\$13 13.3 Arclength and the unit tangent vector (we use $\vec{r}(t)$, book uses $\vec{G}(t)$)

- Consider a curve e

$$
4 \uparrow \vec{r}(a)
$$

- Let s denote arclength distance along C starting at $s=0$ when $t=a$ Q : what is $t=t(s)$?

$$
\begin{aligned}
& \begin{array}{l}
\vec{r}=\stackrel{s}{r}(t), \\
\vec{r}(a) \\
\dot{r}(t)=(x(t), y(t), z(t))
\end{array}
\end{aligned}
$$

C is the
name of the
curve

What is $t=t(s)$?
Ans: we know $\frac{d s}{d t}=\|\vec{v} n=\| \vec{r}^{\prime}(t) \|$
Thus:

$$
d \delta=\|\vec{v}(t)\| d t
$$

This gives $s=s(t)$

- By this we can parameterize amy curve with respect to arclength -
Thy: Assume $\vec{V}(t)=\vec{r}^{\prime}(t) \neq 0, a \leq t \leq b$ Then $s=\int_{0}^{t}\|\vec{v}(\xi)\| d \xi$ gives $\delta=\varphi(t), \phi^{\prime}(t) \neq 0$, and we can solve $s=\varphi(t)$
 is (in
"There ane many ways to parameterize a curve writ t, but only one way to parameterize wort arcleng the s starting at $s=0$ when $t=a$
- Claim: If $\vec{r}=\vec{r}(s)$ is a curve parameterized by arclength, then $\vec{V}(s) \equiv \vec{T}(s)$ is a unit vector $\|s\|=1$.
Proof: If $\vec{r}=\vec{r}(t)$, then

$$
\frac{d s}{d t}=\|\vec{v}\|=\left\|\vec{r}^{\prime}(t)\right\|
$$

When $t=s$, we have $\frac{d s}{d s}=1$, so

$$
\|\vec{v}\|=\left\|\vec{r}^{\prime}(s)\right\|=\frac{d s}{d s}=1
$$

Since whenever $\|\vec{r}(t)\|=$ canst we know $\vec{r}(t) \perp \vec{v}(t)$, we can apply this to $\vec{V}(s)$:
Theorem: If $\vec{r}(s)$ is parameterized wot arclength, then

$$
\vec{a}(s) \perp \vec{v}(s)
$$

Proof We know $\|\vec{v}(s)\|=1$,
So $\quad \frac{d}{d s}[\vec{V}(s) \cdot \vec{V}(s)]=\vec{V}^{\prime}(s) \cdot \vec{V}(s)+\vec{V}(s) \cdot \vec{V}^{\prime}(s)$

$$
\begin{gathered}
2 \vec{v}^{\prime}(s) \cdot \vec{v}(s)=0 \\
\vec{a}(s) \cdot \vec{v}(s)=0 \Rightarrow \vec{a}(s) \perp \vec{v}(b)
\end{gathered}
$$

($£ 13.4$ Introduction to the
Theory of Curves

- We have: a curve in \mathbb{R}^{3} is described by a position vector

$$
\vec{r}=\vec{r}(t)=x(t) \underset{\sim}{i}+y(t) \underset{\sim}{j}+z(t) \underset{\sim}{k}
$$

We know:

$$
\vec{v}=\vec{v}(t)=x^{\prime}(t) \underset{\sim}{i}+y^{\prime}(t) \underset{\sim}{j}+z^{\prime}(t) h
$$

points tangent to the curve, with speed

$$
\frac{d s}{d t}=\|\vec{v}(t)\|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}}
$$

We also have:

$$
\begin{aligned}
& \text { also have: } \\
& \vec{a}=\frac{d \vec{v}}{d t}=\vec{r}^{\prime \prime}(t)=x^{\prime \prime}(t) i+y^{\prime \prime}(t) j+z^{\prime \prime}(t) \frac{h}{2}
\end{aligned}
$$

We know where $\stackrel{\rightharpoonup}{V}(t)$ points relative to the curve, but \dot{a} seems to point anywhere What can we say about where the acceleration vector \vec{a} points in general?

