Depology of the Complex Plane: (Skip some) Defn: the "topology" of C or R is the collection of open sets of points in R. The subject of topology is the characterization of <u>convergence</u> in terms of the open sets. • Turns out - many notions related to convergence are better conceptualized when expressed in terms of open sets. The most important concept is compactness: . The central problem of mathematical analysis is determing when an approximation scheme is actually converging - i.e., is it really appoximating what it is supposed to approximate? For example, computers can only generate approximations to solutions of equations, so how do you determine the numerics is correct? The basic stategy of math analysis to prove the approximation sequence lies in a compact set, obtain a convergent subsequence, and prove its limit is an exact solution.

(Note: Typically f(2) not defined at zo; (4)
ie time $f(z+\Delta z) - f(z)$ not defined at $\Delta z = 0$.) $\Delta z \rightarrow 0$ Δz
Thm(2): $\lim_{z \to z_0} f(z) = L$ iff for every sequence $z \to z_0$ $Z_n \to Z_0$, $(Z_n \neq Z_0)$, we have $\lim_{z \to z_0} f(z_n) = L$.
Thm 3: If a limit of a sequence or function exists, then it is unique (there can be at most one limit)
Thm $(dZ_n + BW_n) = d\lim_{N \to d} Z_n + B\lim_{N \to d} W_n \alpha, B \in C$
$\lim_{n \to \infty} Z_n W_n = (\lim_{n \to \infty} Z_n) (\lim_{n \to \infty} W_n)$
$\lim_{N \to a} \frac{Z_n}{W_n} = \frac{n \to a}{\lim_{N \to a} W_n} \left(\frac{W_n}{N} \right)_{n \to a} \frac{1}{\sqrt{N}} \left$
Thm 5: Same for limits of functions (HW)
Thm (Big): A sequ. converges iff it is Carchy
Defn(4): Zn is Cauchy if VE>O JN>O st m, n>N => ZZ_ <e< td=""></e<>

• Given a subset EEC, the boundary of E, (5) denoted DE, is the set of points ZEC such that every noted of z contains both points in E and in E^c. (Int $E = \{z \in E \text{ st } B_{\varepsilon}(z) \in E \text{ some } \varepsilon > o\}$) • Defn 5; Z, E 2E if VE 3Z, ZEC st $Z_1, Z_2 \in B_{\varepsilon}(Z)$ with $Z_1 \in E, Z_2 \notin E$ (i.e. $Z_2 \in E^{\circ}$). Picture: "z in boundary of E" $E = \frac{z}{z} + \frac{z}{z} = \frac{z}{z} = \frac{z}{z}$ Turns at: closed sets, defined as complements of open sets, are precisely the sets which contain their . boundaryo Thmo: ECC is closed iff ZECE Defn 6: E = "closure of E" = EUZE Thm D: E is closed, and E = E. Cor: E is closed iff E is closed under limits -- by which we mean that any point which is the limit of a sequence in E, is also in E.

6 · Defn 7: f is continuous at Zo if f(zo) is defined, and $\lim_{z \to z_0} f(z) = z_0$. The following famous theorem shows that continuity is a purely topological concept i.e. can be characterized in terms of opensets -Thm (Big): f is continuous iff the inverse image f⁻¹(O) of every open set O = C is open. Continuity is also expressed in terms of closed sets-Thm 9: f continuous iff f (E) closed V E closed Defn : f'(E) = {zell st w=f(z) some we E} Note: Thm's 8,9 characterize functions $f: C \rightarrow C$ which are continuous at every ZGC. If $f: D \rightarrow C$, $D \subseteq C$ but not all of C, then still true by defining B = C to be open relative to D if B=DNOopen. Then fiont iff the pre-image of open sets are open relative to

