
3.5 Leibniz’s Fundamental Theorem of Calculus 133

spherical surface on top of the ice-cream cone. You may use knowledge of
the surface area of the entire sphere, which Archimedes had determined.

Exercise 3.24: Imagine boring a round hole through the center of a
sphere, leaving a spherical ring. Use the result of Exercise 3.23 to find
the volume of the ring. Hint: Amazingly, your answer should depend only
on the height of the ring, not the size of the original sphere. Also obtain
your result directly from Cavalieri’s Principle by comparing the ring with
a sphere of diameter the height of the ring.

3.5 Leibniz’s Fundamental Theorem of Calculus

Gottfried Wilhelm Leibniz and Isaac Newton were geniuses who lived quite
different lives and invented quite different versions of the infinitesimal
calculus, each to suit his own interests and purposes.

Newton discovered his fundamental ideas in 1664–1666, while a student
at Cambridge University. During a good part of these years the Univer-
sity was closed due to the plague, and Newton worked at his family home
in Woolsthorpe, Lincolnshire. However, his ideas were not published until
1687. Leibniz, in France and Germany, on the other hand, began his own
breakthroughs in 1675, publishing in 1684. The importance of publication
is illustrated by the fact that scientific communication was still sufficiently
uncoordinated that it was possible for the work of Newton and Leibniz to
proceed independently for many years without reciprocal knowledge and
input. Disputes about the priority of their discoveries raged for centuries,
fed by nationalistic tendencies in England and Germany.

Leibniz was born and schooled in Leipzig, studying law at the university
there. Although he loved mathematics, he received relatively little formal
encouragement. Later, after completing his doctorate at Altdorf, the uni-
versity town of Nürenberg, he declined a professorship there, considering
universities “monkish” places with learning, but little common sense, en-
gaged mostly in empty trivialities. Instead, Leibniz entered public life in
the service of princes, electors, and dukes, whom he served in legal and
diplomatic realms, and in genealogical research trying to prove their royal
claims. His work provided great opportunities for travel, and he interacted
personally and by correspondence with philosophers and scientists through-
out Europe, pursuing mathematics, the sciences, history, philosophy, logic,
theology, and metaphysics. He was truly a genius of universal interests and
contributions, leading him to concentrate on methodological questions, and
to embark on a lifelong project to reduce all knowledge and reasoning to a
“universal characteristic.” Although today we recognize his contributions
to be of outstanding importance, he died essentially neglected, and only
his secretary attended his burial [42, 157].
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PHOTO 3.5. Leibniz.

In 1672 Leibniz was sent to Paris on a diplomatic mission, beginning a
crucially formative four-year period there. Christian Huygens (1629–1695),
from Holland, then the leading mathematician and natural philosopher in
Europe, guided Leibniz in educating himself in higher mathematics, and
Leibniz’s progress was extraordinary.

Leibniz’s discovery of the calculus emerged from at least three important
interests [8, 21, 77]. First, as a philosopher his main goal was a general
symbolic language, enabling all processes of reason and argument to be
written in symbols and formulas obeying certain rules. His mathematical
investigations were thus merely part of a truly grand plan, and this explains
his focus on developing useful new notation and theoretical methods, rather
than specific results. Indeed, it is his notation and language for the calculus
that we use today, rather than Newton’s. He sought and found a “calculus”
for infinitesimal geometry based on new symbols and rules.

Second, Leibniz studied the relationship between difference sequences
and sums, and then an infinitesimal version helped suggest to him the essen-
tial features of the calculus. This can be illustrated via a concrete problem

FIGURE 3.9. Triangular numbers.
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that Huygens gave Leibniz in 1672: Consider the “triangular numbers” 1,
3, 6, 10, 15,..., the numbers of dots in triangular arrangements (Figure 3.9).
These also occur in “Pascal’s triangle” of binomial coefficients, and their
successive differences are 2, 3, 4, 5,.... The triangular numbers are given by
the formula i(i+1)/2 for i = 1, 2,.... (Can you verify this? Hint: Successive
differences.) Huygens challenged Leibniz to calculate the infinite sum of
their reciprocals,
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and Leibniz proceeded as follows [77, pp. 60–61]. Each term 2/(i(i + 1)) in
the sum equals the difference 2/i− 2/(i+1); i.e., the sum can be rewritten
as
(

2
1
− 2

2

)
+

(
2
2
− 2

3

)
+

(
2
3
− 2

4

)
+

(
2
4
− 2

5

)
+ · · ·+

(
2
n
− 2

n + 1

)
+ · · · .

