli)
Proof. Without loss of generality we can take ¢ = 0. Also, the second term

in the sum corresponds to the first with S replaced by S¢ and vice-versa, so
we’ll focus on the first one. We have:
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P{X(1) € SN X(0) € S}
P{X(0) € S}
_ D ies Zjesc P{X(1) € jNn X(0) €}
> ies P{X(0) = i}
deg(i) wij
Dies 2jese volG) degld)

deg(i
ZiGS vcig((G))

P{X(1) € S°X(0) € S} =

_ 2ies 2jese Wij
2 ies deg (i)
_cut(9)
~ vol(S)”
Analogously,
cut(S)
P{X 1 X ‘} =
(X(t+1) € SI1X(0) € 5% = T
which concludes the proof. [l

5.3 Semi-supervised learning

Classification is a central task in machine learning. In a supervised learning
setting we are given many labelled examples and want to use them to infer

the label of a new, unlabeled example. For simplicity, let us focus on the case
of two labels, {—1,+1}.

Fig. 5.9: Given a few labeled points, the task is to label an unlabeled point.

Let us consider the task of labelling the point “?” in Figure 5.9 given the
labeled points. The natural label to give to the unlabeled point would be 1.

However, if we are given not just one unlabeled point, but many, as in
Figure 5.10; then it starts being apparent that —1 is a more reasonable guess.
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?2 -1
? -1
? +1 +1 -1
? a0 Tt
?
? 9

Fig. 5.10: In this example we are given many unlabeled points, the unlabeled
points help us learn the geometry of the data.

Intuitively, the unlabeled data points allowed us to better learn the intrin-
sic geometry of the dataset. That is the idea behind Semi-Supervised Learning
(SSL), to make use of the fact that often one has access to many unlabeled
data points in order to improve classification.

Just as above, we will use the data points to construct (via a kernel K.) a
graph G = (V, E, W) where nodes correspond to points. More precisely, let
denote the number of labeled points with labels f1,..., f;, and v the number
of unlabeled points (with n = [ + u), the first [ nodes vy,...,v; correspond
to labeled points and the rest v;y1,...,v, are unlabaled. We want to find
a function f : V. — {—1,1} that agrees on labeled points: f(i) = f; for
i =1,...,0 and that is “as smooth as possible” on the graph. A way to pose
this is the following

min lzwzj (f(2) _f(J))2

fV—={-11}: f(3)=f; i=1,...,

Instead of restricting ourselves to giving {—1, 1} we allow ourselves to give real
valued labels, with the intuition that we can “round” later by, e.g., assigning
the sign of f(i) to node i.

We thus are interested in solving

min
[V=R: fi)=fi=1,...,

Sy (£60) = )

If we denote by f the vector (in R™ with the function values) then, recalling
Proposition 4.3, we are can rewrite the problem as

> wiy (£() = £G)* = fTLef.

Remark 5.8. Consider an analogous example on the real line, where one would
want to minimize
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/ /(2)2da.

/f’(:c)de = Boundary Terms — /f(x)f”(x)dx

Integrating by parts

Analogously, in R%:

/||Vf(x)||2dm:/§:il(aaai(m))zdx:]g, T.—/f(m)igijz;(x)dx:

=B.T. — /f(a:)Af(x)d:r,

which helps motivate the use of the term graph Laplacian for Lg.

Let us consider our problem

. T
Laf.
[ V—oR: fgl)lilfl i:l,...,lf Gf

We can write

D— Dy 0 W= Wrr Wiy Lo — Dy —Wrr —Wru
0 Dy |’ Wy Wyo |’ ~Wyr Dy —Wyr |’

and f = [f L ] , there L and U correspond to the set of indices of respectively

fu

labeled and unlabeled nodes (not to be confused with the Laplacian matrix

Lg).
Then we want to find (recall that Wy, = W)

nin, [T DL =Wir) fr = 2f5Worfr + £ [Du = Woul fu-
U

by first-order optimality conditions, it is easy to see that the optimal satisfies

(Dv —Wuyu) fu = Wurfr.

If Dy — Wyy is invertible! then
I = (D = Wyu) ™ Worfr.

Remark 5.9. The function f we constructed is called a harmonic extension.
Indeed, it shares properties with harmonic functions in euclidean space such

Tt is not difficult to see that unless the problem is in some form degenerate,
such as the unlabeled part of the graph being disconnected from the labeled one,
then this matrix will indeed be invertible.
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as the mean value property and maximum principles; if v; is an unlabeled
point then

f(@) = [Dyt Wurfi + Wuu fu)], = degl(i) Zwijf(j)v
=1

which immediately implies that the maximum and minimum value of f needs
to be attained at a labeled point.

An interesting experience and the Sobolev Embedding Theorem

Let us try a simple experiment. Let’s say we have a grid on [—1, 1]¢ dimensions
(with say m? points for some large m) and we label the center as +1 and
every node that is at distance larger or equal to 1 to the center, as —1. We are
interested in understanding how the above algorithm will label the remaining
points, hoping that it will assign small numbers to points far away from the
center (and close to the boundary of the labeled points) and large numbers
to points close to the center.

08 08
08 06
04 0.4
02 0.2
oe L > e 0 o 0 o e o 00
02 02
-04 04
06 06

-08 08

‘1 08 06 04 02 0 02 04 06 08 1 "4 08 06 -04 -02 0 02 04 0§ 08 1

Fig. 5.11: The d = 1 example of the use of this method to the example
described above, the value of the nodes is given by color coding. For d =1 it
appears to smoothly interpolate between the labeled points.

See the results for d = 1 in Figure 5.11, d = 2 in Figure 5.12, and d = 3 in
Figure 5.13. While for d < 2 it appears to be smoothly interpolating between
the labels, for d = 3 it seems that the method simply learns essentially —1 on
all points, thus not being very meaningful. Let us turn to R? for intuition:

Let’s say that we want to find a function in R¢ that takes the value 1
at zero and —1 at the unit sphere, that minimizes fBO(l) IV £(z)||*dz. Let

us consider the following function on By(1) (the ball centered at 0 with unit

radius)
12l e <
Jel@) = { ~1° otherwise.
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Fig. 5.12: The d = 2 example of the use of this method to the example
described above, the value of the nodes is given by color coding. For d = 2 it
appears to smoothly interpolate between the labeled points.

Fig. 5.13: The d = 3 example of the use of this method to the example
described above, the value of the nodes is given by color coding. For d = 3
the solution appears to only learn the label —1.

A quick calculation suggest that

1 1
/ IV fe(z)|?de = / —dx = vol(By(¢)) 5 dv ~ g?=2
Bo(1) Bo(e) € €

meaning that, if d > 2, the performance of this function is improving as € — 0,
explaining the results in Figure 5.13.

One way of thinking about what is going on is through the Sobolev Em-
bedding Theorem. H™ (Rd) is the space of function whose derivatives up to
order m are square-integrable in R?, Sobolev Embedding Theorem says that
if m > ¢ then, if f € H™ (R?) then f must be continuous, which would rule
out the behavior observed in Figure 5.13. It also suggests that if we are able
to control also second derivates of f then this phenomenon should disappear
(since 2 > %) While we will not describe it here in detail, there is, in fact,
a way of doing this by minimizing not fTLf but f7L?f instead, Figure 5.14
shows the outcome of the same experiment with the f7 Lf replaced by f7L?f
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Fig. 5.14: The d = 3 example of the use of this method with the extra reg-
ularization f7L?f to the example described above, the value of the nodes is
given by color coding. The extra regularization seems to fix the issue of dis-
continuities.

and confirms our intuition that the discontinuity issue should disappear (see,
e.g., [136] for more on this phenomenon).






6

Linear Dimension Reduction via Random
Projections

In Chapters 3 and 5 we saw both linear and non-linear methods for dimension
reduction. In this chapter we will see one of the most fascinating consequences
of the phenomenon of concentration of measure in high dimensions, one of the
blessings of high dimensions described in Chapter 2. When given a data set
in high dimensions, we will see that the projection to a lower dimensional
space, taken at random, can preserve (under conditions made precise in the
next section) certain geometric features of the data set. The remarkable as-
pect here is that this “lower” dimension can be strikingly lower. This gives
rise to significant computational savings in many data processing tasks by
including a random projection as a pre-processing step. Similar ideas are also
the driving force behind many algorithms in randomized linear algebra, as we
will demonstrate in this chapter via the randomized SVD. There is however
another less obvious implication of this phenomenon with important practical
implications: since the projection is agnostic of the data, it can be leveraged
even when the data set is not explicit, such as the set of all natural images
or the set of all “possible” brain scans; this is at the heart of Compressive
Sensing, which we will explore in Chapter 10

6.1 The Johnson-Lindenstrauss Lemma

Suppose one has n points, X = {x1,...,2,}, in RP (with p large). If p > n, the
points actually lie in a subspace of dimension n, so the projection f : RP — R"
of the points to that subspace acts without distorting the geometry of X. In
particular, for every x; and x;, || f(x;) — f(z;)||* = ||#; — x;]|*, meaning that
f is an isometry in X. Suppose instead we allow a bit of distortion, and look
for a map f : RP — R? that is an e—isometry', meaning that

! Another possible to convention is to ask for (1 —¢)||z; — ;|| < || f(z:)— f(z;)| <
(14 €)||zs — 4], this is equivalent up to a multiplicative constant on e since for
0<e<lwehave l+e< (1+e)?<1+3candl1—-2e<(1—e)?*<1—=¢.
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(L= )lwi — ;" < [1f (@e) = f@)” < A+ )l —a5)*. (6.1)

Can we do better than d = n?
In 1984, Johnson and Lindenstrauss [96] showed a remarkable lemma that
answers this question affirmatively.

Theorem 6.1 (Johnson-Lindenstrauss Lemma [96]). For any 0 < e < 1
and for any integer n, let d be such that

1
d>4———logn. 2
>4 gz 08 (6.2)

Then, for any set X of n points in RP, there is a linear map f : RP — R? that
is an e—isometry for X (see (6.1)). This map can be found in randomized
polynomial time?.

We follow [58] for an elementary proof for Theorem 6.1. We need a few
concentration of measure bounds. We will omit the proof of those but they
are available in [58] and are essentially the same ideas as those used to show
the concentration inequalities in Chapter 2.

Lemma 6.2 (see [58]). Let y1,...,yp, be i.i.d standard Gaussian random
variables and Y = (y1,...,yp). Let g : RP — R be the projection into the

first d coordinates and Z = g (ﬁ) = ﬁ(yl,...,yd) and L = ||Z||. It is
clear that EL = %. In fact, L is very concentrated around its mean
e Ifp<1,
d d
Pr|L < ﬁ;; < exp 5(1—,8—|—logﬁ) )
o IfB>1,
d d
Pr|L>pB3—| <exp §(lfﬂ+log,8) )
p

Proof. | of Johnson-Lindenstrauss Lemmal]

We will start by showing that, given a pair x;,z; a projection onto a ran-
dom subspace of dimension d will satisfy (after appropriate scaling) property
(6.1) with high probability. Without loss of generality we can assume that
u = z; — x; has unit norm. Understanding what is the norm of the projection
of u on a random subspace of dimension d is the same as understanding the
norm of the projection of a (uniformly) random point on SP~! the unit sphere
in R? on a specific d-dimensional subspace—Ilet us say the one generated by
the first d canonical basis vectors.

2Randomized polynomial time refers to the complexity class of decision problems
for which a randomized algorithm can solve the problem in polynomial time with a
high probability of correctness.
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This means that we are interested in the distribution of the norm of the
first d entries of a random vector drawn from the uniform distribution over
SP=1 — this distribution is the same as taking a standard Gaussian vector in
RP and normalizing it to the unit sphere.

Let g : R? — R be the projection on a random d—dimensional subspace
and let f : R? — R? defined as f = y/Bg. Then (by the above discussion),
£ ()= f ()12

[ER=E
tion as £L, as defined in Lemma 6.2. Using Lemma 6.2, we have, given a pair

T, Tj,

given a pair of distinct points x; and x;, has the same distribu-

p L) J@)IE )] <ew (501 -2) 4 10g1-)).

s — 4|

since for € > 0, log(1 — &) < —¢ — £2/2 we have

s — ;2

1
<exp(-2logn) = —.
n

On the other hand,

pr [L122 flap) |

s — 4|

d
>(1+ s)] < exp (2(1 —(1+¢)+log(l+ s))) .
since for € > 0, log(1 +¢) < e —&%/2 + £3/3 we have

P [Hf(mi) el > (14 6)] < exp <_d — 263/3)>

i — 5| 4

<exp(-2logn) = —.
n

By the union bound it follows that
pe L2 — 1)1

s — 5|2

¢[1_g,1+g]] g%.

Since there exist (g) such pairs, again, a simple union bound gives

(i) = f=)]?

prl3. 2 nln—1) 1
Ul — w2

¢[1—s,1+5]] ccmn=Y) g2

n? 2 n

Therefore, choosing f as a properly scaled projection onto a random d-
dimensional subspace gives an e-isometry on X (see (6.1)) with probability
at least % We can achieve any desirable constant probability of success by
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trying O(n) such random projections, meaning we can find an e—isometry in
randomized polynomial time.

O

Note that by considering d slightly larger one can get a good projection on
the first random attempt with high confidence. In fact, it is trivial to adapt
the proof above to obtain the following lemma:

Proposition 6.3. For any 0 < e < 1, 7 > 0, and for any integer n, let d be
such that )

q> (2+7)
~e2/2—¢3/3
Then, for any set X of n points in RP, take f : R? — R? to be a suitably scaled

projection on a random subspace of dimension d, then f is an e—isometry for
X (see (6.1)) with probability at least 1 — X

logn

Proposition 6.3 is quite remarkable. Consider the situation where we are
given a high-dimensional data set in a streaming fashion — meaning that we
get each data point at a time, consecutively. To run a dimension-reduction
technique like PCA or Diffusion maps we would need to wait until we received
the last data point and then compute the dimension reduction map (both PCA
and Diffusion Maps are, in some sense, data adaptive). Using Lemma 6.3 one
can just choose a projection at random in the beginning of the process (all one
needs to know is an estimate of the logarithm of the size of the data set) and
just map each point using this projection matrix which can be done online —
we do not need to see the next point to compute the projection of the current
data point. Proposition 6.3 ensures that this (seemingly naive) procedure will,
with high probably, not distort the data by more than ¢.

One might wonder if such low-dimensional embeddings as provided by
the Johson-Lindenstrauss Lemma also extend to other norms besides the Eu-
clidean norm. For the ¢;-norm there exist lower bounds which prevent such a
dramatic dimension reduction (see [113]), and for the £,,-norm one can easily
construct examples that demonstrate the impossibility of dimension reduc-
tion. Hence, the Johnson-Lindenstrauss Lemma seems to be a subtle result
about the Euclidean norm.

6.1.1 The Fast Johnson-Lindenstrauss transform and optimality

Let us continue thinking about our example of high-dimensional streaming
data. After we draw the random projection matrix®, say M, for each data
point z, we still have to compute Mx which has a computational cost of

3 An orthogonal projection P must satisfy P = P* and P? = P. Here, it is not M
that represents a projection, but M™*M, yet for our purposes of approximate norm-
preserving dimension reduction it suffices to apply M instead of M* M. However,
with a slight abuse of terminology, we still refer to M as projection.
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O(e721og(n)p) since M has O(e~2log(n)p) entries (since M is a random ma-
trix, generically it will be a dense matrix). In some applications this might
be too expensive, raising the natural question of whether one can do better.
Moreover, storing a large-scale dense matrix M is not very desirable either.
There is no hope of significantly reducing the number of rows in general, as it
is known that the Johnson-Lindenstrauss Lemma is orderwise optimal [9, 107].

‘We might hope to replace the dense random matrix M by a sparse matrix
S to speed up the matrix-vector multiplication and to reduce the storage
requirements. This method was proposed and analyzed in [6]. Here we discuss
a slightly simplified version, see also [57].

We let S be a very sparse d X p matrix, where each row of S has just one
single non-zero entry of value 1/p/d at a location drawn uniformly at random.
Then, for any vector x € RP

D 1
El(52)2 = Y B(Siy #0)- £ a2 = L,
j=1
d
hence E[||Sx[3] = E[;(Sxi)z] = ||«||3. This result is satisfactory with respect

to expectation (even for d = 1), but not with respect to the variance of || Sz||3.
For instance, if « has only one non-zero entry we need d ~ O(p) to ensure that
|Sx||3 # 0 with non-negligible probability. More generally, if one coordinate
of x is much larger (in absolute value) than all its other coordinates, then we
will need a rather large value for d to guarantee that ||Sz||2 =~ [|z|2.

A natural way to quantify the “peakiness” of a vector z is via the peak-
to-average ratio* measured by the quantity ||z||s/||2]|2. It is easy to see that
we have (assuming x is not the zero-vector)

Lo_ [l

VP T el T

The upper bounds is achieved by vectors with only one non-zero entry, while
the lower bound is met by constant-modulus vectors. Thus, if

”mHoo 1
R —, 6.3
ele =~ v (63)

we can hope that sparse subsampling of x will still preserve its Euclidean
norm.

4This quantity also plays an important role in wireless communications. There,
one tries to avoid transmitting signals with a large peak-to-average ratio, since such
signals would suffer from nonlinear distortions when they are passing through the
power amplifiers that are usually installed in cell phones. The potentially large
peak-to-average ratio of OFDM signals is one of the alleged reasons why CDMA
was dominant over OFDM for such a long time.
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Thus, this suggests to include a preprocessing step by applying a rotation
so that sparse vectors become non-sparse in the new basis, thereby reducing
their co-norm (while their 2-norm remains invariant under rotation). Two nat-
ural choices for such a rotation are the Discrete Fourier transform (which maps
unit-vectors into constant modulus vectors) and its Zg-cousin, the Walsh-
Hadamard matrix®. But since the Fast Johnson-Lindenstrauss Transform
(FJLT) has to work for all vectors, we need to avoid that this rotation maps
dense vectors into sparse vectors. We can address this issue by “randomiz-
ing” the rotation, thereby ensuring with overwhelming probability that dense
vectors are not mapped into sparse vectors. This can be accomplished in a
numerically efficient manner (thus maintaining our overall goal of numerical
efficiency) by first randomizing the signs of x before applying the rotation.
Putting these steps together we arrive at the following map.

Definition 6.4. The Fast Johnson-Lindenstrauss Transform is the map ¥ :
CP — C%, defined by W := SFD, where S and D are random matrices and F
is a deterministic matriz. In particular,

e S is adxp matriz, where each row of S has just one single non-zero entry

of value \/p/d at a location drawn uniformly at random.
e F is either the p X p DFT matriz or the p X p Hadamard matriz (if it

exists), in each case normalized by 1/./p to obtain a unitary matriz.
e D isapXxp diagonal matriz whose entries are drawn independently from

{—1,+1} with probability 1/2.

We can carry out the matrix-vector multiplication by the DFT matrix via
the Fast Fourier Transform (FFT) in O(plogp) operations; a similar algo-
rithm exists for the Walsh-Hadamard matrix. The FJLT allows for a dimen-
sion reduction that is competitive with the Johnson-Lindenstrauss Lemma as
manifested by the following theorem.

Theorem 6.5 (Fast Johnson-Lindenstrauss Transform). For 0 < e <1

and 0 < & < 1, there is a random matrix ¥ of size d X p with d =
O(log(p/d)log(1/6)/e?) such that, for each x € CP,

@zl € 1 —&,1 4] - [l

holds with probability at least 1 — §. Matriz-vector multiplication with ¥ takes
O(plogp + d) operations.

For convenience we will prove Theorem 6.5 for the case when F' is the
Walsh-Hadamard matrix so that the random variables are real-valued and
the exposition is lighter. But it is straighforward to adapt the argument to
the case when F' is the DFT matrix. Keeping this minor simplification in
mind, the proof of Theorem 6.5 follows from the two lemmas below. We first
show that with high probability the random rotation F'D produces vectors
with a sufficiently low peak-to-average ratio.

SHadamard matrices do not exist for all dimension d. But we can always pad
with zeroes to achieve the desired length.
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Lemma 6.6. Let y = F Dz, where F and D are as in Definition 6.4. Then

g(“y”w N 2log<4p/6>> <8 6.4

lylla — D 2

Proof. Since F'D is unitary, the quantity ||F Dz /|| FDz||2 is invariant under
rescaling of = and therefore we can assume ||z]2 = 1.

Let & = %1 be the i-th diagonal entry of D. We have y; = Z’;:l & Fjz
and note that the terms of this sum are i.i.d. bounded random variables. We
thus can apply Hoeffding’s inequality. In the notation of Theorem 2.15, let
X, = §;Fijz;. We note that X; = +Fj;z;, hence E[X;] = 0 and |X;| < aj,
where a; = |Fj;jx;|. It holds that

p

1 =l _ 1
Su= Sl =3 =R =
1

j=1 j=1 =

We can now use Theorem 2.15 with ¢t = /2log(4p/d)/p and obtain

2log(4p/6) 2log(4p/d)/p\ _ ¢
P('%"> p>§2‘”‘p(‘z/p>—zp-

Applying the union bound finishes the proof. a

Lemma 6.7. Let 0 < ¢ < 1 and y € R? satisfy ||ly||% < M

1, then it possible to pick d ~ 1/e?1og(p/d)log(1/5) such that
)

P([Syll; -1/ <e) <1-73.

and [yll2 =

Proof. The idea is to use Bernstein’s Inequality (Theorem 2.18). We write
Sji = +/p/ddj;, where ¢;; € {0,1} is our random sample of the columns for
row j. Hence for all 4, >%_, §;, = 1. We write z := Sy and compute

2
q; ‘= Zj

P 2
= g (Z jzyz>
Zdﬂyl + Z(Sjldjfyzyl

i#£L
= G2 Ot

We want to bound the random variable [|z]|? — 1 = > (g; — %). Since the

g;’s are independent, and E [qj 7} = 0, we can apply Berstein’s Inequality
(Theorem 2.18, provided we bound o2 and a. Firstly,
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2log(4p/d)
d

D 1 p
a< Gyl =7 < glvlik <

and secondly,
do? < dE[¢}] — 1 < dE[¢?] = dE
2
_p 1 4
= E}; Xi:yi
p
<llylZs > v

P
= =yl yll?
d

2
% Z%‘iiy?]

