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For an m x n matrix A of rank r, Example 5.11.2 shows how to build a URV
factorization

0 0

in which C is triangular. The purpose of this section is to prove that it’s possible
to do even better by showing that C can be made to be diagonal. To see how,
let o1 = ||Ajl2 = ||C|l2 (Exercise 5.6.9), and recall from the proof of (5.2.7) on
p. 281 that ||Cll2 = ||Cx]|2 for some vector x such that

(CTC - MI)x =0, where x|l =1and A =x"CTCx =¢2 (5.12.1)

Set y = Cx/||Cx|2 = Cx/oy, and let Ry = (y|Y) and R, = (x|X) be
elementary reflectors having y and x as their first columns, respectively --recall
Example 5.6.3. Reflectors are orthogonal matrices, so xIX =0 and Y’y =0,
and these together with (5.12.1) yield

xTCTCcX . AxTX

o o
Coupling these facts with y7Cx = y¥(01y) = 01 and R, = Rj produces
T

y T T
_ {7 [y Cx y'CX\ (oy O
RyOR. = (YT> ClxIX) = <YTCx YTCX> - < 0 Cg)
with 01 > ||Cyl, (because o1 = ||C||2 = max{o, |C2||} by (5.2.12)). Repeat-
ing the process on C, yields reflectors S,, S, such that

A=URVT = U (CW 0> VT

mxn

yICX = =0 and Y'Cx=o0,YTy=0.

$,Ca8. = (7 &, ) where o2 > [Cul,.

If P, and Q2 are the orthogonal matrices

1 0 1 0 (o} 0 0
PZ = (0 S > Ry, Q2 = Rx (0 S ) ; then PzCQz = 0 (o] 0
¥ ¥ 0 0 Cj

in which ¢; > o2 > ||Csl|,. Continuing for r — 1 times produces orthogonal
matrices P,_; and Q- such that P,_1CQ,_; = diag (01,09,...,00) =D,
where o1 > 09 > --- > 0,. If UT and V are the orthogonal matrices

— P.., O ~ Q.1 O ~ ~ D o
T r—1 T r—1 T _
| _< 0 I)U andV_—-V( 0 I),thenU AV~<0 0),

and thus the singular value decomposition (SVD) is derived. o7

The SVD has been independently discovered and rediscovered several times. Those credited
with the early developments include Eugenio Beltrami (1835-1899) in 1873, M. E. Camille
Jordan (1838-1922) in 1875, James J. Sylvester (1814-1897) in 1889, L. Autonne in 1913, and
C. Eckart and G. Young in 1936.
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Singular Value Decomposition

For each A € R™*™ of rank r, chere are orthogonal ‘matrices Umx,n,\ -

Vaxn and a dlagonal matrlx D;.«r =diag (o1, 09, .,ar) such that
D o\ . r . e e
A=U 0o o) Y Wwith 0120322 a,:> 0. (5122)

The o0;’s are called the nonzero singular values of A. When
r <p=min{m,n}, A issaid to have p— r additional zero singular
values. The factorization in (5.12.2) is called a singular value decom-
position of A, and the columns in U ‘and V. are called left-hand a,nd
right-hand singular vectors for A, respectively. , :

While the constructive method used to derive the SVD can be used as an
algorithm, more sophisticated techniques exist, and all good matrix computation
packages contain numerically stable SVD implementations. However, the details
of a practical SVD algorithm are too complicated to be discussed at this point.

The SVD is valid for complex matrices when (x)T is replaced by (%)*, and
it can be shown that the singular values are unique, but the singular vectors
are not. In the language of Chapter 7, the o2 ’s are the eigenvalues of ATA,
and the singular vectors are specialized sets of eigenvectors for AT A—see the
summary on p. 555. In fact, the practical algorithm for computing the SVD is
an implementation of the QR iteration (p. 535) that is cleverly applied to ATA
without ever explicitly computing ATA.

