\& 13.4 Theory of Curves

- We set out to describe the acceleration vector $\vec{a}=\frac{d}{d t} \vec{v}(t)$. We have:

$$
\begin{aligned}
& \vec{a}=\frac{d}{d t}(\|\vec{v}\| \vec{T})=\left(\frac{d}{d t}\|\vec{V}\|\right) \stackrel{\rightharpoonup}{T}+\|\vec{V}\|\left(\frac{d \vec{T}}{d t}\right) \\
& \frac{d^{2} s}{d t^{2}} \quad \frac{d s}{d t} \perp \vec{v} \\
& {\left[\text { Recall: }\|\vec{T}(t)\|=1 \Rightarrow 1=\vec{T}(t) \cdot \vec{T}(t)=\|\vec{T}(t)\|^{2}\right.} \\
& \left.\Rightarrow 0=\vec{T} \cdot \vec{T}+\vec{T} \cdot \vec{T}^{\prime}=2 \vec{T}^{\prime} \cdot \vec{T}^{\prime}\right]
\end{aligned}
$$

Theorem: If $\frac{d \vec{T}}{d t} \neq 0$, then $\frac{d \vec{T}}{d t} \perp \vec{T}$ so

$$
\frac{d \stackrel{\rightharpoonup}{T}}{d t}=\left\|\frac{d \vec{T}}{d t}\right\| \stackrel{\rightharpoonup}{N}
$$

where

$$
\vec{N} \equiv \vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left\|\vec{T}^{\prime}(t)\right\|} \equiv \frac{d \vec{T} / d t}{\|d \vec{T} / d t\|}
$$

is the Principle Normal Vector

- In $\left.\mathbb{R}^{2}:(\vec{r}(t)]=(x(t), y(t))\right)$
the Principal Normal \vec{N} points or thogonal to \vec{T} in the direction C is curving.

- In \mathbb{R}^{3}, the plane spanned by \vec{T} and \vec{N} is the osculating plane, the plane in which the curve most closely lies © $\vec{r}(t)$

Picture: The Principal Unit Normal \vec{N} gives the direction and plane into which C is "curving away from t"

$$
\vec{N}=\frac{\left(\frac{d \vec{T}}{d t}\right)}{\left\|\frac{d \vec{T}}{d t}\right\|}
$$

- Putting it all to gether:

$$
\begin{aligned}
& \bar{a}=\frac{d}{d t}(\|\vec{v}\| \vec{T})=\underbrace{\frac{d}{d t}\|\vec{v}\| \vec{T}}+\|\vec{v}\| \frac{d \vec{T}}{d t} \\
& \text { So } \\
& \frac{d s}{d t}
\end{aligned} \frac{d \vec{T}}{d t} \| \vec{N}
$$

$$
\vec{Q}=\frac{d^{2} s}{d t^{2}} \vec{T}+\frac{d s}{d t}\left\|\frac{d \vec{T}}{d t}\right\| \vec{N}
$$

the speed acceleration $\frac{d s}{d t}=v$

Said differently.

$$
\overrightarrow{\vec{a}}=a_{T} \vec{T}+a_{N} \vec{N}
$$

$$
a_{T}=\frac{d^{2} s}{d t^{2}} \quad a_{N}=v\left\|\frac{d s}{d t}\right\|
$$

$E g:$

$$
\begin{aligned}
\vec{a} \cdot \vec{T} & =\left(a_{T} \vec{T}+a_{w} \vec{N}\right) \cdot \vec{T} \\
& =a_{T} \vec{T} \cdot \vec{N}+a_{w} \vec{N} \cdot \vec{N}=a_{T}=\frac{d^{2} S}{d t^{2}}
\end{aligned}
$$

Summary:

$$
\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}
$$

component ot component ot
\vec{a} in direction $\vec{T} \vec{a}$ in direction \vec{N}
where $\quad a_{T}=\frac{d v}{d t}, a_{N}=v\left\|\frac{d \vec{T}}{d t}\right\| \quad v=\frac{d s}{d t}$
So we have proven:
Theorem: $\vec{a} \cdot \vec{T}=\frac{d v}{d t}, \quad \vec{a} \cdot \vec{N}=v\left\|\frac{d \vec{T}}{d t}\right\|$

