Kepler To New ton-(Supplementary)
Understanding the acceleration vector is key to discovering Newton's Law of Gravity from Kepler's Three Laws.

- In the early 1600's (17'th centvoy), Kepler proposed 3 laws of planetary motion, which he deduced from careful observations of Tycho Brahe:

Is Law (160 g): The planets are orbiting the sun in elliptical orbits with the surat one focus of the ellipse.
and Law (1609): Planets sweep out equal area in equal time.
Ord Law (1619): $T^{2} / a^{3}=$ constant , the same constant for every planet. a-major axis of ellipse, $T=$ period

- In 1660 , Robert Hooke discovered
"Hooke's Law" for springs, and proposed to Newton that planetary motion might be dire to an "inverse square force" emanating from the sun, exerted on the planets - something like a "spring".
- Newton proposed his Universal Law of Gravitation in 1687 (Principia)
(1) $\vec{F}=m \vec{a} \quad$ (Giving the meaning of "force")
(2) $\vec{F}=M_{p} \vec{a}=-G \frac{M_{s} M_{p}}{r^{2}} \frac{\stackrel{r}{r}}{r}$

Giving the gravitational force exerted by
the sun on planet
$M_{p}=$ mass of planet
$M_{S}=$ mass of sun
$\vec{r}=$ position vector of planet w onegin or sun
$r=\|\vec{r}\|$ = distance from planet to sun

Picture:

Newton Proposed:

$$
\begin{aligned}
& \vec{F}=M_{p} \vec{a}=-6 \frac{M_{s} M_{p}}{r^{2}} \frac{r}{r} \\
& \begin{array}{c}
\text { magnitude } \\
\text { (nwerse shoved. } \\
\text { diction }
\end{array} \\
& \vec{a}=-G \frac{M_{s}}{r^{3}} \vec{r}
\end{aligned}
$$

Million Dollar Question: Could this explain Kepler's 3 Laws? If so it would answer the age old question of why the planets move the way they do in the sky -and it would imply the sun, not the earth, is the center of every thing $\begin{aligned} & \rho \\ & 0\end{aligned}$

- Newton's Law of Gravitation gave a unified explanation for Kepler's Three Lawn, thereby unifying all the laws of (planetany) physics known in his lifetime.
- The essence of Newton's argument is to show that, if a planet moves in an elliptical orbit with the sun at a focus, and its rotation rate is given by "equal area in equal time", then the acceleration points back toward the sun \Rightarrow "Everything is coming from the Sun 0".
He then shows that the magnitude of the acceleration assuming elliptical motion and equal area in equal time must be inverse square?
The third law then gives the final miracleHis force law is independent of planet \Rightarrow Universal!

Theorem (1): If the planet sweeps out "equal area in equal time", then the acceleration vector points in direction from planet to sun.

Theorem (2): If for they, the planet traverses an ellipse, then the magnitude of force is inverse square, with a constant which appears to depend on the planet.

Theorem (3): If further, $\frac{T^{2}}{a^{3}}=$ constant independent of planet, then

$$
\begin{equation*}
\vec{a}=-\hat{f} \frac{1}{r^{2}} \frac{\vec{r}}{r} \tag{3}
\end{equation*}
$$

with \hat{G} a constant independent of planet. (Ie., you get the same \hat{G} for every ellipie $?_{0}$) Taking $\hat{G}=G M_{s}$ then gives Newton's Force Law

- Proof of Theorem (1): Show that Kepler's and Law, that planets are sweeping out "equal area in equal time", alone implies that the acceleration vector must point in the direction of the sun

Note: This is the main step in making the leap to the idea that the motion of the planets is due to a force emanating the Sun - Ie., $\vec{F}=m_{p} \vec{a}$ is coming from the Sun ${ }_{0}$

Meaning of "Equal Area in Equal Time"

$$
\frac{d A}{d t}=A^{\prime}(t)=H=\text { constant }
$$

Constant depends on the planet's chosen elliptical orbit

Solution: Assume a planet P of mass M_{p} moves along a trajectory $\vec{r}(t)=x(t) i+y(t) j$ where \vec{r} is the position vector that points from the sun to the planet. (Kepler knew the planets moved in a plane containing the sun, the planet and the ellipse.)
We show: "equal area in equal time" imeplien
(4) $\vec{a}=\ddot{\vec{r}}=-\left(\frac{H}{r^{3}}-\ddot{r}\right) \frac{\bar{r}}{r}$

Here: We have cancelled Mp from both sides of (2), $r=\|r\|=\sqrt{x(t)^{2}+y(t)^{2}}$ and H will be the constant associated with "equal area in equal time". To verify (4)
Notation: In physics, derivatives wot time are denoted by a "dot" Ire.