Singular values reveal something about the geometry of linear transforma-
tions because the singular values o; > 0y > -+ > g, of a matrix A tell us how
much distortion can occur under transformation by A. They do so by giving us
an explicit picture of how A distorts the unit sphere. To develop this, suppose
that A € R"*" is nonsingular (Exercise 5.12.5 treats the singular and rectangu-
lar case), and let S; = {x| x|, = 1} be the unit 2-sphere in R". The nature
of the image A(Sz) is revealed by considering the singular value decompositions

A=UDV" and A'=VD'UT with D =diag (01, 02,...,0,),

where U and V are orthogonal matrices. For each y € A(S;) there is an
x € 8y such that y = Ax, so, with w = UTy,

- - — 2 —
L= |xl; = [|A~*Ax|l; = A" y|l; = [VD—'UTy[[; = [D-'UTy];

o2 w? o w? w?
=|D 1w]12=;%—+0—§+m+0—§.

(5.12.3)
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This means that UTA(S;) is an ellipsoid whose k' semiaxis has length
or. Because orthogonal transformations are isometries (length preserving trans-
formations), U7 can only affect the orientation of A(Sz),s0 A(Sz) is also an
ellipsoid whose k** semiaxis has length oy. Furthermore, (5.12.3) implies that
the ellipsoid UTA(S;) is in standard position—i.e., its axes are directed along
the standard basis vectors eg. Since U maps UTA(S;) to A(S:), and since
Uey = U,y, it follows that the axes of A(Sz) are directed along the left-hand
singular vectors defined by the columns of U. Therefore, the k" semiaxis of
A(Sy) is o, Uy. Finally, since AV = UD implies AV, = 0. U,, the right-
hand singular vector V. is a point on S, that is mapped to the k" semiaxis
vector on the ellipsoid A(Sg). The picture in R3 looks like Figure 5.12.1.

U2U*2

T
N
v
v
Y

03U,y

FIGURE 5.12.1

The degree of distortion of the unit sphere under transformation by A
is therefore measured by ko = 01/0,, the ratio of the largest singular value
to the smallest singular value. Moreover, from the discussion of induced ma-
trix norms (p. 280) and the unitary invariance of the 2-norm (Exercise 5.6.9),

max [|Ax|l, = [|A], = [UDVT]|, = D}, = oy

[fx|l2=1
and
1 1 1
min ||Ax]|, = = = = Oy.
pin, lAxl, = = = jvpetory, T oo,

In other words, longest and shortest vectors on A(Ss) have respective lengths
o1 =||All, and o, = 1/HA‘"1||2 (this justifies Figure 5.2.1 on p. 281), so
k2 = || A, “A_1||2~ This is called the 2-norm condition number of A. Differ-
ent norms result in condition numbers with different values but with more or
less the same order of magnitude as kg (see Exercise 5.12.3), so the qualitative
information about distortion is the same. Below is a summary.
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Image of the Unit Sphere
For a nonsingular A, having singular va,lues a1 > o8 > 2O,
and an SVD A = UDVT with D = diag (o3, as; - O'n) the image
of the unit 2-sphere is an ellipsoid whose k* semlaxxs is given by crkU*k
(see Figure 5.12.1), Furthermore, V. is a pomt on the unit sphere such‘ :
that AV,.; = oxU,x. In particular, :

¢ o= IAVala s ma IAx <Al Gy

¢ on=lAV.nlla = min []Ax|]2-.1/||A‘1|[2 P (5.12‘;'5)_

The degree of distortion of the unit sphere under transformatlon by A'
is measured by the 2-norm condition number '

o mp=—=|Al, A7, 21 | - (5 12. 6),
Notice that k2 =1 if and only if* A is an orthogonal matrix.
The amount of distortion of the unit sphere under transformation by A

determines the degree to which uncertainties in a linear system Ax = b can be
magnified. This is explained in the following example.

Uncertainties in Linear Systems. Systems of linear equations Ax = b aris-
ing in practical work almost always come with built-in uncertainties due to mod-
eling errors (because assumptions are almost always necessary), data collection
errors (because infinitely precise gauges don’t exist), and data entry errors (be-
cause numbers like /2, 7, and 2/3 can’t be entered exactly). In addition,
roundoff error in floating-point computation is a prevalent source of uncertainty.
In all cases it’s important to estimate the degree of uncertainty in the solution
of Ax = b. This is not difficult when A is known exactly and all uncertainty
resides in the right-hand side. Even if this is not the case, it’s sometimes possible
to aggregate uncertainties and shift all of them to the right-hand side.