P
==yl
d

< 2 log(;p/5)

Plugging these terms into Bernstein’s Inequality (Theorem 2.18) gives

P(|||Sy[> = 1| > €) = P(‘ iqj - 1‘ > E)
j=1
g2

92 (QIogC(l;lp/é)) +2 <2log<;p/6>) c

_e2

W ’
3 d

< 2exp

< 2exp

96 —3e2d
= X —
P 161og(4p/d) )’
where the last inequality uses € < 1. Picking d = % log(4p/6)log(4/0) gives
the desired ¢/2-bound. O

Combining Lemmas 6.6 and 6.7, union bounding over the two events, and
recalling that if ||z|] = 1 then ||y|| = 1 since both D and F' are unitary,
establishes Theorem 6.5.

Besides the potential speedup, another advantage of the FJLT is that it
requires significantly less memory compared to storing an unstructured ran-
dom projection matrix as is the case for the standard Johnson-Lindenstrauss
approach.

There are many applications where one wants to perform dimension reduc-
tion while preserving the geometry of certain sets with infinite points, such as
subspaces. Via an e-net argument it is possible to show that random matrices



6.2 Randomized SVD 103

that are good as Johnson-Lindenstrauss maps for N points, also approxi-
mately preserve the geometry of a log N dimensional subspace. These go by
the name of Oblivious Subspace Embeddings (see, e.g., Section 5.2.2. in [102]
where the fast JL construction we show above is shown to be a Oblivious Sub-
space Embedding). A similar idea will be explored below (Section 6.2) where
a random projection will allow us to still approximate the subspace spanned
by the singular vectors corresponding to the largest singular values, resulting
in a randomized SVD algorithm that is workhorse of large scale linear algebra.
In Chapter 8 we will develop analogues of Johnson-Lindenstrauss’ lemma for
more general sets, through the celebrated Gordon’s espace through a mesh
theorem.

6.2 Randomized SVD

Randomized linear algebra has gained significant relevance in recent years due
to its ability to efficiently handle large-scale data problems that traditional
methods struggle with. The Johnson-Lindenstrauss dimension reduction dis-
cussed in the previous section is one prominent example. The techniques en-
countered in the Johnson-Lindenstrauss transform naturally lend themselves
as key ingredient of the randomized SVD, a method to compute an approxi-
mation of the SVD of a matrix. It is especially useful when the matrix is large
and dense and can be well approximated by a low-rank matrix.

In this section we will give a detailed description of the randomized SVD.
It is based on using random projections to reduce the dimensionality of the
matrix before performing a more traditional SVD on the reduced matrix.

Recall from Chapter 3 that the SVD of a matrix A € R™*" ig given by

A=USV*, (6.5)

where U € R™*™ is a unitary matrix containing the left singular vectors,
Y € R™*" ig a diagonal matrix with singular values (in decreasing order) on
the diagonal, and V' € R™*™ is a unitary matrix containing the right singular
vectors.

In practice A is often large, and we are interested in only a small number
s of the largest singular values and corresponding singular vectors, giving a
rank-k approximation of A:

A= UkaVk*

where U, € R™*F 5, € RF>¥k and V;, € R"**F,
We define the projection Py onto the the span of the leading k left singular

vectors of A via
k
*
P, = E UUs .
i=1
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We know from Theorem 3.7 that the best rank-k approximation of A with
respect to the Frobenius norm is given by

in [A-B|p=|A-PAlr= |3 o2
o | Ir = kAl 20

Thus, we can compute the best approximation by projecting the target matrix
onto the k-dimensional subspace that captures “most of the action” of the
matrix A.

In many applications it suffices to compute the best approximation with
moderate accuracy. Hence, following [89], we let s = k + p for small p, and
seek a rank-s approximation A, that is comparable to the best rank-k ap-
proximation, i.e.,

1A= A5 < L+ e)|A= PrAlf = (1+2) ) _of
i>k

for some chosen tolerance € > 0.

The aim of the Randomized SVD (RSVD) is essentially to generate an
efficient approximation for the best rank-k approximation of the matrix Py A.
We proceed in two steps. In the first step we compute a low-dimensional
subspace that captures the range of A. In the second step we project A onto
the subspace and compute the (standard SVD) of the resulting smaller matrix.
Regarding the first step, recall that Py is the orthogonal projection onto the
k leading left singular vectors of A. But since we do not know the subspace
spanned by Py, a sensible choice, as suggested by the Johnson-Lindenstrauss
Lemma, is to draw some probing random vectors from a rotationally invariant
distribution to estimate the directions of the vectors u; that make up P. We
collect these probing random vectors in a matrix ¥.

Hence, let ¥ € R"*(#+P) be a random matrix, where k is the desired num-
ber of singular values/vectors, and p is an oversampling parameter (typically
p is small, like 5 or 10). A promising choice for ¥ is to select each entry of ¥
as a sample from a standard normal distribution N (0,1). We then form the
matrix Y € R™*(*k+p) a5

Y = Av.

This matrix Y captures the action of A on a random subspace of dimension
k + p. We will see (in Theorem 6.8) that, with high probability, the subspace
spanned by the columns of Y contains a good approximation of the subspace
spanned by the top k left singular vectors of A.6 Next, we find an orthonormal
basis for the range of Y. Using the standard QR decomposition, we compute

Y = QR,

5In many applications the matrix A is implicit and one has access to it via
matrix-vector products, if this is the case computing Y can be done with k + p
matrix-vector products.
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where Q@ € R™*(+P) has orthonormal columns, and R € R*+p)x(k+p) ig
an upper triangular matrix. Now, we project A onto the lower-dimensional
subspace spanned by the columns of () by computing

B=Q*A

Here, B € R +P)X" i5 a3 much smaller matrix that approximates A (in the
sense that QB approximates A).
Next, we compute the exact SVD of the smaller matrix B

B=UpSpV}.

where Up € RE+P)X(k+p) - 375 ¢ RE+P)Xn and Vg € R™*(*k+P) Finally, the
approximate SVD of A is given by
A= UZV*
where U = QUi € R™*k+p) 53 — yp e REDXE+D) and V = Vg €
Rnx(k+p)
We summarize these steps in Algorithm 6.1.

Algorithm 6.1 Randomized SVD

Input: Matrix A € R™*", target rank k > 0, oversampling factor p > 0; set
s=k+p.

1. Generate a random matrix & € RV *(*+p)

2. Compute the product Y = A¥

3. Compute the economy-sized QR factorization Y = QR, with Q € R™*R+P) and
R € Rk+p)x(k+p)

4. Compute the product B = Q*A

5. Compute the economy-sized SVD B = UgXpVg, with U € R™*k4p) 3p
RE+P)X(k+P) 4114 Vs € R (k+p)

6. Set U= QUs, Y = X5,V = V.
Output: Orthogonal U € R™**+P) orthogonal V € R™**+P) and diagonal ¥ ¢

REAPIXE4P) guch that A ~ Ay := USV*

The random matrix ¥ used in the random projection step ensures that with
high probability, the subspace spanned by the columns of Y = A¥ contains a
good approximation to the dominant singular subspace of A.

Theorem 6.8 ([89]). Consider a matriz A € R™*"™ with singular values o1 >
o9 > 03 > -+-. Fiz the target rank k < min(m,n). When s := k +p >k+2,
the randomized SVD method produces a random rank-s approximation As that

satisfies
Bl Adrl < (1+ -5 (X)" (6.6)

p—1 >k
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The error on the right hand side consists of the best rank-k approximation
error and an additional factor due to using a randomized projection instead
of the optimal projection Pj.

For the proof of Theorem 6.8 we need some preparation. In what follows
it will be convenient to rewrite the SVD of A, cf. (6.5), in block matrix form:

A= U, U] [‘B’“ ZOJ Wj , (6.7)

where U; € R™*™~F denotes the orthogonal complement of Uy, € R™** with
respect to U € R™>*™_ Furthermore, we set

U, = Vyw and v, =V

Here, ¥y, captures the alignment of ¥ with the leading right singular vectors
of A, while ¥, captures the alignment with the trailing right singular vectors
of A. The matrix Py denotes the orthogonal projection onto the range of Y.
Since this projection is unique, we have that Py = QQ*.

The following deterministic error bound (the bound does not require ¥ to
be Gaussian) will be instrumental:

Lemma 6.9. We use the same notation as in Theorem 6.8. Let ¥ € R”X(k+f’)
be an arbitrary matriz with rank(¥) = k. Then the rank-s approzimation As
computed by Algorithm 6.1 satisfies

1A = Al% < 1217 + 1 Ze 2117 (6.8)

Proof. We first fix the target rank & < min {m,n} and the oversampling factor
p and set s = k 4+ p. Denoting A = U*A and Y = AV, we obtain

1A= A7 = (I = Pr)AllE = |U(I = Py)UA|E = [I(I - P) Al (6.9)

Here, the first equality uses the fact that the Frobenius norm is unitarily
invariant, whereas in the second equality we have substituted Py = U* Py U.

Next, we set Z = YWi 51 = [ F|* where F = ¥, ¥, W] 51, Note that

range(Z) C range(Y"). This in turn yields
12 = P)AIR < (1 - P23 = Tx (A°(I = P2)A) = Tr (S - P,)).

(6.10)
Note that Pz has the expansion

Py = H 1+ FF]" [ﬂ

Since Pz is a projection, we have that I — Py > 0. After some linear algebra
calculations (left to the reader), we obtain

o<1-re= |50,

B* 1
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where B = —(I + F*F)~1F*. Multiplying both sides by X gives

S.F*FX, SyBY,

SI-PHES| S et |

(6.11)

Combining (6.9), (6.10) and (6.11) gives

1A= A7 = (1 - Py)All%
<Tr(X(I - Py)X)
<Tr (ZpF*FXL) +Tr(21)
<2 5+ 15013

where in the penultimate inequality we have used the fact that the trace is
monotone on the cone of positive semidefinite matrices. a

Lemma 6.9 holds for any rank-k matrix ¥. As pointed out in [102], the
first term on the right-hand side of (6.8) captures the trailing singular values
of the matrix, which is independent of the specific choice of ¥, since this loss
occurs for every rank-k approximation. The second term is the error caused by
the dimension reducing matrix ¥. We want the component ¥, in the leading
directions to be well conditioned (ideally, an identity matrix). We want the
component ¥, in the trailing directions to be as small as possible.

The bound (6.8) suggests that in order to establish Theorem 6.8 we need

to get a handle on WkWJT_ when ¥;; bR N(0,1). To that end, the following
lemma will be helpful.

Lemma 6.10. Let G € R™*™ be a standard Gaussian random matriz. As-
sumem > 2 andn—m > 2. Then

m

E[IGT|F] = (6.12)

m-—n-—1
Proof. We follow the proof of the corresponding result in the appendix of [89].
First, note that (GG*) is invertible almost surely. We compute

|GT||% = trace[(GT)*GT] = trace[(GG*)™!].

The random matrix (GG*)~! follows the inverted Wishart distribution. Hence,
we can use formula (12) on page 97 of [134] for the expected trace and ob-
tain (6.12).

O

With these lemmata in place, we are now ready to prove Theorem 6.8.

Proof (of Theorem 6.8). Since ¥ is chosen to be a standard Gaussian matrix
and the Gaussian distribution is invariant under unitary transformations, it
follows that ¥, = V¥ and ¥, = V¥ are also standard Gaussian. Moreover,
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note that matrix ¥, has full rank with probability one, since the rows of a
(fat) Gaussian matrix are almost surely in general position.

We consider the bound established in Lemma 6.9, apply expectation
to (6.8) and use Holder’s inequality to obtain

E|A ~ Adl] < (BN - P)AIE)"” < (12003 + Bl St 13])
(6.13)

Using the law of total expectation as well as the independence of ¥}, and ¥
we estimate

E[| S ] |%] = Eg, [E[| 219 7] [|%]%]]
<E[|ZL[2 1%][12]
<|1ZL3E[I%])13]

k
<> (6.14)
p >k

where the second inequality follows from Lemma 6.10.
Combining now (6.13) with (6.14) establishes the bound (6.6). O

6.2.1 Computational complexity of the Randomized SVD

What is the computational complexity of the RSVD? The dominant costs for
the RSVD are:

1. O(mn(k + p)) for the matrix-matrix multiplication AW, assuming that ¥
is an unstructured, non-sparse matrix (like a Gaussian matrix).

2. O(m(k + p)?) for the QR decomposition of Y.

3. O(mn(k + p)) for computing Q*A.

4. O((k + p)?n) for computing the SVD of the small matrix B.

Thus, the overall complexity of the randomized SVD is O(mn(k + p)), which
is significantly smaller than the O(mn?) cost of the classical SVD when k is
much smaller than n.

We can further reduce the cost of the matrix-matrix product A¥ by intro-
ducing structure or sparsity into ¥. We already encountered one such choice
in Definition 6.4 in the form of the Fast Johnson-Lindenstrauss transform.
The improved computational efficiency comes at the cost of a log-factor in
terms of required samples to guarantee the same accuracy.

When the singular values of A decay slowly, Algorithm 6.1 is not very
accurate in the regime of interest, namely when k < n. The reason is that to
achieve a small approximation error the matrix ¢ must align well with the
first k + p left singular vectors of A. As a consequence, the product A¥ must
reveal the singular vectors, which in turn would require the singular vectors
associated with small singular values not to interfere with the calculation.
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How can we remedy this issue? We can take inspiration from the power
iteration. By raising our matrix to a power ¢ via (AA*)?A prior to applying
it to ¥ we can enhance the decay of the spectrum of our matrix without
effecting the direction of the eigenvectors. Hence, we replace in Algorithm 6.1
the step Y = AV by Y = (AA*)7A¥. A small power of ¢ (such as ¢ =1 or 2)
is often sufficient. In this modified RSVD it is also advisable to increase the
oversampling factor p. We refer to [89, Corollary 10.10] for an approximation
error bound for this modified RSVD as well as to [179] for a more detailed
discussion.

The key ideas behind the RSVD also form the main ingredients for some
other algorithms, such as randomized least squares and randomized Choleksy
factorization, see [151, 89, 102].






7

Community Detection and the Power of
Convex Relaxation

This chapter presents the idea of a convex relaxation, illustrated via prob-
lems on graphs. We start with the introduction of the Goemans-Williamson
Semidefinite relaxation for the Max-Cut problem, and move on to the problem
of community detection in the Stochastic Block Model.

7.1 Max-Cut, lifting, and approximation algorithms

Many data analysis tasks include in them a step consisting of solving a com-
putational problem, oftentimes in the form of finding a hidden parameter that
best explains the data, or model specifications that provide best-fits. Many
such problems, including examples in previous chapters, are computationally
intractable. In complexity theory this is often captured by N P-hardness. Un-
less the widely believed P # N P conjecture is false, there is no polynomial
algorithm that can solve all instances of an NP-hard problem. Thus, when
faced with an NP-hard problem (such as the Maz-Cut problem discussed be-
low) one has three natural options: to use an exponential type algorithm that
solves exactly the problem in all instances, to design polynomial time algo-
rithms that only work for some of the instances (hopefully relevant ones),
or to design polynomial algorithms that, in all instances, produce guaran-
teed approximate solutions. This section is about the third option, another
example of this approach is the earlier discussion on Spectral Clustering and
Cheeger’s inequality. The second option, of designing algorithms that work
in many, rather than all, instances is discussed later in this chapter, notably
these goals are often achieved by the same algorithms.

The Maz-Cut problem is defined as follows: Given a graph G = (V, E, W)
with non-negative weights w;; on the edges, find a set S C V for which cut(S)
is maximal.! Goemans and Williamson [80] introduced an approximation al-
gorithm that runs in polynomial time, has a randomized component in it, and

1The problems of maximizing and minimizing the cut are related if one considers
the complement graph. As we saw in Chapter 4, if we want to cluster the nodes of a
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is able to obtain a cut whose expected value is guaranteed to be no smaller
than a particular constant agyw times the optimum cut. The constant agw
is referred to as the approximation ratio.

Let V ={1,...,n}. One can restate Max-Cut as
1
max 5>, wi(1 = yiy;) (71)
s.t. lyil =1

The y;’s are binary variables that indicate set membership, i.e., y; = 1ifi € S
and y; = —1 otherwise.
Consider the following relaxation of this problem:

max %Zi<j wij (1 —uluy) (7.2)
s.t. u; € R |Jug|| = 1. '

This is a relaxation because if we restrict u; to be a multiple of eq, the first
element of the canonical basis, then (7.2) is equivalent to (7.1). For this to be
a useful approach, the following two properties should hold:

(a) Problem (7.2) is easy to solve.
(b) The solution of (7.2) is, in some way, related to the solution of (7.1).

Definition 7.1. Given a graph G, we define MaxCut(G) as the optimal value
of (7.1) and RMaxCut(G) as the optimal value of (7.2).

We start with property (a). Set X to be the Gram matrix of uy,..., uy,
that is, X = UTU where the i’th column of U is u;. We can rewrite the
objective function of the relaxed problem as

1
3 D wi(1— X))

1<j

One can exploit the fact that X having a decomposition of the form X = Y7Y
is equivalent to being positive semidefinite, denoted X > 0. The set of PSD
matrices is a convex set. Also, the constraint ||u;|| = 1 can be expressed as
X;; = 1. This means that the relaxed problem is equivalent to the following
semidefinite program (SDP):

max %Zi<j ’LUZ](I _X'L'j)

s.t. Xt()and X“‘:L z:l,,n (73)

graph (by minimizing the cut) we have to add a mechanism that balances the size
of clusters. The Max-Cut problem does not suffer from this issue, as the partitions
that maximize the cut tend to be well balanced. In fact, this makes the Max-Cut
problem conceptionally closer to clustering (and community detection) than the
Min-Cut problem, making it an excellent theoretical testbed for algorithms and
analysis. Furthermore, it also enjoys several direct applications.
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This SDP can be solved (up to € accuracy) in time polynomial on the input
size and log(e~1) [182].

There is an alternative way of viewing (7.3) as a relaxation of (7.1). By
taking X = yy” one can formulate a problem equivalent to (7.1)

max %Zi<j w”(l _Xij) (7 4)

s.t. X»0,X,;=1i=1,...,n, and rank(X) = 1. '
The SDP (7.3) can be regarded as a relaxation of (7.4) obtained by removing
the non-convex rank constraint. In fact, this is how we will later formulate a
similar relaxation for the minimum bisection problem, in Section 7.2.

We now turn to property (b), and consider the problem of forming a so-
lution to (7.1) from a solution to (7.3). From the solution {u;};=1,., of the
relaxed problem (7.3), we produce a cut subset S’ by randomly picking a
vector r € R™ from the uniform distribution on the unit sphere and setting

S" = {i|rTu; > 0}

In other words, we separate the vectors uq,...,u, by a random hyperplane
(perpendicular to r). We will show that the cut given by the set S’ is compa-
rable to the optimal one.

Ui

Uj

Fig. 7.1: Illustration of the relationship between the angle between vectors
and their inner product, § = arccos(u’ u;)

Let W be the value of the cut produced by the procedure described above.
Note that W is a random variable, whose expectation is easily seen (see Fig-
ure 7.1) to be given by
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E[W] = wi; Pr {sign(r"u:) # sign(r"u;)}

i<y
1 T
= E w;j — arccos(u; u;).
T
i<j
If we define agw as
L arccos(z)
J— s
aAGw = B R a——

min
—1<e<t f(1—a)

it can be shown that agw > 0.87 (see, for example [80]).
By linearity of expectation

1 1
E[W] = Z wij— arccos(u; u;) > aGw Zwij(l —ul uj). (7.5)

1<j i<j

Let MaxCut(G) be the maximum cut of G, meaning the maximum of the
original problem (7.1). Naturally, the optimal value of (7.2) is larger or equal
than MaxCut(G). Hence, an algorithm that solves (7.2) and uses the random
rounding procedure described above produces a cut W satisfying

1
MaxCut(G) > E[W] > acwsy Zwij(l —uluj) > agwMaxCut(G), (7.6)

i<j

thus having an approximation ratio (in expectation) of agw . Note that one
can run the randomized rounding procedure several times and select the best
cut.? We thus have

MaxCut(G) > E[W] > acgwRMaxCut(G) > agwMaxCut(G)

Can agw be improved?

A natural question is to ask whether there exists a polynomial time algorithm
that has an approximation ratio better than agyy .

The unique games problem (as depicted in Figure 7.2) is the following:
Given a graph and a set of k colors, and, for each edge, a matching between
the colors, the goal in the unique games problem is to color the vertices as
to agree with as high of a fraction of the edge matchings as possible. For
example, in Figure 7.2 the coloring agrees with % of the edge constraints, and
it is easy to see that one cannot do better.

The Unique Games Conjecture of Khot [99], has played a major role in
hardness of approximation results.

%It is worth noting that one is only guaranteed to solve (7.2) up to an approxi-
mation of € from its optimum value. However, since this € can be made arbitrarily
small, one can get the approximation ratio arbitrarily close to agw .
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.0\\.?00 o 'O\\'.?. o
Il — I —
o o

Fig. 7.2: The Unique Games Problem

Conjecture 7.2. For any € > 0, the problem of distinguishing whether an in-
stance of the Unique Games Problem is such that it is possible to agree with
a > 1 — ¢ fraction of the constraints or it is not possible to even agree with a
¢ fraction of them, is NP-hard.

There is a sub-exponential time algorithm capable of distinguishing such
instances of the unique games problem [15], however no polynomial time algo-
rithm has been found so far. At the moment one of the strongest candidates
to break the Unique Games Conjecture is a relaxation based on the Sum-of-
squares hierarchy that we will discuss below.

Remarkably, approximating Max-Cut with an approximation ratio bet-
ter than agw is as hard as refuting the Unique Games Conjecture (UG-
hard) [100]. More generality, if the Unique Games Conjecture is true, the
semidefinite programming approach described above produces optimal ap-
proximation ratios for a large class of problems [147].

Not depending on the Unique Games Conjecture, there is a NP-hardness
of approximation of 1¢ for Max-Cut [90].

Remark 7.3. Note that a simple greedy method that assigns membership to
each vertex as to maximize the number of edges cut involving vertices already
assigned achieves an approximation ratio of % (even of % of the total number
of edges, not just of the optimal cut).

7.1.1 A Sums-of-Squares interpretation

We now give a different interpretation to the approximation ratio obtained
above. Let us first slightly reformulate the problem (recall that w;; = 0).

