④ skip some Topology of theComplex ^e : (Skip some)
(proofs 0
Le nois Defn: The "topology" of C or R is the collection <u>) le</u>
lefn : of open sets of points in R². The subject of Jety: The topology of work? The subject of
of open sets of points in IR. The subject of in terms of the open sets. teri:
sets. · Turns out-many notions related to convergence are better conceptualized when expressed in terms $\ddot{}$ better conceptualised when expressed in ter Compactness: in terms
Turns out-1
better conce
of open set
The centre · The central problem of mathematical analysis is determing when an approximation scheme is actually converging - i . orinains. appoximating what it is supposed to approximate? For example, computers can only generate approximations to solutions of equations , so how do you determine the numerics is correct? The basic stategy of math analysis to prove the approximation [↓] set obtain a of math analysis to prove the convergent subsequence , wove the approximation
pact set, obtain a
and prove its limit is an in C
- <u>lim</u>
2xoct $\frac{1}{3}$ is an
 $\frac{1}{3}$ is an

• Comparable is **best** expressed in terms of
\nopen sets, ie expressed "topologically".
\n40 **Deyn sets**, ie expressed "topologically".
\n41 **Defn**; A set
$$
\theta \in \mathbb{C}
$$
 (or R) is **open** if
\n $\forall z \in \mathbb{O} \exists \epsilon > 0$ if $B_{\epsilon}(z) \in \mathbb{O}$.
\nFor every $z \in \mathbb{O}$ there is a ball of radius $\epsilon > 0$
\n \therefore for every $z \in \mathbb{O}$ there is a ball of radius $\epsilon > 0$
\n \therefore for every $z \in \mathbb{O}$ there is a ball of radius $\epsilon > 0$
\nSo we open set $\theta \in \mathbb{C}$." Closed sets are the
\ncomponent of open sets"
\nHere $\theta^e = \theta^e = \theta^e$ compared "e's zero" is a real, and
\n $\theta^e = \theta^e = \theta^e$ compared "e's zero" is a real, and
\n $\theta^e = \theta^e = \theta^e$ compared for $\theta^e = \theta^e$
\n \therefore The sum of the vertices of the
\n $\theta^e = \theta^e = \theta^e$ compared for $\theta^e = \theta^e$
\n \therefore The sum of the vertices of the
\n $\theta^e = \theta^e = \theta^e$ (or R) is **open** of the
\n $\theta^e = \theta^e = \theta^e$ (or R) is **open** of the
\n $\theta^e = \theta^e$ (or R) is **open** of the
\n $\theta^e = \theta^e$ (or R) is **open** of the
\n $\theta^e = \theta^e$ (or R) is **open** of the
\n $\theta^e = \theta^e$ (or R) is **open** of the
\n $\theta^e = \theta^e$ (or R) is **open** of the
\n $\theta^e = \theta^e$ (or R) is **open** of the
\n $\theta^e = \theta^e$ (or R) is **open**

 $\overline{\mathbf{t}}$

 \odot

Definition 3.1 neghlorhood (nbd) of a point
$$
z_{0}
$$
 is
\nany open set which contains z_{0}
\nA deleted hold of z_{0} is $C_{open} \le z_{0}z_{0}$
\nwhere C_{open} is an open set containing z_{0}
\nthus C_{open} is an open set containing z_{0}
\n
$$
[Hw]
$$
 Prove **0** and $\emptyset = empty$ set are the only
\nsets which are both open and closed.
\n**Definition** $z_{n-1} = z_{0}$ ($z_{n-1} \Rightarrow z_{0}$) if $V \in \mathcal{P}$
\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-2} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-2} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-2} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-2} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-2} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-2} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-1} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-1} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-1} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-1} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-1} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-1} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-1} \le 1
$$

