

By this we can parameterize any curve with respect to arclength-Thm: Assume $\vec{v}(t) = \vec{r}'(t) \neq 0$, $q \leq t \leq b$ Then $S = \int_{0}^{T} || \vec{v}(s) || ds gives S = q(t), q'(t) \neq 0$ and we can solve S = P(t)for t=t(s)=g(s), and by this obtain $\vec{r} = \vec{r}(t) = \vec{r}(t(s)) \equiv \vec{r}(s)$ "There are many ways to parameterize a curve witt, but only our way to parameterize wat arclength, s starting at s = 0 when t = a "

• Claim: TP $\vec{r} = \vec{r}(s)$ is a curve parameterized by arclength, then V(s)=T(s) is a unit vector ↓ シル =1. Proof: If $\vec{r} = \vec{r}(t)$, then ds = 11 v []= 11 r (t) When thes, we have de is et, so $\|\tilde{v}\| = \|\tilde{F}'(s)\| = \frac{ds}{ds} = 1$

E § 13.4 Introduction to the Theory of Curves . We have: a curve in \mathbb{R}^3 is described by a position vector $\vec{r} = \vec{r}(t) = \chi(t)\hat{\chi} + \chi(t)\hat{\chi} + \chi(t)\hat{\chi}$ 6

We Know: $\vec{v} = \vec{v}(t) = x'(t) \hat{i} + \delta'(t) \hat{j} + \delta'(t) \hat{h}$ points fongent to the curve with speed $\frac{dS}{dt} = \|\vec{v}(t)\| = \sqrt{x'(t)^2 + y'(t)^2 + z'(y)^2}$ We also have: $\bar{a} = \frac{d\bar{v}}{dt} = \bar{v}''(t) = x''(t) \dot{z} + g''(t) \dot{a} + z''(t) \dot{h}$ We know where V(+) points relative to the curve, but à seems to point anywhere Q: What can we say about where the acceleration vector à points in general?

• Since
$$\vec{a} = \frac{d}{dt} \vec{\nabla}$$
, we try to (8)
understand \vec{a} by differentiating
 $\vec{a} = \frac{d}{dt} \vec{\nabla} = \frac{d}{dt} (\|\vec{\nabla}\| \vec{T})$
product of scalar
[rebniz product $\|\vec{\nabla}(t)\| = \frac{ds}{dt}$ and vector $\vec{T}(t)$
rule holds $\int_{0}^{0} = (\frac{d}{dt} \|\vec{\nabla}\|) \vec{T} + \|\vec{\nabla}\| (\frac{d\vec{T}}{dt})$
 $= (\frac{d}{dt} \|\vec{T}\|) \vec{T} + \|\vec{\nabla}\| (\frac{d\vec{T}}{dt})$
 $= (\frac{d}{dt} \|\vec{T}\| \vec{T}\|) \vec{T} = 0$ at every $\vec{T} \in [a,b]$
Thus: $\frac{d\vec{T}(t)}{dt} \cdot \vec{T}(t) = 0$ at every $\vec{T} \in [a,b]$
 $= \sqrt{dt} product = \|\frac{d}{dt}\|\|\vec{T}\|\|\vec{T}\| \cos \theta$
Conclude $\frac{d\vec{T}}{dt} = \vec{T} + t \cdot T + \vec{\nabla}(t) \int_{0}^{1} \theta = 90^{\circ}$

We have:
$\vec{\sigma} = \vec{c} \left(\ \vec{\nabla}\ ^2 \right) = \left(\vec{d} \ \vec{\nabla}\ \right) \vec{T} + \ \vec{\nabla}\ \left(\vec{d} \right)$
dt ds $L\vec{v}$
Recall: $\ \vec{T}(t)\ = \rightarrow = \vec{T}(t) \cdot \vec{T}(t) = \ \vec{T}(t)\ ^2$
$\Rightarrow 0 = \hat{\tau} : \hat{\tau} + \hat{\tau} \cdot \hat{\tau}' = 2\hat{\tau}' : \hat{\tau}'$
Conclude: Since dt 17 we must have
dt = 1 dt 11 N dt = 1 dt 11 N positive L T and V
Defn: If dt to, then we define
$\vec{N} = \vec{N}(t) = \frac{\vec{T}'(t)}{ \vec{T}'(t) } = \frac{d\vec{T}_{dt}}{ \vec{T}'_{dt} }$
to be the Principle Normal Vector

