(II) Complex Exponential Function

• Recall that the real exponential y=ex and the trigonometric functions y=sinx, y=cosx are given by globally convergent power series which look mysteriovsly similar -

 $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, $\sin x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!}$, $\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}$

• Recall that you can differentiate the power series term by term (TxT) because the convergence is uniform:

$$\frac{d}{dx}e^{x} = \frac{d}{dx}\sum_{N=0}^{\infty}\frac{x^{n}}{n!} = \sum_{N=0}^{\infty}\frac{d}{dx}\frac{x^{n}}{n!} = \sum_{N=0}^{\infty}n\frac{x^{n+1}}{n!} = \sum_{N=0}^{\infty}\frac{x^{n}}{n!} = e^{x}$$

$$k = N-1$$

$$k = N-1$$

$$\frac{d}{dx} \sin x = \frac{d}{dx} \sum_{n=0}^{n-1} \frac{\chi}{(2n-1)!} = \sum_{n=0}^{n-1} (2n-1) \frac{\chi}{(2n-1)!} = \sum_{k=1}^{n-1} \frac{\chi}{(2n)!}$$

= LOSX

 $\frac{d}{dx}\cos x = \frac{d}{dx} \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \frac{(Hw)}{(2n)!} = -\sin x$

(2) • Since $\frac{d}{dx} \chi^n = n \chi^{n-1} \sim \frac{d}{dz} \chi^n = n \chi^{n-1}$ (real) (complex) it makes sense that the complex exponential should be defined by $e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ so that $\frac{d}{dz}e^{z} = \frac{d}{dz}\int_{n=0}^{\infty}\frac{z^{n}}{n!} = \sum_{n=0}^{\infty}\frac{d}{dz}\frac{z^{n}}{n!} = \sum_{n=0}^{\infty}\frac{n}{n!}\frac{z^{n-1}}{n!} = \sum_{k=0}^{\infty}\frac{z^{k}}{k!} = e^{z}$ Turns out: all of this makes sense so long as the power series converges uniformly (which it) does-later) · Similarly, it makes sense to define $S(N Z = \sum_{n=0}^{\infty} (-1)^{n} \frac{Z^{2n-1}}{(2n-1)!}, COS Z = \sum_{n=1}^{\infty} (-1)^{n} \frac{Z^{2n}}{(2n)!}$ (*) (Hw) Show that if you can differentiate (*) TxT then the following hold in the complex sense: $d = \sin z = \sum_{n=0}^{\infty} d = (-1)^n \frac{z^{2n-1}}{2n-1} = \cos z$ were defined $d = \cos z$ were defined by nounary by power series $\frac{d}{dz} (DSZ = \sum_{n=1}^{\infty} \frac{d}{dz} (-1)^n \frac{z^{2n}}{(2n)!} = -SinZ$

3 Consider then what we would get if we put Z=2y into the power series for ez: $e^{2\vartheta} = \sum_{n=0}^{\infty} \frac{(2\vartheta)^n}{n!} = \sum_{n=0}^{\infty} \frac{(2)^n \vartheta^n}{n!} = \left(\begin{array}{c} \text{separate into terms} \\ w & n \text{ even & odd} \end{array} \right)$ $= \sum_{n=0}^{\infty} (2^{n})^{2n} + \sum_{n=1}^{\infty} (2^{n-1})^{2n-1} +$ Now: $(2)^{n} = (2^{2})^{n} = (-1)^{n};$ $(i)^{2n-1} = (i)^{2n}(i)^{1} = (-1)^{n}(-i) = (-1)^{n+1}i$ Conclude : $e^{iy} = \cos y + i \sin y$ · A though all of this is motivated by the conjecture that et can be defined by a power series, the easiest way to develop the theory is to start with the definition <u>Defn</u>: $e^{z} = e^{x+iy} \equiv e^{z}e^{iy} = e^{x}(\cos y + i\sin y)$ (This defn does not require a theory of power series)