- It remains to understand $\left\|\frac{d T}{d t}\right\|$

Theorem: $\left\|\frac{d T}{d t}\right\|=\|\underbrace{\| s}_{k}\| \underbrace{d t}_{V} \| \frac{d s}{d t}=k v \quad\left(v=\frac{d s}{d t}\right)$ where

$$
k=\frac{1}{r}=\frac{1}{\text { radius of curvature }}
$$

$r=$ "radius of the circle that best fits the curve af point $\vec{r}(t)^{\prime}$
Defn: $k=k(t)=$ curvature of e af $\stackrel{\rightharpoonup}{r}(t)$

Picture

lies in the osculating plane
$r=$ radius of curvature

$$
k=\frac{1}{r}
$$

Conclude : Geometrical Interpretation of the acceleration vector:

$$
\begin{align*}
\vec{a} & =a_{T} \vec{T}+a_{N} \stackrel{\rightharpoonup}{N} \tag{ds}\\
& =\frac{d^{2} s}{d t^{2}} \vec{T}+k v^{2} \stackrel{\rightharpoonup}{N}
\end{align*}
$$

$a_{T}=\frac{d^{2} s}{d t^{2}}$ is the scalar acceleration
$a_{N}=V^{2} K=\frac{v^{2}}{r} \quad r=$ radius of curvature
$v=$ velocity

$$
\overrightarrow{\vec{T}}=\frac{\vec{v}}{\|\vec{v}\|} \quad \vec{N}=\frac{\frac{d \vec{T}}{d t}}{\left\|\frac{d \vec{T}}{d t}\right\|}\binom{\text { or } \vec{N}=0}{\text { if } \frac{d \vec{T}}{d t}=0}
$$

This is the theory-we now do some examples -

Example (1): Assume $\left\|\frac{d T}{d t}\right\|=k v$.
Show that $k=\left\|\frac{d \vec{T}}{d s}\right\|$
Sol. If we are given $\vec{T}(t)$, then

$$
\begin{aligned}
& \frac{d \vec{T}}{d t}=\| \frac{d \vec{T}}{d t} \int \underbrace{}_{\text {length }} \vec{N}=V k \vec{N} \\
& B_{v}+\frac{d \vec{T}}{d s}=\frac{d}{d s} \vec{T}(t(s))=\frac{d \vec{T}}{d t} \cdot \frac{d t}{d /} \\
& =\forall k \vec{N} \frac{1}{v}=k \vec{N}
\end{aligned}
$$

Therefore $\quad\left\|\frac{d \vec{T}}{d s}\right\|=\|k \vec{N}\|=k$

Example (2)
Let $r^{s}(t)=t i+\frac{1}{2} t^{2} \dot{\sim}$
Find: $\vec{v}, \vec{a}, \frac{d s}{d t}, \vec{T}, \frac{d^{2} s}{d t^{2}}, a_{T}, \vec{N}, a_{N}, k$
Soln (a) $\vec{v}=\frac{d \vec{v}}{d t}=\underset{\sim}{i}+t \underset{\sim}{j}=(\overrightarrow{1, t)}$
(b) $\vec{a}=\frac{d \bar{v}}{d t}=0 \underset{\sim}{i}+j=\underset{\sim}{j}=\overline{(0,1)}$
(c) $\frac{d s}{d t}=v=\|\bar{v}\|=\sqrt{1+t^{2}}$
(d) $\stackrel{\rightharpoonup}{T}=\frac{\vec{V}}{\|\vec{v}\|}=\frac{i+t i}{\sqrt{1+t^{2}}}=\frac{1}{\sqrt{1+t^{2}}} i \underset{\sim}{i}+\frac{t}{\sqrt{1+t^{2}}} \underset{\sim}{j}$
(e) $\frac{d^{2} s}{d t^{2}}=\vec{a} \cdot \vec{T}=(\overrightarrow{0,1}) \cdot\left(\frac{1}{\sqrt{1+t^{2}}}, \frac{t}{\sqrt{1+t^{2}}}\right)=\frac{t}{\sqrt{1+t^{2}}}$
(f) $a_{T}=\vec{a} \cdot \stackrel{T}{T}=\frac{d^{2} s}{d t^{2}}=\frac{t}{\sqrt{1+t^{2}}}$
(g)

