VII Applications of the Cavely Integral Formula

• Recall the (CIF) provides an integral formula for an analytic function f(z) in terms of integrated values of f along any curve C which winds around z. (Assumes only f'(z) exists in nord of C)

$$f(z) = \frac{1}{2\pi i} \oint \frac{f(w)}{w - z} dw$$
(CIF)
$$f(z) = \frac{1}{2\pi i} \oint \frac{f(w)}{w - z} dw$$
(CIF)
$$f(z) = \frac{1}{2\pi i} \oint \frac{1}{w - z} dw$$
Integral the same for every
positively oriented C which
winds around z only.
$$f(w) = \int \frac{f(w)}{w - z} dw$$

$$f(w) = \int \frac{f(w)}{w - z} dw$$

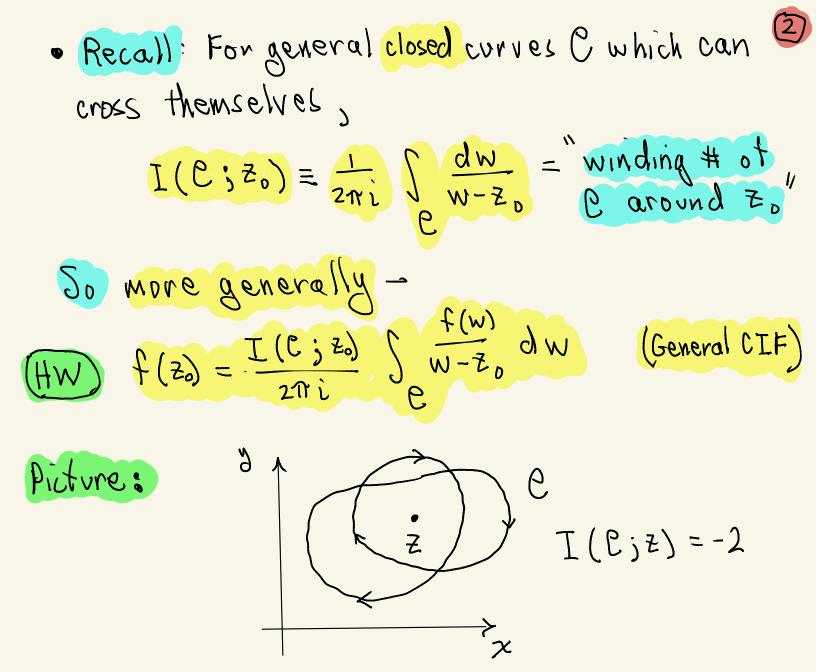
$$f(w) = \int \frac{f(w)}{w - z} dw$$

$$= f(z) \int \frac{1}{w-z} dw + o(1)$$

$$= f(z) \int \frac{1}{w-z} dw + o(1)$$

$$= f(z) \int \frac{ize}{zee} dt + o(1)$$

$$=f(z)\cdot 2\pi i$$



• From here on, we assume P is a simple closed curve (s.c.c), a closed curve which does not cross itsel $\Rightarrow I(P; z) = \pm 1, 0 \Rightarrow (CIF)$ f analytic $\Rightarrow f(z) = \frac{1}{2\pi i} \oplus \frac{f(w)}{w-z} dw$

• Since
$$g(w,z) = \frac{f(w)}{w-z}$$
 is continuous
along e and continuously differentiable in z
Math 127A (real analysis "Lebesgue Dominated Convergence)
implies you can differentiate thru S-sign

$$f'(z) = \frac{1}{2\pi i} \oint \frac{f(w)}{(w-z)^2} dw$$

$$\hat{f}^{(w)}(z) = \frac{\pi i}{2\pi i} \oint \frac{f(w)}{(w-z)^{n+1}} dw$$

• Assume now that $f: D \rightarrow C$ is analytic in an open set $D \in C$, so that for every $z \in D$ there exists r > o st $B_r(z) \leq D$. Let R be the largest r > o st $B_r(z) \leq D$. Recall $B_r(z) = closure$ of $B_r(z)$ $= B_r(z) \cup \partial B_r(z)$. Now $B_R(z)$ is not in Popen, but for all r' < r, we have $B_{r'}(z) = \bigcap_{r'' > r''} B_{r'''} < D_{open}$.