Recall from Proposition 4.3 that a cut can be rewritten as a quadratic
form involving the graph Laplacian. We can rewrite (7.1) as

max inLGy

y=x1,i=1,...,n. (7.7)

Similarly, (7.3) can be written (by taking X = yyT) as
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max 1 Tr (LX)
st. X >0 (7.8)
Xii:Li:l,...,n.

In Section 7.2 we will derive the the dual program to (7.8) in the context
of recovery in the Stochastic Block Model. Here we will simply state it, and
show weak duality as it will be important for the argument that follows.

min Tr (D)
s.t. D is a diagonal matrix (7.9)
D—1Lg=o.

Indeed, if X is a feasible solution to (7.8) and D a feasible solution to (7.9)
then, since X and D—iLG are both positive semidefinite Tr [X (D — iLg)] >
0 which gives

0<Tr {X (D _ iLG)] — TH(XD) - iﬂ (LeX) = Tr(D) — %Tr (LX),

since D is diagonal and X;; = 1. This shows weak duality, the fact that the
value of (7.9) is larger than the one of (7.8).

If certain conditions, the so called Slater conditions [183, 182], are satisfied
then the optimal values of both programs are known to coincide, this is known
as strong duality. In this case, the Slater conditions ask whether there is a
matrix strictly positive definite that is feasible for (7.8), and the identity is
such a matrix. This means that there exists D? feasible for (7.9) such that

Tr(D") = RMaxChut.

Hence, for any y € R™ we have

T n
1 1
ZyTLgy = RMaxCut — y” (Dh — 4Lg) y+ Z Dfi (yl2 —-1). (7.10)
i=1
Since DY — iLG > 0, there exists V such that Db — iLG = VVT with
the columns of V denoted by vy,...,v,, meaning that y” (Dh — iLg)Ty =
HVTyH2 = Zzzl(vgy)z. Hence, for any y € R",

RMaxCut — inLGy =YWy +> DL (v -1). (7.11)

k=1 i=1
Note that (7.11) certifies that no cut of G is larger than RMaxCut. Indeed,
if y € {+£1}" then y? = 1 and so >1_, DY, (y? — 1) while S p_, (v1y)? > 0
since it is a sum of squares (of degree 2). This is known as a sum-of-squares
certificate [34, 33, 140, 108, 157, 137]; by following this argument in reverse
one can show that RMaxCut is precisely the smallest real number for which
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a certificate of the type of (7.11) exists (while MaxCut is the smallest real
number for which MaxCut — %yTLGy is non-negative in the hypercube. This
gap shrinks if one allows sum-of-square certificates of higher degree®.

The remarkable fact is that sum-of-squares certificates of at most a speci-
fied degree can be found using Semidefinite programming [140, 108] (in fact,
the SDP (7.9) is finding the smallest real number A for which a certificate
such as (7.11) (of degree 2) exists. On the other hand, the primal is in some
sense constraining the degree 2 moments of y, X;; = v;3;. Many natural
questions remain open towards a precise understanding of the power of SDPs
corresponding to higher degree sum-of-squares certificates. There are several
very nice lecture notes, surveys, and courses on Sum-of-Squares, see for ex-
ample [33, 76, 148]*

Remark 7.4 (triangular inequalities and Sum of squares level 4). A natural
follow-up question is whether the relaxation of degree 4 is actually strictly
tighter than the one of degree 2 for Max-Cut (in the sense of forcing extra
constraints). What follows is an interesting set of inequalities that degree 4
enforces and that degree 2 does not, known as triangular inequalities. This
example helps illustrate the differences between Sum-of-Squares certificates of
different degree.
Since y; € {1} we naturally have that, for all 4, j, k

Yiyi + Yy + yryi = —1,
this would mean that, for X;; = y;y; we would have,
Xij + X + Xy > —1,

however it is not difficult to see that the SDP (7.8) of degree 2 is only able to
constraint 3

Xij + X+ Xiw 2 =35,
which is considerably weaker. There are a few different ways of thinking about
this, one is that the three vector u;, u;, u in the relaxation may be at an angle
of 120 degrees with each other. Another way of thinking about this is that the
inequality v;y; + Vi Yk + YrlYi > —% can be proven using sum-of-squares proof
with degree 2:

(i +y; + y)? >0 = YiVi T Yjyr + Yy = —%

3This is related to Hilbert’s 17th problem [154] and Stengle’s Positivstellen-
satz [160]

4There are also very nice courses and notes on the topic, such as courses by Boaz
Barak and David Steurer (https://www.sumofsquares.org/public/index.html),
by Tselil Schramm (https://tselilschramm.org/sos-paradigm/winter21.html),
by Sam Hopkins (http://www.samuelbhopkins.com/teaching/sos-fall-24/so
s-fall-24.html), Tim Kunisky (http://www.kunisky.com/teaching/2022sprin
g-sos/), and Aaron Potechin (https://canvas.uchicago.edu/courses/17604).
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However, the stronger constraint cannot.
On the other hand, if degree 4 monomials are involved, (let’s say Xg =
[I,csvs, note that Xy = 1 and X;; X;, = Xjx) then the constraint

Xy Xy ’ 1 Xij Xjr X

Xij | | X | | Xy 1 Xae Xy |
Xj Xj Xjk Xik 1 Xij -
X X X Xy X5 1

implies X;; + X + Xy > —1 just by taking

1 Xy X X
17 Xij 1 X Xjp
X Xae 1 Xy
X Xji Xi5 1

1>0.

Also, note that the inequality y;y; + y;yr + yxy; > —1 can indeed be proven
using sum-of-squares proof with degree 4 (recall that y? = 1):

I+ yiyy vy +wyi)® >0 = yiyy +yyk + ey > —1.

Interestingly, it is known [101] that these extra inequalities alone will not
increase the approximation power (in the worst case) of (7.3).

7.2 Community Detection

The problem of detecting communities in network data is a central problem
in data science, examples of interest include social networks, the internet,
or biological and ecological networks. In Chapter 4 we discussed clustering
in the context of graphs, and described performance guarantees for spectral
clustering (based on Cheeger’s Inequality) that made no assumptions on the
underlying graph. While these guarantees are remarkable, they are worst-case
and hence pessimistic in nature. In an effort to understand the performance of
some of these approaches on more realistic models of data, we will now analyze
a generative model for graphs with community structure, the stochastic block
model. On the methodology side, we will focus on convex relaxations, based
on semidefinite programming (as in Chapter 7.1), and will show that this
approach achieves exact recovery of the communities on graphs drawn from
this model. The techniques developed to prove these guarantees mirror the
ones used to prove analogous guarantees for a variety of other problems where
convex relaxations yield exact recovery.

7.2.1 The Stochastic Block Model

The Stochastic Block Model is a random graph model that produces graphs
with a community structure. While, as with any model, we do not expect it to
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capture all properties of a real world network (examples include network hubs,
power-law degree distributions, and other structures) the goal is to study a
simple graph model that produces community structure, as a test bed for
understanding fundamental limits of community detection and analyzing the
performance of recovery algorithms.

Definition 7.5 (Stochastic Block Model). Let n and k be positive integers
representing respectively the number of nodes and communities, ¢ € [k]™ be the
vector of community memberships for the different nodes, and P € [0, 1]*** q
symmetric matriz of connectivity probabilities. A graph G is said to be drawn
from the Stochastic Block Model on n nodes, when for each pair of nodes (i, j)
the probability that (i,7) € E is independent from all other edges and given by

Prpe,-

We will focus on the special case of the two communities (k = 2) balanced
symmetric block model where n is even, both communities are of the same

size, and
=[]
qp

where p,q € [0,1] are constants, cf. Figure 7.3. Furthermore, we will focus
on the associative case (p > ¢), while noting that all that follows can be
easily adapted to the disassociate case (¢ > p). We note also that when p = ¢
this model reduces to the classical Erdés-Renyi model described in Chapter 4.
Since there are only two communities we will identify their membership labels
with +1 and —1.

Fig. 7.3: A graph generated form the stochastic block model with 600 nodes
and 2 communities, scrambled in Fig. 7.3(a), clustered and color-coded in
Fig. 7.3(b). Nodes in this graph connect with probability p = 6/600 within
communities and ¢ = 0.1/600 across communities. (Image courtesy of Em-
manuel Abbe.)

Many fascinating questions can be asked in the context of this model. Nat-
ural questions include to characterize statistics of the model, such as number
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of triangles or larger cliques. In this chapter, motivated by the problem of
community detection, we are interested in understanding when is it possible
to reconstruct, or estimate, the community memberships from an observation
of the graph, and what efficient algorithms succeed at this inference task.

Before proceeding we note that the difficulty of this problem should cer-
tainly depend on the value of p and ¢. As illustrative examples, this problem is
trivial when p = 1 and ¢ = 0 and hopeless when p = ¢ (notice that even in the
easy case the actual membership can only be determined up to a re-labeling of
the communities). As p > ¢, we will attempt to recover the original partition
by trying to compute the minimum bisection of the graph; while related to
the Max-Cut problem described in Section 7.1, notice how the objective here
is to produce the minimum balanced cut.

7.2.2 Spike model prediction

A natural approach is to draw motivation from Chapter 4 and to use a form
of spectral clustering to attempt to partition the graph.
Let A be the adjacency matrix of G,

- [1if(4,5) € E(G)
Aij = {0 otherwise. (7.12)

Note that in our model, A is a random matrix. We would like to solve

max E Aijxix]—
.3

s.t.x; = £1,Vi (7.13)

Zl‘j :0,
J

The optimal solution x of (7.13) takes the value +1 on one side of a partition
and —1 on the other side, where the partition is balanced and achieves the
minimum cut between the resulting clusters.

Relaxing the condition z; = +1, V; to ||z||3 = n would yield a spectral
method

max E Aijxixj

%,
st. ||zl = vn (7.14)
12 =0

The solution of (7.14) corresponds to the leading eigenvector of the matrix
obtained by projecting A on the orthogonal complement of the all-ones vector
1.
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The matrix A is a random matrix whose expectation is given® by

p if ¢ and j are in the same community
E[A;;] = .

q otherwise.
Let g denote the vector corresponding to the true community memberships,
with entries +1 and —1; note that this is the vector we want to recover.® We
can write "

and

Pt4q

A= (A-E[M4]) + =117+ .

ugg
2

In order to remove the term Z’QﬂllT we consider the random matrix
A=A-_Prayr
2
It is easy to see that
b—q
A= (A-E[4])+ ngT-

This means that A is the sum of a random matrix whose expected value is
zero and a rank-1 matrix, i.e.

A=W + o

where W = (A — E[A]) and v = Eip (ﬁ) (%)T. In Chapter 3 we

saw that for a large enough rank-1 additive perturbation to a Wigner matrix,
there is an eigenvalue associated with the perturbation that pops outside of
the distribution of eigenvalues of a Wigner Gaussian matrix W. Moreover,
whenever this happens, we saw that the leading eigenvector has a non-trivial
correlation with g.

Since A is simply A minus a multiple of 117, problem (7.14) is equivalent
to

max ZAijinj
,J
st. |zl = vn (7.15)

172 =0

SFor simplicity we assume that self-loops also have probability p. This does not
affect any of the conclusions, as it does not give information about the community
memberships.

5We want to recover either g or —g, as they correspond to different labelings of
the same community structure.
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Since we have subtracted a multiple of 117, we will drop the constraint
172 = 0. Notice how a deviation from 172 = 0 would be penalized in the
new objective, the fact that the multiple we subtracted is sufficient for us to
drop the constraint will be confirmed by the success of the new optimization
problem, now given by

max E Aijzix;
%,J

st ||zll2 = v, (7.16)

whose solution corresponds to the leading eigenvector of A.

Recall that if A—E[A] is a Wigner matrix with i.i.d. entries with zero mean
and variance o2 then its empirical spectral density follows the semicircle law
and it is essentially supported in [—20+/n, 20/n]. We would then expect the
top eigenvector of A to correlate with g as long as

- 2
b, 2oV

2

(7.17)

Unfortunately A — E[A] is not a Wigner matrix in general. In fact, half
of its entries have variance p(1 — p) while the variance of the other half is
q(1—q).

Putting rigor aside for a second, if we were to take o
then (7.17) would suggest that the leading eigenvector of A correlateb with
the true partition vector g as long as

2 \F\/ (1=p 1_q), (7.18)

This argument is of course not valid, because the matrix in question is not
a Wigner matrix. The special case ¢ = 1 — p can be easily salvaged, since
all entries of A — E[A] have the same variance and they can be made to be
identically distributed by conjugating with diag(g). This is still an impressive
result, it says that if p = 1 — ¢ then p — ¢ needs only to be around f to be

_ p(1- p)+f1(1 q)

able to make an estimate that correlates with the original partitioning!

An interesting regime (motivated, for example, by friendship networks in
social sciences) is when the average degree of each node is constant. This can
be achieved by taking p = & and ¢ = % for constants a and b. While the
argument presented to justify condition (7.18) is not valid in this setting, it
nevertheless suggests that the condition on a and b needed to be able to make
an estimate that correlates with the original partition, often referred to as
partial recovery, is

(a—0)* > 2(a+0b). (7.19)

Remarkably this was posed as a conjecture by Decelle et al. [60] and proved
in a series of works by Mossel et al. [133, 132] and Massoulie [124]. While
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describing the proof of this conjecture is outside the scope of this book, we
note that the conjectures were obtained by studying fixed points of a certain
linearization of belief propagation using techniques from statistical physics.
The lower bound can be proven by showing contiguity between the two models
below the phase transition, and the upper bound is obtained by analyzing an
algorithm that is an adaptation of belief propagation and studying the so-
called non-backtracking operator. We refer the reader to the excellent survey
of Abbe [4] and references therein for further reading.

Remark 7.6 (More than three communities). The balanced symmetric stochas-
tic block model with k& > 3 communities is conjectured to have a fascinat-
ing statistical-to-computational gap. In the sparse regime of inner probability
p = = and outer probability ¢ = % it is believed that, for k > 3 there is a
regime of the parameters a and b such that the problem of partially recovering
the community memberships is statistically, or information-theoretically, pos-
sible but that there does not exist a polynomial-time algorithm to perform
this task. These conjectures are based on insight obtained with tools from
statistical physics. We refer the reader to [60, 192, 79, 3] for further reading.

7.2.3 Exact recovery

We now turn our attention to the problem of recovering the cluster mem-
bership of every single node correctly, not simply having an estimate that
correlates with the true labels. We will keep our focus on the balanced, sym-
metric, two communities setting. This will serve as an illustration for two
phenomena: (i) the fact that convex relaxations often find optimal solutions,
not just approximations, when the input are “typical instances”; (ii) convex
relaxations such as semidefinite programs over random instances can often
be readily understood via matrix concentration inequalities (such as the ones
in Chapter 9). If the inner-probability is p = & then it is not hard to show
that each cluster will (with high probability) have isolated nodes, making it
impossible to recover the membership of every possible node correctly. In fact
this is the case whenever p < (2_6)%, for some € > 0. For that reason we
focus on the regime

J_alog(n) . Slogln) 720
n n

for some constants o > .

A natural algorithm would be to compute the minimum bisection (7.13)
which corresponds to the Maximum Likelihood Estimator, and also the Max-
imum a Posteriori Estimator when the community memberships are drawn
uniformly at random. In fact, it is known (see [1] for a proof) that if

Va—+/8> V2, (7.21)

then, with high probability, (7.13) recovers the true partition. Moreover, if
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Va—+/B< V2,

no algorithm can, with high probability, recover the true partition.

In this section we will analyze a semidefinite programming relaxation,
analogous to the ones described in Section 7.1 for Max-Cut. By making use of
convex duality, we will derive conditions for exact recovery with this particular
algorithm, reducing the problem to a problem in random matrix theory. We
will present a solution to the resulting random matrix question, using the
matrix concentration tools developed in Chapter 9. While not providing the
strongest known guarantee, this approach is extremely adaptable and can be
used to solve a large number of similar questions.”

7.2.4 A semidefinite relaxation

Let z € R™ with x; = &1 represent a partition of the nodes (recall that there
is an ambiguity in the sense that x and —z represent the same partition).
Note that if we remove the constraint >, z; = 0 in (7.13) then the optimal

solution becomes z = 1. Let us define B = 2A — (117 — I), meaning that

0ifi=j
B;; = 1 if (4,4) € E(G) (7.22)
—1 otherwise

It is clear that the problem

max E Bija?i.’lﬁj
%

Zm]—:O
J

has the same solution as (7.13). However, when the constraint is dropped,

max E Bijl‘il‘j
i3

s.t.x; = :tl,vi7 (724)

x = 1 is no longer an optimal solution. As with (7.16) above, the penalty
created by subtracting a large multiple of 117" will be enough to discourage

TA tight guarantee can be obtained by adapting the random matrix theory part
of the argument, the convex geometry part can remain the same; this is briefly
discussed below.
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unbalanced partitions (the reader may notice the connection with Lagrangian
duality). In fact, (7.24) is the problem we will set ourselves to solve.

Unfortunately (7.24) is in general NP-hard (one can encode, for example,
Maz-Cut by picking an appropriate B). We will relax it to an easier problem
by the same technique used to approximate the Max-Cut problem in the
previous section (this technique is often known as matriz lifting). If we write
X = 227 then we can formulate the objective of (7.24) as

Z Bjjziz; = 2" Bx = Tr(2” Br) = Tr(Baa™) = Tr(BX)

,J
Also, the condition z; = 41 implies X;; = 27 = 1. This means that (7.24) is
equivalent to

max Tr(BX)

X = zz” for some z € R™.

The fact that X = 2T for some = € R” is equivalent to rank(X) = 1 and
X > 0. This means that (7.24) is equivalent to

max Tr(BX)
st Xy=1Y (7.26)
X=0
rank(X) = 1.

We now relax the problem by removing the non-convex rank constraint

max Tr(BX)
X =0.

This is an SDP that can be solved (up to arbitrary precision) in polynomial
time [182] (note that it is the same SDP as (7.8), with a different coefficient
matrix).

Since we removed the rank constraint, the solution to (7.27) is no longer
guaranteed to be rank-1. We will take a different approach from the one we
used in Section 7.1 to obtain an approximation ratio for Max-Cut, which was
a worst-case approximation ratio guarantee. In this section we will show that,
for some values of o and 3, with high probability, the solution to (7.27) not
only satisfies the rank constraint but it coincides with X = gg” where g corre-
sponds to the true partition. From X one can compute g by simply calculating
its leading eigenvector. Besides being a good approximation algorithm, SDP
relaxations such as (7.8) provide optimal solutions in many instances (but not
always).
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7.2.5 Convex duality

A standard technique to show that a candidate solution is the optimal one for
a convex problem is to use convex duality.

We will describe duality with a game theoretical intuition in mind. The
idea will be to rewrite (7.27) without imposing constraints on X but rather
have the constraints be implicitly enforced. Consider the following optimiza-
tion problem.

max Enin Tr(BX) 4+ Tr(QX) + Tr (Z (Inxn — X)) . (7.28)
Z is diagonal
Q=0

Let us provide a game theoretical interpretation for (7.28). Suppose that
there is a primal player (picking X) whose objective is to maximize the ob-
jective and a dual player (picking Z and @ after seeing X) trying to make the
objective as small as possible. If the primal player does not pick X satisfying
the constraints of (7.27) then we claim that the dual player is capable of driv-
ing the objective to —oo. Indeed, if there is an i for which X;; # 1 then the
dual player can simply pick Z;; = —c%& and make the objective as small as
desired by taking a large enough c. Similarly, if X is not positive semidefinite,
then the dual player can take QQ = cvv” where v is such that v” Xv < 0. If,

on the other hand, X satisfies the constraints of (7.27) then

Tr(BX) < gng Tr(BX) + Tr(QX) + Tr (Z (Inxn — X)) -
Z is diagonal

Q=0

Since equality can be achieved if for example the dual player picks Q = 0, xp,
then it is evident that the values of (7.27) and (7.28) are the same:

max Tr(BX) = max Ing Tr(BX) 4+ Tr(QX) + Tr (Z (Inxn — X))
Xii 7Vi Z is diagonal
X0 Q>0

With this game theoretical intuition in mind, it is clear that if we change the
“rules of the game” and have the dual player decide their variables before the
primal player (meaning that the primal player can pick X knowing the values
of Z and Q) then it is clear that the objective can only increase, which means
that:

max Tr(BX) < gug max Tr(BX) 4+ Tr(QX) 4+ Tr (Z (Inxn — X)) -
Xi; Vi Z is diagonal
X>0 Q>0

Note that we can rewrite

Te(BX) + Te(QX) + Tt (Z (Lnxn — X)) = Te (B+ Q — Z) X) + Tr(Z).
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When playing:

glig m}?XT‘I'((B+Q—Z)X)+T‘I‘(Z)7
Z is diagonal
Q-0
if the dual player does not set B+ @ — Z = 0,,x,, then the primal player can
drive the objective value to 400, this means that the dual player is forced to
chose Q = Z — B and so we can write

gug m}e{LXTr((B—f—Q—Z)X)—I—Tr(Z): n;n m}?XTI‘(Z),
Z is diagonal Z is diagonal
Q>0 Z—B%0

which clearly does not depend on the choices of the primal player. This means
that

max Tr(BX) < r%in Tr(Z).

X Vs Z is diagonal

X0 Z—B¥0
This is known as weak duality (strong duality says that, under some conditions
the two optimal values actually match, see for example [182], recall that we
used strong duality when giving a sum-of-squares interpretation to the Max-
Cut approximation ratio, a similar interpretation can be given in this problem,
see [21]).

Also, the problem

min Tr(Z)
s.t. Z is diagonal (7.29)
Z—-B~0

is called the dual problem of (7.27).

The derivation above explains why the objective value of the dual problem
is always greater or equal to the primal problem. Nevertheless, there is a much
simpler proof (although not as enlightening): let X, Z be a feasible point of
(7.27) and (7.29), respectively. Since Z is diagonal and X;; = 1, it follows that
Tr(ZX) = Tr(Z). Also, Z — B > 0 and X * 0, therefore Tr[(Z — B)X] > 0.
Altogether,

Tr(Z) — Te(BX) = Tr[(Z — B)X] > 0,

as stated.
Recall that we want to show that gg” is the optimal solution of (7.27).
Then, if we find Z diagonal, such that Z — B > 0 and

Tr[(Z — B)gg”] =0, (this condition is known as complementary slackness)

then X = gg” must be an optimal solution of (7.27). To ensure that gg”
is the unique solution we just have to ensure that the nullspace of Z — B
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only has dimension 1 (which corresponds to multiples of g). Essentially, if
this is the case, then for any other possible solution X one could not satisfy
complementary slackness.

