■ § 13.4 Theory of Curves ()
• We set out to describe the acceleration
vector
$$\vec{a} = d\vec{t} \vec{v}(t)$$
. We have:
 $\vec{a} = d\vec{t} \vec{v}(t)$. We have:
 $\vec{a} = d\vec{t} (\|\vec{v}\| \vec{\tau}) = (\frac{d}{dt} \|\vec{v}\|) \vec{\tau} + \|\vec{v}\| (\frac{d\vec{\tau}}{dt})$
 $\frac{d^{2}s}{dt} = \frac{d^{2}s}{dt} + \vec{v}$
[Recall: $\|\vec{\tau}(t)\| = 1 \Rightarrow 1 = \vec{\tau}(t) \cdot \vec{\tau}(t) = \|\vec{\tau}(t)\|^{2}$
 $\Rightarrow o = \vec{\tau} \cdot \vec{\tau} + \vec{\tau} \cdot \vec{\tau}' = 2\vec{\tau} \cdot \vec{\tau}$
Theorem: If $\frac{d\vec{\tau}}{dt} \neq 0$, then $d\vec{\tau} = 1 \vec{\tau} = 50$
 $\vec{d}\vec{t} = \|\vec{d}\vec{t}\| \vec{N}$
where

$$\vec{N} = \vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} = \frac{dT/dt}{|\vec{T}/dt||}$$

is the Principle Normal Vector

Picture: the Principal
Unit Normal
$$\vec{N}$$
 gives
the direction and plane
into which C is
"Curving away from T''
 $\vec{N} = (dT)$

1 At

Summary:
$$\hat{a} = a_{T}\hat{T} + a_{W}\hat{N}$$

is component of it component of \hat{a} in direction \hat{N}
where $a_{T} = \frac{dV}{dt}$, $a_{W} = V \begin{bmatrix} d\hat{T} \\ d\hat{T} \end{bmatrix}$ $V = \frac{ds}{dt}$
So we have proven:
theorem: $\hat{a} \cdot \hat{T} = \frac{dv}{dt}$, $\hat{a} \cdot \hat{N} = V \begin{bmatrix} d\hat{T} \\ d\hat{T} \end{bmatrix}$
• It remains to understand $\begin{bmatrix} d\hat{T} \\ d\hat{T} \end{bmatrix}$
theorem: $\begin{bmatrix} d\hat{T} \\ d\hat{T} \end{bmatrix} = \begin{bmatrix} d\hat{T} \\ d\hat{T} \end{bmatrix} \begin{bmatrix} d\hat{T} \\ d\hat{T} \end{bmatrix} = \begin{bmatrix} d\hat{T} \\ d\hat{T} \end{bmatrix}$
where $k = \frac{1}{k} = \frac{1}{radius ot corvature}$
 $c = radius of the circle that best fills
the surve at point $\hat{r}(t)$
 $Defn: k = k(t) = Corvature of e at $\hat{r}(t)$$$

Conclude : Geometrical Interpretation
of the acceleration vector :

$$\vec{a} = a_{T} \vec{T} + a_{N} \vec{N}$$
 $v = \frac{ds}{dt}$
 $= \frac{d^{2}s}{dt^{2}} \vec{T} + KV^{2} \vec{N}$
 $a_{T} = \frac{d^{2}s}{dt^{2}}$ is the scalar acceleration
 $a_{N} = V^{2}K = \frac{V^{2}}{r}$ $r = radius at curvature$
 $\vec{V} = velocity$
 $\vec{T} = \frac{\vec{V}}{|\vec{V}||}$ $\vec{N} = \frac{d\vec{T}}{d\vec{T}||}$ $\begin{pmatrix} \text{or } \vec{N} = 0 \\ it & d\vec{T} = 0 \end{pmatrix}$
(assume $\vec{V} \neq 0$)
this is the theory - we now do some
 $examples -$

Example (): Assume
$$\|\frac{dT}{dt}\| = KV$$
.
Show that $K = \|\frac{dT}{ds}\|$
Soln: If we are given $T(t)$, then
 $\frac{dT}{dt} = \|\frac{dT}{dt}\| \stackrel{N}{N} = VK \stackrel{N}{N}$
 $\frac{dT}{dt} = \frac{dT}{dt} \stackrel{N}{h} = VK \stackrel{N}{N}$
But $\frac{dT}{ds} = \frac{d}{ds} \stackrel{T}{T}(t(s)) = \frac{dT}{dt} \cdot \frac{dt}{ds}$
 $\frac{dT}{ds} = \frac{dT}{ds} \stackrel{N}{T} = \frac{dT}{ds} \stackrel{N}{K} \stackrel{N}{N}$
Herefore $\|\frac{dT}{ds}\| = \|K \stackrel{N}{N}\| = K$

Let $r(t) = t_{2} + \frac{1}{2}t_{3}$ Find v, a, ds, it, it, ar, N, an, K Sola (a) $\vec{\nabla} = d\vec{r} = 2 + t \hat{z} = (1, t)$ (b) $\vec{\alpha} = \vec{\beta} = 0\dot{i} + \dot{j} = \dot{j} = (0,1)$ $(c) \quad ds = V = \| \vec{v} \| = \sqrt{1+t^2}$ $(a) = \frac{\sqrt{2} + t 2}{\sqrt{1 + t^2}} = \sqrt{t + t^2}$ (e) $\frac{d^2s}{d+2} = \overline{\alpha \cdot T} = (\overline{0,1}) \cdot (\overline{1+t^2}, \frac{t}{\sqrt{1+t^2}}) = \frac{t}{\sqrt{1+t^2}}$ (f) $Q_{T} = \overline{Q} \cdot \overline{P} = \frac{d^{2}s}{dt^{2}} = \frac{t}{\sqrt{1+t^{2}}}$