(4)Conclude: If $B_{r}(z) \subseteq D$, then f analytic is continuous on the compact set Br (2), and hence If (23) takes a maximum value M (a continuous real valued function takes its in $B_r(z)$. max and min valves on a compactset) We have: Theorem (weak Max Principle) If fis analytic in a nobed of Br(z), then JM>D such that 1f(2) < M Z e B, (2). · We can now state Taylor's Theorem, but pospone the proof. (The proof is the same as in Mathzic) Theorem (Taylors Thm). The Taylor Series $f(z) = \sum_{b=0}^{\infty} \frac{f^{(m)}(z_0)}{n!} (z-z_0)^{m}$ converges in the largest open ball Brizo) in which f is analytic, converges Uniformly in Br (Zo) for all r<R, and diverges for 12-201>R. R=Radius of Convergence,

• To prove Taylors Thm, we need the following
estimate on
$$|f^{(N)}(z)|$$
 (which follows from (CIF)):
Theorem: (Cauchy's Inequality.) Assume f is
analytic in a nobid of $\mathcal{B}_{R}(z_{0})$. Then
 $|f^{(n)}(z_{0})| \leq \frac{n!}{R^{n}}M$, $M = \max_{z \in \mathcal{B}(z_{0})}$ (CIneg)
Proof: Let \mathcal{C}_{R} denote the encle of radius R_{J}
center z_{0} , so $\mathcal{C}_{R} = \partial \mathcal{B}_{R}(z_{0}) \equiv \text{boundary of } \mathcal{B}_{R}(z_{0})$.
Then (CIF) \Rightarrow
 $f^{(n)}(z_{0}) = \frac{n!}{2R'i} \int_{\mathcal{C}_{R}} \frac{f(w)}{w-z_{0}} dw$, $z_{0} = \frac{1}{R} \frac{f(w)}{w-z_{0}} dw$
 $f^{(n)}(z_{0}) \leq \frac{n!}{2R'i} \int_{\mathcal{C}_{R}} \frac{f(w)}{w-z_{0}} dw \leq \frac{n!}{2R'} \int_{\mathcal{C}_{R}} \frac{1f(w)}{1w-z_{0}} \frac{1}{m} |dw|$
 $\leq \frac{n!}{2R'} \int_{\mathcal{C}_{R}} \frac{M}{R^{n+1}} |dw| \leq \frac{n!}{2R'} \frac{M}{R^{n+1}} |\mathcal{C}_{R}|$

(7)· Cor O (Liouville's Theorem - Big) Every bounded entire function is constant. (fentire if analytic, f'(z) exists, <u>Vzel</u>) Proof: Assume f entire and If(Z) < M YZER We prove $f(z) = const_{this}$ there are no non-constant analytic functions which are entire & bounded) But f analytic in $B_{R}(z) \Rightarrow (by (CIneq) cale n=1)$, $|f(z)| \leq \frac{1}{R}M$, |z| < R. Since f is entire, this holds VR. But the only way we can have $|f(z)| < \frac{M}{R} \quad \forall R > 0$ is if If(z) = 0, so f'(z) = 0 => f(z) = const. Conclude: Every analytic function f which has a derivative at every ZEC, (like e'sinz, cosz, z'etc), <u>must</u> have the property that $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$, at least along some subsequence Z=Zh, could not be bounded a nalytic fu?

· Cor 2 (Fundamental Theorem of Algebra - Big) 8 Let P(Z) be any complex polynomial of degree n≥1, $P(Z) = Q_0 + Q_1 Z + Q_2 Z + \dots + Q_n Z^n$, $Q_k \in C$, $Q_n \neq O_1$ (Pn) Then P(3) has at least one root ZoEC where $P(z_0) = 0$.