This means that if we can find Z with the following properties:

(1) Z is diagonal

(2) Tr[(Z — B)gg"] =0

3) Z-B*=0

then gg” is the unique optimum of (7.27) and so recovery of the true partition
is possible (with an efficient algorithm). Z is known as the dual certificate, or
dual witness.

7.2.6 Building the dual certificate

The idea to build Z is to construct it to satisfy properties (1) and (2) and try
to show that it satisfies (3) and (4) using concentration. In fact, since Z is
diagonal this design problem has n free variables. If Z — B > 0 then condition
(2) is equivalent to (Z — B)g = 0 which provides n equations, as the resulting
linear system is non-singular, the candidate arising from using conditions (1)
and (2) will be unique.

A couple of preliminary definitions will be useful before writing out the
candidate Z. Recall that the degree matrix D of a graph G is a diagonal matrix
where each diagonal coefficient D;; corresponds to the number of neighbors
of vertex ¢ and that Ao(M) is the second smallest eigenvalue of a symmetric
matrix M.

Definition 7.7. Let G (resp. G_ ) be the subgraph of G that includes the edges
that link two nodes in the same community (resp. in different communities)
and A the adjacency matriz of G. We denote by Dér (resp. Dg ) the degree
matriz of G4 (resp. G_) and define the Stochastic Block Model Laplacian to
be

Lspy = D§ — Dg — A.

Note that the inclusion of self loops does not change Lggas. Also, we point
out that Lgp)s is not in general positive-semidefinite.

Now we are ready to construct the candidate Z. Condition (2) implies that
we need Z;; = iB[z’, !]g. Since B =24 — (117 — I) we have

1
Ty = 5(2,4 — (1T = D)[i,:]g = 2;(149)1- +1,

meaning that
Z=2(D§ —Dg)+1.

This is our candidate dual witness. As a result
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Z-B=2Df-Dg)+1-[2A— (11" —I)] =2Lgpn + 117"
It trivially follows (by construction) that
(Z—-B)g=0.
This immediately gives the following lemma.

Lemma 7.8. Let Lggys denote the Stochastic Block Model Laplacian as de-
fined in Definition 7.7. If

Ao (2Lspy + 117) > 0, (7.30)
then the relaxation (7.27) recovers the true partition.

Note that 2Lgpy+117 is a random matrix and so this reduces to “an exercise”
in random matrix theory.

7.2.7 Matrix concentration and Matrix Bernstein Inequality

We will dedicate Chapter 9 to random matrix theory and matrix concentra-
tion inequalities that aim to control the largest eigenvalue or spectral norm
of random matrices. In this section we present a general use concentration
inequality for sums of independent random matrices, while noting that, as
with scalars, many random variables can be written as sums of independent
random variables even when it’s not trivially apparent (and we will see below
that this is the case for the matrix appearing in Lemma 7.8).

Let us recall Bernstein’s inequality (Theorem 2.18) copied here with
slightly different notation, and with only one of the tails: If X7, X5,..., X, are

independent centered random variables satisfying | X;| < r and E[X?] = 112,

Then,
P Xi>t, < - ). 7.31
Z =P ( 202 + gﬁ) (7:31)

i=1
A very useful generalization of this inequality exists for bounding the
largest eigenvalue of the sum of independent random matrices

Theorem 7.9 (Theorem 1.4 in [175]). Let {X,}7_, be a sequence of in-
dependent random symmetric d X d matrices. Assume that each X satisfies:

EXkr =0 and Amax (Xk) < R almost surely.
Then, for allt >0,

P {Amax (Z Xk) > t} <d-exp <2O’2-‘r§}3t> where 0% =

k=1

> E(X)

k=1
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Note that [|A|| denotes the spectral norm of A. Comparing with (7.31) the
attentive reader will notice an extra dimensional factor of d; a simple change
of variables shows that this corresponds to a poly-logarithmic factor on the
random variable, a factor that will be discussed later in this chapter where
we will also include an improved inequality (Theorem 9.17).

In Chapter 9 we will discuss matrix concentration inequalities in detail
and prove inequalities similar to Theorem 7.9 (for the proof of the precise
bound in Theorem 7.9, which is based on a different toolkit than what we
will explore in Chapter 9, we point the reader to [175]). For now we will use
this inequality to show that the SDP approach presented above achieves exact
recovery of communities in the stochastic block model.

7.2.8 Using matrix concentration

In this section we show how the resulting question amounts to controlling the
largest eigenvalue of a random matrix, which can be done with the matrix
concentration tools described above.

Let us start by noting that

E [2Lsgum + 117] = 2ELgpm + 117 = 2EDY — 2ED; — 2EA + 117,

and ED; = EMI, EDg = %MI. Moreover, EA is a matrix with

2 n n
n

four § x 5 blocks where the diagonal blocks have entries O‘IOTg(") and the

off-diagonal blocks have entries mng(”).g In other words

- L (2lsln)  Slgtn)) 1 (alostn) _ Slgtn)) s

2 n n 2 n n

This means that

logn  »

logn
99 -

E [2Lspym + 117] = ((a — B) logn) I+ (1 —(a+p) ) 117 —(a—p)

n n

Since Lgpyg = 0 and 117g = 0, we can safely ignore what happens in the
span of g, and it is not hard to see that

AQ (E [QLSBM =+ 11T]) = (O{ — ﬁ) logn
Thus, it is enough to show that

a—p

2

ILsem — E [Lepm] || < log n, (7.32)

which is a large deviation inequality; recall that || - || denotes operator norm.

8For simplicity we assume the possibility of self-loops; notice however that the
matrix in question does not depend on this, only its decomposition in the degree
matrices and A.
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The idea is to write Lgpm — E [Lspm] as a sum of independent random
matrices and use the Matrix Bernstein Inequality (Theorem 7.9). This gives
an illustrative example of the applicability of matrix concentration tools, as
many random matrices of interest can be rewritten as sums of independent
matrices.

Let us start by defining, for ¢ and j in the same community (i.e. g; = g;),

L1 i) eE
*J 0 otherwise,

and
AL = (ei —ej)(ei —¢))T,

where e; (resp. e;) is the vector of all zeros except the it (resp. j**) coefficient
which is 1.
For 7 and j in different communities (i.e. g; # g;), define

_:{1 if (i,5) € E

t 0 otherwise,
and

A =—(ei+ej)(ei+e).

‘We have
L= >, 9ah+ > %Ay

1<j:9i=9g; 1<j:9i#9g;
We note how (fy;';)” and (7,;)i,; are jointly independent random variables

with expectations E(fy;;) = % and E(v;;) = 51‘:#. A;"j and A;; are de-
terministic matrices. This means that

alogn _ PBlogn _
Lsgm — ELspm = Z <’Y; - ng > A;;- + Z (%‘j - ng ) Az’j-

i<j: i<j: g9
9i=3gj

We can then use Theorem 7.9 by setting

o= |varpt] Y (@) evary ] > (4|, (3
i<j: gi=g, i<j: gi#9g;
and R = 2, since HAZH = HA;H = 2 and both (v;}); ; and (v;;)i,; take values

in [-1, 1]. Note how this bound is for the spectral norm of the summands, not
just the largest eigenvalue, as our goal is to bound the spectral norm of the
random matrix. In order to compute o2, we write
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S (ah) =l - (117 +g97),

1<j: gi=gj

and )
Yoo (45) =nl+ (11" —gg")

i<j: giF#gj

Since Var[y*] < %, Var[y~] < 610%, and all the summands are
positive semidefinite we have

o2 <

(a+ B8)logn (

. ggT)_(O‘_B)IOgn

n

nl — 117 = (a + B) logn.

Using Theorem 7.9 for ¢ = O‘T_ﬁ logn on both the largest and smallest
eigenvalue gives

o —
IED{HLSBM —E[LspM]|| > 5 s logn} <

2
—("—;Blogn)
2(a+ fB)logn + 3 (%logn)

9 exn [~ (a—B)?logn
! 8(a+8)+ 35— )

_ (a=p)? _1
— 9p \8C+h+§(a—p) ]

< 2n-exp

+ log n)

Together with Lemma 7.8, this implies that as long as
8
(a=B)*>8(a+B)+3(a—B), (7.34)

the semidefinite programming relaxation (7.27) recovers the true partition,
with probability tending to 1 as n increases.

While it is possible to obtain a stronger guarantee for this relaxation, the
derivation above illustrates the matrix concentration technique in a simple,
yet powerful, instance. In fact, the analysis in [1] uses the same technique.
In order to obtain a sharp guarantee (Theorem 7.10 below) one needs more
specialized tools. We refer the interested reader to [20] or [87] for a discussion
and proof of Theorem 7.10; the main idea is to separate the diagonal from the
non-diagonal part of Lsgy — E [Lspm], treating the former with scalar con-
centration inequalities, and the latter with specialized matrix concentration
inequalities such as the ones in [28].

Theorem 7.10. Let G be a random graph with n nodes drawn according to
the stochastic block model on two communities with edge probabilities p and q.
Let p= % and q = mo%, where o > [ are constants. Then, as long as
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Va—+/B>V2, (7.35)

the semidefinite program considered above coincides with the true partition
with high probability.

Note that, if

Va — /B <2, (7.36)

then exact recovery of the communities is impossible, meaning that the SDP
algorithm is optimal. Furthermore, in this regime (7.36), one can show that
there will be a node on each community that is more connected to the other
community than to its own, meaning that a partition that swaps them would
have more likelihood. The fact that the SDP will start working essentially
when this starts happening appears naturally in the analysis in [20]. Later, it
was proven that the spectral method (7.14), followed by a simple thresholding
step, also gives exact recovery of the communities [2]. An analogous analysis
has recently been obtained for the (normalized or unnormalized) graph Lapla-
cian in place of the adjacency matrix, see [62]. However, the proof techniques
for the graph Laplacian are different and a bit more involved, since—unlike
the adjacency matrix—the graph Laplacian does not exhibit row/column-wise
independence.

Remark 7.11. An important advantage of semidefinite relaxations is that they
are often able to produce certificates of optimality. Indeed, if the solution of the
relaxation (7.27) is rank 1 then the user is sure that it must be the solution
of (7.24). These advantages, and ways of producing such certificates while
bypassing the need to solve the semidefinite program are discussed in [21].
Semidefinite relaxation has also been effectively used to show rigorously that
spectral clustering can indeed outperform clustering via k-means [116, 40, 63]






8

Concentration of Measure and Gaussian
Analysis

In this chapter we significantly expand on the concepts presented in Chap-
ter 2, showcasing several other instances of the Concentration of Measure
phenomena, and focusing on Gaussian Analysis to develop a toolkit that
is used throughout the book, including the celebrated Gordon’s Escape
through a Mesh Theorem. Our treatment draws inspiration from the excellent
texts [180, 181].

Notation: In this chapter, we try to reserve g for an isotropic Gaussian
vector and use X and Y to denote Gaussian vectors with other covariances.

8.1 Gaussian integration by parts and Wick’s formula

We start by covering some basics in Gaussian analysis, starting with a very
useful fact about Gaussian random variables: Gaussian integration by parts.

Lemma 8.1 (Gaussian integration by parts). Let g be an n dimensional
vector of id N(0,1) random wvariables (g ~ N(0,1,xyn)). Let v € R™ — R
be any differentiable function with at most exponential growth,' then for any
i € [n],

Blob(o)] = | 5 (0)].

Proof. For ¢ a univariate function, integration by parts gives

"We will not make an effort to describe the minimal regularity assumptions as
to not deviate from the main goal of this book. When we say differentiable with at
most exponential growth we mean that the derivatives also are of at most exponential
growth. The interested reader will realize that this is tightly connected to Sobolev
spaces on the Gaussian measure.
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Elgip(g:)] = /_Z w(x)(mp(\/;z)dx

_/_OOM . exp( ?) dv

Nor:

| e (%) 4y et

oo dz Vor

as long as ¢ is differential and has at most exponential growth. The proof
follows by taking p(z) = F(g1,...,9i—1, %, Git1,-- -, gn) and conditioning on
915-++39i—1,9i+15- -5 9n- g

It is straightforward to extend this formula to non-isotropic Gaussian vec-
tors, and we record this here as a corollary.

Corollary 8.2. Let X be a centered n-dimensional gaussian vector with co-
variance X, i.e. X ~ N(0,X). Let ¢ € R™ — R be any differentiable function
with at most exponential growth, then for any j € [n],

X =S 5,E| 22
B R(X)) = 3 Sk [ 52 00)]

Proof. We can write X = X2 g where g has iid A/(0,1) entries (note that
Y > 0). Defining 9 (g) = @(Zég) and using Lemma 8.1 yields

s
| — |
§’
I—l
M
“3
|—|
M
Q;
§
.“_‘.

i (izﬁz@)ﬁ[axk ] z { 0]

where in the first equality in the third line we used Lemma 8.1. The last equal-
ity follows from matrix multiplication and the fact that Yiisa symmetric
matrix. (]

Lemma 8.3 (Gaussian moments). Let g be a standard univariate Gaus-
sian. We have
Eg? = (2p — 1)!!,



8.1 Gaussian integration by parts and Wick’s formula 137

where (2p — )N = (2p—1)(2p —3)---3- 1. Also,

[Eg]™ < \/2p.

Proof. This is a straightforward application of Gaussian integration by parts
(Lemma 8.1). Let ¢(g) = g??~! then E[g- g??~!] = E[(2p — 1)g??~2]. Tterating
and using Eg? = 1 gives Eg?? = (2p — 1)!!. While it is easy to see that
(2p — D! < (2p)P, which proves the intended inequality, it is instructive to

see a different, direct, proof:
2p—2

Since E[g?’] = E[(2p — 1)¢**~?] and, by Jensen, E[g?*~2] < (E[¢?P]) =,

we have
2p—2

Elg] < (20— 1) (Elg]) ™ .
which can be rewritten as (E[g?"])” < (2p — 1). O

We will be interested in computing trace moments of Gaussian matrices,
which will involve computing expected values of polynomials of Gaussians. It
is clear that the expected value of any polynomial of i.i.d. standard Gaussians
can be computed using Gaussian integration by parts for each monomial (just
as in Lemma 8.3). Wick’s formula is a very useful way of organizing this
calculation. Before stating Wick’s formula, we need to define the notion of
pair partition.

Definition 8.4 (Pair Partition). Given k a positive integer, we define Py[k]
as the set of partitions of [k] into subsets of size 2 each. If k is odd then Py[k]
is empty. Given a function u on [k] and a pair partition v € Psolk] we say
that u is compatible with v, and write uw ~ v if for all sets {i,j} € v we have

u(i) = u(j).

Lemma 8.5 (Wick’s formula). Let g1, ..., g, be #id standard gaussian ran-
dom variables and let u : [p] — [n] then

]E[gu(l) o gu(p)] = Z Tumws

vEP;[p]

where Py[p] denotes a set of pair partitions and u ~ v means that the function
u s compatible with v (see Definition 8.4)

Proof. Since both sides are zero when p is odd we can focus on the case when
p is even. We can then prove the identity by induction. It is trivially true for
p =2, let p > 4 an even number. Using Gaussian integration by parts
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0
Elgu(1) - Gu@) * Gup) = E {%(l)gu(z) = 'gu(p):|

=E

p
Zgu(z) “ Guli—1) Lu(D)=u(@®) Jui+1) " Gu(p)
1=2

|
-M“

N
I|
N

Lu)=u) E [Gu(@) * ** Gu(i—1)Guit+1) * ** Jup)] -

Using the induction hypothesis for E [gu(g) “ Guli—1)Gulit1) ~gu(p)] (which
is a product of p — 2 factors) we get

NE

Lu()=u(i) Z Ly 1,90
v’ €P2([p]\{1,i})

Z Lun@ro{iiy = Z Tumws

v'eP ([pI\{1,i}) vEP;[p]

]E[gu(l) “Gu(2) " gu(P)] =

K2

||
N

I
M=

K2

U
N

where u(y)\11,;} denotes the restriction of u to the set [p] \ {1,i}. O

8.2 Gaussian interpolation, Poincaré, and concentration

In this section, we start with a classical tool in Gaussian analysis that we will
use several times, namely the idea of Gaussian Interpolation.

Lemma 8.6 (Gaussian Interpolation). Let X and Y be two centered in-
dependent n dimensional Gaussian vectors with covariances, respectively X~
and XY . Define, fort € [0,1],

Z; = VIX + V1 -tY, (8.1)

and let f: R™ — R be a twice differentiable function with at most exponential
growth. Then

d 1 « 0% f
AEUEI=5 Y (7 - e

Before proving this lemma, we note that the parameterization of the path,
although perhaps peculiar at first, is the one that in the case that X and Y are
identically distributed, renders Z; identically distributed to them for any ¢; it
is also the parameterization for which Cov(Z;) =t Cov(X) + (1 —t) Cov(Y),
where Cov(X) = EXXT (since EX = 0).
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Proof. The idea will be to use Gaussian integration by parts (Corollary 8.2).
By the chain rule (and swapping the order of differentiating and taking the
expectation)

d af
1
=E Zaxl (2\/ myﬂ (83
N RO NS B af 1
—E 9 (Z)\/EXl El o (Z)mn (8.4)

For the first term, conditioning on Y and using Corollary 8.2 on the random
variable vt X gives

0 f 1 -
E Z —X | = tX +vV1—-tY)VitX;
1 n
= %), X +V1-tY
o ; (t [Z Syom VX F )
1 n n
== »XR
> mE 30 )|
Jj=1
An analogous calculation for the second terms completes the proof. O

Gaussian interpolation will play (at least) two important roles in the fol-
lowing: (i) together with the fundamental theorem of calculus it will allows us
to compare Ef(X) with Ef(Y") for various functions f and Gaussian random
variables X and Y, this is the key tool behind the comparison inequalities of
Section 8.3; (ii) another important role of Gaussian interpolation is to provide
concentration inequalities, roughly speaking by interpolating between (X, X)
containing two exact copies of a random variable and (X, X’) containing two
independent copies, allows to quantitatively say how much two independent
copies of a random variable behave similarly, resulting in concentration of
measure. The first instance of this idea is in the so-called Gaussian covariance
identity, but we will see it again in the Gaussian Poincaré inequality and in
Gaussian concentration.

Lemma 8.7 (Gaussian covariance identity). Let ¢ and ¢ be two differ-
entiable functions (from R™ to R) of at most exponential growth. Let g and ¢’
be two iid n dimensional N'(0,I) vectors. Define

g =tg+v1-— t2g'. (8.5)
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We have )
cov(p(g), ¥(9)) = / E(Veo(g), Vib(ge))d.

Before proving this lemma, let us remark on how the interpolation in (8.5)
is related to the one in (8.1). The interpolation used in (8.1) is an interpola-
tion between two distributions of random variables linearly parameterized on
the covariance of these random variables. The interpolation in the covariance
identity (8.5) creates a path between a random variable and an i.i.d. copy of
it, linearly parameterized by the covariance between g and g(;). As we will see
in the proof below, we can study (8.5) by taking Z; = vtX + /1 — tY where
X and Y are two 2n-dimensional Gaussian random variables with covariances

X NN (O7 [ITLXTL OTLXTL]) and X NN (0’ |:ITLXTL Ian}) , (8.6)

O'I'LXTL I’I’LXTL ITLXTL ITLX’I’L

g

since, for each t € [0, 1], Z; ~ [
9@t

} (in the since of having the same proba-

bility law).
Proof. Let us start by defining £(t) = E [¢(g)1(g())]. One has

£(0) = (Ep(g)) (E(g)) and £(1) = E[p(g)¥(9)],
thus

cov(p(g), (g)) = £(1) — £(0) = / ¢ (tydt.

The idea now is to compute ¢'(t) using Lemma 8.6. We leverage the con-
struction above and consider Z; = VtX + /1 —tY where X and Y are in-
dependent gaussian vectors distributed accordingly to (8.6). Since, for each

t € [0,1], Z; has the same law as [gg } we have that f(Z;) has the same law
(®)
as ¢(9)(g(r)) for f: R*" — R given by f ( g]) = ¢()P(2) for y,2 € R,

and so £(t) = E[f(Z})]
The rest of the proof is a straightforward computation using Lemma 8.6:

d 2n 82
'(t) %E [f(Z)] = % Z (Eazbl B Eﬁ?) E [856 gxb (Zt)]
a,b=1 ¢

1 "9 0
3 <2 z; Eaxi @(9)(9%1&(9@)))

1=

E(Ve(g), Vib(gw)))-
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An elegant consequence of this lemma is the celebrated Gaussian Poincaré
inequality, which bounds the variance of a function of a gaussian vector by its
gradient yielding a form concentration of measure: “If a function f has small
gradient, f(X) has small variance”.

Proposition 8.8 (Gaussian Poincaré Inequality). Let f : R” - R be a
differentiable function with at most exponential growth. Let g ~ N (0, I xn)-
Then

Var (f(9)) <E[IVf(g)]*.

We note that this inequality (as the others in this chapter) can be effortlessly
extended to Lipchitz functions by a standard approximation argument.
Proof. By the Gaussian covariance identity (Lemma 8.7) we have

Var (f(g)) = cov(f(9), f(9)) = / E(V £(9), V(g0 dt
< / (EIVA@I2)* EIVF(g0)]2)* dt

1
_ /O E|[Vf(g)|2dt = E[Vf(9)]?,

where the inequality follows from Cauchy-Schwarz on both the inner-product
and the expectation and the penultimate equality follows from the fact that

g~ 9gu- O

We will now prove one of the most important results in concentration of
measure, Gaussian concentration. Although being a concentration result spe-
cific for normally distributed random variables, it will be very useful through-
out this book. Much like Poincaré’s inequality above, it intuitively it says that
if F: R™ — R is a function that is stable in terms of its input then F(X) is
well concentrated around its mean, where X € N(0,I). Unlike Pointcaré’s in-
equality above, Gaussian concentration provides Gaussian tail bounds. More
precisely:

Theorem 8.9 (Gaussian Concentration). Let g ~ N(0,I,,x,) be a vector
with i.i.d. standard Gaussian entries and f : R™ — R a o-Lipchitz function
(i.e.: |f(z)— f(y)| < ollz —yl, for all z,y € R™). Then, for every t >0

B{|f(g) ~Ef(g)| > t} < 2exp (—;U) |

Proof. We will assume that the function f is smooth as a limiting argument
can generalize the result from smooth functions to general Lipschitz functions.
The existence of the integrals we use follows from the constraints that the
Lipschitz property forces on growth of f. We also assume Ef(g) = 0 for ease
of notation, as we can simply consider ¢(g) = f(g) — Ef(g).
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We consider the moment generating function (as in (2.6))

My(X) = Elexp (Af(9))],

and note that

M§(A) = E[f(g) exp (Af(9))] = cov (f(g),exp (Af(9))),

since Ef(g) = 0.
The Gaussian covariance identity (Lemma 8.7) then gives

My = [ E(V1(6). T exp (Moo

= /0 E [(Vf(g), Vf(g@))Xexp (Af(g(t)))} dt.