• Theorem:
$$e^{z} = e^{x}(\cos y + i \sin y)$$
 defines
a complex valued function which is entire
in the sence that its derivative exists $\forall zel$
Proof: It suffices to check that the Cauchy-
Riemann equations hold (CR): $u_{x} = v_{y}$, $u_{y} = -v_{x}$
For this write:
 $e^{z} = e^{x}\cos y + i e^{x}\sin y$
 $u(x, y) = e^{x}\cos y$
 $v(x, y) = e^{x}\sin y$
 $v_{x} = e^{x}\sin y$, $v_{y} = e^{x}\sin y$
 $u_{x} = e^{x}\cos y$, $u_{y} = -e^{x}\sin y$
 $v_{z} = e^{x}\sin y$, $v_{z} = e^{x}\cos y$
So:
 $u_{x} = e^{x}\cos y = v_{y}$, $u_{y} = -e^{x}\sin y$
Nore over: Since $f(z) = e^{x}\sin y$, $v_{z} = e^{x}\cos y$
for every z , and $f'(z) = u_{x} + iv_{x} = e^{x}$

• Conclude: By defining
$$e^{z} = e^{z}e^{i\vartheta}$$
 with
 $e^{i\vartheta} = \cos \theta + i \sin \theta$, we can verify the (CR)
equations and $\frac{d}{dz}e^{z} = e^{z}$ directly, w/o
having to appeal to power ceries at all 0
Our theory tells us that e^{z} is an entire
function whose derivative and anti-deriv
agree with e^{z} , so
 $\int e^{z} dz = e^{z} \int_{A}^{B} = e^{B} - e^{A}$
 e^{A}
 $\int e^{z} dz = e^{z} \int_{A}^{B} = e^{B} - e^{A}$
 $f e^{z} dz = 0$ (A=B)
Theorem: with this definition, the complex
exponential satisfies the fundamental
proper fies of the real exponential (HW) proof
 $(z) e^{z+w} = e^{z} e^{w}$ (zii) $|e^{z}e^{i\vartheta}| = e^{z}$
 $|z^{i}| e^{z} \neq 0$ (iv) $e^{z} = e^{z}$

• Note: The problem with defining the exponential by its power series, aside from requiring the theory of power series to do it, is verifying $e^{Z+W} = \sum_{n=0}^{\infty} \frac{(Z+W)^n}{n!} = \left(\sum_{n=0}^{\infty} \frac{Z^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{W^n}{n!}\right) = e^{Z}e^{W}$ By defining $e^{z} = e^{2i\theta}$ and $e^{i\theta} = cosy + ising$, we can verify $e^{z+w} = e^{z}e^{w}$ by trig identifies, and then we can use the theory of power Series to prove $e^{(10Sy+2Siny)} = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ In particular: Uniform convergence of series $\frac{1}{2} = \sum_{n=0}^{\infty} \frac{1}{n!} = \sum_{n=0}^{\infty$ Thus both $e^{z} = e^{(\cos \theta + i\sin \theta)} \frac{2}{8} \frac{2^{n}}{n = 0}$ Solve the ordinary differential equation (ODE) f'(z) = f(z) and the theory of obers implies this initial value problem has precisely one soln $\Rightarrow e^{-2}$

• Corollary:
$$e^{x+i\vartheta} = e^{x}e^{i\vartheta} = e^{x}(\cos y + i\sin y)$$

• e^{z} is $2\pi - periodic in y$,
 $e^{x+i\vartheta} = e^{x+i(y+2\pi n)}$
Picture: $y = e^{x+i(y+2\pi n)}$
 $y = e^{-2\pi}$
 $y = -2\pi$
 $y = -2\pi$
 $y = -2\pi$

"All values of
$$e^{2}$$
 are taken on in the
strip $-p < x < \infty$, $-\pi < y < \pi$, and no value
of e^{2} is taken on twice in this strip,
i.e., $e^{2^{i}} = e^{2^{i}}$, $z_{1} z_{1} \in S = \sum z - \infty < x < \omega$, $\pi < y \le \pi < z_{1} = z_{2}$." (HW: prove this)
iff $z_{1} = z_{2}$. "(HW: prove this)
 $e^{2\pi} = \cos \pi + 2 \sin \pi = \cos \pi = -1$
 $e^{2\pi} + 1 = 0$
relates all of the fundamental numbers of closural
math D

