Name:

Student ID: Section:

1	2	3	4	5	6	Total

MIDTERM EXAM Math 167 Temple-F08

Problem 1. (20pts) True or False:

(Here A is an arbitrary $m \times n$ matrix, Col(A) = C(A) denotes the Column Space of A, and Row(A) the Row Space of A.)

(a) $C(A^T) = Row(A)$.

(b) $dim \{Row(A)\} = dim \{Col(A)\}.$

(c) For every $b \in Col(A)$ there exists an $\mathbf{x} \in Row(A)$ such that $A\mathbf{x} = \mathbf{b}$.

(d) For every $b \in Col(A)$ there exists no more than one $\mathbf{x} \in Row(A)$ such that $A\mathbf{x} = \mathbf{b}$.

(e) A^{-1} exists if and only if det(A) = 0.

(f) The number of operations required to do back substitution is order n^2 .

(g) The number of operations required to compute L and U via Gaussian Elimination is order n^3 .

(h) Every invertible $n \times n$ matrix A has an LDU decomposition. (L=lower triangular, 1's on diagonal, U=upper triangular, 1's on diagonal, D=diagonal.)

(i) If A is an $n \times n$ invertible matrix, then $A^T A = A A^T$.

(j) If $A = A^T$ and A = LDU is an *LDU-decomposition* of A, then $L = U^T$.

Problem 2. (15pts) Let $\{v_1, ..., v_n\}$ be a basis,

(i.e., a linearly independent spanning set), for a vector space V. Prove that every element $v \in V$ can be expressed *uniquely* as a linear combination of $v_1, ..., v_n$. **Problem 3.** (15pts) Let A be an $m \times n$ matrix viewed as a transformation taking $\mathbf{x} = \mathbf{x}_r + \mathbf{x}_n \in \mathcal{R}^n$ to $A\mathbf{x} = \mathbf{b} \in \mathbf{R}^m$. Label $\mathbf{x}_r, \mathbf{x}_n, \mathbf{b}, Row(A), Col(A), N(A), N(A^T), \mathcal{R}^n$, and \mathcal{R}^m in the diagram below: $(\mathbf{x}_r \in Row(A), \mathbf{x}_n \perp \mathbf{x}_r)$

Problem 4. (17pts) Let

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 1 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix},$$

and define A = LU.

(a) Describe the most efficient way to solve $A\mathbf{x} = \mathbf{b}$.

(b) Solve $A\mathbf{x} = \mathbf{b}$ for \mathbf{x} .

Problem 5. (15pts) Let $A = \begin{bmatrix} 2 & 1 & -1 & 1 \\ 4 & 3 & 0 & 1 \\ -2 & 1 & 1 & 0 \end{bmatrix}$.

(a) Find the *pivots* and determine the *free variables*.

(b) Find three elementary matrices E_k of form $E_{ij}(a)$ s.t.

$$E_3 \cdot E_2 \cdot E_1 \cdot A = U,$$

where U is upper triangular.

(c) Find a 3×3 lower triangular matrix L with 1's on the diagonal such that A = LU.

Problem 6. (18pts) Let $A_{m \times n}$ satisfy m > n, and assume the columns of A form a basis for \mathbb{R}^n . For $b \in \mathbb{R}^m$, let $A\hat{x}$ denote the element of Col(A) closest to b.

- (a) Show that $\hat{x} = (A^T A)^{-1} A^T \mathbf{b}$.
- (b) Find the line b = C + Dt that best fits the data points

$$(t_1, b_1) = (1, -1); (t_2, b_2) = (-1, 1); (t_3, b_3) = (1, 2)$$

in the sense that $\sum_{i=1}^{3} \{b_i - (C + Dt_i)\}^2$ is minimized.