The Lipchitz condition implies that [(V f(g), Vf(g)))| < 0 which together
with the fact that M;(\) > 0 gives

1
| MGV g/o o’E [Xexp (Af(g(n))| dt = oA M ().

Since My (0) = 1 this implies (one can see this, e.g., by noting that log M;(0) =
0 and |4 log M;(N\)| < |A|o?) that

2 2
My(X) < exp (/\20 > :

The rest of the proof follows from the standard Chernoff trick and Markov
Inequality (the same we did in Proposition 2.8), Formally, we showed that
f(g) is a sub-gaussian random variable (in the sense of Definition 2.9) and the
proof can be finished by using Proposition 2.10.

O

There is a direct argument for a weaker version of this inequality that
does not require the covariance identity. We refer the interested reader to
Theorem 2.1.12 in [169] (the original argument is due to Maurey and Pisier).

8.2.1 Talagrand’s concentration inequality

A remarkable result by Talagrand [166], Talangrad’s concentration inequality,
provides an analogue of Gaussian concentration for bounded random variables.

Theorem 8.10 (Talangrand concentration, Thm. 2.1.13 [169]). Let
K > 0, and let Xq,...,X, be independent bounded random variables with
|X;| < K foralll <i<mn. Let F: R"™ = R be a o-Lipschitz and convez
function. Then, for any t > 0,
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t2
P(FC0) - BIFCO] 2 0K} < cxewp ety ).

for positive constants c1, and ca.

Other useful similar inequalities (with explicit constants) are available
in [123].

8.3 Gaussian comparison principles

We will start this section with the celebrated Slepian’s Comparison Lemma,
also known as the Sudakov-Fernique inequality,? are crucial tools to com-
pare Gaussian processes. A Gaussian process is a family of Gaussian random
variables indexed by some set 7', { X}, (if T'is finite this is simply a Gaus-
sian vector). Given a Gaussian process Xy, a particular quantity of interest is
E [supyep X

We will focus on Gaussian Processes that are whose maximum is well
approximated by maximum on finite sets, we will call these separable Gaussian
processes.

Definition 8.11. We say a Gaussian process {X;},.p is separable if

E [supXt] = sup E [maxXt] .
teT T'CT teT’
|T' | <0

The Gaussian processes we will consider are either finite, which case they are
trivially separable, or they are defined over a separable set T" and have path
continuity on the process metric d(t,u) = \/E(X; — X,,)? which also ensures
that they satisfy the condition in Definition 8.11. In most cases, in fact, one
can simply think of the approximating subsets as e-nets of 7.

We will be particularly interested in comparing two different Gaussian
processes, usually one of interest with one that is simpler to understand.
Intuitively, if we have two Gaussian processes X; and Y; with mean zero
E[X;] =E[Y;] =0, for all ¢ € T, and the same variance, then the process
that has the “least correlations” should have a larger maximum (think the
maximum entry of vector with i.i.d. Gaussian entries versus one always with
the same Gaussian entry). Theorem 8.12 makes this intuition precise and
extends it to processes with different variances.?

2They are essentially the same statement, on being a slight generalization of the
other, we state here the more general form: Theorem 8.12.

3 Although intuitive in some sense, this turns out to be a delicate statement about
Gaussian random variables, as it does not hold in general for other distributions.



144 8 Concentration of Measure and Gaussian Analysis

Theorem 8.12 (Slepian/Sudakov-Fernique inequality).

Let {Xu} ey and {Yu},cp be two (almost surely bounded) separable cen-
tered Gaussian processes indexed by the same (compact) set U (see Defini-
tion 8.11). If, for every u,v € U:

E[X, - X,)° <E[Y, —Y,]?, (8.7)

then

E [maXXu] <E [max Yu} .
uelU uelU

Proof. Since X and Y are separable processes, we can reduce to the case
in which U is finite, by showing the inequality for all finite subsets of the
indexing set (see Definition 8.11).

The idea is to use Gaussian Interpolation (Lemma 8.6) on a soft-max. We
take

Z(t) = VtX + V1 - 2Y.

For 8 > 0 we define
1
Fs(Z(t)) = Elog <Z eﬁzu“)) .
uelU

Gaussian Interpolation (Lemma 8.6) implies that

n 2
GFEPZ0) = 5 D (- ) [ )|

Setting p,(Z) = A2 /3 1 ePZ:(t) (we dropped the t from p,(Z(t)) to
ease notation), we have

OF 1 ﬂeﬁzu(t)
Bazu( ) BY oy €02 pu(Z),
O%F BZ.u(t) 82,(1)
——(Z(t)) = 6’“’667%@) _ BZu®) Be 2
3:17u31:v ZTUGU eP 4w (ZMGU eﬁZw (t))

= B (0uwwpu(Z) — pu(Z)pu(Z)) .

Our goal is to show that %EFB(Z (t)) is non-positive, implying that
EF3(X) <EF3(Y) which by taking 8 — oo, and recalling that
logn

max Z,(t) < Fg(Z(t)) < 5 + max Z(t),

finishes the proof.
Showing that 4EFj(Z(t)) is non-positive is mechanical computation (us-
ing 3,y pu(Z) =1 and E[X, — X,)* = X — 22X + ¥X). Indeed,
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GERy(20) = 03 (B - Z0) 0ul2) —puZpu(2) (89)

dt foperst
;U (5 = ZX) pu(Z)pu(2), (8.9)
and
0> % Z ( X2 —E[Y, — YU]2) Pu(Z)po(Z)
=2 Z — 25X+ 52X - 50, + 25, - Z1) pu(Z2)pe(2)

) (Z)pv(Z>_ Z (Ei)_ZZv)pu(Z)pv(Z)

cU
U uFvelU

utv
=2 @
uFAVE

S EX -2 | Y] pu2)| = > (2K - 5N pu(Z)pe(2)

uelU veU\{u} uZvelU
2d
—EFs(Z(t
= S ZEF(Z()
where the last equality follows from }°, 7\ (3 Po(Z) =1 — pu(Z). O

We will also use in the sequel an extension due to Gordon [83, 84]. While
we omit the proof here, we note that it can be shown by a similar argument
as above, by taking a soft min-max, see, e.g., [84] or Problem 6.2. in [180]).

Theorem 8.13. [Theorem A in [84]] Let {Xtu}(; \yerxyr and {Yt’u}(t WET XU

be two (almost surely bounded) separable centered Gaussian processes* indeved
by the same (compact) sets T and U.
If, for every t1,to € T and uy,us € U:

E X100 — Xty sl SEYiar = Yool (8.10)
and, for t1 # to,
E[Xt,u — Xta o) > B [Yipun — Yioua) (8.11)
then
teT uwelU teT uwelU

E {mln max X; u] <E [mln max Yy u} .

Note that Theorem 8.12 easily follows by setting |T'| = 1.

“Here we need the min-max to be well approximated by finite subsets of 7' and
U in the sense of Definition 8.11, as before the processes on which we use this result
will be well approximated by e-nets.
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8.3.1 Spectral norm of a Wigner Matrix

Before proceeding with Gordon’s Escape Through a Mesh Theorem we take a
small detour to showcase the usefulness of what we already developed in this
chapter.

Let W € R™ "™ be a standard Gaussian Wigner matrix, a symmetric matrix
with (otherwise) independent Gaussian entries, the off-diagonal entries have
unit variance and the diagonal entries have variance 2 (recall (3.40)). Apax (W)

(n+1)

depends on 5= independent (standard) Gaussian random variables and it

is easy to see that it is a v/2-Lipschitz function of these variables, since

A (WD) = Aax (WD) £ A (WO = W) < W -]
- - F
The symmetry of the matrix and the variance 2 of the diagonal entries are
responsible for an extra factor of V2.
Using Gaussian Concentration (Theorem 8.9) we immediately get

t2
P{ A max(W) > Edpax(W) + ¢} < 2exp (—4> .

On the other hand, one can prove EXpax (W) < 24/n using Slepian’s in-
equality (Theorem 8.12) by comparing the gaussian process X, = u"Vu with
the gaussian process Y, = v2g7u for g € N (0, I,,xn), this is an excellent
exercises that we leave to the reader. Combining these we get the following.

Proposition 8.14. Let W € R™*" be a standard Gaussian Wigner matriz,
a symmetric matriz with (otherwise) independent Gaussian entries, the off-
diagonal entries have unit variance and the diagonal entries have variance 2.
Then,

P {Amax(W) > 2v/n+t} < 2exp (-i) .

Note that this gives an extremely precise control of the fluctuations of
Amax(W). In fact, for t = 24/logn this gives

P{)\max(W) > 2v/n + 2\/logn} < 2exp <—411gn) - g

n

This illustrated the level of concentration we can expect from the spectral
norm, or largest eigenvalues, of random matrices. As we will see in Chapter 9
the main challenge in many cases is in controlling the expected value of the
spectral norm, or largest eigenvalue.

8.4 Gordon’s Theorem

In Section 6.1 we showed that in order to approximately preserve the dis-
tances (up to 1 4 ¢) between n points, it suffices to randomly project them
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to © (6_2 log n) dimensions. The key argument was that a random projection
approximately preserves the norm of every point in a set S, in this case the set
of differences between pairs of n points. What we showed is that in order to
approximately preserve the norm of every point in S, it is enough to project
to @ (5_2 log |S |) dimensions. The question this section is meant to answer is:
can this be improved if S has a special structure? Given a set S, what is the
measure of complexity of S that explains how many dimensions one needs to
project on to still approximately preserve the norms of points in .S. We shall
see below that this will be captured—via Gordon’s Theorem—Dby the so called
Gaussian width of S.

Definition 8.15 (Gaussian width). Given a closed set S C RP, its Gaus-
sian width w(S) is defined as:

w(S) = E?Q;‘ [ggx] ,

where gy, ~ N (0, Ixp).

Similarly to the proof of Theorem 6.1 we will restrict our attention to sets
S of unit norm vectors, meaning that S C SP~! (which in particular implies
it is compact).

Also, we will focus our attention not in random projections but in the
similar model of random linear maps G : RP? — R? that are given by matrices
with i.i.d. Gaussian entries. For this reason the following proposition will be
useful:

Proposition 8.16. Let g4 ~ N (0,1;x4), and define
aq = El|gal.-
Then vVd —1< ,/d;il\/&gadg V.

We will prove here the weaker lower bound vd —1 < ag < v/d which is
sufficient for our purposes and has a very elegant proof.> Proof. The upper
bound is a straightforward consequence of Jensen’s inequality

ag = (Ellgall)* < El|gal|* = d.

The lower bound v/d — 1 < aq4 follows from the Gaussian Poincaré Inequality
(Proposition 8.8): let f(gq) = ||gall (and recall that since f is Lipschitz it
has a gradient a.e. and we can apply Proposition 8.8. Thus Var(f(gq)) <
E||V f(ga)||*> which gives:

d - (E|gl)* = Ellgl* - Elgl)* = Var(f(9)) < EIIVf(9)I* = Ellg/llgll|* = 1
O

We are now ready to present Gordon’s Theorem.

"There is a very nice discussion of this lower bound in this blog post [73].
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Theorem 8.17 (Gordon’s Theorem [84]). Let G € R¥*P be a random
matriz with independent N'(0,1) entries and S C SP™! be a closed subset of
the unit sphere in p dimensions. Then

1
Emax||—Gz| <1+ @,
z€S || aq Qq
and ) g
E min | —Gzx zlfw( ),
z€S || aq aq

where aqg = El|gq4|| and w(S) is the Gaussian width of S. Recall that Tj-l\/g <
ag < Vd.

Before proving Gordon’s Theorem we will note some of its direct implica-
tions. The theorem suggests that a—ldG preserves the norm of the points in S

up to 1+ %{?)7 indeed we can make this precise with Gaussian concentration

(Theorem 8.9).
Note that the function F(G) = max,cg ||Gz|| is 1-Lipschitz. Indeed

< Giz|| — ||Gaz]]| < Gi -G
< max[[|Gz|| — [|G22]]| < max [[(G1 — G2) 2|

G — G
‘§?g§| ] — ma G|
< |G — Ga| < ||G1 — Gs| g -

Similarly, one can show that F'(G) = min,cg |G| is 1-Lipschitz. Thus,
one can use Gaussian concentration to get

2
P {meaéi |G| > aq + w(S) + t} < exp (—t?) ) (8.12)
and
t2
P {melg IGz|| < ag —w(S) — t} < exp (—2) . (8.13)

This gives us the following theorem.
Theorem 8.18. Let G € R¥*P q random matriz with independent N(0,1)

entries and S C SP~! be a closed subset of the unit sphere in p dimensions.

2 2
Then, for e > “S) with probability > 1 — 2 exp {—a; (é‘ = @> ] :

ad ad

1
<1—amzch
aq

< (L+e)ll=ll,

forallz € S.

Recall that dﬁ < aﬁ <d.
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Proof. This is readily obtained by taking ¢ = %7 using (8.12) and (8.13).
O

Remark 8.19. Note that a simple use of a union bound® shows that w(S) <
v/2log | S|, which means that taking d to be of the order of log|S| suffices to
ensure that éG to have the Johnson Lindenstrauss property. This observation
shows that Theorem 8.18 essentially directly implies Theorem 6.1 (although
not exactly, since éG is not a projection).

8.4.1 Gordon’s Escape Through a Mesh Theorem

Theorem 8.18 suggests that, if w(S) < ag4, a uniformly chosen random sub-
space of R™ of dimension (n — d) (which can be seen as the nullspace of G)
avoids a set S with high probability. This is indeed the case and is known
as Gordon’s Escape Through a Mesh Theorem (Corollary 3.4. in Gordon’s
original paper [84]). See also [130] for a description of the proof. We include
the Theorem below for the sake of completeness.

Theorem 8.20 (Corollary 3.4. in [84]). Let S C SP~! be a closed subset of
the unit sphere in p dimensions. If w(S) < aq, then for a (p — d)-dimensional
subspace A drawn uniformly from the Grassmanian manifold we have

P{ANS #0} < gexp (_118 (aq —W(S))2> ;

where w(S) is the Gaussian width of S and aq = E||g4|| where gg ~ N (0, Izxq).

8.4.2 Proof of Gordon’s Theorem

We are now ready to prove Gordon’s Theorem.
Proof. [of Theorem 8.17]

Let G € R™*? with i.i.d. A'(0, 1) entries. We define two Gaussian processes:
Forve S CSP~tandueSitlet g~ N (0, ixa) and h ~ N (0, Ipxp) and
define the following processes:

Auw = gTu + th,

and
By = uT'Gu.

For all v,v' € S € P! and u,u/ € S,

5This follows from the fact that the maximum of n standard Gaussian random

variables is < v/2logn.
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E|Ayw — Ay )’ —E|Byy — By w| =4—2 (u"u' +0"0") — Z (viu; — v;u;)z
i
=4 - 2(u u +v v)— [2—2( T V') (u Tu')]
=2-2 (u o + ol uTu’vTv’)

=2(1—u"u) (1—0"0).

This means that E |4, , — Avlyu/|2fIE | By,w — ngul|2 >0andE|A4, ., — Av,yu,|2f
E|By., — Bv/,ur|2 = 0 if v = ¢v'. This implies that we can use Theorem 8.13
with X = A and Y = B (these processes are well approximated by e-nets and
separable, see Definition 8.11), to get

Emin max A,, <Emin max B, ,.
vES yeSd-1 VES yeSd—1

Noting that

Emin max B,, =Emin max u Gv—EmlnHGUH
vES yeSd—1 vES ueSd—1

and

E |min max A,,|=E maX 9 u+]Em1nh v
veES yeSd-1 eSd— veS

—Eureré%)(lg U_E%Iggv(( hT) = aq — w(9),

gives the second part of the theorem.
On the other hand, since E |4, ,, — Av/,u/|2 —E|Byu — ngu/\2 > 0 then
we can similarly use Theorem 8.12 with X = B and Y = A, to get

Emax max A,, > Emax max B, ,.
vES ueSd-1 veS yeSd—1

Noting that

Emax max B,, = Emax max u’Gv = Emax |G|,
vES uesd—1 vES uesd—1 veS

and

E [max max A, u] E max g u—l—IElmaxh v =aq+ w(9),
vES yesd—1 ueSI— vES

concludes the proof of the theorem.
O

A remarkable application of Gordon’s Theorem is that one can use it for
abstract sets S such as the set of all natural images or the set of all plausible
user-product ranking matrices. In these cases Gordon’s Theorem suggests that
a measurements corresponding just to a random projection may be enough
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to keep geometric properties of the data set in question, in particular, it may
allow for reconstruction of the data point from just the projection. These
phenomenon and the sensing savings that arises from it is at the heart of
compressive sensing and several recommendation system algorithms, among
many other data processing techniques. Motivated by these two applications
we will focus in this section on understanding which projections are expected
to preserve the norm of sparse vectors and low-rank matrices. Compressive
sensing will be discussed in detail in Chapter 10.

Remark 8.21 (Ornstein-Uhlenbeck process). There is an important side of
Gaussian Analysis that we do not cover, related to the theory of Markov
semigroups, and in particular, the Ornstein-Uhlenbeck process. In fact, this
approach is arguably the most natural way of proving Poincar’e’s inequality,
and also yields Log-Sobolev and hypercontractivity inequalities. We point the
reader to Chapter 2 of [180] for an excellent pedagogical introduction to these
ideas.

Remark 8.22 (Hermite Polynomials). Another central set of ideas in Gaussian
analysis that we do not cover in this book is the theory of Hermite polyno-
mials, which are a basis of orthogonal polynomials in the Gaussian measure,
forming an analogue of Fourier analysis in the Gaussian setting. Writing a
function f € L?(N(0,1)), or in L?(N(0,1)), in its Hermite polynomial ex-
pansion is a classical idea, often known as a Wiener Chaos expansion. Due
to Gaussian integration by parts (Lemma 8.1) taking the gradient of such a
function yields simple transformations on the expansion coefficients. In fact,
this yields a very simple proof of Poincaré’s inequality (try it!).” The Hermite
polynomials are the eigenfunctions of the Ornstein-Uhlenbeck Operator (men-
tioned in Remark 8.21). We point the reader to the classical reference [165]
for more on Hermite polynomials and an introduction to the beautiful theory
of orthogonal polynomials.

"Hermite polynomials also play a crucial role on the development of low degree
method for computational hardness of hypothesis testing (see, e.g., Appendix B
of [106]).
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Matrix Concentration Inequalities

There are many applications where one needs to control the spectrum of
random matrices. Depending on the context, these matrices may represent
the noise whose effect in a spectral algorithm is controlled by its spectral
norm, or the size of a dual variable that needs to be controlled to show the
exactness of a convex relaxation (such as in Chapter 7). While some of the
tools we developed in Chapter 2 could be used to control the size of the entries
of random matrices, which could translate to spectral bounds, this would likely
introduce many suboptimal dimensional factors.

In what follows we will state and prove various matrix concentration re-
sults, somewhat similar to Theorem 7.9 (in Section 7.2.7). We will focus on
understanding, and bounding, the typical value of the spectral norm of ran-
dom matrices by upper bounding E|| X ||, as these tend to be high dimensional
objects themselves they often have enough concentration that tail bounds are
then easy to obtain (as it was illustrated in Chapter 8 with Proposition 8.14).
Our presentation will rely on Gaussian analysis (developed in Chapter 8).
Our treatment of the Non-commutative Khintchine inequality, and the Ma-
trix Concentration inequality we will prove follows parts of [181] and [178].

9.1 Non-commutative Khintchine inequality

We start with a particularly important inequality involving the expected value
of a random matrix. It is intimately related to the non-commutative Khint-
chine inequality [145], and for that reason we will often refer to it as Non-
commutative Khintchine (see, for example, (4.9) in [175]). We will prove this
inequality in Section 9.1.2.

Theorem 9.1 (Non-commutative Khintchine (NCK)). Let 4y,..., A, €
RI¥4 be symmetric matrices and gy, . .., gn ~ N(0,1) i.i.d., then:

!For an approach to matrix concentration that includes a direct proof of Theo-
rem 7.9 we recommend Tropp’s excellent monograph [176].
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%
EHngAkH < <2ﬂogd] +1) (9.1)

where .
o2 = H ZA%H. (9.2)
k=1

Note that, akin to Proposition 8.14, we can also use Gaussian Concentra-
tion to get a tail bound on || _; grAk||. We consider the function

F:R" — H ngAkH.
k=1

We now estimate its Lipschitz constant; let g, h € R™ then
3 o] - | ] < () - (S|
k=1 k=1 k=1

= [ (50— o)

k=1

= max Z gk — hi) (UTAka

: 1
viloll=1 1 &

M ¢
Il
3

(gr — hk)AkH
k=1

n

Z (UTAkv)z

k=1

A
5
5

||M:

QQ
=

|

>
?)"

2
max (’UTAk’U) llg — k|2,
v: ||v]|=1 =

where in the first inequality we made use of the triangular inequality and in
the last one we used Cauchy-Schwarz.
This motivates us to define a new parameter, the weak variance o,.

Definition 9.2 (Weak Variance (see, for example, [176])). Given sym-

metric matrices Ay, ..., A, € R . We define the weak variance parameter
as
- 2
02 = max (UTAkU) .
v: ||v||=1 1

This means that, using Gaussian concentration (Theorem 8.9), and setting
t = uo,, we have
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{H ngAkH > (2 + 210g(2d)) o+ ua*} < exp ( - %UF) (9.3)

k=1

Thus, although the expected value of ||>°;_; gk Akl is controlled by the
parameter o, its fluctuations seem to be controlled by o.. We compare the
two quantities in the following proposition.

