Lecture 4. The Singular Value
Decomposition

The singular value decomposition (SVD) is a matrix factorization whose com-
putation is a step in many algorithms. Equally important is the use of the
SVD for conceptual purposes. Many problems of linear algebra can be better
understood if we first ask the question, what if we take the SVD?

A Geometric Observation

The SVD is motivated by the following geometric fact:
The itmage of the unit sphere under any m x n matriz is a hyperellipse.

The SVD is applicable to both real and complex matrices. However, in de-
scribing the geometric interpretation, we assume as usual that the matrix is
real.

The term “hyperellipse” may be unfamiliar, but this is just the m-dimen-
sional generalization of an ellipse. We may define a hyperellipse in IR™ as
the surface obtained by stretching the unit sphere in IR™ by some factors

Oq1y--.,0,, DOssibly zero, in some orthogonal directions u,,...,u,, € IR™.
For convenience, let us take the u, to be unit vectors. The vectors {o,u,}
are the principal semiazes of the hyperellipse, with lengths o4,...,0,,. If A

has rank r, exactly r of the lengths o, will turn out to be nonzero, and in
particular, if m > n, at most n of them will be nonzero.
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The italicized statement above has the following meaning. By the unit
sphere, we mean the usual Euclidean sphere in n-space, i.e., the unit sphere
in the 2-norm; let us denote it by S. Then AS, the image of S under the
mapping A, is a hyperellipse as just defined.

This geometric fact is not obvious. We shall restate it in the language of
linear algebra and prove it later. For the moment, assume it is true.

OyUq

Figure 4.1. SVD of a 2 x 2 matriz.

Let S be the unit sphere in R"™, and take any A € R™*™ with m > n. For
simplicity, suppose for the moment that A has full rank n. The image AS is a
hyperellipse in IR™. We now define some properties of A in terms of the shape
of AS. The key ideas are indicated in Figure 4.1.

First, we define the n singular values of A. These are the lengths of the n

principal semiaxes of AS, written 0,,0,,...,0,. It is conventional to assume
that the singular values are numbered in descending order, oy > 0, > -+ >
o, > 0.

Next, we define the n left singular vectors of A. These are the unit vectors
{uy,Uq,...,u,} oriented in the directions of the principal semiaxes of AS,
numbered to correspond with the singular values. Thus the vector o,u, is the
ith largest principal semiaxis of AS.

Finally, we define the n right singular vectors of A. These are the unit
vectors {vy,v,...,v,} € S that are the preimages of the principal semiaxes
of AS, numbered so that Av, = o;u,.

The terms “left” and “right” in the definitions above are decidedly awk-
ward. They come from the positions of the factors U and V in (4.2) and
(4.3), below. What is awkward is that in a sketch like Figure 4.1, the left
singular vectors correspond to the space on the right and the right singular
vectors correspond to the space on the left! One could resolve this problem
by interchanging the two halves of the figure, with the map A pointing from
right to left, but that would go against deeply-ingrained habits.
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Reduced SVD

We have just mentioned that the equations relating right singular vectors {v,}
and left singular vectors {u;} can be written

1<j<n. (4.1)

This collection of vector equations can be expressed as a matrix equation,

01
09

or, more compactly, AV = UY. In this matrix equation, Sisannxn diagonal
matrix with positive real entries (since A was assumed to have full rank n), U
is an m x n matrix with orthonormal columns, and V is an n X n matrix with
orthonormal columns. Thus V' is unitary, and we can multiply on the right

by its inverse V* to obtain .
A=UXV™" (4.2)

This factorization of A is called a reduced singular value decomposition, or
reduced SVD, of A. Schematically, it looks like this:

Reduced SVD (m > n)

Full SVD

In most applications, the SVD is used in exactly the form just described.
However, this is not the standard way in which the idea of an SVD is usu-
ally formulated. We have introduced the awkward term “reduced” and the
unsightly hats on U and ¥ in order to distinguish the factorization (4.2) from
the more standard “full” SVD. This “reduced” vs. “full” terminology and
hatted notation will be maintained throughout the book, and we shall make
a similar distinction between reduced and full QR factorizations.

The idea is as follows. The columns of U are n orthonormal vectors in
the m-dimensional space C™. Unless m = n, they do not form a basis of
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C™, noris U a unitary matrix. However, by adjoining an additional m — n
orthonormal columns, U can be extended to a unitary matrix. Let us do this
in an arbitrary fashion, and call the result U.

If U is replaced by U in (4.2), then 3 will have to change too. For the
product to remain unaltered, the last m —n columns of U should be multiplied
by zero. Accordingly, let ¥ be the m X n matrix consisting of S in the upper
n x n block together with m — n rows of zeros below. We now have a new
factorization, the full SVD of A:

A=USV*. (4.3)

Here U is m x m and unitary, V is n X n and unitary, and ¥ is m X n and
diagonal with positive real entries. Schematically:

Full SVD (m > n)

A U b v

The dashed lines indicate the “silent” columns of U and rows of ¥ that are
discarded in passing from (4.3) to (4.2).

Having described the full SVD, we can now discard the simplifying as-
sumption that A has full rank. If A is rank-deficient, the factorization (4.3)
is still appropriate. All that changes is that now not n but only r of the left
singular vectors of A are determined by the geometry of the hyperellipse. To
construct the unitary matrix U, we introduce m — r instead of just m — n
additional arbitrary orthonormal columns. The matrix V' will also need n —r
arbitrary orthonormal columns to extend the r columns determined by the
geometry. The matrix ¥ will now have r positive diagonal entries, with the
remaining n — r equal to zero.