\n
$$
\exists N \text{ s.t } n > N \Rightarrow |z_{n-1} \le 1
$$

\n
$$
\exists N \text{
$$

· Given a subset E E l', the boundary of E, (5) denoted $\overline{\partial E}$, is the set of points z'El such that every nbhd of Z contains both points
in E and in E^c. (Int E = {Z = E st B_E (Z) = E some E > 0}) \cdot lefn (5); $z_0 e$ de if $\forall \epsilon \exists z_1, z_2 e \mathbb{C}$ st $Z_{12}Z_{2}\in\mathcal{B}_{\varepsilon}(z)$ with $Z_{1}\in E_{1}$, $Z_{2}\notin E$ (i.e $Z_{2}\in E^{\circ}$). Picture: $v_{\overline{z}}$ in boundary of E'' $\xrightarrow{b} \overline{z_{10}}$ $\overline{z_{2}}$ $\xrightarrow{B} \overline{z_{2}}$ Turns Out: closed sets, defined as complements of open boundary Thm(6): ECC is closed iff JECF Lefn (6) : \overline{E} = "closure of $E'' = E \cup 2E$ $\underline{\text{lim}}\oplus$: E is closed, and $\overline{\overline{E}}$ = \overline{E} . Cor: E is closed iff E is closed under limits - by which we mean that any point which is the Sinit ot a sequence in E, is also in E.

 $\left(6\right)$ · Defn (7): f is continuous at z_0 if $f(z_0)$ is defined, and $\lim_{z\to z_0} f(z) = z_0$. The following famous theorem shows that continuity is a purely topological concept = Thin (Big): f is continuous iff the inverse image $f^{-1}(G)$ of every open set $O \in \mathbb{C}$ is open. Continuity is also expressed in terms to closed sets-MMQ: f continuous iff f (E) closed V E closed $Qf_1 \otimes \cdot f'(E) = \{z \in \mathbb{C} \text{st} \ w = f(z) \text{ some } w \in E\}$ Note: Thm's 8, 9 characterise functions f: $C\rightarrow C$ which are continuous at every zol. If $f:D\to\mathbb{C}$, $D\subseteq\mathbb{C}$ but not all of \mathbb{C} , then $S+|||$ true by defining $B \subseteq \mathbb{C}$ to be open relative to D if $B = D \cap \mathcal{O}_{open}$. Then f upit iff the pre-mage of open sets are open relative to

 \bigoplus · The most important concept in topology is compactuess. Defn (9): E C D is compact it every open covering of E admits a finite subcover. that is, we say a collection of open sets {O} covers E if ECUQ. E compact implies $E = Q_{\alpha_1} \cup Q_{\alpha_2} \cup \cdots \cup Q_{\alpha_n}$ some finite subset of Q_{α_2} The following important theorem characterizes
the compact subsets of C in terms of the topology abne. Thin (10): (Big) A set E S l is compact iff it is closed and bounded. (or let be Here, E is bounded if \exists R>0 st E & B (0)? Thm (D: (Big) E = 1 is closed & bounded Cand hence Compact) iff every sequence $z_n \in E$
has a convergent subsequence, and the limits of sequences in E, also lie in E

 \circledS Continuous functions defined on compact Thm(2) (Brg): It a real valued function f:E-B IS continuous on compact set E, then: (For complex $9n!f: E \rightarrow C$ think $|f|: E \rightarrow R$) (1) f is bounded on E. $(SJ95 \forall M \geq (s)$ (Fig) $H1 + 2$ o< M E) (2) f takes on its max and min values on E $(E_{1},Z_{2}E_{1})$ \leq $|f(z_{1})|$ \leq $|f(z_{2})|$ \leq $|f(z_{2})|$ $\forall z$ E Thm (13 (Big): A continuous function on a compact Dety@: f: E -> l' is uniformly continuous if V E>0 J 5>0 st it 1z, -z, 1<s then $|f(z_1) - f(z_1)|$ <E "You can make outputs uniformly close by

• the main problem of analysis is the problem
of ensuring that approximation schemes are
valid. This is the fundamental problem of
computing - how do you know your numerical
computing - how do you know your numerical
Conportimation is really approximating what you
a function by a sequence of approximately that
functions
$$
f_n \rightarrow f
$$
, when can you infer
Conting by a sequence of approximately of the
conveximating f_n ? And - need uniformly of the
approximating f_n ? And - need uniformly on
 $f_n \rightarrow f$ uniformly on E, then f is tontunvol
 $f_n \rightarrow f$ uniformly on E, then f is tontunvol
Define (Big): If f_n are continuous and
 $f_n \rightarrow f$ uniformly on E (any E)
if $V \in \infty$ J N> 0 s f n > N \Rightarrow If $f_n(x)$ - $f(x)$ \le E
if $V \in \infty$ J N> 0 s f n > N \Rightarrow If $f_n(x)$ - $f(x)$ \le E
all $\pm \in E$ by going sufficiently far out in your
opproximation sequence f_n

Application: Uniform Convergence is the fundamental concept needed for the theory of Line Integrals.