El the exponential gives us a way to
interpret complex multiplication geometrically;
• For
$$z = x + iy$$
, we can write $r = |z|$ and
 $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$
length unit vector at angle θ
 $|ength$ unit vector $z = re^{i\theta}$
 $|ength$ unit $z = re^{i\theta}$
 $|ength$ $z = re^{i\theta}$

Theorem - Every complex number
$$Z = x + iy$$

can be uniquely expressed as $z = re^{i\theta}$
where $r = 171$ & θ is its angle with the
x-axis, say $0 < \theta < \pi$ (or any other
z-axis, say $0 < \theta < \pi$ (or any other
z-axis $z = rcos\theta$
 $z = re^{i\theta} says$ $z = rcos\theta$
 $y = rsin\theta$

So:
$$Z = r e^{i\theta} = 1ZI (\cos \theta + i \sin \theta)$$

 $r = modvlvs$ ($\cos \theta - i \sin \theta$)
 $\theta = angle$ unit direction
• This provides a geometric interpretation
for complex multiplication: $Z_1 = x_1 + i\theta_1$
 $Z_1 = x_1 x_2 - \theta_1 \theta_2 + i(x_1 \theta_1 + x_2 \theta_1)$
 $Z_1 = x_1 x_2 - \theta_1 \theta_2 + i(x_1 \theta_1 + x_2 \theta_1)$
 $Z_1 = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
 $R_1 = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
 $R_2 = x_1 x_2 - \theta_1 \theta_2 + i(x_1 \theta_2 + x_2 \theta_1)$
 $Z_1 = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
 $R_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
 $R_1 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
 $R_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
 $R_1 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$

Ans: Use
$$e^{ix} + e^{-ix}$$
, $\sin x = \frac{e^{ix} - e^{ix}}{2i}$

$$\frac{e^{ix} - e^{ix}}{2i} = \frac{\cos x + i \sin x - \cos(-x) - i \sin(-x)}{2i} = \frac{2i \sin x}{2i} = \sin x$$

$$\frac{e^{ix} + e^{ix}}{2i} = (Hw) = \cos x$$
• From this it makes sense to define

$$\frac{e^{ix} + e^{ix}}{2i} = \frac{e^{ix} - e^{ix}}{2i}, \quad \cos z = \frac{e^{ix} + e^{ix}}{2}$$
Claim: This correctly extends $\sin x \otimes \cos x$
to complex functions which satisfy CR —

Define An entire function is one which is has
a complex derivative
$$\forall z \in C$$
.
Theorem: $\cos z = \frac{e^{iz} + e^{iz}}{2}$ & $\sin z = \frac{e^{iz} - e^{iz}}{2i}$
satisfy the CR equations at every $z \in C$
and hence are entire.
Proof: Consider first $f(z) = \cos z$
 $f(z) = \cos z = \frac{e^{iz} + e^{iz}}{2} = \frac{e^{i(x+iS)} + e^{-i(x+iS)}}{2}$
 $= \frac{e^{iz}(\cos x + iz\sin x) + e^{iz}(\cos(-x) + iz\sin(-x))}{2}$
 $= \frac{1}{2}(e^{iz}\cos x + i\frac{e^{iz} - e^{iz}}{2}\sin x) + i(e^{iz}\sin x - e^{iz\sin x})$
 $= \frac{e^{iz} + e^{iz}}{2}\cos x + i\frac{e^{iz} - e^{iz}}{2}\sin x}, \quad V_x = \frac{e^{iz} - e^{iz}}{2}\cos x$
 $U_x = -\frac{e^{iz} + e^{iz}}{2}\cos x}, \quad V_y = -\frac{e^{iz} - e^{iz}}{2}\sin x$
and hence $U_x = V_y$, $U_y = -V_x$ (CR

Similarly, (HW)
Sin
$$z = \frac{e^3 + e^4}{2} \sin x + i \frac{e^3 - e^3}{2} \cos x$$

u(x,3)
and $u_x = v_x$, $u_y = -v_x$ (Check HW)
Conclude: $\cos z$ and $\sin z$ are entire.
Note: $\cos z = \frac{e^3 + e^3}{2} \cos x - i \frac{e^3 - e^3}{2} \sin x$
 $= \cosh y \cos x - i \sinh y \sin x$
 $= \cosh y \sin x + i \frac{e^3 - e^3}{2} \cos x$