Picture: In the plane
$$\mathbb{R}^2$$
:
... the unit normal \tilde{N} of $\tilde{r}(a)$
points orthogonal
to \tilde{T} in the direction
in which C is curving
More interestingly in \mathbb{R}^3 , the plane spanned
by \tilde{T} and \tilde{N} (the oscillating plane) is the
plane in which the curve most closely lies @ $\tilde{r}(t)$
Summary: The Principal
Unit Normal \tilde{N} gives
the direction and plane
into which the curve is
"Curving away from $\tilde{T}^{"}$
 $\tilde{N} = \left(\frac{d\tilde{T}}{d\tilde{t}}\right)$

E Collecting what we have:

$$\vec{a} = \frac{d}{dt} (\|\vec{v}\|^{2}) = \frac{d}{dt} \|\vec{v}\|^{2} + \|\vec{v}\| \frac{d\vec{r}}{dt}$$
So

$$\vec{a} = \frac{d}{dt} (\|\vec{v}\|^{2}) = \frac{d}{dt} \|\vec{v}\|^{2} + \|\vec{v}\| \frac{d\vec{r}}{dt}$$
So

$$\vec{a} = \frac{d}{dt} \cdot \vec{r} + \frac{ds}{dt} \|\frac{d\vec{r}}{dt}\|^{2} = \vec{v}$$
So

$$\vec{a} = \frac{d}{dt} \cdot \vec{r} + \frac{ds}{dt} \|\frac{d\vec{r}}{dt}\|^{2} = \vec{v}$$
A measure of the
scalar acceleration $\frac{ds}{dt} = v$ $\vec{r} = \vec{r}(t) = \mathbf{e}$.
Said differently $k = \|\frac{d\vec{r}}{dt}\|$ is

$$\vec{a} = \mathbf{a}_{T} \cdot \vec{r} + \mathbf{a}_{N} \cdot \vec{v}$$
Called the Convative

$$\vec{a}_{T} = \frac{d^{2}s}{dt^{2}} \quad \vec{a}_{N} = v \|\frac{d\vec{r}}{dt}\| \text{ scalar in acceleration}$$
Eg: $\vec{a} \cdot \vec{T} = (a_{T} \cdot \vec{r} + a_{N} \cdot \vec{v}) \cdot \vec{T}$

$$= a_{T} \cdot \vec{r} \cdot \vec{r} + a_{N} \cdot \vec{v} = a_{T} = \frac{ds}{dt^{2}}$$

Summary:
$$\hat{\mathbf{a}} = \mathbf{a}_{T} + \mathbf{a}_{N} \mathbf{N}$$
 (12)
 $\overline{\mathbf{a}}$ in direction $\overline{\mathbf{n}}$ is direction $\overline{\mathbf{n}}$
where $\mathbf{a}_{T} = \frac{dv}{dt}$, $\mathbf{a}_{N} = V \| \frac{d\overline{\mathbf{n}}}{dt} \| \mathbf{v} = \frac{ds}{dt}$
So we have proven:
theorem: $\hat{\mathbf{a}} \cdot \hat{\mathbf{r}} = \frac{dv}{dt}$, $\hat{\mathbf{a}} \cdot \mathbf{N} = V \| \frac{d\overline{\mathbf{n}}}{dt} \|$
• It remains to understand $\| \frac{d\overline{\mathbf{n}}}{dt} \| = \| \frac{d\overline{\mathbf{n}}}{ds} \frac{ds}{dt} \|$
• It remains to understand $\| \frac{d\overline{\mathbf{n}}}{dt} \| = \| \frac{d\overline{\mathbf{n}}}{ds} \frac{ds}{dt} \|$
where $k = \frac{1}{r} = \frac{1}{radivs of corvatore}$
 $\mathbf{r} = radivs of the circle that best fits the sorve at point $\tilde{r}(t)$
Defn: $K = K(t) = corvatore of \mathfrak{l} at $\tilde{r}(t)$$$

<u>Conclude</u> : Geometrical Interpretation (A)
of the acceleration vector:
$\vec{Q} = Q_{T} \vec{T} + Q_{N} \vec{N}$
$= \frac{d^2 s}{dt^2} + K V^2 N$
az = dis is the scalar acceleration
r = radius of curvature
V = velocity
$\vec{T} = \vec{V} \qquad \vec{N} = \vec{A} \qquad \vec{T} \qquad (or \vec{N} = 0)$ $\vec{T} = \vec{V} \qquad \vec{A} \qquad \vec{T} = 0$
(assume VFO)
This is the theory we now do some
examples -