Proposition 9.3. Given Ay, ..., A, € R symmetric matrices, recall that
2 n
o= H and o, = max (T Apw)>.
v: ||v]|=1
k=1
We have
o, <O

Proof. Using the Cauchy-Schwarz inequality,

n n

0? = max (vTAkv)2 = max (o™ [Akv])Z
villvll=1 7= viloll=1 7=
n
< max (IIUHHAWH = max Z:llAkvll2
villvll=1 ¢ viflvfl=

= max ’UTA U—HZAQH—J

1
vifloll=1 £

9.1.1 How tight is the Non-commutative Khintchine inequality?

The following simple calculation is suggestive that the parameter ¢ in Theo-
rem 9.1 is indeed the correct parameter to understand E||>"7_; g Ax]-

S o] = B (o) =2 e, o7 ()
k=1 k=1 k=1

vi [lof|=1

n 2 n
> max EUT( A ) v = max ’UT( A2)1)=0'2.

v Jlofi= v flofl=1

But a natural question is whether the logarithmic term in (9.1) is needed.
Motivated by this question we will explore a couple of examples.

Ezample 9.4. We can write a d X d Wigner matrix W (recall Section 3.3.2) as
a gaussian series, by taking A;; for ¢ < j defined as
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T

7

Aij = eiejT +eje
if i # j, and
Az’i = \/561‘6;11.
It is not difficult to see that, in this case, ZKJ. Afj = (d + 1)I4xq4, meaning
that ¢ = +/d + 1. This implies that Theorem 9.1 gives us

E[W] < Vdlogd,

however, we know that E||[W|| < v/d, meaning that the bound given by NCK
(Theorem 9.1) is, in this case, suboptimal by a logarithmic factor.?

The next example will show that the logarithmic factor is in fact needed
in some examples

Ezxample 9.5. Consider A = ekef € R4 for k = 1,...,d. The matrix
> r—q gk Ay corresponds to a diagonal matrix with independent standard gaus-
sian random variables as diagonal entries, and so its spectral norm is given
by maxy, |g|. It is known that maxi<g<q |gk| < v/logd. On the other hand, a
direct calculation shows that o = 1. This shows that the logarithmic factor
cannot, in general, be removed.

This motivates the question of trying to understand when is it that the
extra dimensional factor is needed. For both these examples, the resulting
matrix X = 22‘21 gr A has independent entries (except for the fact that it
is symmetric). The case of independent entries [149, 156, 109, 28, 110] is now
somewhat understood:?

Theorem 9.6 ([28]). If X is a d xd random symmetric matriz with gaussian
independent entries (except for the symmetry constraint) whose entry i,j has
variance b?j then

d

max » b2 + max |b;;| /logd.
1<i<d J ij
J:

E[X] <

Remark 9.7. X in the theorem above can be written in terms of a Gaussian
series by taking
Aij = bij (61'6? + ejBZT) s

fori < jand A;; = bi,;eieiT. One can then compute o and o,:

d
2 2 2 2
0 = max b7; and o7 < maxb;,.
1<i<d 4 Y * ij Y
Jj=1
2By a < b we mean a < b and a > b.
3A notable improvement of Theorem 9.6 is a dimension free bound obtained
in [110].
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This means that, when the random matrix in NCK (Theorem 9.1) has inde-
pendent entries (modulo symmetry) then

E|| X £ o+ +/logdo.. (9.4)

Recently an improvement, using ideas from Free Probability to remove
the dimensional factor in some situations, was obtained in [22] (see [42] for
non-gaussian extensions). Interestingly, the same work shows that (9.4) does
not hold in general, disproving a conjecture that was included in an earlier
version of this manuscript. See Section 9.3 for a more thorough discussion on
these improvements.

9.1.2 Proof of the Non-commutative Khintchine inequality

We are now ready to prove Theorem 9.1, the Non-commutative Khintchine
inquality (NCK). See Section 7.2. in [177, Section 7.2] and [181] for presenta-
tions of the same argument.
Proof. [of Theorem 9.1]

Let p be a positive integer. Let X = >"}'_, gr Ak, we have

E|X])* <E|X|* =E[X*| <ETr X,

where the first inequality follows from Jensen and the second from the fact
that the trace of a positive semidefinite matrix dominates its spectral norm.
Using Gaussian integration by parts (Lemma 8.1) we get

n n 2p—2
ETr X =ETr Y guApXP ' =ETr Y Y A X714, X2
k=1 k=1 q=0
n 2p—2
= EZ Z Tr (AquAngp_Q) .
k=1 ¢=0
If the matrices Aq,..., A, were commutative, then we would have that

Tr (AquAszp_Q) = Tr (AiXQp_Q) for all ¢. It turns out that this is the
worst possible situation and the commutative upper bound always dominates.
We state and prove in Lemma 9.8 below that, for all 0 < ¢ < 2p — 2,
Tr (AquAkXQP*Z) <Tr (AiXQp”). This implies that

ETX <EY (2~ )T (AX°2) = (2p - DEY T ((Z Ai) X) |
k=1

k=1 k=1

Holder’s inequality on Schatten norms then gives

Sz

k=1

n

EZTI‘ (X?72) = (2p— 1)02EZT1" (x2r72).
k=1 k=1

ETr X% < (2p—1)
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Iterating this procedure gives
ETr X7 < (2p — 1)!1o?Pd,
which implies
E|X[ < (Tr X%)% < ((2p — DIlo®d)™ < [(2p— )% od%.  (9.5)
Taking p = [logd] and using the fact that (2p — 1)!l < (@)p (see [178] for
an elementary proof consisting essentially of taking logarithms and comparing

the sum with an integral, note also that Lemma 8.3 would yield the same
bound up to a constant of e) we get

20 1\? , ,
E”X” S <[Ogj—|+> od 2o dl < ( |’10gd‘| + 1)§

O

Lemma 9.8. [Commutative is the worst-case I] Let A and X be symmetric
matrices. For any p,q non-negative integers satisfying 0 > q > 2p — 2 we have

Tr (AXIAX?P~?) < Tr (A2X?P7?).

Proof. Consider the spectral decomposition X = ZZ 1 AiViv; T then

d
Tr (AXTAX?P7?) = Z AgA?p_Q_q Tr (Av;v] Avjo))
,Jﬂ
- Z NAP2 (0T Ay )
i,5=1
d w2 g
< D P (o Av;)” > (v Avy)®
ij=1 ij=1
= Z I [2P72 (0] Avy)? Z A2 (o] Avy) (vf Avy)
4,j=1 i,j=1
d
= Z Tr ()\2” 2 TAw TA’UJ) =Tr (A2X2p72)7
ij=1

where the inequality follows from Hélder’s inequality (Proposition 3.3, in par-
ticular (3.12)). O

2p—2—gq
2p—2
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Remark 9.9. Theorem 9.1 is an upper bound on a Gaussian process, and
thus an orderwise optimal bound can (in theory) be obtained by Talagrand’s
generic chaining, and up to a logarithmic factor by covering number argu-
ments via a Dudley’s (see [167]). Interestingly, there is no known proof of
a bound that is optimal up to logarithmic factors based on these techniques
(in other words, without using operator theoretical arguments). Such an argu-
ment would likely extend well beyond the setting of spectral norm in matrices,
see [30] for a discussion on this and related problems.

9.2 Matrix concentration inequalities

In what follows, we closely follow [178] and present an elementary proof of a
few useful matrix concentration inequalities using Theorem 9.1. We start with
a Rademacher version of Theorem 9.1.

Theorem 9.10. Let Hy, ..., H, € R¥*? be symmetric matrices and e, ..., ep
i.i.d. Rademacher random variables (meaning = +1 with probability 1/2 and
= —1 with probability 1/2), then:

n
D el
k=1

=

E < (5 +nlog(d)]) o,

where

(9.6)

Proof. Let g1, ..., g, by iid standard gaussians independent from the Rademacher
random variables, since the sign and absolute value of gy are independent and

E|gx| = %, Jensen implies

Z (Elgkl) exHe
k=
" m
\/ Z |grlexHe|| = \/ 2B
The conclusion then follows by applying Theorem 9.1. (]

We note that Theorem 9.10 holds without the extra 7 factor (see [178] for
a proof that boils down to the same as argument as the one above to prove
its Gaussian counterpart, Theorem 9.1).

Using Theorem 9.10, we will prove the following theorem.
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Theorem 9.11. Let Ty,..., T, € R be random independent symmetric
positive semidefinite matrices, then

=

V@ (B )|

i ET;
=1

where

C(d) := 27 + 4x[logd]. (9.7

A key step in the proof of Theorem 9.11 is an idea that is extremely useful
in Probability, the trick of symmetrization. For this reason we isolate it in a
lemma.

Lemma 9.12 (Symmetrization). Let Ti,...,T, be independent random
matrices (note that they do not necessarily need to be positive semidefinite,
for the sake of this lemma) and €1, . ..,&, random i.i.d. Rademacher random

variables (independent also from the matrices). Then

n
E &1y
i=1

+2E

Proof. The triangular inequality gives

i ET;
i=1

Let us now introduce, for each 4, a random matrix 7] identically distributed
to T; and independent (all 2n matrices are independent). Then

n

>

i=1

E +E

i (T: — ET;)
=1

n

> (T - ET)

i=1

E

Z (T, - BT} — Eqy [T} —]ET,;T{])H
eSS

where we use the notation E, to mean that the expectation is taken with
respect to the variable a and the last step follows from Jensen’s inequality
with respect to Ep».

Since T; — T} is a symmetric random variable,? it is identically distributed
to g; (T; — T/), which gives

n

ET,Z(T T!)

i=1

:ET

4Note that we use the notation “symmetric random variable” to mean X ~ —X
and “symmetric matrix” to mean X7 = X
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n

Z(Ti_Ti/)

i=1
n
E &1y
i=1

concluding the proof.

E =E

z”: ei(Ti — T7)
=1

=1 =1

b

Proof. [of Theorem 9.11]
Using Lemma 9.12 and Theorem 9.10 we get

1
n 2

>

i=1

n

E <

+/C()E

ET;
1

=1

=

161

The trick now is to make a term like the one in the LHS appear in the RHS.
For that we start by noting (you can see Fact 2.3 in [178] for an elementary

proof) that, since T; > 0,

=1

n

>

i=1

< max ||T5|
(2

This means that

n

S

i=1

n

E <

+VE@E | (max 7))

=1

=1

Furthermore, applying the Cauchy-Schwarz inequality for E gives,

=1

E <

>t
i=1

i=1

+V/O@ (Emax i) (E

1
dMom

Now that the term E||>"""_, T;|| appears in the RHS, the proof can be finished
with a simple application of the quadratic formula (see Section 6.1. in [178]

for details).

We now show an inequality for general symmetric matrices

O

Theorem 9.13. Let Yi,...,Y, € R be random independent symmetric

matrices satisfying EY; = 0, then

n

>y

i=1

E < /C(d)o + C(d)L,

where,
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> By

i=1

o? = and L? = Emax||Y;|? (9.8)

and, as in (9.7),
C(d) := 2 + 4x[logd].

Proof.
Using Symmetrization (Lemma 9.12) and Theorem 9.10, we get

1
n 2
PRE

i=1

E < 2Ry |E.

zn:é'iY; S \/C(d)E

1 1
n 2 2
s < (=)30])
=1

and the proof can be concluded by noting that Y;> = 0 and using Theo-
rem 9.11. ([

i=1

Jensen’s inequality gives

n

D Y?

i=1

E

Remark 9.14 (The rectangular case). One can extend Theorem 9.13 to general

rectangular matrices Si,. .., S, € R4*% by setting
0 5]
n= s

the so-called Hermitian dilation, and noting that

o _|I[ 0 8.7
el = | 5

For details we refer to [178].

S;8T 0
=[5 oPs, ||| = mox sz sl NsesTy-

9.3 Improvements leveraging intrinsic freeness

In Section 9.1.1 we saw that the logarithmic factor in the Non-commutative
Khintchine (Theorem 9.1) inequality is required in the worst-case but su-
perfluous in some instances. If we pay close attention to the proof of The-
orem 9.1, we notice that there is a potential loss in using Lemma 9.8 when
A, ..., A, are non-commutative, and that perhaps the (2p—1) factor coming
from bounding every summand with the ¢ = 0 one, could be (in some cases)
replaced by a constant, which would remove the logarithmic factor in the final
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bound.® Tropp [177] took the first steps in connecting improvements in the
Non-commutative Khintchine and ideas in Free Probability [139] showing an
improvement of Theorem 9.1 in [177]. This is done by using Gaussian Inte-
gration by parts twice and controlling, with a (sometimes) smaller parameter
w — called the matrix alignment parameter — the summands where the factors
from different applications of Gaussian Integration by parts “cross”. This al-
lows for a more efficient iteration argument and replaces the 0((1og n) %) factor
multiplying o by a 6((log n)%) factor.

We briefly describe below an improvement to Theorem 9.1 in [22] that often
yields sharp bounds. To describe it, it is worth showing a slightly different
proof of Theorem 9.1. Let X = >, gxAx and p > 1 as in Theorem 9.1.
Wick’s formula (Lemma 8.5) gives

EX? = 3 Elgu)  Guep) Tr (Aua) - Augap)

w:[2p]—[n]

Do D luw Tr(Auq) - Auep)

w:[2p]—[n] vEP2[2p]

YooY Tr(Auy e Auey)

vEPy[2p] u: [%D]Nj["]

If the matrices A were commutative then the summands

> Tr(Au) - Auep)

w(2p] = [n]

would coincide for all pair partitions, and in particular with the pair partition
vo :={(1,2),(3,4),...,(2p — 1,2p)} on which the summand is given by

n p
Yo Te(Auwy - Auep) = D Tf(Auu A3<p>):Tr <2A2>
k=1

ui[%LPN} o (n] u:[p]—[n]

The following Lemma is analogous to Lemma 9.8 and due to Buchholz [44].

Lemma 9.15. [Commutative is the worst-case II [44]] For any v € P[2p] and
Ay ..., A, symmelric matrices

n D
Y T (A Auep) <Tr (Z%) :

u: [2’5]\/—; [n] k=1

5Tt is worth noting that both the term ¢ = 0 and ¢ = 2p—2 are equal to the upper
bound in Lemma 9.8, however while it is tempting to hope to bound all other other
terms by a smaller order parameter, this would yield a final bound of /20, which
we know does not hold for Wigner matrices (which would need 20). The notion
of crossing and non-crossing partitions (See Definition 9.16) is an elegant way of
singling out which terms are substantial.
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If Y°7_, A7 is a multiple of the identity matrix, there are many pair parti-
tions that match the upper bound above: whenever there is an adjacent pair,
it can be “peeled-off” in the sum and potentially make adjacent pairs that
were not adjacent before; the partitions that can be fully “peeled-off” this
way are precisely the so-called non-crossing partitions and they indeed match
the upper bound above (see Lemma 9.21).

Definition 9.16 (Crossing and Non-crossing Partitions). We say v €
P[2p] is a crossing partition when it has pairs (i1,i2) € v and (j1,j2) € v
such that 11 < j1 < i2 < jo. Otherwise we say v is non-crossing. The set of
non-crossing partition is denoted by NC[2p] C v € P[2p].

Bandeira, Boedihardjo, and van Handel [22] showed that, in many settings,
the random matrix X exhibits intrinsic freeness in the sense that only the
summand corresponding to non-crossing partitions are non-negligible.

This is done by interpolating (using Gaussian Interpolation, Lemma 8.6)
the gaussian model X with a Free Probability model X¢... where the gaussians
are replaced by a semi-circular family — these can be viewed, in a sense, as
“non-commutative random variables” for which Wick’s formula (Lemma 8.5)
holds when summing only over NC[2p] (this can be viewed as the limiting be-
havior of Lemma 9.19 below, and indeed the argument can be viewed as replac-
ing Gaussians by ever larger Wigner matrices). While the matrix alignment
parameter of Tropp is a key component in the argument, intrinsic freeness is
controlled by v? = ||CovX]||, the spectral norm of the covariance matrix of the
entries of X (this covariance matrix is a d? x d* matrix). When £ > polylog(d)
the improvement yields E||X| < (2 + o(1))o. Furthermore, Brailovskaya and
van Handel [42] developed a universality principle that roughly states that
for any random matrix Y = > | ¥; sum of independent matrices (such as
in Theorem 9.13), as long as the summands are sufficiently small, the matrix
Y behaves like a gaussian analogue Ys where the entries of Y are replaced
by gaussian random variables with the same mean and covariance, and for
which the results in [22] can be used (notice that this is different than the
argument, based on symmetrization, done to prove Theorem 9.13 from The-
orem 9.1). Combining these two tools, one obtains an improvement over the
matrix Bernstein inequality.

Theorem 9.17 ([22, 42]). Let Yi,...,Y,, € R4 be random independent
symmetric matrices satisfying EY; = 0, and such that |Y;|| < R, for alli € [n],
almost surely. Then

n

>V

=1

E

<20+ C’(v%o%(logd)% + R3o%(logd)s + Rlogd),

and

Pl

n

> Y

i=1

Nl
ST
Wl

220+C(v%a (logd) + 0.t + R a%t%+Rt>} < det




9.3 Improvements leveraging intrinsic freeness 165

where, C' is a universal constant,

>Er?
i=1

Note that if v,0,, R < ——
polylog(d)

(see [22, 42]), then all terms multiplying the universal constant C are negligible
and, in the tail bound, the tail parameter ¢ only appears in low-order terms.

, 02 =||Cov(Y)| and 62 = sup R |’UTY’LU|2. (9.9)

llull=llwl=1

0'2:

o, which happens often in applications

9.3.1 Crossings and Wick’s formula for the GUE

An instructive pursuit is to compute an analogue of Wick’s formula for a com-
plex valued analogue of the Wigner matrix that has appeared in Section 3.3.2
and Example 3.3.2). This is an instance in which the phenomenon of can-
cellations arising from crossing partitions is particularly transparent (and it
is tightly connected to the seminal work of Voiculescu [186] and Haagerup-
Thorbjgrnsen [86], and to the methods in [22] that give rise to the inequalities
in Theorem 9.17).

Definition 9.18 (Gaussian Unitary Ensemble (GUE)). A random D x
D GUE matriz W is a random Hermitian (self-adjoint) matriz whose up-
per off-diagonal entries are iid CN (0, %) and whose diagonal entries are iid
N(0,%) (also independent from the off-diagonal entries). Wi; ~ CN(0, %)
means that Re (W;;) ~ N(0,%), Im (W;;) ~ N(0,%), and that both are
independent.

The goal of this subsection is to show that, for large-dimensional GUEs,
there is Wick’s formula whose non-negligible terms only involve non-crossing
partitions.

Lemma 9.19 (Wick’s formula for GUEs (cf. Lemma 8.5)). Let Wq,..., W,
be iid D x D GUE matrices and let u : [2p] — [n] then

1 1
SEMWuay - Waep] = 3. luw+0 (D2> :
veNC,[2p]

where NCs[2p] denotes de set of non-crossing pair partitions, u ~ v means the
function u is compatible with v, and the constant in O may depend on n,p,
and u (see Definitions 8.4 and 9.16).

We start by showing that non-crossing terms do not have cancellations.

Definition 9.20. Let v € P[2p] (see Definition 8.4). We define u,, : [2p] — [p]
as first surjective assignment u : [2p] — [p], in the lexicographic order, that
satisfies u ~ .5

SFor all our uses here, we could have picked any surjective assignment v : [2p] —
[p], the one that is lexicographically first is an arbitrary choice.
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Proposition 9.21. Let v € NC[2p], and let Wh,..., W, be iid D x D GUE
matrices, then

E [Tt Wy, (1) Wa, 2] = Tr(I) (9.10)

Proof. Since v is non-crossing there must exist ¢ € [2p — 1] such that u, (i) =
u, (i 4+ 1). For such as ¢ we have that the LHS of (9.10) is equal to

E [Tr Wty Wa (]EW% . qu(i)> W (i42) - Wa (29) | »

where the outside expectation is over the other random matrices. Further-
more, since (EWu,u)qu(i)) = [, such pairs can be “peeled-off” one by one
to finish the proof (formally, one can do induction by noting that v\ {i,7+ 1}
is also non-crossing). O

We are now ready to examine crossing partitions.

Proposition 9.22. Let By, By, B3, By be D x D (complex) matrices and let
W,V be two independent D x D GUE matrices. We have

1
]E[TI‘W81VBQWB3VB4] = ETI' (83323134) . (911)

Proof. This follows from a computation, and noting that for W ~ GUE we
have EW;, ;, Wi, j, = 50i,7,6i,5, (where &;; is the indicator of i = j).” Indeed,
expanding the LHS of (9.11) we see it is equal to

D
> B [Wiyiy (Bu)inis Vigia (B2)isis Wisis (Bs)igis Viis (Ba)isia ]

i1yeig=1
N
= > T2 OinicOiis Oigis Oiir (B1)inia (B2)iais (Bs)iair (Ba)isin
iyeig=1
1 D
= > (B)isis(Ba)isin (Bs)ivia (Ba)igis

11,0504 =1

LHS of (9.11)

1
= ﬁ Tr [B3B2B1B4} .

O

Proposition 9.23. Let v € P[2p] \ NC[2p] be a crossing partition, and let
Wi,...,Wp be isd D x D GUE matrices, then

1
< 5 Tr(l) (9.12)

0<E[TrWa, ) Way2p)
"An analogous calculation can be done for real value Wigner matrices (Exam-
ple 9.4), also called GOE, but there are more choices of i1, ji, 42, j2 that yield non-

zero moments, making the calculation less transparent).
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Proof. This follows by taking a crossing {4, j,%’,j'} such that i < j <4’ < 7/,
uy (1) = uy (i), and u, (j) = u,(j'), applying Proposition 9.22 on W, (;) and
W, ;) and using induction on p. ([l

Proof. [of Lemma 9.19]
With all the ingredients collected, this follows directly from the useful
equality

E [T Wy Waep] = D lusE [TeWo, o) W], (913)
veEP[2p]

and Propositions 9.23 and 9.21.