(Z)

(9) $\vec{N} = \frac{1}{|\vec{d}||} \frac{d\vec{r}}{dt}$, $\frac{d\vec{r}}{dt} = \frac{d}{dt} \left(\frac{1+t^2}{t} \right)$, $\frac{t}{1+t^2}$ $\frac{d\tilde{T}}{dt} = -\frac{1}{2}(1+t^{2})Zt \frac{1}{2} + \frac{\sqrt{1+t^{2}}\cdot 1 - t\frac{1}{2}(1+t^{2})Zt}{1+t^{2}},$ $=\frac{-t}{(1+t^{2})^{3/2}} \frac{1}{2} + \frac{(1+t^{2})-t^{2}}{(1+t^{2})^{3/2}} \frac{1}{7} = \frac{1}{(1+t^{2})^{3/2}} \frac{(-t,1)}{(1+t^{2})^{3/2}}$ $\|\frac{dT}{dt}\|_{=\frac{1}{(1+t^{2})^{3}/2}} \|[-t,1)\|_{=\frac{1}{(1+t^{2})^{3}/2}} = \frac{\sqrt{1+t^{2}}}{(1+t^{2})^{3}/2} = \frac{1}{1+t^{2}}$ Thus! $\vec{N} = (1+t^2) \frac{1}{(1+t^2)^{3/2}} (t, 1) = \frac{1}{\sqrt{1+t^2}} (t, 1)$ Check: $\|N\| = \frac{1}{1+t_2} \|(t_1)\| = 1$ (h) $a_{N} = \overline{a} \cdot \overline{N} = (\overline{a}, \overline{b}) \cdot (\overline{b}) \cdot (\overline{b}) = \overline{b} \cdot \overline{b} = \overline{b}$ vector scalar Vector $(i) K V^{2} = Q_{W} SO R = \frac{Q_{W}}{V^{2}} = \frac{1}{\sqrt{1+t^{2}}} \cdot (\sqrt{1+t^{2}})^{2} = \sqrt{1+t^{2}}$

(10) Example 3 Show that when anso, V≠0, motion is along a straight line -Soln: $\vec{a} = \frac{ds}{dt} + \frac{v}{w}$ thus if an =0 either vito or K=0 But $K = \left| \frac{dT}{dS} \right| = 0 \Rightarrow T = const$ $\frac{dT}{ds} = \frac{d}{ds} \left(x(s) \dot{z} + A(s) \dot{z} + 2(s) \dot{h} \right) = 0$ x=const y=const z=const = T=const $r(s) = T \cdot s + r$, straight ine

Example @ Find a formula for kinterms of Vanda $\vec{a} = a_T \vec{T} + a_N \vec{N}$ Soln: Recall cross product: A×B= IA INBI SIND R ß R $\|\nabla \times \widehat{\alpha}\| = \|\nabla \times (\alpha_T \widehat{T} + \alpha_N \widehat{N})\|$ Area = $= \left\| \begin{array}{c} \alpha_{T} & \overrightarrow{\nabla} \mathbf{x} \\ \end{array} + \left\| \begin{array}{c} \alpha_{V} & \overrightarrow{\nabla} \mathbf{x} \\ \end{array} \right\|$ 11A111B11sin0 h $= \alpha_{N} \| \vec{\nabla} \times \vec{N} \| = K \nabla^{2} \| \vec{\nabla} \times \vec{N} \|$ $= KV^3 || T \times N ||$ $\frac{\|\vec{v}\times\vec{a}\|}{\sqrt{3}}$ So

Example (a) Find the equation for
the oscillating plane at
$$F(2)$$

for the helix
 $F(t) = 3cost \frac{1}{2} + 3sint \frac{1}{2} + th$
 $Solar + F(t) = \frac{V(t)}{||\tilde{v}(t)||} = \frac{-3sint \frac{1}{2} + 3cost \frac{1}{2} + h}{||\tilde{v}(t)||}$
Idea)
 $I|\tilde{v}(t)| = \sqrt{9sint} + 9cost + I = 100$
 $T(t) = (-3sint, 3cost, I)$
 Viv
 $dT = \frac{1}{Viv}(-3cost, -3sint, v)$
 $N = (-cost, sint, v)$

Osculating Plane is the F(2) plus the span of 7 8 2 Equation of plane thru Po (2) $P_0 P_0 = 0$ P=(x,y,z) $\vec{N} = \vec{T} \times \vec{N}$, $\vec{P}_0 = \vec{r}(2)$, $\vec{v} \times \vec{N} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{j} \\ -3sint 3cost & I \\ -cost-sint & 0 \end{bmatrix}$ $\simeq \hat{v}(-\sin t) - \hat{v}(-\cos t) + (+3\sin^2 t + 3\cos^2 t) \hat{h}$ $= -\sin t \dot{z} + \cos t \dot{z} + 3 \dot{k}$

Example (5): Show that for
uniform motion on a circle of
radius
$$r$$
, the curvature $K = \frac{1}{N}$
Soln: $\vec{r}(t) = (x_0, y_0) + r(cost, sint)$
 $\vec{V}(t) = r(-sint, cost)$, $V = r$
 $\vec{a}(t) = r(-cost, -sint)$
 $\vec{a}(t) = r(-cost, -sint)$

I dT II = K = K ÎN Q: Why is general 2 7+dT Soh: Restrict to osculating 96 plane rtt) Then a small r(t) gives Motion away from ds=rdq $\vec{T} = u c q \dot{i} + s in t \dot{j}$ $\left\|\frac{d\tilde{T}}{ds}\right\| = \left\|\frac{d\tilde{T}}{ds}\right\| = \left|\frac{d\varphi}{ds}\right| = \frac{1}{r}$ N N UNIT K 1/r K=F