Problem: Let Ax =b be a nonsingular system in which A is known exactly
but b is subject to an uncertamty e, and consider Ax =b —e = b. Estimate
the relative uncertainty™ ||x — x|/ x|l in x in terms of the relative uncertainty
b —bl|/|[b]| = |le||/Ib]| in b. Use any vector norm and its induced matrix
norm (p. 280).

Knowing the absolute uncertainty ||x —X|| by itself may not be meaningful. For example, an
absolute uncertainty of a half of an inch might be fine when measuring the distance between
the earth and the moon, but it’s not good in the practice of eye surgery.
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Solution: Use ||b| = |Ax| < |A| |x]| with x —% = A~'e to write

Ix—x|| _ [A"tel| _ JAR[IA M ell _llell (5.12.7)

[l Il — IIbll "Il
where x = ||A|l||AY|| is a condition number as discussed earlier (k = 01/0n
if the 2-norm is used). Furthermore, |le|| = ||A(x —%)|| < [|A]l||(x —%)|| and

lIx[| < [[A=H[ IIb]| imply

=%l o el llell _ 1lell
Il = Al =l = [ATIATM B < fib]

This with (5.12.7) yields the following bounds on the relative uncertainty:

_4le X—X _
e B o e s paLAT G2

In other words, when A is well conditioned (i.e., when & is small—see the rule
of thumb in Example 3.8.2 to get a feeling of what “small” and “large” might
mean), (5.12.8) insures that small relative uncertainties in b cannot greatly
affect the solution, but when A is ill conditioned (i.e., when x is large), a
relatively small uncertainty in b might result in a relatively large uncertainty
in x. To be more sure, the following problem needs to be addressed.

Problem: Can equality be realized in each bound in (5.12.8) for every nonsin-
gular A, and if so, how?

Solution: Use the 2-norm, and let A = UDVT be an SVD so AV, = 0x U,
for each k. If b and e are directed along left-hand singular vectors associated
with o1 and o,, respectively—say, b = fU,; and e = €¢U,,, then

x=A"lb=A1BU,) = BVai apd x—x=A-le= AN eU,,) = EV*",
[op] On
SO
IIx — %[l - (01> ld _ ” lelly when b = U,; and e = eU,,.
[P 18~ " ol,

Thus the upper bound (the worst case) in (5.12.8) is attainable for all A. The
lower bound (the best case) is realized in the opposite situation when b and e
are directed along U,, and U,;, respectively. If b = fU,, and e = eU,y,
then the same argument yields x = ¢;!8V,, and x — X =0y 1eV,1, so

”x—iug (Un) Iel -1 ”9”2
o= A2 (2 B when b = #U,,, and e = eU,;.
lIxIl5 18] bl



- —

-~

- e -

416

Example 5.12.2

Chapter 5 Norms, Inner Products, and Orthogonality

Therefore, if A is well conditioned, then relatively small uncertainties in b can’t
produce relatively large uncertainties in x. But when A is ill conditioned, it’s
possible for relatively small uncertainties in b to have relatively large effects on
X, and it’s also possible for large uncertainties in b to have almost no effect on
X. Since the direction of e is almost always unknown, we must guard against the
worst case and proceed with caution when dealing with ill-conditioned matrices.

Problem: What if there are uncertainties in both sides of Ax =Db?

Solution: Use calculus to analyze the situation by considering the entries of
A = A(t) and b = b(t) to be differentiable functions of a variable t, and
compute the relative size of the derivative of x = x(t) by differentiating b = Ax
to obtain b’ = (Ax)' = A’x + Ax’ (with « denoting dx /dt), so
= [[A71 — A7 AX]| < [A7ID)| + [|ATAx]|
< A )+ AT A

Consequently,
X/ A—l bl 1 !
LTSI
—yp ] —yp 1A
< IATA e 1A IA ™ gy
el A b A
= Iwl A <|Ibll N >

In other words, the relative sensitivity of the solution is the sum of the relative
sensitivities of A and b magnified by « = ||A| ][A“lll. A discrete analog of
the above inequality is developed in Exercise 5.12.12.

Conclusion: In all cases, the credibility of the solution to Ax = b in the face
of uncertainties must be gauged in relation to the condition of A.

As the next example shows, the condition number is pivotal also in deter-
mining whether or not the residual r = b — Ax is a reliable indicator of the
accuracy of an approximate solution %.