Note: By the Remainder Thm for polynomials, this implies $P(z) = (z-z_0) g(z)$ where deg (9) < deg (1). I.e., the Remainder Thm for Complex polyn's holds for the same algebraic reasons it holds for $N \subseteq \mathbb{R}$; i.e., given polyns \mathbb{P}_n , \mathbb{P}_n , $1 \le m < n$ in \mathbb{N} , there always exist polynomials q(z) and $r(z) \le P(z) = P_m(z) q(z) + r(z)$, where deg n deg m deg r < deg $P_m = M$. Taking $P_m(z) = (z - z_0)$, we get P(Z) = (Z-Zo) q(Z) + Const, & Const=0 al P(Zo)=0 • Since $P(z_0) = 0 \implies P(z) = (z - z_0) P_{n-1}(z)$, applying this to $P_{n-1}(z)$, $P_{n-2}(z)$, $P_1(z)$ we conclude that every complex polyn P, is product of <u>n linear factor</u>

(9) Proof (Fundamental Theorem Algebra): · Assume for contradiction that there does not exist z_0 st $P(z_0) = 0$, where P(z) is given in (P_n) , $n \ge 1$. We prove that this assumption leads to the conclusion P(z) = const, not true, so the assumption cannot be true, implying P(2.) must be zero for some ZoeC. Now if $P(z) \neq D$, then $f(z) = \int_{P(z)} is a (non-constant)$ entire function. We obtain a contradiction by showing that if p(z) is entire, then it is bounded, and by Louiville Thm, constant & To prove p(z) boled if it is entire, note that $\lim_{z \to \omega} |P(z)| = \infty.$ That is, for $Z = re^{i\theta}$, r = |Z|, the $a_n Z^n$ term wins as r-> 20. (Hw make a careful proof-see below.) Thus there exists R>0 st if 121>R, then 19(2) >1, 1/(2) <1.

Thus for
$$|z| > R$$
 we have
 $\left| \frac{1}{P(z)} \right| = \frac{1}{P(z)} \le 1$, $|z| > R$.
But $|z| \le R'$ is the set $\overline{B}(z)$, a compact set,
So if $\frac{1}{P(z)}$ is analytic, then it is continuous,
and hence bounded on $|z| \le R$, so
 $\left| \frac{1}{P(z)} \right| = \frac{1}{P(z)} \le M$, $|z| \le R$.
Thus $\left| \frac{1}{P(z)} \right| \le \left\{ \begin{array}{c} 1 & |z| > R \\ M & |z| \le R \end{array} \right\}$, so $f(z) = \frac{1}{P(z)}$
is bounded. By Liouville Then, a bounded
analytic function is constant, \Rightarrow contradictive
 $n \ge 1$. Conclude our assumption $P(z) \ne 0$ must
be false, and we have proven $P(z_0) = 0$
For some $z_0 \in C$ by contraction.

Cor: Every real polynomial can be factored into linear and irreducible guadratic factors.

Proof of Cor:
$$P(z)$$
 in (P_n) is real if the
Coefficients a_n are real, $a_n \in R(.[le, then $P_n(z)$)
restricts to a real polynomial) In this case, if
 $P_n(z) = 0$ then $P_n(\overline{z}) = 0$. This follows by propertien
of the complex conjugate, i.e.
 $\overline{o} = P_n(z) = \overline{a_0 + a_1 \overline{z} + \dots + a_n \overline{z}^n} = \overline{a_0} + \overline{a_1} \overline{z} + \dots + \overline{a_n} \overline{z}^n$
 $= a_0 + a_1 \overline{z} + \dots + a_n \overline{z}^n = \overline{a_0} + \overline{a_1} \overline{z} + \dots + \overline{a_n} \overline{z}^n$
Thus all complex factors in $P(x)$ pair as conjugates,
 $(x - \overline{z}_n)(x - \overline{z}_n) = x^2 - (\overline{z}_n + \overline{z}_n) + \overline{z}_n \overline{z}_{h_n} = x^2 - 2x_{h_n} + (x_n^2 + \overline{a}_n)$
where $\overline{z}_h = x_h + \overline{z} g_h$. Conclude: $P_n(z) = \prod_{n=1}^n a_n (x - \overline{z}_n)$,
 $(x - \overline{z}_n)$ real and linear if $\overline{z}_n \in \mathbb{R}$, or pairwise form irreducible
HW Give a careful proof of:
 $Proof$ (Hinth) Let $\overline{z} = re^{\overline{z}\theta}$, $|\overline{z}| = r > 1$. Then
 $|P(z)| = |a_0 + a_1 \overline{z} + a_2 \overline{z} + \dots + a_n \overline{z}^n|$
 $\geq |a_n \overline{z}^n| - |a_0| - |a_1\overline{z}| - \dots - |a_{n-1}\overline{z}^{n-1}|$
 $\geq (for r > \frac{nat}{|a_n|}$ (uses $a_n \neq 0$)$