$$
\text { g) } \begin{aligned}
&\left.\vec{N}=\frac{1}{\| \frac{d \vec{T}}{d t}} \| \frac{d \vec{T}}{d t}\right) \frac{d \vec{T}}{d t}=\frac{d}{d t}\left(\left(1+t^{2}\right)^{-1 / 2}, \frac{t}{\sqrt{1+t^{2}}}\right) \\
& \frac{d \vec{T}}{d t}=-\frac{1}{\not 2}\left(1+t^{2}\right)^{-2 / 2} t t \underset{\sim}{i}+\frac{\sqrt{1+t^{2}} \cdot 1-t \frac{1}{x}\left(1+t^{2}\right) x^{2} t .}{1+t^{2}} \dot{\sim} \\
&=\frac{-t}{\left(1+t^{2}\right)^{3 / 2}} \underset{\sim}{i}+\frac{\left(1+t^{2}\right)-t^{x}}{\left(1+t^{2}\right)^{3 / 2}} i=\frac{1}{\sim}\left(1+t^{2}\right)^{3 / 2}(-t, 1) \\
&\left\|\frac{d \vec{T}}{d t}\right\|=\frac{1}{\left(1+t^{2}\right)^{3 / 2}}\|(-t, 1)\|=\frac{\sqrt{1+t^{2}}}{\left(1+t^{2}\right)^{3 / 2}}=\frac{1}{1+t^{2}}
\end{aligned}
$$

Thus: $\vec{N}=\underbrace{\left(1+t^{2}\right)}_{\| \frac{1}{\left\|\frac{d \vec{T}}{d t}\right\|}} \underbrace{\frac{1}{\left(1+t^{2}\right)^{3 / 2}}(\overrightarrow{t, 1)}}_{\frac{d \vec{T}}{d t}}=\frac{1}{\sqrt{1+t^{2}}}(\overrightarrow{t, 1)}$
Check: $\|\vec{N}\|=\frac{1}{\sqrt{1+t^{2}}}\|(\overrightarrow{t, 1})\|=1$
(h) $a_{N}=\vec{a} \cdot \vec{N}=(\underset{\text { vector }}{(\overrightarrow{0,1})} \cdot(\underbrace{\sqrt{1+t^{2}}}_{\text {scalar }})(\underbrace{(t, 1)}_{\text {vector }}=\frac{1}{\sqrt{1+t^{2}}}$
(i) $k v^{2}=a_{w}$ so $k=\frac{a_{N}}{v^{2}}=\frac{1}{\sqrt{1+t^{2}}} \cdot\left(\sqrt{1+t^{2}}\right)^{2}=\sqrt{1+t^{2}}$

Example (3) Show that when $a_{N}=0, v \neq 0$, motion is along a straight line -
Sols: $\vec{a}=\frac{d^{2} s}{d t^{2}} \vec{T}+\underbrace{V^{2} k} \vec{N}$

$$
Q_{N}
$$

Thus if $a_{w}=0$ either $v=0$ or $k=0$

$$
\begin{aligned}
& \text { But } k=\left|\frac{d T}{d s}\right|=0 \Rightarrow T=\text { cost } \\
& \text { Lee } \frac{d \vec{T}}{d s}=\frac{d}{d s}(x(s) \underset{\sim}{i}+y(s) \underset{\sim}{j}+z(s) \underset{i}{h})=0 \\
& x=\text { const } y=\text { commit } z=\text { coast } \Rightarrow \vec{T}=\text { conch } \\
& \therefore \vec{r}(s)=\vec{T}_{\text {cons }}^{\vec{T}} \cdot s+\vec{r}_{\text {cons }} \text { straight }
\end{aligned}
$$

Example (4) Find a formvice for k in terms of \vec{v} and \vec{a}
Sorn: $\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}$
Recall cross product:

$$
\begin{aligned}
& \vec{A} \times \vec{B}=\|\vec{A}\| \vec{B} \| \sin \theta \vec{n} \\
& \begin{aligned}
&\|\vec{V} \times \vec{a}\|=\left\|\vec{V} \times\left(a_{T} \vec{T}+a_{N} \vec{N}\right)\right\| \\
&=\left\|a_{T_{0}} \vec{V} \times \vec{V}+a_{N} \vec{V} \times \vec{N}\right\| \\
&=a_{N}\|\vec{V} \times \vec{N}\|=k v^{2}\|\vec{V} \times \vec{N}\| \\
&=K V^{3}\|\vec{I} \times \vec{N}\|
\end{aligned} \\
& \underbrace{}_{\vec{A} \|} \mid l
\end{aligned}
$$