Checking an Answer. Suppose that % is a computed (or otherwise approxi-
mate) solution for a nonsingular system Ax = b, and suppose the accuracy of
X Is “checked” by computing the residual r = b — A%. If r = 0, exactly,
then X must be the exact solution. But if r is not exactly zero—say, ||r|, is
zero to ¢ significant digits—are we guaranteed that X is accurate to roughly ¢
significant figures? This question was briefly examined in Example 1.6.3, but it’s
worth another look.

Problem: To what extent does the size of the residual reflect the accuracy of
an approximate solution?
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Solution: Without realizing it, we answered this question in Example 5.12.1.
To bound the accuracy of X relative to the exact solution x, write r =b —Ax
as Ax=b —r, and apply (5.12.8) with e =r to obtain

B L P e R 1 P _ -1 -

K bl < T < K“buz’ where k= [All,||A7"],. (5.12.9)
Therefore, for a well-conditioned A, the residual r is relatively small if and
only if % is relatively accurate. However, as demonstrated in Example 5.12.1,
equality on either side of (5.12.9) is possible, so, when A is ill conditioned, a
very inaccurate approximation X can produce a small residual r, and a very
accurate approximation can produce a large residual. '

Conclusion: Residuals are reliable indicators of accuracy only when A is well
conditioned—if A is ill conditioned, residuals are nearly meaningless.

In addition to measuring the distortion of the unit sphere and gauging the
sensitivity of linear systems, singular values provide a measure of how close A
is to a matrix of lower rank.

Distance to Lower-Rank Matrices

If o4 >0y > - > o, are the nonzero singular values of A,,xn, then
for each k < r, the distance from A to the closest matrix of rank £ is

= min ||A-Bl.. 5.12.10
okt = min ll2 (5.12.10)

Proof. Suppose rank (Bm,xn) = k, and let A = U(lg g)VT be an SVD
for A with D = diag (o3, 09,...,0.). Define S = diag(oy,... ,Tk41), and
partition V = (Foxx+1|G). Since rank (BF) < rank(B) = k (by (4.5.2)),
dim N (BF) = k+1—rank (BF) > 1, so thereis an x € N (BF) with IIxl2 = 1.
Consequently, BFx =0 and

D o S 0 O X Sx
AFx=U<0 0>VTFx=U 0 0 0|=U{o0
0 0 O 0 0
Since ||A — B, = maxyy,=1[(A - B)yll,, and since [Fx|lz = |ixlls =1
(recall (5.2.4), p. 280, and (5.2.13), p. 283),
k+1 k41
IA —BJ2> (A - B)Fx|} = [Sx|} = Y ofal 2 0f41 ) _2f = 0kyy.
i=1 i=1

Equality holds for By =U Di 0\yT with D, = diag(o1,...,0k), and thus
0 0
(5.12.10) is proven. i
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Filtering Noisy Data. The SVD can be a useful tool in applications involving
the need to sort through noisy data and lift out relevant information. Suppose
that A,,xn is a matrix containing data that are contaminated with a certain
level of noise—e.g., the entries A might be digital samples of a noisy video or
audio signal such as that in Example 5.8.3 (p. 359). The SVD resolves the data
in A into r mutually orthogonal components by writing

r T
A=U <D6XT g) vt = ZoiuiviT = ZaiZi, (5.12.11)
=1 i=1
where Z; = uiviT and o1 > 0y > -+ > 0, > 0. The matrices {Z;,Z,,...,Z,}

constitute an orthonormal set because

. Ty _ J O ifi#7,
(Z;|Z;) = trace (2] Z;) = {1 ifiz

In other words, the SVD (5.12.11) can be regarded as a Fourier expansion as
described on p. 299 and, consequently, o; = (Z;|A) can be interpreted as the
proportion of A lying in the “direction” of Z;. In many applications the noise
contamination in A is random (or nondirectional) in the sense that the noise
is distributed more or less uniformly across the Z;’s. That is, there is about as
much noise in the “direction” of one Z; as there is in the “direction” of any
other. Consequently, we expect each term ¢;Z; to contain approximately the
same level of noise. This means that if SNR(0;Z;) denotes the signal-to-noise
ratio in o;Z;, then