* We are considering whether or not there are 12 "low regularity" analytic functions, meaning f' exists but not continuous, and we've shown the answer is No! When ever f'(z) exists, f: D -> C, f has derivatives of all orders in a nord of every point, and if O simply connected, thas anti-derivatives of all orders, and FTC holds. In this case, the integral of F around every closed curve is zero. · We now ask whether it goes the other way; namely, if f: D => C has the property that the integral around every closed path is zero, is f analytic ? I.e., must f'(+) exist VzeD? Morera's Theorem states Yes, so long as f

is at least continuous -

Theorem (Morera): If $f: D \rightarrow C$ is continuous in an open set $D \subseteq C$, and $\Re f(z)dz = 0$ for every closed curve in D, then f is analytic in D. -No need to assume D simply connected -(Essentially $\frac{1}{2}$ is roled out by $\Re f(z)dz = 0$ })

Proof: Assume
$$\oint f(z)dz = 0$$
 for all $E \subseteq D$.
Then $\int f(z)dz$ is independent of path C taking $A \rightarrow B$
and we can write $\int f(z)dz = \int f(z)dz$. Thus
define $F(z) = \int_{A}^{Z} f(w)dw$,
well defined for any $C \in D$, $C: A \rightarrow B$.
Claim: $F'(z) = f(z)$. For this we estimate
 $F(z) = \int_{A}^{Z} f(w)dw - \int_{A}^{Z} f(w)dw - f(z)$
wlog assume same path $A \rightarrow Z$
 $= \left| \int_{AZ}^{Z} \int_{Z}^{Z+AZ} f(w)dw - f(z) \right| \rightarrow \int_{AZ}^{Z} \int_{Z}^{Z+AZ} f(z)dw$
 $= \left| \int_{AZ}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) \right| \rightarrow \int_{Z}^{Z} \int_{Z}^{Z+AZ} dw$
 $= \left| \int_{AZ}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z+AZ} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} \int_{Z}^{Z+AZ} f(w) - f(z) dw \right| = \left| \int_{Z}^{Z} f(z) dw \right$

(14) · An important Corollary of Morera's Thm tells us when apparant singularities in a function are removable: Cor: If f is <u>continuous</u> in an open set D = C and f'(z) exists at every z e D except at one point Zo eD, then f'(Zo) exists as well Proof: By Morera's Theorem it suffices to prove that \$f(z)dz=0 for every closed curve in some neighborhood of Zo. To this end, note that since D is open, $\exists R > 0$ st $B_R(z_0) \subseteq D$. Since $f: B_R(z_0) \rightarrow \mathbb{C}$ continuous and $B_R(z_0)$ compact, it follows that f is bounded on $B_R(z_0)$ implies ZM>O such that If (Z) (M YZE BR (Zo). So $\left| \begin{array}{c} g f(z) dz \\ e \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| = \left| \begin{array}{c} g f(z) dz \\ c_{\varepsilon} \end{array} \right| =$