\nLet C be a curve in C defined by parametrization:

\n
$$
P: \mathbb{Z}(E), \alpha \leq t \leq b, \mathbb{Z}(a) = A, \mathbb{Z}(b) = B
$$
\n
$$
\frac{P: \mathbb{Z}(E), \alpha \leq t \leq b, \mathbb{Z}(a) = A, \mathbb{Z}(b) = B}{\sum_{t=0}^{t} f(t)}
$$
\nNow assume $\mathbb{Z}(t)$ is continuous.

 (Hw) Prove: $V \in \mathcal{F}$ \exists $S>0$ s.t. if $|t_2-t_1| < \delta$ $Hnen |Z(t_{i})-Z(t_{i})|<\epsilon$

Soln: [a,b] closed & bounded => compact. Since Z(t) continuous on compact E = [a,b], Thm (13) Implies Z(.) is uniformly continuous. By Defu@ $\forall \epsilon > 0 \exists \delta > 0 \text{st } |t-t| < \delta \Rightarrow |z(t_1)-z(t_1)| < \epsilon$ as claimed

6 Now create a Riemann Sum as follows:

\nChoose N large and define
$$
\Delta t = \frac{b-a}{N}
$$
 with

\n
$$
t_{h} = 0 + k \Delta t_{h} + k = 0_{h} + k_{h} = 0_{h} =
$$

(HW) Thm(A): If f: C -> C is continuous (12) and a curve e is C'in the sence that both $Z(t)$ & $Z'(t)$ are continuous for $a \leq t \leq b$ $Z(a)=A, Z(b)=b,$ then $\int_{C} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt = \lim_{N \to \infty} \sum_{k=1}^{N} f(z_{k})z_{k}' \Delta t$ (Show this is equiv to) (This is Riemann) is unique independent of how we choose En E (tr-1, tr]. (Assume one limit exists, cf. Mathi278) Note: By the same argument we needn't choose tu to be equally spaced, to = nat, at = $\frac{b-a}{N}$, we would take any a=t. < ... < t =b So long as $Max \mid t_{n} - t_{n-1} \rangle = ||\Delta t|| \longrightarrow 0$. In this case we can take $Z_h = Z(\bar{t}_h)$, $Z_h' = Z'(t_h)$ for any $t_{n} \in (t_{n-1}, t_{n})$.

Proof of Theorem (A): (Limits of Aremany Sunc are unique) (13) Choose $a=t_0 < t_1 < \cdots < t_n < \cdots < t_n$ at = $\frac{b-a}{N}$, and set $Z_h = Z(\overline{t}h), Z'_h = Z'(\overline{t}_h), \quad t_{h-1} < \overline{t}_h \leq t_h$ and form the Riemann Sum $R_N = \sum_{n=1}^{N} f(z_n) z'_n \Delta t.$ To verify Thm(A) (uniqueness), assume for a given choice of $\{\overline{t}_m\}_{m=1}^{\infty}$ at each value of N, the sequence of complex #'s {Rw} converges as $N \rightarrow \infty$, i.e., $R_N \rightarrow R_o \in \mathbb{C}$. Then to get uniqueness, we must show that for any other choice of \check{t}_n^* \in $(t_{n-1}, t_n]$ at each stage N, me get a different sequence $R_{N}^{\prime}=\sum_{h=1}^{N}f(z_{n}^{*})\left(z_{h}^{*}\right)^{\prime}\Delta t,$ and R', Bo So assume we know $\{R_n\}_{n=1}^\infty$

converger for one choice $\{\overline{t}_k\}$. (See Math 127B)