So (CR) follows by

Since
$$\cos z$$
 and $\sin z$ satisfy CR, we know
 $\frac{d}{dz}\cos z$ and $\frac{d}{dz}\sin z$ exist. We calculate
 $\frac{d}{dz}\cos z$ and $\frac{d}{dz}\sin z$ exist. We calculate
them as follows:
Theorem $\frac{d}{dz}\cos z = -\sin z$, $\frac{d}{dz}\sin z = (0sz)$
(i) $\frac{d}{dz}\cos z = -u_x + iv_x$
 $= \frac{z}{\partial x}(\cosh \sin x) + i\frac{z}{\partial x}(-\sinh y \sin x)$
 $= -\cosh y \sin x - i\sinh y \cos x$
 $= -\sin z$
(z) $\frac{d}{dz}\frac{e^{iz}_{z}+e^{iz}_{z}}{2} = i\frac{e^{iz}_{z}-ie^{iz}_{z}}{2} = i\frac{e^{iz}_{z}-e^{iz}_{z}}{2} = -\frac{e^{iz}_{z}e^{iz}_{z}}{2}$
(Hw) Check $\frac{d}{dz}\sin z = \cos z$ both
 $ways...$
Note: We used Chain Rule: Assume f', gi
then $\frac{d}{dz}f(g(z)) = f'(w)g'(z)$, $w=g(z)$,
So: $\frac{d}{dz}e^{g(z)} = \frac{d}{dw}e^{w}\frac{dw}{dz} = e^{g(z)}g'(z)$

8	The	Complex	Logarithm -
---	-----	---------	-------------

(15)

We found that $F(z) = 2m|z| + i \Theta(z)$ is the anti-derivative of f(z)= z , but it is only defined when the neg x-axis (or any ½-line) is removed to make D'= C. Eneg z-axis} a <u>simply connected</u> domain. Here (with DE(-M,MJ) $\Theta = \operatorname{Anctan}\left(\frac{\vartheta}{\varkappa}\right) = \operatorname{Anccot}\left(\frac{\varkappa}{\vartheta}\right)$ (in case x=0 or y=0) Our Theory tells us F(z) is analytic in D! We now show that $F(z) = ln |z| + \theta(z)$ is the inverse of w=e, and we name it: Defn: Logz = In 121+20(2) ZED Defn: The axis removed to make D' simply connected is called a "branch cut" We now show that on its domain D', W = Log zis the inverse of $W = e^z$.

• Recall: a function
$$y = f(x)$$
, $f: \mathbb{R} \to \mathbb{R}$ (a)
has an inverse it you can solve for $x = f'(y)$,
which you can do if $f'(x) \neq D$. By
Then $y = f(x)$ iff $x = f'(y)$
and $f(f'(y)) = y$, $f'(f(x)) = x$.
You have to be more care ful it either
the Domain of f , or its Range, is not all of \mathbb{R} .
 $f'(y) = x$
 $y = e^{x}$ is defined for all $x \in \mathbb{R}$, but its
range is only $y > 0$.
 $y = e^{x}$ iff $x = \mathbb{Im} y$
 $y = e^{x}$ iff $x = \mathbb{Im} y$
 (x,y) on graph iff (y,x) on graph
 (x,y) on graph iff (y,x) on graph
 $y = e^{x}$ iff $x = \mathbb{Im} y$
 e^{x} : $\mathbb{R} \to \mathbb{R}^{+}$ $\mathbb{Im} x$: $\mathbb{R}^{+} \to \mathbb{R}$
with these restrictions -
 $0n e^{x} = x$, $y = e^{x}$
Chain Rule: $\frac{d\mathbb{Im} y}{dy} \frac{dy}{dx} = 1 \Rightarrow \left(\frac{d\mathbb{Im} y}{dy} = \frac{1}{y}\right)$

)