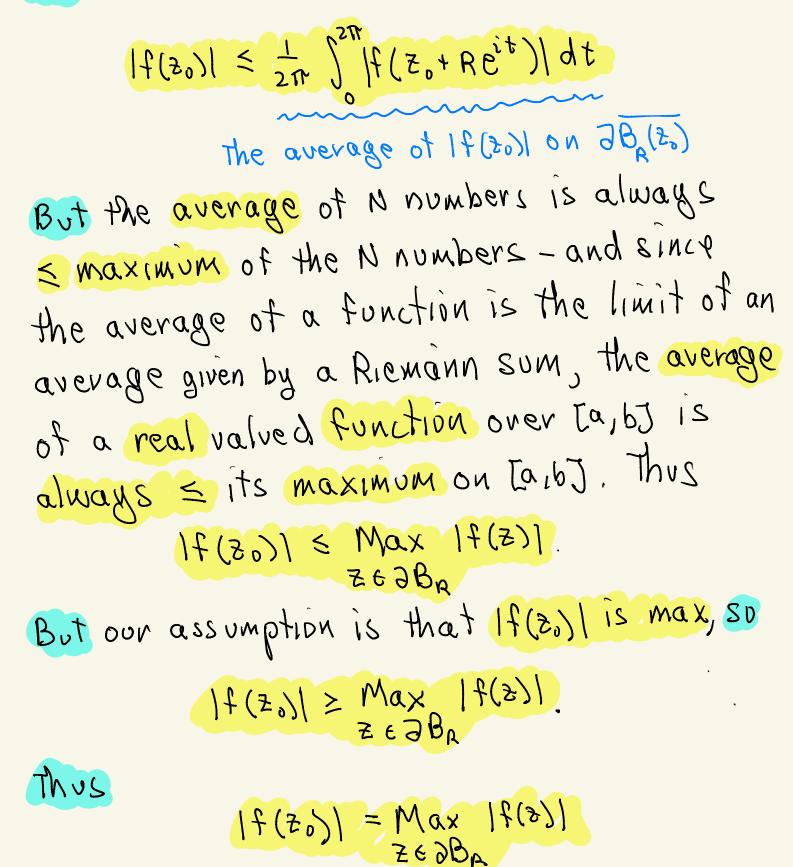
(HW) Use Morera's Theorem to prove that the (15) uniform limit of analytic functions is analytic. Hint: You can always pass an integral sign thru a sequence of uniformly converging functions. I.e., fn-st uniformly in D > $\lim_{n \to a} \int f(z) dz = \int \lim_{n \to a} f_n(z) dz = \int f(z) dz$

• Maximum Principle: "An analytic function
always takes its max modulus on the boundry;
Theorem (Max Principle) Assume f is analytic
in a noble of a simple closed curve
$$\mathcal{C}_s$$
 and let
D denote the open set inside C, so $\mathcal{C} = \partial D, \overline{D} = D \mathcal{V} \mathcal{C}$
Then the maximum modulus $If(z)$ of f in \overline{D}
is taken on the boundary $\partial D = \mathcal{C}$. I.e.,
 $M_s = Max \{If(z)\} \geq If(W)\}$ for all $W \in \overline{D}$
(In fact, if $f(z)\neq 0$ in D, then f takes its minimum
modulus on boundary of D as well. We do max use)
For the proof we assume for now the following
Lemma: If f is non-constant in D (i.e., $f(z_i)\neq f(z_i)$
for some $z_i \neq z_i$ in D) then $If(z)$ is non-constant
in every nobed of a part zeD.

in a nbhd => T-series around every pt in nbhd is constant => extends to D because D <u>connected</u>-later

Proof of Maximum Modulus Thm. So wlog assume
D connected and f non-constant in D, so
Lemma applies. Assume for contradiction
that the maximum value of 14(2) in D
occurs at an interior point
$$z_0 \in D$$
. Then
D open implies that for R sufficiently smalls
 $B_{A}(z_0) \leq D$. We now apply
the (CIF) to $B_{A}(z_0)$.
(CIF) $\Rightarrow f(z_0) = \frac{1}{2\pi i} \oint \frac{f(w)}{w-z} dw$, $C_{R} = \partial B_{A}(z_0)$.
Letting $Z(t) = Z_0 + Re^{it}$, $0 \leq t \leq 2\pi$
 $f(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} f(z_0 + Re^{it}) dt$
So $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{it}) dt$.
 $f(z_0) \leq \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{it}) dt$.