The terms here can be regrouped and mostly canceled, so the partial sum
of the first n original terms, displayed as a sum of differences, collapses,
leaving 2−2/(n+1) as its sum, which leads to 2 as the sum of the original
terms all the way to infinity. Viewed more generally, since the terms of the
original series 2/(i(i + 1)) were recognized as being the successive differ-
ences of the terms in a new pattern (namely 2/i), the nth partial sum of
the original series can be computed, via the collapsing trick, as simply the
difference between the first and nth terms in the new pattern. This obser-
vation expresses, in a discrete, rather than continuous, way, the essence of
the Fundamental Theorem of Calculus, and Leibniz slowly came to realize
this.

Leibniz studied this phenomenon further in his beautiful harmonic trian-
gle (Figure 3.10 and Exercise 3.25), making him acutely aware that forming
difference sequences and sums of sequences are mutually inverse operations.
He used an analogy to think of the problem of area as a summation of in-
finitesimal differences, leading him to the connection between area and
tangent.

The third crucial thread contributing to Leibniz’s creation of the calculus
was his conception of a “characteristic triangle” with infinitesimal sides at
each point along a curve (see GLC or (C )EC in Figure 3.11). The two legs
of the right triangle represent infinitesimal elements of change (successive
differences) in the horizontal and vertical coordinates between the chosen
point and an infinitesimally nearby point along the curve, and their ratio is
thus the slope of the tangent line to the curve at the point. Leibniz wrote
that these phenomena all came together as “a great light” bursting upon
him when he was studying Pascal’s Treatise on the Sines of a Quadrant of
a Circle [21, p. 203].

FIGURE 3.10. Leibniz’s harmonic triangle.
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Combining Leibniz’s connection between sums and successive differences
with his connection between infinitesimal differences and tangent lines, we
can begin to see a possible connection between area and tangent problems.
Several other mathematicians had already been developing methods for
finding tangent lines to curves, providing stimulus to Leibniz’s ideas. Pierre
de Fermat, for instance, illustrated his approach based on infinitesimals by
calculating the tangent line to a parabola (Exercise 3.26).

In his early work with characteristic triangles and their infinitesimal
sides, Leibniz derived relationships between areas that we today recog-
nize as important general calculation tools (e.g., “integration by parts”),
and while studying the quadrature of the circle, he discovered a strikingly
beautiful result about an infinite sum, today named Leibniz’s series:
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He began introducing and refining powerful notation for his ideas of sums
and differences involving infinitesimals, ultimately settling on d(x) for the
infinitesimal differences between values of x, and on

∫
(an elongated form

of “s,” as in Latin “summa”) for the sum, or “integration,” of infinitesimals.
This

∫
is analogous to Cavalieri’s “all lines,” so

∫
y dx denotes the sum-

mation of the areas of all rectangles with length y and infinitesimal width
dx. (Can you see why d(xy) = x dy + y dx? Hint: Think, like Leibniz, of x
and y as successive partial sums, with dx and dy the differences between
successive sums.)

Using the calculus he developed with these new symbols, Leibniz easily
rederived many earlier results, such as Cavalieri’s quadrature of the higher
parabolas, and put in place the initial concepts, calculational tools, and
notation for the enormous modern subject of analysis.

Although many of these seminal ideas are in Leibniz’s manuscripts of
1675–1677, publication was slow. We will examine how he brought all these
ideas together in his resolution of the problem of quadratures, in a 1693
paper Supplementum geometriae dimensoriae, seu generalissima omnium
tetragonismorum effectio per motum: similiterque multiplex constructio lin-
eae ex data tangentium conditione (More on geometric measurement, or
most generally of all practicing of quadrilateralization through motion: like-
wise many ways to construct a curve from a given condition on its tangents)
published in the first scientific journal Acta Eruditorum [110, pp. 294–301],
[166, pp. 282–284]. Today we recognize his result as of such paramount
importance that we call it the Fundamental Theorem of Calculus.

