(Math 210) Vector Calculus
"How the FTC extends to vectors $(x, y, z) \in \mathbb{R}^{3}$ "
Instructor: Blake Temple (Distinguished Professor)
Research: General Relativity and Shock Wave Theory
(2023) First nonlinear theory of time-pericdii Sound waves (W. Robin Young UMass)
(2020-23) Extend Karden-DeTurck optimal regularity b Uhlenbeck compectues
from Riemannian geometry to arbitrary connections (w Morita Beintjes HK)
(2017-23) A theory of Dark Energy based on an Instability in the Standard Model of Cosmology (ω Christopher Alexander and Zeke Vogler)
(2020-2023) A causal dissipative Relatirntic Navies - Stokes eqn in which all shocks admit profiles (4 Frestivehler, foustanz)

Introduction
Math 210
Vector Calculus
Introduction:

- Vector Calculus is the theory of Calculus for functions with more than one variable
- Viewing formulas as functions makes Calculus easy to describe

Eg: $y=x^{2}$ parabola
View it as a function:

$$
y=f(x)=x^{2}
$$

output input
Then we can describe the tangent line:

$$
m_{\uparrow}=f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=2 x
$$

slope

- We call the function $f^{\prime}(x)$ the derivative
- Fundamental theorem of Calculus (FTC)

Area is found by Anti-differentiation
(At the start Area appears to have nothing) to do with derivatives?

- Our Question: How do you do calculus \& what is FTC when inputs/outputs of f are vectors?
- much more complicated
- this is the real

$$
w=f(\underbrace{x, y, z}_{\pi})
$$

output π world

$$
w=\left(w_{1}, w_{2}, w_{3}\right) \in \mathbb{R}^{3} \quad \underset{\sim}{x}=(x, y, 8) \in \mathbb{R}^{3}
$$

* Three generalizations of the derivative to vectors form the basis of classical physics -

$$
\nabla \text {, Div, Curl }
$$

gradient Divergence Curl
(1) $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$ applies to scalar f

$$
\begin{aligned}
w=f(x, y, z) & \underset{\uparrow}{\uparrow}=x^{2}+y^{2}+x y z \\
&
\end{aligned}
$$

"the gradient points in direction of steepest increase of a function"
(2) Div $\vec{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z} \equiv \nabla \cdot \vec{F}$
applies to vector valued functions

$$
\text { Del dol } \vec{F}
$$

$$
\vec{F}\left({\underset{\text { input }}{ }(x, y, z)}_{\text {in pu }}^{(M(x, y, z), N(x, y, z), P(x, y, z))}\right. \text { output }
$$

"input $(x, y, z) \in \mathbb{R}^{3}$ b output $(M, N, P) \in \mathbb{R}^{3}$ are vectors"
The $(\operatorname{ch} 16)$ Div $\vec{F}=\frac{\text { Flux }}{\text { Vol }}$
(3)

$$
\begin{aligned}
& \text { Curl } \vec{F}=\left|\begin{array}{ccc}
\underset{\sim}{i} & \tilde{j}^{j} & \underset{\sim}{n} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
M & N & P
\end{array}\right|=\left(P_{y}-N_{z}, M_{z}-P_{x}, N_{x}-M_{y}\right) \\
& =\nabla \times \vec{F} \\
& \text { "del cross } \vec{F} " \\
& \vec{F}(\underbrace{x, y, z)}_{\text {input }(x, y, z)}=\underbrace{(M(x, y, z), N(x, y, z), P(x, y, z))}_{\text {output }(M, N, P) \in \mathbb{R}^{3}}=\begin{array}{l}
\text { vector } \\
\text { Field }
\end{array}
\end{aligned}
$$

The: $(\operatorname{Ch} 16)$ Curl $\vec{F}=\frac{\text { Circulation }}{\text { Area }}$
Conclude: Both Div 8 Curl apply to Vector Fields

- Math 21D is the mathematics required to understand ∇, Div, Curl
- ∇, Div, Curl are the three first order operators of Classical Physics -
- They were introduced by W. Gibbs to describe Maxwell's Theory of Electro-Magnetism $\sim 1880^{\prime} \mathrm{s}$
- They are the language of Fluid Mechanics

The meaning of ∇, Div, Curl come from three generalizations of FTC: (Topics of Math 21D)
(1) $\nabla:$

$$
\int_{C}^{\int_{C_{x}^{y}}^{y} \nabla f \cdot \vec{T} d s=f(B)-f(A)}
$$

"The line integral of the gradient along a curve is the change in f between the endpoints"
(2) Div:

$$
\iiint_{Q} \operatorname{Div} \vec{F} d v=\iint_{\otimes} \vec{F} \cdot \vec{n} d A
$$

"The integral of the divergence
 boundary of

Divergence
Theorem
(3) Curl:

From these three theorems we will discover the meanings of ∇, Div, Curl

$$
\begin{aligned}
& D_{i v} \vec{F}=\frac{f l u x}{v_{01}} \\
& \text { Curl } \vec{F}=\frac{\text { Circulation }}{\text { area }}
\end{aligned}
$$

$\nabla f=$ rate ot increase of f in direction of steepest increase p (we already know this from Math 21 C)

Physics is "The pursuit of finding the equations which describe physical processes"
∇, Div, Curl appear in the fundamental equations of Physics -
(1) Newton's Equations for motion of a particle in a conservative force field-

$$
m \ddot{\sim} \underset{\sim}{\ddot{x}}=-\nabla P(\underset{\sim}{x})
$$

(2) Fluid Mechanics: $\rho=$ density, $\vec{u}=$ velocity

$$
\begin{aligned}
& \rho_{t}+\operatorname{Div}(\rho u)=0 \text { (Cons. of mass) } \\
& \frac{D}{D t} \omega=0, \quad \omega=\text { Curl } \vec{u}=\text { vorticity } \\
& \text { (cons of vorticity) }
\end{aligned}
$$

(3) Electromagnetism (Maxwell's Eon emply space)

$$
\begin{aligned}
& \operatorname{Div}^{\vec{E}}=0 \quad \operatorname{Div} \vec{B}=0 \\
& -B_{t}=\operatorname{Curl} \vec{E} \\
& E_{t}=\frac{1}{\mu_{0} \varepsilon_{0}} \operatorname{Curl} \vec{B}
\end{aligned}
$$

$\vec{E}=$ electric field
$\vec{B}=$ magnetic field
Faraday's Law
Ampere/Maxwell Law

The basic and order linear operators of classical physics are also based on V, Diu, Curl:
(1)

$$
\begin{aligned}
& \text { Laplacian: } \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\operatorname{Div} \nabla \\
& \Delta f=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \\
& \operatorname{Div} \nabla f=\operatorname{Div}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \\
& \Delta=\operatorname{Div} \nabla
\end{aligned}
$$

(2) Wave Equation:

$$
u_{t t}-c^{2} \Delta u=0
$$

Heat Equation:

$$
u_{t}-k^{2} \Delta u=0
$$

Schroedingev Equ: $i \hbar \frac{\partial u}{\partial t}=\Delta u$
Conclude: The time rates of change of quantities in Physics always seem to come out to be ∇, Div, Curl or Δ ?

Math $21 D$ Vector Calculus covers all of the mathematics required to understand ∇, Curl, Div and the versions of the Fundamental theorems of Calculus which explain them.
(Note: The Laplacian Δ and the equations which involve Δ are the topic of a class in partial differential equations (PDE) and will not be studied here.)