$$
\dot{\vec{r}} \equiv \dot{\vec{r}}(t) \equiv \vec{r}^{\prime}(t)=\frac{d \stackrel{\rightharpoonup}{r}}{d t}
$$

So Assume: "equal area in equal time"

$$
\begin{aligned}
& \vec{r}(t)=x(t) \underset{\sim}{i}+y(t) \underset{\sim}{j} \\
& r=\|\vec{r}\|=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Then:

(5) $\quad d A=\frac{1}{2} r^{2} d \theta$
(This the triangular area, neglecting higher order errors which $\rightarrow 0$ as $d A \rightarrow 0$) Thus
(6) $\frac{d A}{d t}=\frac{1}{2} r^{2} \frac{d \theta}{d t}=\frac{1}{2} r^{2} \dot{\theta}$

So "equal area in equal time" means
(7) $\quad \frac{d A}{d t}=$ const. (which at this stage
so could depend on planet)
(8) $\quad r^{2} \dot{\theta}=H$ (we take this if as the constant)

Differentiating gives:
(9)

$$
0=\frac{d}{d t}\left(r^{2} \dot{\theta}\right)=2 r \dot{r} \dot{\theta}+r^{2 \dot{\theta}}
$$

So "equal area in equal time" means:
(10) $\quad \dot{\theta}=\frac{H}{r^{2}}$
(ii) $2 \dot{r} \dot{\theta}+r \ddot{\theta}=0$

Since these conditions are given in terms of (r, θ), it makes sense to change to polar coordinates -
(12)

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned} \quad r=\sqrt{x^{2}+y^{2}}
$$

Here: x, y, r, θ all depend on time t, and are determined by the planets position $\stackrel{r}{r}(t)$ at time.

Looking to get the dirsction of $\vec{a}=\stackrel{\rightharpoonup}{\vec{r}}$, we obtain \dot{x} and iy
Differentiating (12) gives
(13)

$$
\begin{aligned}
& \dot{x}=\dot{r} \cos \theta-r \dot{\theta} \sin \theta \\
& \dot{y}=\dot{r} \sin \theta+r \dot{\theta} \cos \theta
\end{aligned}
$$

Differentiating (13) gives
(14) $\ddot{x}=\ddot{r} \cos \theta-2 \dot{r} \dot{\theta} \sin \theta-r \dot{\theta}^{2} \cos \theta-r \ddot{\theta} \sin \theta$
(15) $\ddot{y}=\ddot{r} \sin \theta+2 \dot{r} \dot{\theta} \cos \theta-r \dot{\theta}^{2} \sin \theta+r \ddot{\theta} \cos \theta$

Multiply (14) by $\cos \theta \&$ (15) by $\sin \theta$ and add:
(16) $\quad \ddot{x} \cos \theta+\ddot{y} \sin \theta=\ddot{r}-r \dot{\theta}^{2}$

Multiply (14) by $\sin \theta$ \& (15) by $\cos \theta$ and subtr:
(17) $\quad-\ddot{x} \sin \theta+\ddot{y} \cos \theta=2 \dot{r} \dot{\theta}+r \ddot{\theta}$

- Now" = area in =time" says:

$$
\begin{aligned}
& r^{2} \dot{\theta}=H \\
& 2 \dot{r} \dot{\theta}+r \ddot{\theta}=0
\end{aligned}
$$

using these on RHS of $(16) 8(17)$ gives
(18) $\ddot{x} \cos \theta+\ddot{y} \sin \theta=\dot{r}-H^{2} / r^{3}$
(19) $-\ddot{x} \sin \theta+\ddot{y} \cos \theta=0$

Now use $(18),(19)$ to solve for x f if ;
Multiply (18) by $\cos \theta$ b(19) by $\sin \theta$ and subtr.
(20)

$$
\ddot{x}=\left(\ddot{r}-\frac{H^{2}}{r^{3}}\right) \cos \theta=\left(\ddot{r}-\frac{H^{2}}{r^{3}}\right) \frac{x}{r}
$$

Multiply (18) by $\sin \theta 8(19)$ by $\cos \theta$ and add:
(21)

$$
\ddot{y}=\left(\ddot{r}-\frac{H^{2}}{r^{3}}\right) \sin \theta=\left(\ddot{r}-\frac{H^{2}}{r^{3}}\right) \frac{y}{r}
$$