Leibniz, from

More on geometric measurement,
or most generally of all practicing of quadrilateralization
through motion: likewise many ways to construct a curve
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FIGURE 3.11. Leibniz’s Fundamental Theorem of Calculus.

from a given condition on its tangents.

I shall now show that the general problem of quadratures can be reduced
to the finding of a line that has a given law of tangency (declivitas), that is,
for which the sides of the characteristic triangle have a given mutual relation.
Then I shall show how this line can be described by a motion that I have
invented. For this purpose [Figure 3.11] I assume for every curve C (C ′) a
double characteristic triangle,9 one, TBC, that is assignable, and one, GLC,
that is inassignable, and these two are similar. The inassignable triangle consists
of the parts GL, LC, with the elements of the coordinates CF, CB as sides,
and GC, the element of arc, as the base or hypotenuse. But the assignable
triangle TBC consists of the axis, the ordinate, and the tangent, and therefore
contains the angle between the direction of the curve (or its tangent) and the
axis or base, that is, the inclination of the curve at the given point C. Now let
F (H ), the region of which the area has to be squared, be enclosed between the
curve H (H ), the parallel lines FH and (F )(H ), and the axis F (F ); on that axis
let A be a fixed point, and let a line AB, the conjugate axis, be drawn through
A perpendicular to AF. We assume that point C lies on HF (continued if
necessary); this gives a new curve C (C ′) with the property that, if from point
C to the conjugate axis AB (continued if necessary) both its ordinate CB
(equal to AF ) and tangent CT are drawn, the part TB of the axis between
them is to BC as HF to a constant [segment] a, or a times BT is equal to the
rectangle AFH (circumscribed about the trilinear figure AFHA). This being
established, I claim that the rectangle on a and E (C ) (we must discriminate
between the ordinates FC and (F )(C ) of the curve) is equal to the region
F (H ). When therefore I continue line H (H ) to A, the trilinear figure AFHA
of the figure to be squared is equal to the rectangle with the constant a and
the ordinate FC of the squaring curve as sides. This follows immediately from
our calculus. Let AF = y, FH = z, BT = t, and FC = x; then t = zy : a,
according to our assumption; on the other hand, t = y dx : dy because of
the property of the tangents expressed in our calculus. Hence a dx = z dy and
therefore ax =

∫
z dy = AFHA. Hence the curve C (C ′) is the quadratrix

with respect to the curve H (H ), while the ordinate FC of C (C ′), multiplied
by the constant a, makes the rectangle equal to the area, or the sum of the
ordinates H (H ) corresponding to the corresponding abscissas AF. Therefore,
since BT : AF = FH : a (by assumption), and the relation of this FH to AF

9In the figure Leibniz assigns the symbol (C ) to two points, which we denote
by (C ) and (C ′). If, with Leibniz, we write CF = x, BC = y, HF = z, then
E(C ) = dx, CE = F (F ) = dy, and H (H )(F )F = z dy. First Leibniz introduces
curve C (C ′) with its characteristic triangle, and then later reintroduces it as the
squareing curve [curva quadratrix] of curve AH (H ).
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(which expresses the nature of the figure to be squared) is given, the relation
of BT to FH or to BC , as well as that of BT to TC, will be given, that is, the
relation between the sides of triangle TBC. Hence, all that is needed to be able
to perform the quadratures and measurements is to be able to describe the
curve C (C ′) (which, as we have shown, is the quadratrix), when the relation
between the sides of the assignable characteristic triangle TBC (that is, the
law of inclination of the curve) is given.

We make only a few remarks on the details of the text, confident
that the reader can fill in the necessary connections. First, “inassignable”
refers to infinitesimal characteristic triangles, such as GLC and (C )EC .
Second, the mysterious constant segment a is present to ensure dimen-
sional propriety; i.e., an area should be equated only with another area,
not the length of a line, and a ratio of two lengths should be dimen-
sionless. Even in Leibniz’s era this view was still carried from ancient
Greek traditions. Today we could choose to view a as simply a choice
of unit length for measurement. (From this point of view, why does a
not really affect the final answer?) Third, note that Leibniz is not us-
ing the Cartesian coordinates pioneered earlier in his century quite as we
do, but he is nevertheless measuring all locations along two perpendicu-
lar axes from a common origin A. Interestingly, he has no qualms about
depicting the vertical coordinate for the quadratrix as increasing down-
wards, while for the curve to be squared it increases upwards (Why do
you think he does this?). Finally, although Leibniz shows the quadra-
trix (squaring curve) only near the point C, in fact it must originate at
A (Why?).