The equality (9.13) is a consequence of Lemma 8.5, a formal proof fol-
lows by noting that W, are gaussian matrices and thus we can write W, =
> i1 ge,jA; for some A; (complex valued). This means we have

E[Tr W Waep)] = > Tr(A, A B [gus e Gu@p)iia)

J1s--d2p=1

(]

Tr (Ajl s Aj2p) Z luNyleV

Jis--d2p=1 veP[2p]

I
(]
(]

Tr (Aj1 R Ajgp) ].le, s

veP(2p] J1seesj2p=1
and on the other hand,
E[TWa,q) - Wa,on] = D T (A Aiy) B [guy s Gu @0y
J1seed2p=1
= Z TI‘ (A]1 .. Ajzp) 1]',\,1,,
J1y-esd2p=1

where the second equality uses the fact that v is the only pairing compatible
with u,. O
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Compressive Sensing and Sparsity

Most of us have noticed how saving an image in JPEG dramatically reduces
the space it occupies on our hard drives (as opposed to file types that save
the value of each pixel in the image). The idea behind these compression
methods is to exploit known structure in the images; although our cameras
will record the value (even three values in RGB) for each pixel, it is clear that
most collections of pixel values will not correspond to pictures that we would
expect to see. Natural images do not correspond to arbitrary arrays of pixel
values, but have some specific structure to them. It is this special structure
one aims to exploit by choosing a proper representation of the image. Indeed,
natural images are known to be approximately sparse in certain bases (such as
the wavelet bases) and this is the core idea behind JPEG (actually, JPEG2000;
JPEG uses a different basis).

10.1 Sparse recovery

Let us think of x € CP as the signal corresponding to the image already
represented in the basis in which it is sparse. The modeling assumption is that
x is s-sparse, or ||z]|o < s, meaning that = has at most s non-zero components
and, usually, s < p. The fp-norm! ||z||¢ of a vector z is the number of non-zero
entries of x. This means that when we take a picture, our camera makes p
measurements (each corresponding to a pixel) but then, after an appropriate
change of basis, it keeps only s < p non-zero coefficients and drops the others.
This seems a rather wasteful procedure and thus motivates the question: “If
only a few degrees of freedom are kept after compression, why not in the
first place measure in a more efficient way and take considerably less than p
measurements?”.

The question whether we can carry out data acquisition and compression
simultaneously is at the heart of Compressive Sensing [46, 47, 48, 49, 66, 77].

We recall that the £5 norm is not actually a norm, as it does not necessarily
rescale linearly with a rescaling of x.
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It is particularly important in MRI imaging [119, 74], as fewer measurements
potentially means shorter data acquisition time. Indeed, current MRI technol-
ogy based on concepts from compressive sensing can reduce the time needed
to collect the data by a factor of six or more [119], which has significant ben-
efits especially in pediatric MR imaging [184]. We recommend the book [77]
as a great in-depth reference about compressive sensing.

In mathematical terms, the acquired measurements y € C™ are connected
to the signal of interest x € CP, with m < p, via

y| = A x| . (10.1)

The matrix A € C™*P models the linear measurement (information) process.
Classical linear algebra tells us that if m < p, then the linear system (10.1)
is underdetermined and that there are infinitely many solutions (assuming
that there exists at least one solution). In other words, without additional
information, it is impossible to recover x from y in the case m < p.

In this chapter, we assume that x is s-sparse with s < m < p. The goal is to
recover x from this underdetermined system and do this in a computationally
efficient manner. We emphasize that we do not know the location of the non-
zero coefficients of « a priori?, otherwise the task would be trivial.

10.1.1 Gaussian width of s-sparse vectors

Before discussing algorithms, let us discuss well-posedness of the problem at
hand: In order to be able to reconstruct x from y we need at the very least
that A is injective on sparse vectors. Furthermore, in order for reconstruction
to be stable, one should ask not only that A is injective with respect to s-
sparse vectors, but actually that it is almost an isometry, meaning that the
f5 distance between Azxz; and Azs should be comparable to the distances
between z; and xo, if they are s-sparse. Since the difference between two s-
sparse vectors is in general a 2s-sparse vector, we can alternatively ask for A
to approximately preserve the norm of 2s-sparse vectors. Gordon’s Theorem
(Theorem 8.17) suggests that we can take A € R™*? to have i.i.d. Gaussian
entries and to take m ~ w? (Sa,), where oy = {z: x € SP71, |z||o < 25} is
the set of 2s-sparse vectors, and w (S2s) denotes the Gaussian width of S
(see Definition 8.15).

2And therein lies the challenge, since s-sparse signals do not form a linear sub-
space of R? (the sum of two s-sparse signals is in general no longer s-sparse but
2s-sparse).
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Proposition 10.1. If s < p, the Gaussian width w (Ss) of S, the set of unit-
norm vectors that are at most s-sparse, satisfies

w (8,)? < slog (g) .

Proof.
w(Ss) =E

max
vesSP~1, [[v]lo<s

where g ~ N(0, I,x,). We have

w(Ss)=E  _max lgrl,

where g is the restriction of g to the set of indices I
Given a set I', Theorem 2.21 yields

IP’{Ilgr||2 > s+ 25Vt + Qt} < exp(—t).

Union bounding over all I' C [p], |I'| = s gives

P{ max  [lgr|® > s+ 2vVsvVt+ Zt} < (];) exp(—t).

rclpl, |I'|=s

Taking u such that ¢t = su, gives

P{ max _ flgr|* 2 s (1 +M+QU>} < exp [—su+ slog ()]

rclpl, |[I'=s
(10.2)
Taking v > log (eg) it can be readily seen that the typical size of
Maxpcy], |I'|=s lgr|? is < slog (f) The proof can be completed by integrat-

ing (10.2) in order to get a bound of the expectation of \/max ], |rj=s l9r|>.

This suggests that ~ 2slog (%) measurements suffice to stably identify
a 2s-sparse vector. Indeed, we will see below that at this order of number
of measurements it will actually be possible to efficiently recover an s-sparse
vector.

10.1.2 Sparse recovery and ¢; optimization

Since the system (10.1) is underdetermined and we know that x is sparse, the
natural approach to try to recover x is to solve

min_ [|z[|o

s.t. Az =y, (10.3)

and hope that the optimal solution z corresponds to the signal in question x.
However the optimization problem (10.3) is NP-hard in general [77]. Instead,
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the approach usually taken in sparse recovery is to consider a convex surrogate
of the £y norm, namely the ¢; norm: ||z||y = >.7_, |2;|. Figure 10.1 depicts the
£, balls and illustrates how the ¢; norm can be seen as a convex surrogate of
the o norm due to the pointiness of the ¢, ball in the direction of the basis
vectors, i.e. in “sparse” directions.

(c)p=1 (d)p=2 (e) p= o0

—~
o
N
bS]
I
jen)
—
=5
=
i)
I
(SIS

Fig. 10.1: £, norm unit balls with different values for p

The process of ¢, minimization can be understood as inflating (or de-
flating) the ¢, ball until one hits the affine subspace of interest. Figure 10.2
illustrates how ¢; norm minimization promotes sparsity, while 5 norm mini-
mization does not favor sparse solutions. We have seen in Chapter 2.1.4 that
the /1 ball becomes “increasingly pointy” with increasing dimension. This be-
havior works in our favor in compressive sensing—another manifestation of
the blessings of dimensionality.

x2

(a)p=1 (b) p=2

Fig. 10.2: A two-dimensional depiction of ¢; and ¢> minimization. In £, min-
imization, one inflates the ¢, ball until it hits the affine subspace of interest.
This image conveys how the ¢; norm (left) promotes sparsity due to the “poin-
tiness” of the ¢; ball. In contract, ¢3 norm minimization (right) does not favor
sparse solutions.

This motivates us to consider the following optimization problem (surro-
gate to (10.3)):
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min ||z||;

s.t. Az =y, (104)

In order for (10.4) to be a good procedure for sparse recovery we need two
things: for the solution of it to be meaningful (hopefully to coincide with z);
and for (10.4) to be efficiently solvable.

Remark 10.2. We will consider for the moment the real-valued case = €
RP, A € R™ P and formulate (10.4) as a linear program® (and thus show
that it is efficiently solvable). Let us think of w™ as the positive part of z and
w™ as the symmetric of the negative part of it, meaning that z = wt — w™
and, for each ¢, either w; or w; is zero. Note that, in that case,

p
ol = D wf +wy =17 (wt +w7).

i=1
Motivated by this, we consider:

min 17 (wt +w™)
st. Alwt —w™) =y
wt >0
w- >0,

(10.5)

which is a linear program. It is not difficult to see that the optimal solution
of (10.5) will indeed satisfy that, for each ¢, either w; or w;r is zero and it is
indeed equivalent to (10.4); if both w; and w;" are non-zero, one can lower
the objective while keep satisfying the constraints by reducing both variables.
Since linear programs are efficiently solvable [183], this implies that the ¢;-
optimization problem (10.4) is efficiently solvable. This optimization program
is also efficiently solvable over C despite not being a linear program.

In what follows we will discuss under which circumstances one can guaran-
tee that the solution of (10.4) coincides with the sparse signal of interest. We
will discuss a couple of different strategies to show this, as different strategies
generalize better to other problems of interest. Later in this chapter we also
discuss strategies for constructing sensing matrices.

10.2 Null space property and exact recovery

Given a s-sparse vector x, our goal is to show that under certain conditions
x is the unique optimal solution to

min ||z||;

s.t. Az =y, (10.6)

3In the complex case, we are dealing with a quadratic program.
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Let S = supp(x), with |S| = s. If = is not the unique optimal solution
of the ¢; minimization problem, there exists z # x as optimal solution. Let
v =z — x, it satisfies

lv+z| < |z|i and A(v+z)= Az,
this means that Av = 0. Also,
[zlls = [lzlly = [lo +zl1 = [[ (v + 2)g lls + lvselly = lzslls = vslly + lvse ],

where the last inequality follows by applying the triangle inequality. This
means that ||vglls > ||vse|l1, but since |S| < p it is unlikely for A to have
vectors in its nullspace that are so concentrated on such few entries. This
motivates the following definition.

Definition 10.3 (Null Space Property). A is said to satisfy the s-Null
Space Property (A € s-NSP) if, for all v in ker(A) (the nullspace of A) and
all |S| = s, we have

lvslli <llvgell-

From the argument above, it is clear that if A satisfies the Null Space
Property for s, then x will indeed be the unique optimal solution to (10.4).
In fact, as the property is described in terms of any set S of size s, it implies
recovery for any s-sparse vector.

Theorem 10.4. Let x be an s-sparse vector. If A € s-NSP then x is the
unique solution to the {1 optimization problem (10.4) with y = Ax.

The Null Space Property is a statement about certain vectors not belong-
ing to the null space of A, thus we can again resort to Gordon’s Theorem
(Theorem 8.17) to establish recovery guarantees for Gaussian sensing matri-
ces. Let us define the intersection with the unit-sphere of the cone of such
vectors

Cs = {v e SP™" : Fgcpp), 51=s vslly > llvsell, } - (10.7)

10.2.1 Gordon’s Theorem and the Null Space Property

Since for an m x p matrix A, A € s-NSP is equivalent to ker(4) N Cs = 0,
Gordon’s Theorem, or more specifically Gordon’s Escape Through a Mesh
Theorem (Theorem 8.20), implies that there exists a universal C' > 0 such
that if A is drawn with iid Gaussian entries, it will satisfy the s-NSP with
high probability provided that m > Cw? (Cs), where w (Cy) is the Gaussian
width of C; (as defined in (10.7)).

41f 2 has support size strictly smaller than s, in what follows, we can simply take
a superset of it with size s
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Proposition 10.5. Let s < p and C, C SP~1 defined in (10.7). There exists
a universal constant C' such that

w(Cs) < Cyfstog (),

s
where w (Cy) is the Gaussian width of Cs (as defined in (10.7)).
Proof. The goal is to upper bound

w(Cs) = Elr)ré%x vTg,

for g ~ N(0,I). Note that Cj is invariant under permutations of the indices.
Thus, the maximizer v € C, will have its largest entries (in absolute value) in
the coordinates where g has its largest entries (in absolute value). Let S be
the set of the s coordinates with largest absolute value of g. We have

Emaxvl g =FE max vggs + vgchc.
veCs vifluslly Zllvselly, [lvll2=1

The key idea is to notice that the condition ||vg|]; > ||vse||; imposes a strong
bound on the ¢ norm of vge via [Jvse||; < |lvs|l; < V/s|lvsll, < v/s. This can
be leveraged by noticing that

v§gs +v5egse < llvslly llgslly + loselly lgse |l

This gives
w(Cs) <Ellgslly + Vs llgsell -
where S corresponds to the set of the s coordinates with largest absolute value
of g.
We saw in the proof of Proposition 10.1, in the context of computing the
Gaussian width of the set of sparse vectors, that E [|gs|l, < 1/slog (2). Since
all entries of ggc are smaller, in absolute value than any entry in gg we have

oo — s

the proof. 0

that ||lgge|> < % ||gs\|§ This implies that E|[[gse|| . < 1/log (&), concluding

Together with Theorem 10.4 this implies the following recovery guarantee,
matching the order of number of measurements suggested by the Gaussian
width of sparse vectors.

Theorem 10.6. There exists a universal constant C > 0 such that if A is a
m X p matrix with i.i.d. Gaussian entries, and m > Cslog (f), the following
holds with high probability: For any x an s-sparse vector, x is the unique
solution to the {1 -optimization problem (10.4) with y = Ax.
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10.3 The Restricted Isometry Property

An alternative (and more classical) approach to establishing exact recov-
ery via ¢;-minimization is through the Restricted Isometry Property (RIP),
which corresponds precisely with the property of approximately preserving
the length of sparse vectors.

Definition 10.7 (Restricted Isometry Property (RIP)). An m X p ma-
triz A (with either real or complex valued entries) is said to satisfy the (s, d)-
Restricted Isometry Property (RIP),

2
(1= 8)lll* < [ Az[” < (1 + 8)l|=]|*,
for all s-sparse .

If A satisfies the RIP for sparsity 2s, it means that it approximately pre-
serves distances between s-sparse vectors (hence the name RIP). This can be
leveraged to show that A satisfies the NSP.

Theorem 10.8 ([51]). Let y = Ax where x is an s-sparse vector. Assume
that A satisfies the RIP property with dos < %, then the solution x. to the
l1-minimization problem

min ||z||1, subject to Az =y = Az (10.8)
z
becomes x exactly, i.e., T, =T
To prove this theorem we need the following lemma.
Lemma 10.9 ([51]). We have

(Az, Az')| < 8522’1

for all x,x' supported on disjoint subsets S,S" C [1,---,p], z, 2’ € RP, and
S| <5, [9] < '
Proof.

Without loss of generality, we can assume ||z||2 = ||2’||2 = 1, so that the

right hand size of the inequality becomes just 4. Since A satisfies the RIP
property, we have

(1= dsrs) |z £ 2[5 < | A £ 2)[5 < (1 + ) [l £ 2|3

Since z and 2’ have disjoint support, ||z + 2'||3 = ||z]|3 + ||=]|3 = 2; the RIP
property then becomes

2(1 = bgys) < || Az + Az’ ||2. < 2(1 + 04y o)

The polarization identity implies:
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1
[(Az, A2')| = £ |1 A2 + Aa'|)3 — || Az — Aa'|3]

1
< Z‘2<1 + 5s+8’) - 2(1 - 5s+5’)

= 65-{-3’ .

O

To prove Theorem 10.8, we simply need to show that the Null Space Prop-
erty holds for the given conditions.

Proof (of Theorem 10.8). Take h € ker(A) \ 0. Let index set Sy be the set

of indices of s largest entries (by modulus) of h. Let index sets S1, 53, be

index sets corresponding to the next s to 2s, 2s to 3s, - - - largest entries of h.
Since A satisfies the RIP, we have

1
Ihsoll3 < T3 14%s, 2 (10.9)
1
=13 > (Ahs,, A(=hs,)) (because hs, = » (—hs,)) (10.10)
RS j>1
1
S — 252s||hso||2”hsj||2 (by Lemma 10.9) (10.11)
jz1
dos
< 75 sl D N, 12 (10.12)
° i>1
das
lhsollz < 1 _25 > ks, - (10.13)
F i1
Note that

1 1
1hs; ll2 < 57 [|hs;lloo < 57 2[R, [|1-

We can rewrite (10.13) as

525 _1
[hsollz < 1-5.5° Z |hs; 1 Il (10.14)
g
625 _1
=155 lhl (10.15)

Also, by the Cauchy-Schwarz inequality,

Ihsolle = D> 1x il <[> 12 [> " 02 = Vs|hs, |- (10.16)
i€So 1€So 1€S0

We have 0o < % as a condition, so
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525 525 1 1
1— 58 < 1— 528 < 5 for 625 < g (1017)

Combining (10.15), (10.16), and (10.17), we get
1
1aso [l < 5 l1All1- (10.18)

Now we show that (10.18) is equivalent to ||hg|l1 < ||[hsc]1:

[hslly < [lhselly

& 2lhsl < el + Ihslly
o 2llhs ] < mh

1
o sl < 5 Al

Thus, we have shown that ||hs,|l1 < ||hsc]|l1, which is the Null Space
Property and by virtue of Theorem 10.4 our proof is complete. O

Many results in compressive sensing (such as Theorem 10.8) can be ex-
tended will little extra effort to the case where x is not exactly s-sparse,
but only approximately s-sparse, a property that is sometimes referred to as
compressible. See [50, 77] for a detailed discussion.

10.3.1 Random matrices and the Restricted Isometry Property

Theorem 10.6 (and its proof) showed conditions under which a random gaus-
sian matrices satisfy the NSP. To show the same for RIP is straightforward
with the mathematical machinery we have now developed. Indeed, using
Proposition 10.1 and Theorem 8.18, one can readily show® that matrices with
Gaussian entries satisfy the RIP with m ~ slog (%)

Theorem 10.10. Let A be an m X p matriz with i.i.d. standard Gaussian
entries, there exists a constant C such that, if

m > Cslog (g) , (10.19)

then \/%A satisfies the (s, %)—RIP with high probability.

We point out an important aspect in this context. Theorems 10.6 and 10.10
combined with Theorem 10.8 yield a uniform recovery guarantee for sparse
vectors with Gaussian sensing matrices. Once a Gaussian matrix satisfies the
RIP or NSP (which it will for certain parameters with high probability), then

®Note that the 1+ term in the RIP property corresponds to (1 :|:€)2 in Gordon’s
Theorem. Since the RIP is a stronger property when § is smaller, one can simply
1
use € = 30.
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exact recovery via {1-minimization holds uniformly for all sufficiently sparse
vectors.

Figure 10.3 illustrates the phase transition phenomenon in compressive
sensing: The plot shows that for a given sparsity level s, £; minimization
almost always succeeds in finding the sparsest solution if the number of mea-
surements is above a certain threshold, while it almost always fails if the
number of measurements is below that threshold. The very sharp transition
between failure and success visible in the plot is supported by theoretical
analysis [67, 12]. The sensing matrix in this experiment is a Gaussian random
matrix of dimension m x p where the ambient dimension p = 100 is fixed. The
number of measurements, m varies from 1 to 100, and the sparsity s varies
from 1 to m. For each choice of s and m we construct a sparse vector x with
non-zero random coefficients at s locations chosen uniformly at random from
1,...,100. We compute y = Az and solve for x via (10.8). For each choice
of s and m this experiment (randomly chosen A and x) is repeated 50 times.
We plot the empirical rate of success (here, success means that the relative
reconstruction error is less than 107%), where black means complete failure
and white means complete success. A detailed analysis of this phase transition
phenomenon can be found in [67, 12].

m/p

0 0.2 0.4 0.6 0.8 1
s/m

Fig. 10.3: The phase transition phenomenon in compressive sensing: if the
number of measurements is above a certain threshold, ¢; minimization almost
always succeeds in finding the sparsest solution, while it almost always fails if
the number of measurements is below that threshold. We plot the empirical
probability for different sparsity levels and different number of measurements
at fixed ambient dimension, where black represents 100% failure and white
represents 100% success. Note the sharp transition between the two extremes.
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While there are obvious similarities between Johnson-Lindenstrauss pro-
jections and sensing matrices that satisfy the RIP, there are also important
differences.® We note that for JL. dimension reduction to be applicable (an
upper estimate of ) the number of vectors must be known a priori (and this
number if finite). JL projection preserves (up to &) pairwise distances between
these vectors, but the vectors do not have to be sparse. As a consequence, JL
projections P are, in general, a one-way street, as in general one cannot re-
cover x from y = Px. In contrast, a matrix that satisfies the RIP works for
infinitely many vectors, however with the caveat that these vectors must be
sparse. Moreover, one can recover such sparse vectors z from y = Ax (and
can do so numerically efficiently).

As a consequence of these considerations, a matrix that satisfies the RIP
does not necessarily have to satisfy the Johnson-Lindenstrauss Lemma. While
a Gaussian random matrix does indeed satisfy both, RIP and the Johnson-
Lindenstrauss Lemma, other matrices do not satisfy both simultaneously. For
example, take a randomly subsampled Fourier matrix A of dimensions m X p.
In the notation of the definition of the Fast Johnson-Lindenstrauss transform,
this matrix A would correspond to A = SF, but without the diagonal matrix
D that randomizes phases (or signs) of z. This matrix A will not meet the
Johnson-Lindenstrauss properties of Theorem 6.1. But the absence of the
phase randomization matrix D is not a hurdle for A = SF to satisfy the RIP
under appropriate conditions on the matrix dimensions.

Indeed, it is known [49] that if mm = 2s(spolylogp), then the partial
Fourier matrix satisfies the RIP with high probability. The exact number
of logarithmic factors needed is the object of much research with the best
known upper bound due to Haviv and Regev [91], giving an upper bound
of m = 25(slog? slogp). On the side of lower bounds it is know that the
asymptotics established for Gaussian matrices of m = Os(slog(p/s)) are not
achievable in general [26].

Checking whether a matrix satisfies the RIP or not is in general NP-
hard [23, 171]. While Theorem 10.10 suggests that RIP matrices are abundant

m

for s = Tog(p)? it appears to be very difficult to deterministically construct

matrices that satisfy RIP for s > y/m, known as the square bottleneck [168,
25, 24, 27, 41, 129]. The only known unconditional construction that is able to
break this bottleneck is due to Bourgain et al. [41]; their construction achieves
s~ mitefora small, but positive, €. There is also a conditional construction,
based on the Paley Equiangular Tight Frame [25, 27].

In Section 10.5.1 we will consider more practical conditions for designing
sensing matrices. These conditions, which are better suited for applications,
are based on the concept of the coherence of a matrix. Interestingly, the phase
randomization of x that is notably absent in the partial Fourier matrix men-
tioned above, will reappear in this context in connection with nonuniform
recovery guarantees.