SNR(01Z1) Z SNR(O’QZz) Z fee 2 SNR(O‘TZT),

more or less. If some of the singular values, say, ogy1,...,0, are small relative to
(total noise)/r, then the terms og41Zg+1,--.,0-Z, have small signal-to-noise
ratios. Therefore, if we delete these terms from (5.12.11), then we lose a small part
of the total signal, but we remove a disproportionately large component of the
total noise in A. This explains why a truncated SVD Ay = Zle 0;4; can, in
many instances, filter out some of the noise without losing significant information
about the signal in A. Determining the best value of k often requires empirical
techniques that vary from application to application, but looking for obvious
gaps between large and small singular values is usually a good place to start.
The next example presents an interesting application of this idea to building an
Internet search engine.
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Search Engines. The filtering idea presented in Example 5.12.3 is widely used,
but a particularly novel application is the method of latent semantic indexing
used in the areas of information retrieval and text mining. You can think of
this in terms of building an Internet search engine. Start with a dictionary of
terms T1,Ts,...,Tm. Terms are usually single words, but sometimes a term
may contain more that one word such as “landing gear.” It’s up to you to decide
how extensive your dictionary should be, but even if you use the entire English
language, you probably won’t be using more than a few hundred-thousand terms,
and this is within the capacity of existing computer technology. Each document
(or web page) D; of interest is scanned for key terms (this is called indezing the
document), and an associated document vector d; = (freqy ;, freqy;, - .. ,freqmj)T
is created in which

freq;; = number of times term T; occurs in document Dj.

More sophisticated search engines use weighted frequency strategies.) After a
collection of documents D1, Ds, ..., Dy has been indexed, the associated docu-
ment vectors d; are placed as columns in a term-by-document malriz

—

Dy D5 . D,
Ty [ freq;; freq, -+ freq,
T, | freqy; freqy, --- freqs,
Amxn:(dlleldn): . . . .
T \freq,,; fred,, -+ fredn,

Naturally, most entries in each document vector d; will be zero, so A isa
sparse matrix—this is good because it means that sparse matrix technology can
be applied. When a query composed of a few terms is submitted to the search
engine, a query vector q7 = (q1,92,- .., 4n) is formed in which

_ { 1 if term T} appears in the query,
qi = .
0 otherwise.

(The ¢;’s might also be weighted.) To measure how well a query q matches a
document D;, we check how close q is to d; by computing the magnitude of

quj qTAej

cosf; = = .

lall, Id;ll, — llall; [1Ae;ll,

If |cosf;| > 7 for some threshold tolerance T, then document D; is con-
sidered relevant and is returned to the user. Selecting 7 is part art and part
science that’s based on experimentation and desired performance criteria. If the
columns of A along with q are initially normalized to have unit length, then

(5.12.12)
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la" Al = (|cos b1, [cosbs], ..., |cosBy|) provides the information that allows
the search engine to rank the relevance of each document relative to the query.
However, due to things like variation and ambiguity in the use of vocabulary,
presentation style, and even the indexing process, there is a lot of “noise” in
A, so the results in |qTA| are nowhere near being an exact measure of how
well query q matches the various documents. To filter out some of this noise,
the techniques of Example 5.12.3 are employed. An SVD A = S owvl s
judiciously truncated, and

o1 vi k
A, = UkaVZ = (111 | ce |llk) . = Z o'iuiv;‘r
o vl =1

is used in place of A in (5.12.12). In other words, instead of using cosf;, query
q is compared with document D; by using the magnitude of

T
q Akej
CoSh; = ——— 2,
7 Nlally [[Axesll,
To make this more suitable for computation, set Sy = Dy V{ = (sy]sz2| -+ |si),
and use )
IAke;ll, = [[UDr Ve[, = 1Uks;ll, = lisyl,
to write T
U.s.
cosghy; = X k% (5.12.13)
lall, Is;li,

The vectors in Ur and S only need to be computed once (and they can be
determined withdut computing the entire SVD), so (5.12.13) requires very little
computation to process each new query. Furthermore, we can be generous in the
number of SVD components that are dropped because variation in the use of
vocabulary and the ambiguity of many words produces significant noise in A.
Coupling this with the fact that numerical accuracy is not an important issue
(knowing a cosine to two or three significant digits is sufficient) means that we
are more than happy to replace the SVD of A by a low-rank truncation Ay,
where k is significantly less than r.