Picture:
Q: What can we say about where $\vec{a}(t)$ must point?

$$
\stackrel{\rightharpoonup}{r}(t): \quad a \leqslant t \leq b
$$

- We know a lot about \vec{V} :

$$
\begin{aligned}
& \frac{d s}{d t}=\|\vec{v}(t)\| \Leftrightarrow d s=\|\vec{v}(t)\| d t \\
& \delta-s_{0}=\int_{\delta_{0}}^{s} d s=\int_{t_{0}}^{t}\|\vec{v}(\xi)\| d \xi
\end{aligned}
$$

Arclength starting at $t_{0} \quad s=\int_{t_{0}}^{t}\|\vec{v}(\xi)\| d \xi$
$\left(\right.$ take $\left.\delta_{0}=0\right)$
Letting $\vec{T}(s)$ denote the unit tangent vector

$$
\begin{array}{ll}
\vec{V}=\frac{d s}{d t} \underset{\sim}{c} & \text { unit tangent } \\
\text { speed } & \frac{d s}{d t}=\|\vec{v}\| \\
\quad \vec{T}(t)=\frac{\vec{V}(t)}{\| \vec{T}(t)} \|
\end{array}
$$

- Since $\vec{a}=\frac{d}{d t} \vec{V}$, we try to understand \bar{a} by differentiating

$$
\vec{a}=\frac{d}{d t} \vec{v}=\frac{d}{d t}(\underbrace{\|\vec{v}\| \vec{T}})
$$

product of scalar
Liebuiz product $\|\vec{v}(t)\|=\frac{d s}{d t}$ and vector $\vec{T}(t)$ rule holds ?

$$
\begin{aligned}
& =\underbrace{\left(\frac{d}{d t}\|\vec{V}\|\right)}_{d^{2} s} \stackrel{\tau}{T}+\underbrace{\|\vec{V}\|}_{\Gamma}(\underbrace{\frac{d \vec{T}}{d t}}_{Q: \text { What }}) \\
& \frac{d}{d t} \frac{d s}{d t}=\frac{d^{2} s}{d t^{2}} \quad v=\frac{d s}{d t} \quad \begin{array}{l}
\text { Qivection does } \\
\frac{d T}{d t} \text { point? }
\end{array}
\end{aligned}
$$

- But $\|\vec{T}(t)\|=1$ (Const. Length $\Rightarrow \vec{T}^{\prime}(t) \perp \vec{T}(t)$)

Thus: $\frac{d \vec{T}(t)}{d t}: \vec{T}(t)=0$ at every $t \in[a, b]$
\approx dot product $=\left\|\frac{d T}{d t}\right\|\|\vec{F}\| \cos \theta$
Conclude $\frac{d \vec{T}}{d t}=\vec{T}^{\prime}(t) \perp \vec{V}(t) \int_{0}^{1} \quad \begin{aligned} & \cos \theta=0 \\ & \theta=90^{\circ}\end{aligned}$

We have:

$$
\begin{aligned}
& \text { We have: } \\
& \begin{array}{r}
\vec{a}=\frac{d}{d t}(\|\vec{v}\| \vec{T})=\left(\frac{d}{d t}\|\vec{V}\|\right) \vec{T}+\|\vec{V}\|\left(\frac{d \vec{T}}{d t}\right) \\
\frac{d^{2} s}{d t^{2}} \\
\frac{d s}{d t} \\
\perp \vec{V}
\end{array} \\
& {\left[\text { Recall: }\|\vec{T}(t)\|=1 \Rightarrow 1=\vec{T}(t) \cdot \vec{T}(t)=\|\vec{T}(t)\|^{2}\right.} \\
& \left.\Rightarrow 0=\vec{T} \cdot \vec{T}+\vec{T} \cdot \vec{T}^{\prime}=2 \vec{T}^{\prime} \cdot \vec{T} r\right]
\end{aligned}
$$

Conclude: Since $\frac{d \vec{T}}{d t} \perp \vec{T}$ we must have

$$
\frac{d \stackrel{\rightharpoonup}{T}}{d t}=\left\|\frac{d \vec{T}}{d t}\right\|_{\text {positive }}^{\stackrel{\rightharpoonup}{N}} \underset{\sim}{\text { unit vector }} \underset{\sim}{\operatorname{T}} \text { and } \stackrel{\rightharpoonup}{V}
$$

Defn: If $\frac{d \vec{T}}{d t} \neq 0$, then we define

$$
\vec{N}=\vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left\|\vec{T}^{\prime}(t)\right\|} \equiv \frac{d \vec{T} / d t}{\|d \vec{T} / d t\|}
$$

to be the Principle Normal Vector

Picture: In the plane \mathbb{R}^{2} : \ldots... the unit normal \vec{N} points or thogonal to \vec{T} in the direction in which C is curving

More interestingly, in \mathbb{R}^{3}, the plane spanned by \vec{T} and \vec{N} (the osculating plane) is the plane in which the curve most closely lies @ $\vec{r}(t)$