STnterestingly, there are known relationships between the two objects [103].
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Remark 10.11. If one is interested in understanding the probability of exact
recovery of a specific sparse vector, and not a uniform guarantee on all sparse
vectors simultaneously, then it is possible to do a more refined version of the
arguments above that are able to predict the exact asymptotics of the number
of measurements required; see [53] for an approach based on Gaussian widths
and [11] for an approach based on Integral Geometry [11].

10.4 Duality and exact recovery

In this section we describe yet another approach to show exact recovery of
sparse vectors via (10.4). In this section we take an approach based on du-
ality, the same strategy we took in Chapter 7 to show exact recovery in the
Stochastic Block Model. The approach presented here is essentially the same
as the one followed in [78] for the real case, and in [173] for the complex case.

Let us start by presenting duality in Linear Programming with a game
theoretic view point, similarly to how we did for Semidefinite Programming
in Chapter 7. The idea is again to to reformulate (10.5) without constraints,
by adding a dual player that wants to maximize the objective and would
exploit a deviation from the original constraints (by, for example, giving the
dual player a variable u and adding to to the objective u” (y — A (wT — w™))).
More precisely consider the following

min max 17 (w"‘ + w_) — (v+)Tw+ — (v_)Tw_ +uT (y —A (w+ — w_)) .
“_ vwt>0
v~ >0
(10.20)

Indeed, if the primal player (picking wt and w™ and attempting to mini-
mize the objective) picks variables that do not satisfy the original constraints,
then the dual player (picking u, v, and v~ and trying to maximize the ob-
jective) will be able to make the objective value as large as possible. It is then
clear that (10.5) = (10.20).

If the order with which the players choose variable values, this can only
benefit the primal player, that now gets to see the value of the dual vari-
ables before picking the primal variables, meaning that (10.20) > (10.21),
where (10.21) is given by:

max min 17 (w+ —|—w7) — (v+)Tw+ — (vf)wa +uT (y —A (aﬁ — wf)) .
vt>0 “_
v7§0 v

(10.21)

Rewriting

max mln (1—vt - ATu)Tw+ +(1-v 4+ ATu)Tw_ +uly (10.22)
vt>0 “_
v~ >0
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With this formulation, it becomes clear that the dual players needs to set
1—vt - ATu=0,1—-v" + ATu =0 and thus (10.22) is equivalent to
T
max u'y
vt>0
v- >0
1—vt—ATu=0
1-v 4+ATu=0

or equivalently,

max, uly

st. —1< ATy <1. (10.23)

The linear program (10.23) is known as the dual program to (10.5). The
discussion above shows that (10.23) < (10.5) which is known as weak duality.
More remarkably, strong duality guarantees that the optimal values of the two
programs match.

There is a considerably easier way to show weak duality (although not as
enlightening as the one above). If w™ and w™ are primal feasible and w is dual
feasible, then

0< (1" —u"A)wh + (1" +u"A)w™ (10.24)
=1T(wr+w) —u" [A(w" —w)] =17 (wT +w™) —uly,

showing that (10.23) < (10.5).

10.4.1 Finding a dual certificate

In order to show that wt — w™ = x is an optimal solution” to (10.5), we will
find a dual feasible point u for which the dual matches the value of wt —w™ = x
in the primal, u is known as a dual certificate or dual witness.

From (10.24) it is clear that u must satisfy (17 —uTA)w™ = 0 and
(1T + uTA) w™ = 0, this is known as complementary slackness. This means
that we must take the entries of ATu be +1 or —1 when z is non-zero (and
be +1 when it is positive and —1 when it is negative), in other words

(ATu)S = sign (xg),
where S = supp(z), and HATUHOO <1 (in order to be dual feasible).

Remark 10.12. It is not difficult to see that if we further ask H (ATu) gellee <L,
any optimal primal solution would have to have its support contained in the
support of z. This observation gives us the following lemma.

"For now we will focus on showing that it is an optimal solution, see Remark 10.12
for a brief discussion of how to strengthen the argument to show uniqueness.
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Lemma 10.13. Consider the problem of sparse recovery discussed above. Let
S = supp(z), if Ag is injective and there exists u € RM such that

(ATu)S = sign (xg),

and

1(A" )

then x is the unique optimal solution to the £1-minimization problem (10.4).

Se oo<1’

Since we know that (ATu)S = sign (zg) (and that Ag is injective), we try
to construct® u by least squares and hope that it satisfies H (ATu) o <L

More precisely, we take

Se
U = (A%:)Jr sign (zg),

where (Ag)T = Ag (A%:Ag)fl is the Moore-Penrose pseudo-inverse of AE.
This gives the following corollary.

Corollary 10.14. Consider the problem of sparse recovery. Let S = supp(z).
If Ag is injective and

HA?CAS (14?;145)71 sign (xs)H <1,

then x is the unique optimal solution to the ¢1-minimization problem (10.4).

Theorem 10.10 establishes that if m > Cslog (g), for a universal con-
stant C, and A € R™*? is drawn with i.i.d. Gaussian entries N’ (07 %) then?
it will, with high probability, satisfy the (s,1/3)-RIP. Note that, if A sat-
isfies the (s,1/3)-RIP then, for any |S| < s one has ||[As| < y/1+ % and

[ (AgAs)_1 | < (1- %)_1 = 2, where | - || denotes the operator norm
|B]| = maxg=1 || Bz

This means that if we take A random with i.i.d. A" (0, 1) entries then, for
any |S| < s we have that

- 13
| As (ATA) sign (zs) || < 1+ 35Vs= oW

and because of the independency among the entries of A, Ag- is independent
of this vector and so for each j € S¢ we have

2
T T4 1 1 t
P (‘Aj Ag (ASAS) sign (a;s)‘ > mﬂﬁt) < 2exp (—2> ,
8Note how this differs from the situation in Chapter 7 where the linear inequal-
ities were enough to determine a unique candidate for a dual certificate.
9Note that the normalization here is taken slightly differently: entries are nor-
malized by \/—%, rather than -, but the difference is negligible for our purposes.
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where A; is the j-th column of A.
An application of the union bound gives

- . 1 t2
P (HAEQCAS (A5 As) ' sign (:vs)Hoo > m\@ﬁt) < 2Nexp <_2> 7

which implies

B

)’

¥ (HAT“AS (4545) " sign (xs)Hoo = 1) < 2pexp 7(7

o3

—oxp (3 [ ~2on)] )

which means that we expect to exactly recover x via £; minimization when
m > slog(p). While this can be asymptotically worse then the bound of
m 2 slog (f), and this guarantee is not uniformly obtained for all sparse vec-
tors, the technique in this section is generalizable to many circumstances and
illustrates the flexibility of approaches based in construction of dual witnesses.
We will discuss nonuniform guarantees in more detail in the next section.

10.5 Compressive sensing: from theory to practice

10.5.1 Sensing matrices and incoherence

In applications, we usually cannot completely freely choose the sensing matrix
to our liking. This means that Gaussian random matrices play an important
role as benchmark, but from a practical viewpoint they play a marginal role.
Clearly, randomness in the sensing matrix seems to be very beneficial for com-
pressive sensing. However, in practice, there are many design constraints on
the sensing matrix A, as in many applications one only has access to struc-
tured measurement systems. For example, we may still have the freedom to
choose, say the positions of the antennas in radar systems that employ mul-
tiple antennas [163, 164], the position of sensors in MRI [119, 5, 39, 138], or
the sampling locations in digital signal acquisition [128]. By choosing these
randomly, we can still introduce randomness in our system. Or, we can trans-
mit random waveforms in sonar and radar systems [92, 146]. Yet, in all these
cases the overall structure of A is still dictated by the physics of wave prop-
agation. In other applications, it will be other physical constraints or design
limitations that will dictate how much randomness we can introduce into the
sensing matrix.

While establishing the RIP for Gaussian or Bernoulli random matrices
is not too difficult, it is already significantly harder to do so for the partial
Fourier matrix [49, 153, 91] and time-frequency matrices [70], and even harder
for more specific sensing matrices.
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A useful concept to overcome the practical limitations of the RIP is via
the concept of the (in)coherence of a matrix. This concept has proven to be
widely applicable in practice. While we want to avoid the constraints of the
RIP, we nevertheless take it as our point of departure. Recall that the RIP
(Definition 10.7) asks that any S C [p], |S| < s satisfies:

2
(1 =)l < [[Asz|” < (1+6)[|l=]?,
for all z € RISl This is equivalent to

max il (Agjis — I) w <4,
© Ty

or equivalently
|ATAs —1]| < 6.

If the columns of A are unit-norm vectors (in R™), then the diagonal
of ALAg is all-ones, this means that ALAg — I consists only of the non-
diagonal elements of AL Ag. If, moreover, for any two columns a;, a;, of A
we have |a?aj’ < p for some p then, Gershgorin’s circle theorem tells us that
HAEAS - IH < pu(s—1).

More precisely, given a symmetric matrix B, the Gershgorin’s Circle
Theorem [93] states that all of the eigenvalues of B are contained in the
so called Gershgorin discs (for each i, the Gershgorin disc corresponds to

{)\ A= Bl <35 |Bij|}. If B has zero diagonal, then this reads: || B|| <

Ej;éi |Bij E
Given a set of p unit-norm vectors ay, ..., a, € R™ we define its worst-case
coherence u as
.[‘L(a'lv"'7ap) :ma’X|<azaaj>| (1025)
i#]
Given a set of unit-norm vectors ai,...,a, € R™ with worst-case coher-

ence p, if we form a matrix with these vectors as columns, then it will be
(s, u(s — 1))-RIP, meaning that it will be (s, £)- RIP for s < %ﬁ

This motivates the problem of designing sets of vectors ai,...,a, € R™
with smallest possible worst-case coherence. This is a central problem in Frame
Theory [162, 55, 52, 188]. Recall that in finite dimensions, a set of vectors
ai,...,ap € H™ (where H = R or C) is called a frame for H™ if there exist

constants (frame bounds) 0 < A < B < oo such that!?
P
Allz|®> <> (@, ar)|* < Bz|)? (10.26)
k=1

for every x € H™. The associated frame operator S is defined by

10Gince here we are dealing with a finite dimensional Hilbert space, the upper
frame bound is always trivially fulfilled.



186 10 Compressive Sensing and Sparsity

P

Sz = Z@%%)%ﬂ (10.27)

i=1

The frame definition (10.26) can be equivalently expressed as requiring that
Al < S < BI holds, where < denotes the positive-semidefinite order. A frame
is called tight it A = B, in which case S = AI. If ||a;]| =1 foralli=1,...,p
then {ax}?_, is called a unit norm frame. We call a unit norm frame {ay}?_;
equiangular if

l(ai,a;)| = ¢ for all i, j with i # j, (10.28)

for some constant ¢ > 0. Obviously, any orthonormal basis is equiangular.

We can now provide an elucidating answer to the question of a lower bound
on the coherence of a set of vectors ay,...,a, via the following theorem from
frame theory.

Theorem 10.15 ([162]). Let {ax},_, be a unit-norm frame for H™, where

H=R or C Then
[ p—m
> = 10.2
play, ... ap) = m(p—1) (10.29)

Equality holds in (10.29) if and only if {ay}}_, is an equiangular tight frame.
Proof. A simple calculation shows that
) P P
trace(S) = [[S2[|7 = ) llax|* = p, and trace(S*) = [|S|7 = Y [(ax, @),
k=1 k=1

Let Ay > --- > A\, be the eigenvalues of S. Let 1 denote the all-one vector.
By the Cauchy-Schwarz inequality

m 2 m
trace($)? = (D) = (LA} S ILIZHAHE = m Y- AF = m trace 52,
k=1 k=1

which can be stated equivalently as

>y z
(an, w)* > —. (10.30)
k I=1 m
Equality holds in (10.30) if and only if A\; =--- = X\, = p/m, i.e., if and only

if {ay}t_, is a tight frame
We now consider

1 1 P
max(ax,a)? > 3 I, an)? = —— (Dl - »),

k£l
(10.31)
with equality if and only if {a)}}_, is equiangular. By the bound (10.30) we
have
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21 (kzpzzp:|<ak,az>2—p>2 21 (%—p):%, (10.32)

with equality if and only if {ax},_, is a tight frame. Inequalities (10.31)
and (10.32) together give (10.29) and the proof is complete. O

We note that if H = R equality in (10.29) can only hold if p < m(m+1)/2,
while if H = C then equality in (10.29) can only hold if p < m?. These
statements follow from the bounds in Table II of [61].

The coherence bound (10.29) of a set of p unit-norm vectors in m dimen-
sions is also known as Welch bound [189]. Due to this limitation implied by
Theorem 10.15, deterministic constructions based on coherence cannot yield
matrices that satisfy the RIP for s > \/m, known as the square-root bottle-
neck [25, 168].

However, as we will see in Section 10.5.2, if we are willing to accept slightly
weaker recovery guarantees than provided by the RIP, matrices with low co-
herence do give rise to sensing matrices that come with appealing theoretical
guarantees while also being useful in practice.

Theorem 10.15 suggests that in order to design sensing vectors of mini-
mal coherence, we should look for equiangular tight frames (ETFs). The exis-
tence and construction of ETFs is a rather challenging problem that intersects
with a wide range of areas such as harmonic analsyis, algebraic, combina-
torics, finite geometry, group theory and representation theory, and coding
theory [162, 188]. Applications include signal processing, wireless communica-
tions, numerical linear algebra, and quantum physics. Indeed, ETF's are deeply
connected to Zauner’s conjecture, particularly through their role in quantum
information theory and the concept of SIC-POVMs (Symmetric Information-
ally Complete Positive Operator-Valued Measures) [191, 155, 14].

Another interesting and very useful construction of sensing vectors with
low coherence is given by so-called mutually unbiased bases [190, 72, 32, 45,
162]. These bases are widely used in quantum information theory as well as in
radar and signal processing. Two orthonormal bases {¢; ;n:_ol, {1; }n:_ol eCm
are called mutually unbiased if and only if

1
NG
The classical example of an MUB consists of the identity matrix and the
Discrete Fourier transform matrix. But, amazingly, for certain values of m,
there exist MUBs in C™ consisting of m+1 orthonormal bases {g0§k)}371:51, k=
0,...,m such that condition (10.33) is satisfied for any two orthonormal bases

{wgi)};-’g)l, {<p;k) ;”:BI, see for example [190, 32, 45, 162, 7]. Thus, MUBs give
rise to structured sensing matrices of dimension m x m? with coherence y =
1/4/m, which thus almost achieve the Welch bound. Here is a simple example

for an MUB in C™. Let m be a prime number > 5 and set ¢g(j) = ﬁe%"js/m

for j =0,...,m — 1. Then the vectors {Qk,l};:l_:lo defined via
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get(§) = 9(G = k)™ k1 =0,. m—1, (10.34)

satisfy [{(gri, gr 1) € {0,1/+/m} for all gi; # gi 1, which follows from basic
properties of Gaussian sums (cf. Theorem 2 in [7]). We can add the m x m
identity matrix and end up with m?2+m vectors (split into m+1 ONBs) in C™
which form a MUB of maximal size. For other, nonequivalent constructions, of
MUBSs (which, however, still revolve around translations and modulations in
form of the finite Heisenberg group) see [45]. Remarkably, for m not a power
of a prime number it is not known how many MUB exist; this is an open
problem even for m = 6 [31]. For R™ the construction and existence of MUBs
faces more constraints. For example, when m is of the form m = 4%, there
exist 2L MUBs in R™, see e.g. [45].

10.5.2 Nonuniform recovery guarantees and coherence

As mentioned before, it follows from Theorem 10.15 that deterministic con-
structions based on coherence cannot yield matrices that satisfy the RIP for
s > /M, known as the square-root bottleneck [25, 168]. To overcome this
square root bottleneck something has to give. One fruitful direction is to sac-
rifice the uniform recovery granted by the RIP. Namely, once a matrix satisfies
the RIP, it is guaranteed that the solution to the ¢;-optimization problem is
identical to the solution to the fy-optimization problem (the sparsest solu-
tion) for all s-sparse vectors. In contrast, we can consider scenarios in which
this equivalence between ¢y-optimization and ¢; optimization holds “only” for
most s-sparse vectors. This leads to nonuniform recovery results, which we
will pursue below. The benefits are worth the sacrifice, since we end up with
theoretical guarantees that are much more practical.

Recall that we consider a general linear system of equations Ax = y, where
A e Cm™*P x € CP and m < p. We introduce the following generic s-sparse
model:

(i) The support S C {1,...,p} of the s nonzero coefficients of x is selected
uniformly at random.

(ii) The non-zero entries of sign(z) form a Steinhaus sequence, i.e., sign(zy) :=
xk/|zk|, k € I, is a complex random variable that is uniformly distributed
on the unit circle, and independent from each other (and from I).

As an example for a theoretical nonuniform guarantee using coherence-
based sensing matrices we state (without proof) the following theorem, and
refer to [77] for a proof.

Theorem 10.16 (Theorem 14.5 in [77]). Let A € C™*P,m < p, be a
matriz with ¢o-normalized columns and coherence . Let S be a subset of
{1,...,p} selected at random according to the uniform model with card(S) = s.
Let € CP be a vector supported on S for which sign(xg) is a Steinhaus
sequence independent of S. Assume that, for n,e € (0,1)
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n < m (10.35)
EHAII < (/2 (10.36)

for an appropriate constant ¢ > 0. Then, with probability at least, the vector
x is the unique minimizer of ||z||1 subject to Az = Ax.

A simple calculation shows that for a unit-norm tight frame the condi-
tion 10.35 is satisfied if
m > Cslu(p/e),

which is in the ballpark of condition (10.19) for Gaussian sensing matrices.
Theorem 10.16 demonstrates that by allowing for nonuniform recovery guar-
antees one can successfully reconstruct sparse signals under much milder co-
herence conditions than imposed by the aforementioned square root bottle-
neck. That being said, establishing that the support set of real-world signals
can be modeled as random is, in general, difficult to justify rigorously. For
instance, the wavelet coefficients of natural images are typically concentrated
along edges, giving rise to structured, tree-like patterns in the locations of
significant coefficients. This insight is utilized in practical compressive sens-
ing systems as, for example, in MRI [119, 5]. The fact that the support set
of many natural signals does not conform to a uniform distribution highlights
the relevance of the recovery results established in Sections 10.1-10.3, which
hold for all sufficiently sparse signals. Furthermore, as pointed out in [77], the
stability guarantees currently available for models based on random supports
are notably weaker than those derived from the restricted isometry property.

Various other versions of nonuniform recovery results can be found e.g.,
in [174, 50, 77]. See [161, 95, 5] for some theoretical results geared towards
applications.

10.5.3 Further practical considerations

When moving the ideas of compressive sensing to move from theory into prac-
tice we encounter some challenges: (i) the choice of the sensing matrix is often
limited by practical considerations and physical constraints (both usually rule
out a Gaussian sensing matrix); (ii) signals are often not sparse in the mea-
surement domain, but only with respect to some properly chosen transform
(and even then, signals are often only approximately sparse); (iii) for various
reasons (speed being one of them) we may need alternative sparse solvers in-
stead of vanilla ¢;-minimization. We already have discussed (i) earlier in this
section and will discuss items (ii) and (iii) succinctly below. We recommend [5]
for a detailed treatment of how to span the gap between theory and practice
of compressive sensing.

As indicated above, signals are often not sparse in the canonical basis, but
they are (approximately) sparse after a suitable transformation. For examples



190 10 Compressive Sensing and Sparsity

audio signals are sparse with respect to a localized Fourier transform such as
a Gabor transform [59] or some other local trigonometric transform [121, 120].
JPEG exploits the sparsity of images in the discrete cosine basis or wavelet
basis [120] while curvelet transforms are effective sparsifiers for images aris-
ing in astronomy [159]. Radar signal are sparse when (properly) transformed
into the time-frequency domain [92]. Some signals may even require a redun-
dant dictionary (perhaps consisting of a combination of a wavelet basis, a
curvelet basis, and a Fourier basis), see e.g. [120, Chapter 12]. But how do
such transform-sparse signals fit into our framework?

As before, let € CP be the signal (or image) of interest and we observe
y = Ax, where A € C"™*P is a sensing matrix, where m < p. We assume that
x is sparse with respect to some basis or frame U € CP*" where n > p (and
n = p if we restrict U to be a basis). Denote this sparse representation by
w € C", ie., x = Uw. We write B := AU and can now solve for w via

min ||z]|; s.t. Bz =y. (10.37)

Having solved this problem (assuming it does indeed yield w), we can recover
x from w by simply computing x = Uw.

Thus, we can (try to) apply the theoretical results developed in the pre-
vious sections to the matrix B = AU in place of A. In a nutshell, the sensing
matrix A has to be incoherent with respect to the transform in which the signal
is sparse. An important example arises in MRI. There, the wavelet transform
is often chosen as sparsifying transform and the sensing matrix is derived
from randomly subsampling the two-dimensional Discrete Fourier Transform
or the Radon transform, see [119, 5]. In practice, it has been observed that
even better results are obtained when the random subsampling of the Fourier
coefficients is combined with a deterministic sampling of the Fourier coeffi-
cients corresponding the low frequencies, a strategy that has already been
suggested in one of the original papers on compressive sensing [66]. We refer
to [119, 5] for many more details and modifications.

Figure 10.4 shows an example of compressive sensing applied to MRI. The
test image is the so-called GLPU phantom (introduced by Guerquin-Kern,
Lejeune, Pruessmann and Unser in [85]). It is a continuous, piecewise constant
MRI-type image with an analytic expression for its Fourier transform. The
reconstruction of the discrete GLPU phantom from 30% randomly chosen
discrete Fourier measurements. The wavelet transform with a Haar wavelet
has been used as sparsifying transform U. The image z is recovered by first
solving (10.37) for w, followed by computing x = Uw.

There are various other efficient and rigorous methods to recover sparse
vectors from underdetermined systems besides £1-minimization and the lasso.
For example, homotopy methods, greedy algorithms or methods based on ap-
proximate message passing. We refer to [77, 5] for a comprehensive discussion
of these techniques. Furthermore, [5] contains a detailed discussion of some
subtle potential numerical stability issues one should be aware of.
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Sampling Pattern

Original Phantom Reconstructed Phantom

Fig. 10.4: The GLPU MRI phantom (left), its reconstruction (middle) via ¢;
minimization from 30% discrete randomly chosen Fourier measurements using
the wavelet transform as sparsifying transform U. The sampling pattern is
depicted on the right. [The authors want to thank Yuan Ni for providing the
code to run this numerical simulation.]
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