Alternate Query Matching Strategy. An alternate way to measuring how
close a given query q is to a document vector d; is to replace the query vector
q in (5.12.12) by the projected query q = Pr(a)q, where Pgiay = U, U7 isthe
orthogonal projector onto R(A) along R(A)* (Exercise 5.12.15) to produce

aTAe]‘
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It’s proven on p. 435 that q = Pgr(a)q is the vector in R(A) (the document
space) that is closest to q, so using q in place of q has the effect of using the
best approximation to q that is a linear combination of the document vectors
d;. Since q7A = qTA and ||q||, < lldlly, it follows that cosf; > costy, so
more documents are deemed relevant when the projected query is used. Just as
in the unprojected query matching strategy, the noise is filtered out by replacing

A in (5.12.14) with a truncated SVD Ay = ¥ osuvT. The result is

g7 Uys;

oS ¢ = Tt
501 = TOTdl, s

and, just as in (5.12.13), cos q~5]— is easily and quickly computed for each new
query q because Uy and s; need only be computed once.

The next example shows why singular values are the primary mechanism
for numerically determining the rank of a matrix.

Perturbations and Numerical Rank. For A € R™*™ with p = min{m,n},
let {o1,02,...,0p} and {B,0B2,... ,Bp} be all singular values (nonzero as well
as any zero ones) for A and A + E, respectively.

Problem: Prove that

lox — Bk| < |E|j2 foreach k=1,2,...,p. (5.12.15)

Solution: If the SVD for A given in (5.12.2) is written in the form

P k-1
T . T
A= E ou;v, , andif weset Ay 1= E oWV, ,

=1 i=1

then
or=[A-Apally,=|A+E—-Apy - Ej,

> |A+E—Ag_1ll, — [|Ell, (recall (5.1.6) on p. 273)
>~ [El, by (5.12.10)

Couple this with the observation that

or = min |[|A—-BJ|z= min 1||A+E—‘B—E“2

rank(B)=k—1 rank(B)=k—
< min [|[A+E-Bl2+|El2 =G + [E]2
rank(B)=k—1

to conclude that |ox — Bk| < ||Ell2-
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Problem: Explain why this means that computing the singular values of A
with any stable algorithm (one that returns the exact singular values 8 of a
nearby matrix A + E) is a good way to compute rank (A).

Solution: If rank (A) = r, then p —r of the oy ’s are exactly zero, so the
perturbation result (5.12.15) guarantees that p—r of the computed Sy ’s cannot
be larger than ||E|2. So if

Br2- 2B > ||Elleg > Big1 > - 2 B,

then it’s reasonable to consider 7 to be the numerical rank of A. For most
algorithms, ||El|2 is not known exactly, but adequate estimates of ||E||2 often
can be derived. Considerable effort has gone into the development of stable al-
gorithms for computing singular values, but such algorithms are too involved
to discuss here—consult an advanced book on matrix computations. Gener-
ally speaking, good SVD algorithms have [|Ellz ~ 5 x 107||A|l> when t-digit
floating-point arithmetic is used.

Just as the range-nullspace decomposition was used in Example 5.10.5 to
define the Drazin inverse of a square matrix, a URV factorization or an SVD
can be used to define a generalized inverse for rectangular matrices. For a URV
factorization

C o0 c' o
Aan:U(O O)VT, we define ALxm=v< 0 0>UT

mXn nxm

to be the Moore—Penrose inverse (or the pseudoinverse) of A. (Replace
()T by (x)* when A € C™*™.) Although the URV factors are not uniquely
defined by A, it can be proven that A' is unique by arguing that A' is the
unique solution to the four Penrose equations

AATA =A, ATAAT = AT

(AANT= AAT, (ATA)T= AtA,

so A is the same matrix defined in Exercise 4.5.20. Since it doesn’t matter
which URV factorization is used, we can use the SVD (5.12.2), in which case
C = D = diag(o1,...,0.). Some “inverselike” properties that relate A'! to
solutions and least squares solutions for linear systems are given in the following
summary. Other useful properties appear in the exercises.
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GdLO

Moore-Penrose Pseudoinverse

o Interms of URV factors, the Moore-Penrose pseudoinverse of

f Crxr O . ct oo
| [A’ran’: U ( pig O) VT is Al .=V ( o 0) UT. (5.12.16)
o When Ax = b is consistent, x = A'b is the solution (5.12.17)
: of minimal euclidean norm.
~ ol” When Ax = b is inconsistent, x = A'b is the least (5.12.18)
squares solution of minimal euclidean norm.