Theorem: If
$$w=f(\vartheta)$$
, $f: D \rightarrow R$, is 1-1 and onto,
and f is differentiably at z , then
 $(f^{-1})'(w) = \frac{1}{f'(z)}$
Proof: f 1-1, onto \Rightarrow a unique inverse f^{-1} exists
such that $f(f^{-1}(w)) = w$, $f^{-1}(f(\vartheta)) = \overline{z}$.
D. Afferentiating both sides of $f^{-1}(f(\vartheta)) = \overline{z}$ gives
 $\frac{d}{dz} f^{-1}(f(\overline{z})) = (f^{-1})'(w) \frac{dw}{dz} = \frac{d}{dz} \overline{z} = 1$
w chain rule
So $(f^{-1})'(w) = \frac{1}{(dw/dz)} = \frac{1}{f'(\overline{z})}$
Again - can be
induced for $\forall f^{-1}(x) = m$
 $f(x) = m$
 $y = e$
 $y = ln x$

• Consider now
$$W = f(z) = e^{z}$$

 $u + 2v = W = e^{z + 2v}$

To obtain an inverse, we must restrict z to a Domain where f is 1-1, and find the range R = f(D) so $f: D \rightarrow R \mapsto 8$ onto, First, $W = e^{z} = e^{z} e^{iy} = r(cosy + isiny) \neq 0$ length unit vector Here: $r=e^{x} > 0$ can be any positive real (cosy, siny) can be any direction. Thus the range of w=e is R=C \ {w=o} Since et is 277-periodic in y, restrict to $D = \{z \in C : z \in \mathbb{R}, -\pi < y \le \pi \}$ $f(z) = e^{x}e^{iy}$ $f(D) = \mathbb{C} \setminus \{w = 0\}$ C . E 03 1-1 onto N mmmm ر لا values of ez $f'(w) = \chi + 2 \vartheta$ don't match at $f^{-1}(\mathbb{C} \setminus \{0\}) = U$ $A = \pi, -\pi$

• Summary - To construct the inverse of 2			
$f: D \longrightarrow R$ $i-1$ onto ; $D, R \subseteq C$			
Start: $w = f(z)$			
Switch Z, W (to make z the input of f): Z=T(W)			
Solve for w: $W = f'(z), f: R \rightarrow D$			
· So start with U+2v = exerts <=> w=e			
Switch z, w: x+iy = e ^u e ^{iv} (=) z = e ^w			
Solve for W: IZI = e" (=> u=ln Z			
$z = r e^{iv} \Rightarrow v = \Theta(z) = the angle z$			
$Z = V e^{iV} \implies V = \Theta(Z) = \text{the angle } Z$ length unit makes with X - axis $\text{direction} \Theta(Z) = \text{Arctan} \left(\frac{9}{2}\right) = \text{Arccot} \left[\frac{x}{9}\right]$			
O(z) = Arcran(r, z) rrcon(y)			
Conclude: U+iv = ln 121+i0			
OA : $Z = re^{i\theta} \iff W = bnr + i\theta = \log Z$			
Notation: we let encry denote the Real logarithm			
use logz to denote complex logarithm, and			
upper case Log Z usually means we've chosen a standard branch-			

standard branch-

The Inverse Function Theorem -
• We just defined the complex exponential

$$e^{2} = e^{x+i\theta} = e^{x}e^{i\theta} = e^{x}(\cos \theta + i\sin \theta)$$

and showed that on the Domain
 $D = \xi z : -\pi < \theta \le \pi^{2} \beta$
f(z)= e^{2} is 1-1 and onto the range $R = C \setminus \xi \circ \beta$
(not to be
(a) = $\frac{1}{2} \beta$
except f^{-1} is discontinuous on neg real axis
(bronch cut the
We defined: $Log z = f^{-1}(z) = ln(z) + 2\theta(z)$
 $Log : D' \longrightarrow D$
so Log is continuously differentiable in D'.
Q: Is the inverse of an analytic full
analytic?