• The most important concept in topology (7)is <u>compactness</u> Defn (9): E = C is <u>compact</u> if every open covering of E admits a finite subcover. that is, we say a collection of open sets {0,} covers E if E C U Q. E compact implies E= Qu Qu ... V Qan some finite subset of Q's The following important theorem <u>characterizes</u> the <u>compact</u> subsets of C in terms of the topology alone. Thm (i): (Big) A set ESC is compact iff it is closed and bounded, for izi=R Here, E is bounded if JR>0 st ES B(0). Thm (Big) E = C is closed & bounded (and hence compact) iff every sequence Z_EE has a convergent subsequence, and the limits of sequences in E, also lie in E

8 Continuous functions defined on compact Jomains D=Ecomput admit mathematical analysis -Thm (2) (Brg): If a real valued function f: E -> A is continuous on compact set E, then: (For complex fn's f: E > C think If I: E > R) (1) f is bounded on E. (JASTAMZ/(S) II t2 O<ME) (2) f takes on its max and min values on E $(\exists z_1, z_2 \in E \text{ st } |f(z_1)| \leq |f(z_2)| \leq |f(z_2)| \forall z \in E)$ Thm (13) (Big): A continuous function on a compact st E is uniformly continuous. (For us $f:E \rightarrow E$ but this holds in general topological spaces) Detno: f: E -> l'is uniformly continuous it $\forall \varepsilon > 0 \exists 5 > 0 \text{ st if } |z_2 - z_1| < \delta \text{ then } |f(z_2) - f(z_1)| < \varepsilon$ "You can make outputs uniformly close by choosing any two inputs sufficiently close."

• The main problem of analysis is the problem ()
of ensuring that approximation schemes are
valid. This is the fundamental problem of
computing -how do you know your numerical
approximation is really approximating what you
Basic Problem- if you are approximating what you
a function by a sequence of approximating
functions
$$f_n \rightarrow f$$
, when can you infer
continuity of limit f from continuity of the
approximating f_n ? And -need uniform limits 0
thm () (Big): If f_n are continuous and
 $f_n \rightarrow f$ uniformly on E, then f is continuous,
 $p_n \rightarrow f$ uniformly on E (any E)
if $\forall \varepsilon > 0$ in >0 st $n > N$ indices $\forall z \in E$
You can make $f_n(z)$ uniformly close to $f(z)$ for
all $z \in E$ by going sufficiently far out in your
approximation sequence f_n

(HW) Thm(A); If f: C→C is continuous (12)and a curve e is c' in the sence that both Z(t) & Z'(t) are continuous for $a \le t \le b$ Z(a) = A, Z(b) = b, then $\int f(z) dz = \int f(z(t)) z'(t) dt = \lim_{N \to \infty} \sum_{k=1}^{N} f(z_k) z_k \Delta t$ (Show this is equiv to $J\vec{b}, \vec{T}ds + i \int \vec{c} \cdot \vec{T} ds$) (This is Riemann Sum with $Z_{k} = \vec{Z}(\vec{E}_{k})$ $Z'_{k} = \vec{Z}(\vec{E}_{k})$ and (is unique independent of how we choose En e (tra-1, tra], (Assume one limitexists, cf. Math 1278) Note: By the same argument we needn't choose the to be equally spaced, $t_n = h \Delta t$, $\Delta t = \frac{b-a}{N}$, we could take any a=tox...xtx-xtn=b So long as $\max_{k=1}^{n} |t_n - t_{n-1}| = ||\Delta t|| \xrightarrow{N \to 0}$ In this case we can take $Z_n = Z(\overline{t}_n), Z_n = Z(\overline{t}_n)$ for any the (th-1, th].