So $k=\frac{\|\vec{v} \times \vec{a}\|}{v^{3}}$

Example (4) Find the equation for the osculating plane at $\vec{F}(2)$ for the helix

$$
\begin{aligned}
& \vec{r}(t)=3 \cos t \underset{\sim}{i}+3 \sin t \underset{\sim}{j}+t \underset{\sim}{h} \\
& \text { Son: } \\
& \text { (Idea) } \vec{T}(t)=\frac{\vec{v}(t)}{\|\vec{v}(t)\|}=\frac{-3 \sin t \underset{i}{i}+3 \cos t_{\sim}^{j}+\underset{\sim}{n}}{\|\vec{v}(t)\|} \\
& \|\vec{v}(t)\|=\sqrt{9 \sin ^{2} t+9 \cos ^{2} t+1}=\sqrt{10} \\
& \vec{T}(t)=\frac{(-3 \sin t, 3 \cos t, 1)}{\sqrt{10}} \\
& \frac{d \vec{T}}{d t}=\frac{1}{\sqrt{10}(-3 \cos t,-3 \sin t, v)} \\
& \vec{N}=(-\cos t-\sin t, D)
\end{aligned}
$$

Osculating Plane is the $\vec{r}(2)$ plus the span of $\stackrel{N}{N}$

Equation of plane thru P_{0}

$$
\begin{aligned}
& \overrightarrow{P_{0} P} \cdot \vec{n}=0 \\
& \vec{n}=\vec{T} \times \vec{N}, \quad P_{0}=\vec{r}(2), P=(x, y, z) \\
& \vec{V} \times \vec{N}=\left|\begin{array}{ccc}
\underset{\sim}{i} & \underset{\sim}{i} & \underset{\sim}{x} \\
-3 \sin t & 3 \cos t & 1 \\
-\cos t-\sin t & 0
\end{array}\right| \\
& \simeq \underset{\sim}{i}(-\sin t)-\underset{\sim}{j}(-\cos t)+\left(+3 \sin ^{2} t+3 \cos ^{2} t\right) \underset{\sim}{n} \\
&=-\sin t \underset{\sim}{i}+\cos t \underset{\sim}{j}+3 \underset{\sim}{k}
\end{aligned}
$$

Example (5): Show that for uniform motion on a circle of radius r, the curvature $k=\frac{1}{r}$

Son: $\vec{r}(t)=\left(\overrightarrow{x_{0}, y_{0}}\right)+r(\overline{\cos t, \sin t})$

$$
\begin{aligned}
\vec{v}(t) & =r(-\sin t, \cos t), v=r \\
\vec{a}(t) & =r \underbrace{(-\cos t,-\sin t}_{\vec{N}}) \\
a_{N}=\vec{a} \cdot \vec{N} & =r \quad
\end{aligned}
$$

In general: $a_{w}=k v^{2}=k r^{2}$
Thus $r=k r^{2} \Rightarrow k=\frac{1}{r}$

Q: why is $\left\|\frac{d \vec{r}}{d s}\right\|=k=\frac{1}{r}$ in general?
Sob: Restrict to osculating plane -

Then a small
motion away from $\vec{r}(t)$ gives

$$
\begin{aligned}
& d s=r d \varphi \quad \vec{T}=\cos \varphi \underline{i}+\sin t j
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\Downarrow & \vec{N} & 1 / r \\
K & \text { unit } & K=\frac{1}{r}
\end{array}
\end{aligned}
$$

Q General Theory of Curves:

$$
\vec{T}=\frac{\vec{v}}{\|\vec{v}\|}, \vec{N}=\frac{d T / d s}{\|d T / d s\|}=\frac{1}{k} \frac{d T}{d S}
$$

Define Binormeel $\vec{B}=\vec{T} \times \vec{N}$
Get: $\frac{d \vec{T}}{d \delta}=k \vec{N}$

$$
k=k(s)=\text { curvature }
$$

$$
\frac{d \vec{N}}{d S}=-k \vec{T}+\tau \vec{B}
$$

$$
\tau \equiv \tau(s)=\text { torsion }
$$

$$
\frac{d \vec{B}}{d s}=-\tau N
$$

Matrix Form - Equations for $(\vec{T}(s), \vec{N}(s), \vec{B}(s))$

$$
\begin{aligned}
& \begin{array}{l}
\text { Erenet } \\
\text { Serret } \\
\text { Equations } \\
F-1847 \\
\delta-1851
\end{array}\left(\begin{array}{ccc}
(\vec{T} \\
\vec{N} \\
\vec{B}
\end{array}\right)^{\prime}(\delta)=\left[\begin{array}{ccc}
0 & k & 0 \\
-k & 0 & \tau \\
0 & -\tau & 0
\end{array}\right] \\
& \left(\begin{array}{c}
\vec{T} \\
\vec{N} \\
\vec{B}
\end{array}\right) \\
& \text { anti-symetric }
\end{aligned}
$$

Theorem: Everything about P is determined Dy curvature $k[s)$ \& torsion $\tau(s)$