Summary: the Principal Unit Normal \vec{N} gives the direction and plane into which the curve is "curving away from ${ }^{S}$ "

$$
\vec{N}=\frac{\left(\frac{d \vec{T}}{d t}\right)}{\left\|\frac{d \vec{T}}{d t}\right\|}
$$

osculating plane
© Collecting what we have:

$$
\begin{aligned}
& \vec{a}=\frac{d}{d t}(\|\vec{v}\| \vec{T})=\frac{d}{d t}\|\vec{v}\| \vec{T}+\|\vec{v}\| \frac{d \vec{T}}{d t} \\
& \frac{d}{d t} \frac{d s}{d t} \quad \frac{d s}{d t}\left\|\frac{d \vec{\tau}}{d t}\right\| \vec{N} \\
& \vec{a}=\frac{d^{2} s}{d t^{2}} \vec{T}+\frac{d s}{d t}\left\|\frac{d \vec{T}}{d t}\right\| \vec{N} \\
& \text { the } \uparrow \text { a measure of the } \\
& \text { scalar speed "curvature" at } \\
& \vec{r}=\vec{r}(t) \\
& \text { Said differently: } \\
& k=\left\|\frac{d \vec{T}}{d t}\right\| \text { is } \\
& \text { called the Cunvatrue } \\
& \vec{a}=a_{T} \vec{T}+a_{N} \vec{N} \\
& a_{T}=\frac{d^{2} s}{d t^{2}} \quad a_{N}=v\left\|\frac{d r}{d t}\right\| \\
& E g: \\
& =\left(a_{T} \vec{T}+a_{\omega} \vec{N}\right) \cdot \vec{T} \\
& =a_{T_{1}} \vec{T} \cdot \vec{N}+a_{w} \vec{N} \cdot \vec{N}=a_{T}=\frac{d^{2} S}{d t^{2}}
\end{aligned}
$$

Summary:

$$
\begin{equation*}
\vec{a}=a_{\lambda} \stackrel{\rightharpoonup}{\tau}+a_{N} \stackrel{\rightharpoonup}{N} \tag{12}
\end{equation*}
$$

component of component of
\vec{a} in direction $\vec{T} \quad \vec{a}$ in direction \vec{N}
where $\quad a_{T}=\frac{d v}{d t}, \quad a_{N}=v\left\|\frac{d \vec{T}}{d t}\right\| \quad v=\frac{d s}{d t}$

So we have proven:
Theorem: $\vec{a} \cdot \vec{T}=\frac{d v}{d t}, \quad \vec{a} \cdot \vec{N}=v\left\|\frac{d \vec{T}}{d t}\right\|$

- It remains to understand $\left\|\frac{d \vec{T}}{d t}\right\|=\left\|\frac{d \vec{T}}{d s} \frac{d s}{d t}\right\|$

Theorem: $\left\|\frac{d T}{d S}\right\|=k$

$$
\left.=\underbrace{\left\|\frac{d \vec{\tau}}{d s}\right\|}_{K} \| \frac{d s}{d t} \right\rvert\,
$$

where

$$
k=\frac{1}{r}=\frac{1}{\text { radius of curvature }}
$$

$r=$ "radius of the circle that best fits the curve af point $\stackrel{s}{r}(t)$ "
Defn: $k=k(t)=$ curvature of e at $\stackrel{\rightharpoonup}{r}(t)$

Picture

"osculating circle"
lies in the osculating plane
$r=$ radius of curvature

$$
k=\frac{1}{r}
$$

Conclude: Geometrical Interpretation of the acceleration vector:

$$
\begin{align*}
\vec{a} & =a_{T} \vec{T}+a_{N} \stackrel{\rightharpoonup}{N} \tag{2}\\
& =\frac{d^{2} s}{d t^{2}} \vec{T}+k v^{2} \vec{N}
\end{align*}
$$

$a_{T}=\frac{d^{2} s}{d t^{2}}$ is the scalar acceleration

$$
a_{N}=v^{2} k=\frac{v^{2}}{r}
$$

$r=$ radius ot curvature
$v=$ velocity

$$
\vec{T}=\frac{\vec{v}}{\|\vec{v}\|} \quad \vec{N}=\frac{\frac{d \vec{T}}{d t}}{\left\|\frac{d \vec{i}}{d t}\right\|}\left(\begin{array}{ll}
\text { or } & \vec{N}=0 \\
\text { if } & \frac{d \vec{T}}{d t}=0
\end{array}\right)
$$

This is the theory-we now do some examples -