By the same token, the reduced SVD (4.2) also makes sense for matrices
A of less than full rank. One can take U to be m x n, with & of dimensions
n X n with some zeros on the diagonal, or further compress the representation
so that U is m x r and £ is r x r and strictly positive on the diagonal.

Formal Definition

Let m and n be arbitrary; we do not require m > n. Given A € C™*",
not necessarily of full rank, a singular value decomposition (SVD) of A is a
factorization

A=UsV* (4.4)
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where
U e C™™ is unitary,

V e €™ s unitary,
Y e R™™ is diagonal.

In addition, ¥ is assumed to have its diagonal entries o; nonnegative and in
nonincreasing order; that is, 0y > 0, > -++ > 0, > 0, where p = min(m, n).

Note that the diagonal matrix ¥ has the same shape as A even when A is
not square, but U and V are always square unitary matrices.

It is clear that the image of the unit sphere in IR" under a map A = UXV*
must be a hyperellipse in IR™. The unitary map V* preserves the sphere, the
diagonal matrix ¥ stretches the sphere into a hyperellipse aligned with the
canonical basis, and the final unitary map U rotates or reflects the hyperellipse
without changing its shape. Thus, if we can prove that every matrix has an
SVD, we shall have proved that the image of the unit sphere under any linear
map is a hyperellipse, as claimed at the outset of this lecture.

Existence and Uniqueness

Theorem 4.1. Every matrix A € C™"" has a singular value decomposition
(4.4). Furthermore, the singular values {o,} are uniquely determined, and, if
A is square and the o; are distinct, the left and right singular vectors {u,} and
{v;} are uniquely determined up to complex signs (i.e., complex scalar factors
of absolute value 1).

Proof. To prove existence of the SVD, we isolate the direction of the largest
action of A, and then proceed by induction on the dimension of A.

Set 0, = ||A|l,- By a compactness argument, there must be a vector
v, € C" with ||vy]|, = 1 and ||u4||; = 04, where u; = Av;. Consider any
extensions of v; to an orthonormal basis {v; } of C* and of u, to an orthonormal
basis {u;} of C™, and let U; and V; denote the unitary matrices with columns
u; and v;, respectively. Then we have

(4.5)

o, w*
UTAV, =8 = )

0 B

where 0 is a column vector of dimension m—1, w* is a row vector of dimension
n — 1, and B has dimensions (m — 1) x (n — 1). Furthermore,

o, w* o o

0 B w w
implying ||S|l, > (02 + w*w)'/2. Since U, and V; are unitary, we know that
S|z = ||Alls = o4, so this implies w = 0.

> ol ww = (07 +ww)/? :

2

2
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If n=1o0r m =1, we are done. Otherwise, the submatrix B describes the
action of A on the subspace orthogonal to v;. By the induction hypothesis, B
has an SVD B = U,3,V,*. Now it is easily verified that

. 10 o, 0 1 0 .
=ols g ][% sl nl
is an SVD of A, completing the proof of existence.

For the uniqueness claim, the geometric justification is straightforward: if
the semiaxis lengths of a hyperellipse are distinct, then the semiaxes them-
selves are determined by the geometry, up to signs. Algebraically, we can argue
as follows. First we note that o, is uniquely determined by the condition that
it is equal to || A]|,, as follows from (4.4). Now suppose that in addition to v,

there is another linearly independent vector w with ||w||, = 1 and || Aw||, = 0.
Define a unit vector v,, orthogonal to v, as a linear combination of v; and w,

Ve — w — (viw)v,
2 lw = (vfw)vly

Since ||A]|; = 04, ||Avy]|; < o4; but this must be an equality, for otherwise,
since w = wv,c + v,s for some constants ¢ and s with |c|?> + |s|? = 1, we
would have ||Aw||, < ;. This vector v, is a second right singular vector of
A corresponding to the singular value o;; it will lead to the appearance of
a vector y (equal to the last n — 1 components of Vi*v,) with ||y|l, = 1 and
|By||; = 0,- We conclude that, if the singular vector v; is not unique, then
the corresponding singular value o, is not simple. To complete the uniqueness
proof we note that as indicated above, once o, and v, and u, are determined,
the remainder of the SVD is determined by the action of A on the space
orthogonal to v;. Since v; is unique up to sign, this orthogonal space is
uniquely defined, and the uniqueness of the remaining singular values and
vectors now follows by induction. O

Exercises

Determine SVDs of the following matrices (by hand calculation):
0 2
3 0 2 0 11 11
@6 s o5s] @fsel@ge] @]

Suppose A is an m x n matrix and B is the n x m matrix obtained by rotating
A ninety degrees clockwise on paper (not exactly a standard mathematical
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transformation!). Do A and B have the same singular values? Prove it or give
a counterexample.

Write a MATLAB program (see Lecture 9) which, given a real 2 x 2 matrix A,
plots the right singular vectors v; and v, in the unit circle and also the left
singular vectors v, and u, in the appropriate ellipse, as in Figure 4.1. Apply
your program to the matrix (3.7) and also to the 2 x 2 matrices in Exercise 1.

Two matrices A, B € C™*™ are unitarily equivalent if A = QBQ* for some
unitary @ € C™*™. Is it true or false that A and B are unitarily equivalent
if and only if they have the same singular values?

Theorem 4.1 asserts that every A € C™*™ has an SVD A = UXV*. Show
that if A is real, then it has a real SVD (U € R™"*™, V € R™™").