Thus we have:



That is, our assumption is that

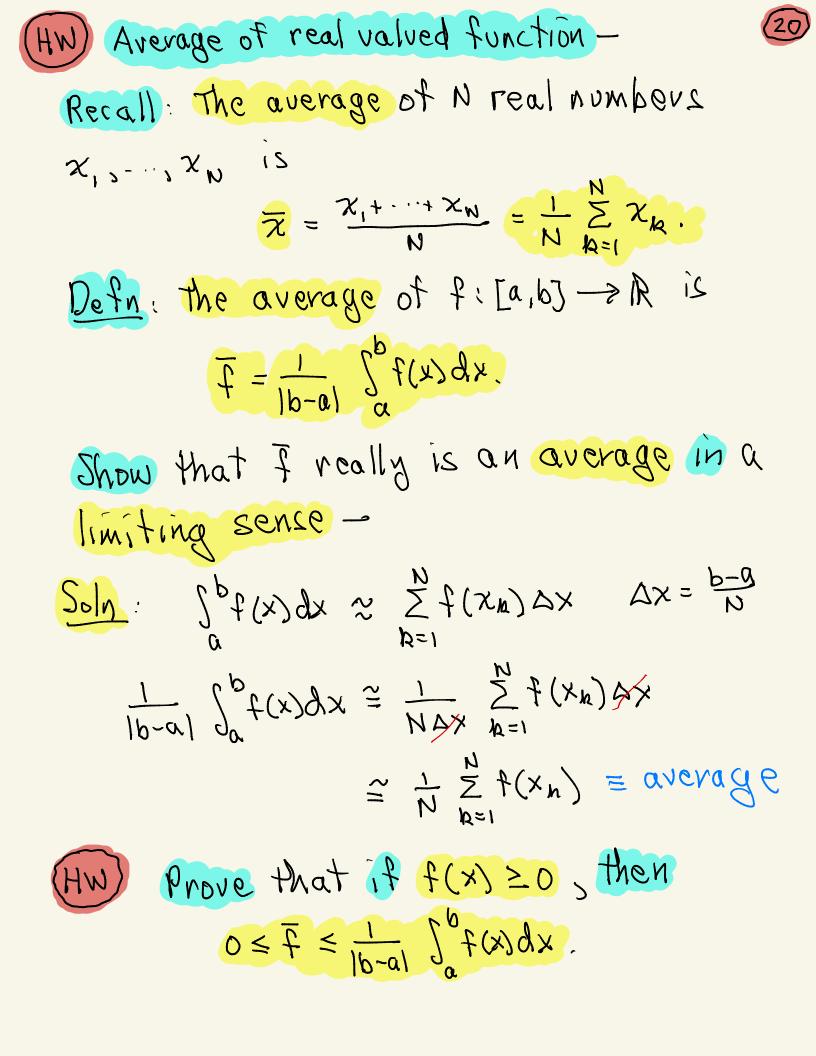
$$|f(z_0)| \ge |f(z_0 + Re^{it})| \quad \forall \ t \in [0, LTT)$$
So

$$|f(z_0)| \ge \frac{1}{2T} \int_0^{2T} |f(z_0 + Re^{it})| \, dt$$
but we proved

$$|f(z_0)| \le \frac{1}{2T} \int_0^{2T} |f(z_0 + Re^{it})| \, dt.$$
Thus

$$\frac{1}{2T} \int_0^{2T} |f(z_0 + Re^{it})| \, dt = |f(z_0)| = |Max||f(z(t))|$$
The only way the average of a function can
equal its maximum is if the function is

$$|f(z_0)| = |f(z_0 + Re^{it})| \quad \forall \ t \in [0, 2T)$$
But by same argument, this holds $\forall \ r \le R$,
and hence $|f(z_0)| = |f(z_0)| \quad \forall \ z \in B_{R}(z_0)$. So
by the Lemma, $f(z) = Lonst$ in D (because
o non-constant function can't have $|f(z_0)| = const
in a nohd of any of .). This \And our assumption,
8 Theorem is proved in$



