FINAL EXAM Math 116 Temple

- #1.(36pts) Let $\alpha(s)$ be a regular curve in \mathbf{R}^3 , parameterized by arclength.
- i) Give the definitions of T(s), N(s), B(s), $\kappa(s)$, and $\tau(s)$.
- ii) Give the 3x3 matrix A such that

$$\begin{bmatrix} \mathsf{T'} \\ \mathsf{N'} \\ \mathsf{B'} \end{bmatrix} = \mathsf{A} \begin{bmatrix} \mathsf{T} \\ \mathsf{N} \\ \mathsf{B} \end{bmatrix}$$

- iii) Define the osculating plane, normal plane and rectifying plane at a point P on the curve $\,\alpha$.
- #2. (12pts) Let $\alpha(t)$ denote a regular curve in \mathbb{R}^3 , and assume that $|\alpha'(t)| = \text{const.}$ independent of t . Show that $<\alpha',\alpha''>=0$, where <, > denotes the dot product on \mathbb{R}^3 .
- #3. (25pts) Let $\alpha(t) = (\cos(\pi t), \sin(\pi t), t)$. Find explicit formulas for T(t), N(t), B(t), $\kappa(t)$, and $\tau(t)$.
- #4. (16pts) Let $\alpha(s)$ be a unit speed curve in R^3 . Find a vector w(s) such that T'=wXT, N'=wXN, and B'=wXB. The vector w is called the Darboux vector.

#5. Let x and y be two different coordinate systems on a surface M,

$$x: U \rightarrow \mathbb{R}^3$$
 , $x(u^1,u^2) \epsilon M$;

y:
$$V \rightarrow \mathbb{R}^3$$
, $y(v^1, v^2) \in M$.

- A) (16pts) Let $J^i{}_{\alpha} = \frac{\partial u^i}{\partial v^{\alpha}}$ denote the Jacobian of the transformation that takes (v^1,v^2) to (u^1,u^2) , and let $J^{\alpha}{}_{i} = \frac{\partial v^{\alpha}}{\partial u^i}$ denote its inverse. Let $X = X^i x_i = X^1 x_1 + X^2 x_2$ be a vector field on M, and let $g_{ij} = \langle x_i, x_j \rangle$ denote the metric and $L^i{}_{j}$ denote the second fundamental form on M. Write the coordinate transformation laws for X^i , x_i , g_{ij} and $L^i{}_{j}$ in terms of $\frac{\partial u^i}{\partial v^{\alpha}}$ and $\frac{\partial v^{\alpha}}{\partial u^i}$ using the summation convention.
- B) (48pts) Assume that

$$x(u^1,u^2)=(\sin(u^1u^2), \cos(u^1u^2), \ln(u^1),$$

and

$$y^{-1} \circ x = (v^1(u^1, u^2), v^2(u^1, u^2)) = (u^2 \cos(u^1), e^{u^1}u^2).$$

- i) Find x_1 and x_2 in terms of (u^1, u^2) .
- ii) What vector $X^i x_i = X^1 x_1 + X^2 x_2$ in TM corresponds to the vector $3 \frac{\partial}{\partial u^1} + 2 \frac{\partial}{\partial u^2}$ at the point $(u^1, u^2) = (\pi, 1)$ in u-space.
- iii) What vector in the **y**-coordinates corresponds to the vector $3\frac{\partial}{\partial u^1} + 2\frac{\partial}{\partial u^2}$ at the point $(u^1, u^2) = (\pi, 1)$ in **u**-space.

$$g_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{ij}$$
,

at the point $(u^1,u^2)=(\pi,1)$ in **u**-coordinates, find the metric entries at the corresponding point in **y**-coordinates.

#6. (15pts) Let X and Y be vector fields on M that are parallel along a curve γ in M. Show that the angle between X and Y is constant along γ .

#7. Recall that γ is a geodesic on M if

(*)
$$(\gamma'')^{k} + \Gamma^{k}_{ij}(\gamma')^{i}(\gamma')^{j} = 0,$$

all along γ , where

$$\Gamma^{k}_{ij} = \frac{1}{2} g^{k\sigma} \left\{ \frac{\partial}{\partial u^{j}} g_{i\sigma} + \frac{\partial}{\partial u^{i}} g_{\sigma j} - \frac{\partial}{\partial u^{\sigma}} g_{ij} \right\}.$$

(We assume the summation convention.)

- i) (12pts) Show that if $\gamma(s)$ solves (*), then so does $\gamma(cs)$, where c is any real constant.
- ii) (20pts) If $g_{ij} = \langle x_i, x_j \rangle = \begin{bmatrix} u^1 & 0 \\ 0 & 1 \end{bmatrix}_{ij}$, find Γ^k_{ij} for all i,j,k=1,2, and write the equations (*) in this case.