• Lets deconstruct the argument that
gives the formula
$$f'(w) = \frac{1}{f'(z)}$$
, $w = f(z)$
First, assume $f: D \rightarrow R$ f is analytic
(f' exists indept of $\Delta z \rightarrow 0 \Leftrightarrow CR$), 1-1 and onto,
so $f': R \rightarrow D$ exists, $w = f(z)$, $z \in D$, we R.
By Defn, $f''(f(z)) = Z$
C same function of Z
- Since both sides name the same function,
the derivatives must be equal on both sides
Offerentiate both sides and set them equal
 $\frac{d}{dZ} f'(f(z)) = \frac{d}{dZ} Z = 1$
Cham Rub: $\frac{df'}{dW} = f''(w) f'(z) = 1$
So $(f')'(w) = \frac{1}{f'(z)} = (needs f'(z) \neq 0)$
- Problem: we need to know $(f')'(w)$ exists
in order to apply the Chain Rule g

· So Question: If a complex valued function (3) f: D -> R is analytic in D, and 1-1 onto R= f(D), (so f⁻¹: R→D exists), 15 f⁻¹ always analytic? Ans: Yes but you need f'(2) = { W: 3 z EDst w=f(2) } "image of D under f" This follows from the complex version of the Inverse Function Theorem Theorem: (Complex IFT): Assume w=f(z) = u+iv where u and v are continuous with continuous derivatives (C') in some nobed of ZOEC. Assume further that f'(20) exists and f'(20) =0 at Zo. Then there exists E>o such that $f: B_{\varepsilon}(z_0) \longrightarrow R = f(B_{\varepsilon}(v)) \text{ is } 1-1 \text{ onto }, (f')'(w_{\varepsilon})$ exists, and (f')'(wo) exists and equals f'(zo). • Note: An analytic fn wont be invertible in a nobed of a point z_0 where $f'(z_0) = 0$, so this is the best you can do. The IFT tells us that whenever a C' analytic fn is invertible (meaning the inverse exists), the inverse is differentiable. * "nbhd of = neighborhood) of "="an open set containing"

• To Start we review the Real IFT.
Then (IFT Real Cace-Math 127B) Assume
$$f: D_{open} R_{3}$$

 $f(x, 8) = (u(x, 8), v(x, 8))$, where $u = (u, v)$ in C' in
a nbhd of $x_{0} = (x, x_{0})$. Assume forther that
(*) Det $J(x_{0}, 8_{0}) = \int -\nabla u(x_{0}, 8_{0}) - \int = \int u_{x} u_{y} = (u_{x}v_{y} - u_{y}v_{x}) = 0$
Then f has an inverse in a nbhd "contractor
of $u = f(x_{0})$. I.e. $\exists exo$ st f^{-1} $D' \rightarrow R'$
is 1-1 onto, f^{-1} is C', and $D' = g(u_{0}) = x_{0} \in R'$
 $f' \circ f(x_{0}) = x_{0} & g' \circ f(x_{0}) = y_{0}$
for $u \in D'$ and $x \in R'$.
Proof (Math 127B)
Figure (x) $y = \int u_{0} + u_{0} = u_{0} + u_{0} + u_{0} = u_{0} + u_{0} + u_{0} + u_{0} + u_{0} = u_{0} + u_{0} +$

• Conclude: If f(z) = u + iv is analytic at $z_0 = x_0 + iy_0^2$ Then $+(x_0) = y_0 = (u_0 v_0)$ satisfies Det $J(x_0, y_0) = \begin{vmatrix} u_x & u_y \\ -u_y & u_x \end{vmatrix} = u_x^2 + u_y^2 \neq 0$ Notation: J(x, y) = Df(x, y) J = DfIf $f'(z_0) \neq 0$. Thus the condition $f'(z_0)$ exists and is nonzero implies the CR equations, and this in turn guarantees condition (x) of the real IFT. Thus f'(zo) = 0 together with u, v c C' implies f (and hencef) has an inverse in a nobld D' of Y. Proof of Complex IFT: Let f(z) = u(x, 8)+ 2v(x, 8), and assume u, v & C' a nobed D of Zo, and f'(Zo) = 0. Thus CR holds, Ux = Vy, Uy = - Vx at Zo. Now $f'(z_0) = U_x(x_0) + i U_y(x_0) \neq 0 \Rightarrow e^{ither U_x(x_0) \neq 0}$ or $U_{\psi}(\tilde{x}_{0}) \neq 0 \Rightarrow Det J(\tilde{x}_{0}) = \left| \begin{array}{c} U_{x} & u_{y} \\ -u_{y} & u_{x} \end{array} \right| = U_{x}^{2} + U_{y}^{2} \neq 0$ and by (*) we know $\vec{r}^{-1}: D' \rightarrow R'$ exists (see Fig*) Since f'(u,v) = (x(u,v), y(u,v)) is equivalent to f'(u+iv) = x(u,v) + iy(u,v) as a mapping $(u,v) \rightarrow (x,y)$ it follows that flativs = x (u, v) + ig (y, v) is the complex inverse of f(z) on D'.