Marmonic Functions:
Recall:
$$f(z) = u(x, g) + iv(x, g)$$
 is analytic in D
iff (C-R) holds in D:
 $u_x = V_{g, s}$ $u_g = -V_x$.
Differentiating gives:
 $u_{xx} = V_{g, x}$ $V_{xx} = -u_{g, x}$
 $u_{g, y} = -V_{x, g}$ $V_{g, y} = u_{x, y}$
 $u_{g, y} = -V_{x, g}$ $V_{g, y} = u_{x, y}$
 $u_{g, x} + u_{g, y} = 0$ $V_{x, x} + V_{g, g} = 0$
Defn: The Laplacian of a real valued
function $u: \mathbb{R}^2 \rightarrow \mathbb{R}$ is defined to be
 $\Delta u = u_{xx} + u_{g, y}$.
Laplacian
Defn: A real valued function $u(x, g)$ is said
to be "harmonic" if
 $\Delta u = 0$.

We have thus proven:
Theorem: The real and imaginary parts
of an analytic function are harmonic
Defn: If
$$\Delta u = 0$$
 and $\Delta v = 0$ and
 $f(z) = u + zv$ is analytic, then we say
 u, v are harmonic conjugates.
• The study of solutions of $\Delta u = 0$ is
part of the subject of Partial Differential
Equations (PDE). In the case of \mathbb{R}^2 ,
we can use complex variables to prove
theorems about solutions of $\Delta u = 0$, Ie.,
Theorems in PDE.
Theorem: An harmonic function $u(x, w)$, Ie.,
 $u(x, w) = 0$ is equal to its

a solution of $\Delta u = 0$, is equal to fis average on any circle of radius R: $u(z_0) = \frac{1}{2\Pi} \int_0^{2\Pi} u(z_0 + Re^{it}) dt$ slight abuse of notation

Proof: By (CIF) we have

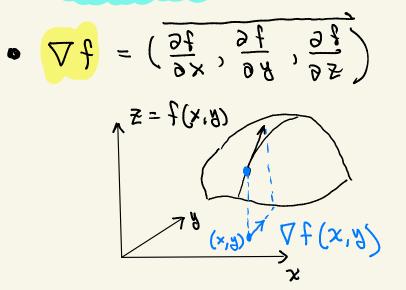
$$f(z_0) = \frac{1}{2\pi i} \int \frac{f(w)}{w-z_0} dw$$

 e_R
Evaluating by parameterization gives
 $w(t) = \overline{z_0} + Re^{it}$ $o \le t \le 2\pi$
 $dw = iRe^{it}dt$
 $f(\overline{z_0}) = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + Re^{it})XRe^{it}}{Re^{it}} dt$
 $f(z_0) = \frac{1}{2\pi i} \int_{0}^{2\pi} f(z_0 + Re^{it}) dt$
 $f(z_0) = u(z_0) + iV(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} u(z_0 + Re^{it}) + iV(z_0 + Re^{it}) dt$
 $gwes$
 $u(\overline{z_0}) = \frac{1}{2\pi} \int_{0}^{2\pi} u(z_0 + Re^{it}) dt$

Conclude: The theorem is proven if (24) we can show that for every harmonic U(x,8) there exists an harmonic conjugate V(X,8), il- such that utiv is analytic. Theorem (complex Conjugate) For every u(x,t) in C^2 satisfying $\Delta u = 0$ in D_{open} and S.C., there exists an harmonic conjugate V(x,t) such that $\Delta v = 0$ and f(z) = u + iv is analytic in D. Since the real and imaginary parts of an analytic function are C° and locally expandable into Taylor Series, we have an immediate corollary, which is a PDE regularity result for solns of the $\Delta u = 0$. Cor: Every C'solution of Qu=0 is C. Furthermore, u is locally expandable into T-series, with radius of convergence R = distance from the center to the nearest singularity in f(z)=utiv

