
Homework
Math 180: Introduction to GR

Temple-Winter 2018

(3) Summarize the article: https://www.ucdavis.edu/news/doing-
without-dark-energy/

(4) Assume only the transformation laws for vectors. Let XP =
ai ∂∂xi = aα ∂

∂yα = YP , and assume f is a scalar function on the

spacetime manifold M. Let f ◦ x−1 and f ◦ y−1 be the x- and
y-coordinate representations of f , respectively. Prove that

ai
∂

∂xi
f ◦ x−1 = aα

∂

∂yα
f ◦ y−1.

Explain why this makes sense as functions from coordinates to
coordinates even though f is defined on spacetime, and you can’t
“differentiate spacetime” directly.

Let f be a function on spacetime, f :M→ R. Let XP = ai ∂∂xi
be a vector at x(P ), and let df = ∂f

∂xidx
i be the 1-form which

corresponds to the differential of f . Explain how X operates on
f to give the gradient of f in direction X: And then explain
how, alternatively, we can view df as operating on X to give the
gradient of f in direction X.

Finally, say in words why this gives an interpretation of a vector
as something independent of coordinates.

(5) Show that if gij are the components of a gravitational metric
in x-coordinates, and gij transforms like a (0, 2) tensor over to
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y-coordinates as ḡαβ, that is,

ḡαβ =
∂xi

∂yα
gij
∂xj

∂yβ
,

then gij is symmetric (gij = gji) if and only if ḡαβ is symmetric,
and gij, as a 4×4 matrix, has an inverse if and only if ḡαβ has an
inverse as a 4×4 matrix. (Hint: Write the tensor transformation
laws as matrix multiplication, and use properties of matrices,
like “A matrix is invertible if and only if its determinant is non-
zero.” “The product of nonsingular matrices is nonsingular”,
etc.)

(6) (I) Let g and J be 3×3 matrices, and let gJ = A. Write out
the rows of all three matrices, and explain matrix multiplication
by the “rows of G contract with the rows of J to create the rows
of A”. Then write out the columns of all three matrices, and
explain how “the columns of J contract with the columns of G
to create the columns of A”.

(II) Now let gij and J ij be (0, 2) and (1, 1) tensors viewed as
3 × 3 matrices, i the row and j the column, and consider the
two matrix multiplications gikJ

k
j = Aij and gkjJ

k
i = Aij (the

latter being equivalent to Jki gkj = Aij because the order in which
you list the tensors doesn’t matter when you use the summation
convention to express matrix multiplication) .

(a) Using the column interpretation of matrices, explain why
gikJ

k
j = Aij expresses matrix multiplication gJ = A.

(b) Using the row interpretation of matrices, explain why gkjJ
k
i =

Aij expresses matrix multiplication J tg = A.

2



(7) Prove that if Sij and T ij are the components of a (1, 1)-tensors
in x-coordinates, then Ai

j = SikT
k
j (sum repeated up-down in-

dices from 0 to 3) transforms like a (1, 1)-tensor. What would
the general theorem about tensors arbitrary tensors S, T be?

(8) Let T ij be the components of a (1, 1)-tensor T at a point in

x-coordinates, and assume there is a vector X = ai ∂∂xi such that
T ija

j = λai. (That is, λ is an eigenvalue of the 4× 4 matrix T ij .)
Prove that λ is independent of coordinates. (Hint: See what’s
true in y-coordinates, for any other coordinate system y.)

(9) Let X, Y, Z be three independent vectors in TP (M) (the
tangent space of M at P ) given in x-coordinates by X = ai ∂∂xi ,
Y = bj ∂

∂xj ,Z = ck ∂
∂xk . Let n = (n0, n1, n2, n3) be the x-coordinate

unit normal to the hyperplane spanned by X, Y, Z, so that n·a =
n · b = n · c = 0, and n · n = 1, where dot is the dot product in
x-coordinates.

(a) Show that if we assume ni transform co-variantly as a down
index to n̄ = (n̄0, n̄1, n̄2, n̄3) in y-coordinates, then

n̄ · ā = n̄ · b̄ = n̄ · c̄ = 0.

(b) Is n̄ · n̄ = 1 in y-coordinates? Explain.

(10) Lete {X0, X1} be a positively oriented orthonormal frame
in 1 + 1 special relativity. Define the x̄ coordinate system in
terms of the given x-coordinate system by specifying that P has
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x-coordinates (x0, x1) and x̄-coordinates (x̄0, x̄1) if and only if

x0 ∂

∂x0
+ x1 ∂

∂x1
= x̄0X0 + x̄1X1.

Argue that in this case,

X0 =
∂

∂x̄0
, X1 =

∂

∂x̄1
.

(Hint: What defines ∂
∂x̄i in the first place?)

(11) In the field of asymptotics, we say “f(t) is O(tn) as t→ 0” to
mean that there exists a constant C > 0 such that |f(t)| ≤ C|tn|
for t sufficiently small. (Often we omit to add “as t → 0”, but
this is always implied.)

(a) Use Taylor’s theorem to show that:

1

1 + x
= 1− x+O(x2),

1

1− x
= 1 + x+O(x2),

and

√
1 + x = 1 +

1

2
x+O(x2),

√
1− x = 1− 1

2
x+O(x2).

(b) Use these to show that√√√√1−
(
v

c

)2

= 1− 1

2

(
v

c

)2

+O

(
v

c

)4

,

and
1√

1−
(
v
c

)2
= 1 +

1

2

(
v

c

)2

+O

(
v

c

)4

.
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(12) Twin Paradox: Imagine two twin observers who start out
fixed with respect to a given Minkowski coordinate system. One
twin remains at rest in that frame, while the other goes off in
a rocket ship and returns to see the first twin at a later time.
According to our time dilation, the second traveling twin will age
less than the twin who remains at rest in the Minkowski frame,
because “moving observers appear to age slower”. The Paradox
is, to the second twin, the first twin appears to have gone off
on a travel and returned to him, so by symmetry, why wouldn’t
the second twin be older than the first, a contradiction? Resolve
the paradox in words.

(13) Show L(θ)L(θ̄) = L(θ + θ̄), and use this to prove the rela-
tivistic addition of velocities formula

¯̄v =
v + v̄

1 + vv̄
c2
,

where v is the velocity of the x̄-frame with respect to the un-
barred frame, and v̄ is the velocity of a third ¯̄x-frame with re-
spect to the barred frame.

(14) Assume X is non-lightlike, so < X,X >6= 0. Derive the
relativistic version of the “orthogonal projection of a vector Y
onto a vector X” given by

ProjXY =
< X, Y >

< X,X >
X,

and interpret it geometrically. (Hint: Start with X, write Y as
a linear combination of X and the unit vector othogonal to X,
and use the inner product to solve for the components.)
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