It remains to prove that
$$(f^{-1})'(u_0+iv_0)$$
 exists.
For this it soffices to verify the CR equations.
Let $y = (\overline{u}, \overline{v})$, $w = u + iv_0$, so we have
 $w = f(\overline{v})$ iff $\overline{z} = f^{-1}(w)$
 $(\overline{u}, \overline{v}) = \overline{f}(x, \overline{v})$ iff $(\overline{z}, \overline{v}) = \overline{f}^{-1}(u, \overline{v})$
 $\overline{u} = \overline{f}(\overline{x})$ iff $\overline{x} = \overline{f}^{-1}(\overline{u})$
thus $\overline{f}^{-1}(\overline{f}(\overline{x})) = [\overline{f}]_0^0 \overline{f}(\overline{x}) = \overline{\chi}$
 $uot Det T = D$
 $D_1 ff both sides and apply Chain Rule for real find - R^2:$
 $\frac{2(\overline{f}_0 f)}{\partial \chi} = \frac{2\overline{f}^{-1}}{\partial \overline{u}} \frac{\partial u}{\partial \overline{\chi}} = I$
 $2x_2$
 $2x_2$

But recall we have a formula for the inverse of 20 a 2x2 matrix:

 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \overline{A'} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, |A| = ad-bc$ Check: $A'A = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $=\frac{1}{ad-bc}\begin{pmatrix}ad-bc, 0\\0, ad-bc\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix}=\mathbf{I}$ Thus $D\vec{F}_{o}^{-1} = \begin{pmatrix} x_{u} & x_{v} \\ y_{u} & y_{v} \end{pmatrix}$, and (chain rule) gives $D\vec{f}^{-1} = \begin{pmatrix} x_{u} x_{v} \\ y_{u} y_{v} \end{pmatrix} = \begin{pmatrix} u_{x} u_{y} \\ v_{x} v_{y} \end{pmatrix}^{-1} = \frac{1}{u_{x} v_{y}^{-} u_{y} v_{x}} \begin{pmatrix} v_{y} - u_{y} \\ -v_{x} u_{x} \end{pmatrix}$ So at $Z=Z_{o}$ $\begin{cases}
(\forall u \ \forall v) \\
(\forall u \ \forall v) \\
U_{x} = \frac{1}{U_{x}^{2} + U_{y}^{2}} \begin{pmatrix}
U_{x} - U_{y} \\
U_{y} & U_{x} \end{pmatrix}_{z=Z_{o}} \\
(\forall u \ \forall v) \\
U_{z=Z_{o}}
\end{cases}$ Comparing entries at Z=Z, where f(z) exists, gives $\chi_{u}(u_{o},v_{o}) = Y_{v}(u_{o},v_{o}) \& \chi_{v}(u_{o},v_{o}) = Y_{u}(u_{o},v_{o}),$

This says $f'(w) = \chi(u, v) + \lambda \chi(u, v)$ satisfies CR at $u_0 + \lambda v_0$, and hence $f''(u_0 + \lambda v_0)$ exists V

Conclude:
$$f'(w)$$
 exists and is smooth
in a nobuld of $w_{z}=u_{z}+iv$, and $(f')'(w)$ exists,
so the complex chain rule applied at $z=z_{0}$;
 $f''(f(z_{0})) = z$
thus
 $\frac{d}{dz}f'(f(z_{0})) = \frac{df''}{dw}\frac{dw}{dz} = 1$ at $z=z_{0}$
 $\frac{dw}{dz}=f'(z_{0})$
and thus $\frac{df''(w_{0})}{dw}=\frac{1}{f'(z_{0})}$
This Completed the proof of the Complex [IFT]
Summary: If $f: D \rightarrow R$ is 1-1, onto, analytic
and "smooth" $(u, v \in C')$, and $f'(z_{0}) \neq 0$, then
 $f''(w_{0}) = \frac{1}{f'(z_{0})}$.