Proof of Theorem Complex Conjugate: Assume
ue C² and
$$\Delta u = 0$$
. We find $v(x,t)$ such that
 $\Delta v = 0$ and $f(z) = u + iv$ is analytic. By (C-A)
it suffices to find $v(x,t)$ s.t. $\Delta v = 0$ and
 $u_x = V_y$, $u_y = -V_x$. To this end define
 $g(x,s) = u_x - z u_y = U + zV$.
 $v_y = v_y$ with $v_y = 0$
 $v_y = v_y$. To this end define
 $g(x,s) = u_x - z u_y = U + zV$.
 $v_y = v_y$ with $v_y = 0$
 $v_y = v_y$.
Claim g is analytic. For this it suffices
to show (C-R) $U_x = V_y$, $U_y = -V_x$. But
 $U_x = u_{xx}$, $U_y = u_{xy}$ and $\Delta u = 0 \Rightarrow u_{xx} = -u_{yy}$.
 $V_x = -u_{yx}$, $V_y = -u_{yy}$
Since g analytic in a s.e. domain, it has
an antiderivative $F(z) = \hat{u} + i\hat{v}$ analytic.
But $F'(z) = \hat{u}_x + i\hat{v}_x = -V = u_y \Rightarrow \nabla\hat{u} = \nabla u$
 $\hat{u}_x = u_x - \hat{u}_y = -V_x = -V = u_y$
 $\hat{u}_x = u_x - \hat{u}_y = -\hat{v}_x = -V = u_y$

& Formulas and Meanings:



Points in direction of steepest increase of f, length = $\frac{df}{ds}$ along ∇f $\nabla f \cdot \vec{v} = \frac{df}{ds}$ in direction \vec{v}

27

• Curl
$$\vec{F} = \vec{\nabla} \cdot \vec{F} = \begin{bmatrix} \hat{v} & \hat{a} & \hat{a} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ M & N & P \end{bmatrix} = (P_{y} - N_{z})\hat{v} - (P_{x} - M_{z})\hat{a} + (N_{x} - M_{z})\hat{k}$$

Points in direction of max'al
circulation per area, and
C_{z} = \partial D_{z}
 \vec{n}
 $C_{z} = \partial D_{z}$
 \vec{n}
 $P_{z} = \vec{\nabla} = (\vec{P}_{x}, \vec{P}_{y}, \vec{P}_{z})$
 $C_{z} = \partial D_{z}$
 \vec{n}
 $P_{z} = \vec{\nabla} = (\vec{P}_{x}, \vec{P}_{y}, \vec{P}_{z})$
 $C_{z} = \partial D_{z}$
 \vec{n}
 $P_{z} = \vec{\nabla} = (\vec{P}_{x}, \vec{P}_{y}, \vec{P}_{z})$
 $C_{z} = \partial D_{z}$
 $P_{z} = \vec{\nabla} = (\vec{P}_{x}, \vec{P}_{y}, \vec{P}_{z})$
 $C_{z} = \partial D_{z}$
 $P_{z} = \vec{\nabla} = (\vec{P}_{x}, \vec{P}_{y}, \vec{P}_{z})$
 $C_{z} = \partial D_{z}$
 $C_{z} = \partial D_{z}$
 $P_{z} = \vec{\nabla} = (\vec{P}_{x}, \vec{P}_{y}, \vec{P}_{z})$
 $C_{z} = \partial D_{z}$
 $C_{z} = \partial D_{z}$
 $P_{z} = \vec{\nabla} = (\vec{P}_{x}, \vec{P}_{y}, \vec{P}_{z})$
 $C_{z} = \vec{P}_{z}$
 $P_{z} = \vec{P}_{z}$
 P_{z}

density= mass velocity = SSF.ndS="Flux" = mass/time out thru &

· Relationship between Them:

Two in a row make zero: Cur Vf=0, Div Cur)È=U (both by equality of mixed partials: $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$, etc) (HW) O Verify Corl Vf=0, Div Curl È=0 (2) Show: $Div \nabla f = \Delta f = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) f$ The Laplacian is the most important 2nd order operator of classical physics. Virtually all equations of classical physics are formulated in terms of ∇ , Curl, Div, Δ . • Three 2nd order Linear equations of classical Laplaces Equn: $\Delta u = 0$ (Elliptic) physics. Heat Equation: $u_{t} - c^{2}\Delta u = 0$ (Parabolic) Wave Equation: Utt-c'Au=0 (Hyperbolic) Solutions of Du=0 represent "steady state solu's. Most processes settle down to steady state as t->00.

28