Proof of Theorem (A): (Limits of Aremann Sum are unique) (13) Choose $a=t_0 < t_1 < \cdots < t_n < \cdots < t_n > b, at = \frac{b-a}{N}$, and set $Z_{h} = Z(\overline{t}_{h}), Z_{h} = Z'(\overline{t}_{h}), t_{n-1} < \overline{t}_{h} \leq t_{h}$ and form the Riemann Sum $R_{N} = \sum_{n=1}^{N} f(Z_{n}) Z_{n} \Delta t$ To verify Thm(A) (uniqueness), assume for a given choice of EEn3 at each value of N, the sequence of complex #'s ERNZ converges as $N \rightarrow \infty$, i.e., $R_N \rightarrow R_0 \in \mathbb{C}$. Then to get uniqueness, we must show that for any other choice of Ene(th-1) th] at each stage N, we get a different sequence $R_{N} = \sum_{h=1}^{N} f(Z_{h}^{*})(Z_{h}^{*}) \Delta t,$ and R'N N-> Ro. So assume we know {R. 30 =1

converges for one choice { En }. (see Math 127B)

It suffices to show that
$$\forall \varepsilon > 0 \exists \bar{N} > 0 st$$

 $N > \bar{N} \implies |R'_{N} - R_{N}| < \varepsilon$. This implies $R'_{N} \rightarrow R_{D}$
as well. (see argument at end.) For this, write
 $|R_{N} - R'_{N}| = \int_{k=0}^{N} f(z_{h}) z'_{h} \Delta t - \sum_{k=0}^{N} f(z_{h}^{*})(z_{h}^{*})' \Delta t \int_{k=0}^{N} (f(z_{h}) z'_{h} - f(z_{h}^{*})(z_{h}^{*})') \Delta t$

Now the function F(t) = f(z(t))z'(t) is cont on the compact interval [a,b], so by thm (3) F is uniformly continuous. Thus, $\forall \varepsilon > 0 \exists \delta$ st if $|\Delta t| < \delta$, then $|F(t_{A}) - F(t_{A}^{*})| < \varepsilon$or we can make it $< \frac{c}{|b-a|}$ if we like... and we do like D Since $\Delta t = \frac{b \cdot a}{N}$, we can choose $\overline{N} = \frac{b - a}{\Delta t} >>1$ large so that N>N ⇒ st<5 so that $\sum_{n=1}^{N} |F(\overline{t}_{n}) - F(\overline{t}_{n}^{*})| \Delta t = \sum_{n=1}^{N} |f(\overline{z}_{n})\overline{z}_{n}' - f(\overline{z}_{n}^{*})|\overline{z}_{n}'| \Delta t$ A=0 $\leq \frac{\varepsilon}{\ln - \alpha}$ $\leq \frac{\varepsilon}{\ln - \alpha l}$ $\leq \frac{\varepsilon}{|b-a|} \sum_{h=1}^{N} \Delta t = \frac{\varepsilon}{|b-a|} |b-a| = \varepsilon$ Conclude: VE>0 ZN>0 st N>N => |RN-RN/KE. It follows that if R, -> Ro, then also R, -> Ro. $(I_{R_{N}} - R_{o}) = |R_{N} - R_{N} + R_{N} - R_{o}| \leq |R_{N} - R_{N}| + (R_{N} - R_{o})$ so given €>0, choose N st N>N => IRN-RN K= BIRN-RNKE $\Rightarrow |R_{N}' - R_{0}| < \varepsilon \land)$

(HW) Thm (B): Prove that the length of
a curve
$$L = \int_{a}^{b} |z'(t)| dt$$
 defined by
 $L = \int_{a}^{b} |z'(t)| dt = \lim_{N \to \infty} \sum_{k=1}^{N} |z(t_{k}^{*}) - z(t_{k-1}^{*})|$
is defined independently of how we choose
 $t_{k}^{*} \in (t_{k-1}, t_{n}]$. (This uses essentially the same
argument as Thm(A), and generalizes to indept
of mesh ξt_{n}^{3} , so long as $||At|| \longrightarrow 0$.)

(6)

(HW) Thm (C) Prove

$$\int_{a}^{b} f(z(t)) z'(t) dt \leq L M$$
where $M = Max |f(z(t))|$.
 $a \leq t \leq b$