Leibniz never explains exactly what the meaning of his inassignables
is, and on this he vacillated in his writings. To him, the most important
criterion was that his rules for applying the new language worked, and
he stated that applying them as if they were the rules of algebra would
dispense with the “necessity of imagination” [21, p. 208].

Indeed, while the Fundamental Theorem of Calculus does not actually
dispense with the need for imagination, it reduces every quadrature prob-
lem to finding a curve with a “given law of tangency,” i.e., an inverse
tangent problem.

While Fermat and others had shown that finding the tangent to a given
curve is often possible, the inverse problem of finding a curve, given only
its law of tangency, is generally much harder. It is not always possi-
ble to accomplish algebraically, even when the law of tangency is given
algebraically.

Nonetheless, let us see some examples of how the Fundamental Theorem
can be applied. Suppose (adhering to Leibniz’s choices for coordinates, x
and y) that we wish to square the curve x = y2 (quadrature of the parabola
again). According to his theorem, we must find a curve with y2 as its law of
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tangency. This essentially involves guessing an answer based on experience,
y3/3 in this case, and then verifying that it works.

Let us imagine how Leibniz might have done this calculation. The law
of tangency for y3/3 will be obtained from its infinitesimal (inassignable)
characteristic triangle as the ratio of the respective increments in x and
y, i.e., dx : dy. Since dy is the increment (difference) between successive
values (of the sums) y and y + dy, with corresponding values x = y3/3 and
x + dx = (y + dy)3/3, we calculate

dx : dy =
dx

dy
=

(x + dx)− x

dy
=

(y + dy)3 − y3

3 · dy

=
y3 + 3y2 · dy + 3y · (dy)2 + (dy)3 − y3

3 · dy

= y2 + y · dy +
(dy)2

3
= y2,

as claimed. Leibniz explains that the final equality holds by dropping
remaining infinitesimal terms or, going back one step, because (dy)2 is
infinitesimally small in comparison with dy.

Thus, according to the Fundamental Theorem of Calculus, the area under
the parabola but above the y-axis, and from the origin to a specific value
y for the ordinate, is given by y3/3. Other examples are in the exercises.

Both Leibniz and Newton had their calculus attacked by others for their
use of infinitesimals. One of the most eloquent and stinging criticisms
came from Bishop George Berkeley’s (1685–1753) polemic comparing the
validity of science and mathematics with that of religion, entitled The An-
alyst: Or a Discourse Addressed to an Infidel Mathematician. Wherein It
Is Examined Whether the Object, Principles, and Inferences of the Mod-
ern Analysis Are More Distinctly Conceived, or More Evidently Deduced,
than Religious Mysteries and Points of Faith. “First Cast the Beam Out of
Thine Own Eye; and Then Shalt Thou See Clearly to Cast Out the Mote
Out of Thy Brother’s Eye,” addressed to Edmund Halley (discoverer of the
comet), a friend and defender of Newton in the early eighteenth century
[21, pp. 224–225].

Berkeley writes:

Whereas then it is supposed that you apprehend more distinctly, con-
sider more closely, infer more justly, and conclude more accurately
than other men, and that you are therefore less religious because
more judicious, I shall claim the privilege of a Freethinker; and
take the liberty to inquire into the object, principles, and method
of demonstration admitted by the mathematicians of the present
age, with the same freedom that you presume to treat the principles
and mysteries of Religion [160, pp. 627–634].
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Berkeley then proceeds to ridicule the ideas and terminology of the calcu-
lus, which involved not only infinitesimals like Leibniz’s dx and dy above,
but infinitesimal differences of these differences (i.e., second differences),
etc. Berkeley concludes therefore:

All these points, I say, are supposed and believed by certain rigor-
ous exactors of evidence in religion, men who pretend to believe no
further than they can see. That men who have been conversant only
about clear points should with difficulty admit obscure ones might
not seem altogether unaccountable. But he who can digest...a sec-
ond or third difference, need not, methinks, be squeamish about any
point of divinity...