e When an SVD is.used, C =D = diag (01,...,0r), 8O

g D 1 : T ,T. [ (T])
T..V '1—-2 DR 1 t _.§ At N
A ( 0 O)U - and Ab—-il . (X

q==1

Proof. To prove (5.12.17), suppose Axg = b, and replace A by AATA to
write b = Axg = AATAxg = AA'b. Thus A'b solves Ax = b when it is
consistent. To see that A'b is the solution of minimal norm, observe that the
general solution is ATb+N (A) (a particular solution plus the general solution of
the homogeneous equation), so every solution has the form z = A'b+n, where
n € N(A). It’s not difficult to see that A'b € R(AT) = R(AT) (Exercise
5.12.16),s0 A'b 1 n. Therefore, by the Pythagorean theorem (Exercise 5.4.14)},

lz)% = |Atb +n|f} = |ATB]) + [nf} > [ATb];.

Equality is possible if and only if n = 0, so A'b is the unique minimum
norm solution. When Ax = b is inconsistent, the least squares solutions are the
solutions of the normal equations ATAx = ATb, and it’s straightforward to
verify that Alb is one such solution (Exercise 5.12.16(c)). To prove that A'fb
is the least squares solution of minimal norm, apply the same argument used in
the consistent case to the normal equations. [l

Caution! Generalized inverses are useful in formulating theoretical statements
such as those above, but, just as in the case of the ordinary inverse, generalized
inverses are not practical computational tools. In addition to being computation-
ally inefficient, serious numerical problems result from the fact that AT need
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Exercises for section 5.12

not be a continuous function of the entries of A. For example,

(1 0 ) for z # 0, i 5.12.1. Foll
1 0 0 1/z :
A(x):(o J:) = Al(r) = Lo :
( 0 0) for z = 0. ]
Not only is A'(z) discontinuous in the sense that lim, o At(z) # AY(0), but : 5.12.2. If ¢
it is discontinuous in the worst way because as A(z) comes closer to A(0) the be &
matrix Af(z) moves farther away from AT(0). This type of behavior translates unit
into insurmountable computational difficulties because small errors due to round- : for
off (or anything else) can produce enormous errors in the computed Af, and as nor1
errors in A become smaller the resulting errors in Af can become greater. This ; A]
diabolical fact is also true for the Drazin inverse (p- 399). The inherent numeri-
cal problems coupled with the fact that it’s extremely rare for an application to
require explicit knowledge of the entries of AT or AP constrains them to being 5.12.3. Ea’(i'
theoretical or notational tools. But don’t underestimate this role—go back and : by &
read Laplace’s statement quoted in the footnote on p. 81. ; 1A]
Another way to view the URV or SVD factorizations in relation to the Moore— ¢
Penrose inverse is to consider A/ and A/ , the restrictions of A and '
R(AT) /R(A)
At to R (AT) and R(A), respectively. Begin by making the straightforward
observations that R (Af) = R (AT) and N (AH)y =N (AT) (Exercise 5.12.16).
Since R = R(AT) ® N(A) and R = R(A) @ N (AT), it follows that For
R(A)=A(R") = A(R(AT)) and R(AT) =R (AT) = AY(R™) = AT(R(A)). , of t]
In other words, A/ and Al are linear transformations such that simi
R(AT) /R(A) : why
A/pary  B(AT) = R(A)  and A/TR(A) :R(A) — R(AT). 5.12.4. Pro
ran!
It B = {uj,uy,...,u,} and B = {vi,ve,...,v,.} are the first r columns Nor
from U = (U;|U,) and V = (V1[V3) in (5.11.11), then AV, = U;C and - asse
A'U; = V;C1 implies (recall (4.7.4)) that
i 5.12.5. Im:
[A/R (AT)]B/B ~C and [A}R(A)]BB, =C, (5.12.19) | the
by ¢
If left-hand and right-hand singular vectors from the SVD (5.12.2) are used in * valu
B and B’, respectively, then C = D = diag (01,...,0,). Thus (5.12.19) reveals : f52 ¢
the exact sense in which A and A' are “inverses.” Compare these results with 18 ¢

the analogous statements for the Drazin inverse in Example 5.10.5 on p. 399. righ



