
# Applications of the Cry Integral Formula
O

-

· Recall the (CIF) provides an integral formula
for an analytic function f(z) in terms of integrated
values of if along any curve2 which winds

around z. (Assumes only f'(z) exists in ubhd
of e)

f(z)= of
In
du (CIF)

W - Z

ne E more

circle indicates comes from Intequal the same for every
2 is a pos , oriented de

&
-, wez
.

tively orientede which
2 g - dw = 2πL postsimple closed curve *

winds around z once--
· I. e

. , In
I

C esof W =I ④W - Z

e
Cs

>

*

= f(z) S W + O(1)
it

w(t) = z +Et ,
Of t = 2π

it
2edit dw = 232
2! dt +O(I)= f(z) %. it

= f(z) ·2π[









⑤
· To prove Taylors Thm , we need the following
estimate on 1f(z)) (which follows from (CIF)) :

Theorem: (Carchy's Inequality) Assume f is

analytic in anbhd of BEd . Then
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Proof (Fundamental Theorem Algebra) : ⑨

· Assume for contradiction that there does not
exist

to st P(z0) = 0 , where P(E)
is given in (Pn) , n = 1.

.

we prove that this assumption leads to
the

conclusion P(z) = const , not
true
,
so the

assumption cannot be true , implying P(E .)
must

be zero for someEo GK.

Now if P(z)E0 , then f(z) =
= is a (non-constant
P(z)

entire function. We obtain a contradiction

by showing that if pt is entire ,
then

it is bounded , and by LovivilleThm , constant
.

To prove ptz) bded if it is entire ,
note that
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Proof of Maximum Mrs Th : So wlog assumea

D connected and f non-constant in D so

Lemma applies. Assume for
contradiction

that the maximum value of (f(z))
in

occurs at an interior point zo D . Then

D open implies that for R sufficiently
small,
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Formulas and Meanings : ⑰
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