Berkeley explicitly rips apart the type of tangent calculation we have
just seen for x = y3. He says of the differences (increments) dx and dy:

For when it is said, let the increments vanish, i.e., let the increments
be nothing, or let there be no increments, the former supposition
that the increments were something, or that there were increments,
is destroyed, and yet a consequence of that supposition, i.e., an ex-
pression got by virtue thereof, is retained. Which...is a false way of
reasoning. Certainly when we suppose the increments to vanish, we
must suppose their proportions, their expressions, and everything
else derived from the supposition of their existence, to vanish with
them....

Berkeley admits that the calculus produces correct answers, but for no
solid reasons:

I have no controversy about your conclusions, but only about your
logic and method: how you demonstrate? what objects you are con-
versant with, and whether you conceive them clearly? what principles
you proceed upon; how sound they may be; and how you apply them?
...
Now, I observe, in the first place, that the conclusion comes out
right, not because the rejected square of dy was infinitely small, but
because this error was compensated for by another contrary and
equal error....
And what are these...evanescent increments? They are neither finite
quantities, nor quantities infinitely small nor yet nothing. May we
not call them the ghosts of departed quantities?

And finally, in one of a series of “questions” issued as a challenge to
mathematicians who criticize religion:

Question 64. Whether mathematicians, who are so delicate in reli-
gious points, are strictly scrupulous in their own science? Whether
they do not submit to authority, take things upon trust, and believe
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in points inconceivable? Whether they have not their mysteries, and
what is more, their repugnances and contradictions?

While Berkeley’s mathematical criticisms were largely valid, it is clear
he had primarily a religious axe to grind. By arguing that their calculus
was no more scientific than theology, and that it too was also built only on
faith, he wanted to shame mathematicians into refraining from criticizing
religion. Berkeley admitted that the calculus led to correct answers, and
claimed that this resulted from a “compensation of errors,” in which the
multiple errors implicit in the rules of calculus somehow cancel each other’s
effects, thus arriving “though not at Science, yet at Truth, For Science it
cannot be called, when you proceed blindfold, and arrive at the Truth not
knowing how or by what means” [77, pp. 88–89]. We will see how some of
his mathematical criticisms slowly began to be resolved.

Exercise 3.25: Study Leibniz’s harmonic triangle of successive differences.
Determine formulas for all the terms, and show how to find the sums of
various infinite series of successive differences.

Exercise 3.26: Read and explain Fermat’s method of finding the tangent
line to a parabola via infinitesimals. Compare the notation of the French
and English translations [59, III, pp. 121–23][58, pp. 358–359][166, pp. 223–
24] with the Latin original [59, I, pp. 133–35]. Is Fermat’s result already in
Proposition 2 from Archimedes’ Quadrature of the Parabola [3]?

Exercise 3.27: Verify that our quadrature of the parabola with Leibniz’s
Fundamental Theorem of Calculus effectively yields the same result as those
of Archimedes and Cavalieri.

Exercise 3.28: Calculate the area under x = y3, and in general x = yn,
using Leibniz’s Fundamental Theorem of Calculus and his notation.

Exercise 3.29: Can you extend the results of Exercise 3.28 to exponents
n other than 1, 2, 3,..., e.g., fractional or negative powers?

Exercise 3.30: Can you calculate d
(

y
x

)
as Leibniz might have?

Exercise 3.31: Can you calculate d (sin(x)) or d (10x) or d (ex) à la
Leibniz? Can you use these to find areas?

3.6 Cauchy’s Rigorization of Calculus

Augustin-Louis Cauchy was born in 1789, the year the French Revolu-
tion began. He was the eldest of six children, and his father, a student of
classics and barrister in Normandy, ensured him an excellent education,
leading at age 16 to admittance at the elite Ecole Polytechnique. He subse-
quently entered the Ecole des Ponts et Chaussées (College of Bridges and