It suffices to show that
$$
\nabla \varepsilon > 0
$$
 \exists $\overline{N} > 0$ $\leq \overline{1}$
\n $N > \overline{N}$ \Rightarrow $[\overline{R}_{N} - \overline{R}_{N}] \leq \varepsilon$. This implied $\overline{R}_{N} - \overline{R}_{D}$
\nas well. (see argument at end.) For this, write
\n $[\overline{R}_{N} - \overline{R}_{N}^{\prime}] = \frac{N}{\sum_{k=0}^{N}} f(\overline{z}_{k}) \overline{z}_{k}^{\prime} \Delta t - \sum_{k=0}^{N} f(\overline{z}_{k}^{*})(\overline{z}_{k}^{*})^{\prime} \Delta t$
\n $= \sum_{k=0}^{N} (f(\overline{z}_{k}) \overline{z}_{k}^{\prime} - f(\overline{z}_{k}^{*})(\overline{z}_{k}^{*})^{\prime}) \Delta t$
\n $\leq \sum_{k=0}^{N} |f(\overline{z}_{k}) \overline{z}_{k}^{\prime} - f(\overline{z}_{k}^{*})(\overline{z}_{k}^{*})^{\prime}| \Delta t$

Now the function $F(t) = f(E(t)) E'(t)$ is cont on the compact interval [a,6], so by Thm (13) F is unformly continuous. Thus, $\forall \epsilon > 0$ J δ $s+ i$ $| \Delta t | < \delta$, then $|F(\bar{t}_A) - F(\bar{t}_A^*)| < \epsilon$. \sim and \sim make it $\leq \frac{\varepsilon}{|b-a|}$ if we like ... and we do like \int

Since At = $\frac{b-a}{N}$, we can choose $\overline{N} = \frac{b-a}{\Delta t} >> 1$ large So that $N > N \Rightarrow \Delta t < \delta$ so that $\sum_{n=1}^{N} |F(\overline{t}_{n})-F(\overline{t}_{n}^{*})| \Delta t = \sum_{n=1}^{N} |f(z_{n})z_{n}' - f(z_{n}^{*})z_{n}'^{*}| \Delta t$ $h = 0$ $\frac{1}{\frac{1}{2} \cdot \frac{1}{2}}$ $\leq \frac{\epsilon}{|b-a|}$ $\leq \frac{\epsilon}{|b-a|} \sum_{h=1}^{N} \Delta t = \frac{\epsilon}{|b-a|} |b-a| = \epsilon.$ $Conebulge; Vessate as a set of $R_{\text{N}}-R_{\text{N}}^2$$ It follows that if Ry SR, then also R's R. $(Ie_{\cdot}\ _{\circ}\ |R_{N}^{\prime}-R_{o})=|R_{N}^{\prime}-R_{N}+R_{N}-R_{o})\leq|R_{N}^{\prime}-R_{N}|+|R_{N}-R_{o}|$ So given $\epsilon > 0$, chose \bar{N} st $N > \bar{N} \Rightarrow IR_{N}^{\prime} - R_{N} \leq \frac{\epsilon}{2}$ $\frac{1}{6} |R_{N} - R_{0}| \leq \frac{\epsilon}{2}$ \Rightarrow $|R'_{N}-R_{0}| < \epsilon$ \curvearrowleft

(Hw) Thm (B): Prove that the length of
\na curve
$$
L = \int_{a}^{b} |z'(t)| dt
$$
 defined by
\n
$$
L = \int_{a}^{b} |z'(t)| dt = \lim_{N \to \infty} \sum_{k=1}^{N} |z(t_{k}) - \overline{z}(t_{k-1})|
$$
\nis defined independently of how we chose
\nis defined independently of how we chose
\nt_k^{*} $\in (t_{k-1}, t_{k-1})$. (This uses essentially the same
\nargument as Thm(0), and generalises to independent
\nof mesh $\sum_{k=1}^{N} s_0$ long as $||\Delta t|| \rightarrow 0$.)

 \bigcirc

$$
(\mu w) \text{thm} \textcircled{C} \text{Prove}
$$
\n
$$
\left| \int_{a}^{b} f(z(t)) \, z'(t) \, dt \right| \leq L \, M
$$
\n
$$
\text{where} \quad M = \max_{\alpha \leq t \leq b} |f(z(t))|.
$$