Conclucle: "earea in =time" alone implies

$$
\vec{a}=\ddot{x} \dot{i}+\dot{y} \dot{j}=-\left(\frac{H^{2}}{r^{3}}-\ddot{r}\right) \frac{1}{r}(x i+y \dot{j})
$$

or
(22) $\quad \vec{a}=-\left(\frac{H^{2}}{r^{3}}-\dot{r}\right) \frac{\vec{r}}{r}=-(\underbrace{\left.\frac{H^{2}}{r^{3}}-\ddot{r}\right)} \frac{\vec{r}}{\|\vec{r}\|}$ magnitude $\underbrace{}_{\substack{\text { unit } \\ \text { vector }}}$
The acceleration points back toward the sun in direction of position vector $\stackrel{r}{r}^{\prime \prime}$

因 To prove theorems（2）\＆（3），we begin by recalling what we need to know about ellipses－
－An ellipse is defined as the set ot points P such that

$$
\text { Dist } P F_{1}+D_{1 s t} P F_{2}=2 a
$$

This implies $b^{2}+c^{2}=a^{2}$
$a=$ length of major axis
$b=$ length of minor axis
$c=$ distance from Focus to center．
－Fact：Taking F_{1} to be the origin， P is on the ellipse if
$r=$ Dist $^{-} t P F_{1}$

$$
r=\frac{1}{A-B \cos \theta} \quad \begin{aligned}
& \quad \begin{array}{l}
r=\text { angle wis } \\
\theta=\text { and } \\
\text { lime thru } F_{1} F_{2}
\end{array}
\end{aligned}
$$

- Using $r=\frac{1}{A-B \cos \theta}$, we can find A, B in terms of a, b, c as follows:
If $\theta=0, r(0)=\frac{1}{A-B}=a+C$

$$
A-B=\frac{1}{a+c}
$$

If $\theta=\pi, r=\frac{1}{A+B}=a-c$

$$
A+B=\frac{1}{a-c}
$$

Adding gives

$$
\begin{aligned}
& 2 A=\frac{1}{a-c}+\frac{1}{a+c}=\frac{a+C+a-C}{a^{2}-c^{2}} \\
&=\frac{2 a}{a^{2}-c^{2}}=2 \frac{a}{b^{2}} \\
& A=\frac{a}{b^{2}}
\end{aligned}
$$

(a) We can now give proof of Theorem (2): By Thu (1) we have: "area m $m=\operatorname{time} " \Rightarrow$

$$
\stackrel{\rightharpoonup}{a}=-(\underbrace{\left.\frac{H^{2}}{r^{3}}-\ddot{r}\right)}_{\text {magnitude }} \underbrace{\frac{\vec{r}}{r}}_{\substack{\text { dirctoun } \\ \text { (towards un) }}}, \dot{\theta}=\frac{H}{r^{2}}
$$

We now show that assuming $r(t)$ is an ellipse traversug
(*)

$$
\sqrt{(\theta)}=\frac{1}{A-B \cos \theta(t)} \quad\binom{\text { giving } r \text { as } a}{f_{n} \text { of } \theta}
$$

then $\frac{H^{2}}{r^{3}}-\ddot{r}=\frac{\text { Cons }}{r^{2}}$.

First we find \ddot{r}. By $(*)$,

$$
(r=r(t), \theta \leq \theta(t))
$$

Diff both sides writ t :

$$
\begin{aligned}
& \text { both sides writ } t \\
& -\frac{1}{P^{2}} \dot{r}=B \sin \theta \dot{\theta}=B \sin \theta \frac{H}{P^{2}}
\end{aligned}
$$

Diff:

$$
\begin{aligned}
& \dot{r}=-B H \sin \theta \\
& \ddot{r}=-B H \cos \theta \dot{\theta}=-B H \cos \theta \frac{H}{r^{2}}
\end{aligned}
$$

or

$$
\begin{array}{ll}
\ddot{r}=-\frac{H^{2}}{r^{2}} B \cos \theta & r=\frac{1}{A-B} \cos \theta \\
\ddot{r}=-\frac{H^{2}}{r^{2}}\left(A-\frac{1}{r}\right) & B \cos \theta=A-\frac{1}{r}
\end{array}
$$

So $\quad \ddot{r}=-\frac{H^{2} A}{r^{2}}+\frac{H^{2}}{r^{3}}$
Thus: $\frac{H^{2}}{r^{3}}-\ddot{r}=+\frac{H^{2} A}{r^{2}}=+H^{2} \frac{a}{b^{2}} \frac{1}{r^{2}}$

We conclude that "area in =time" plus $r(t)=\frac{1}{A-B \cos \theta(t)}$ imply

$$
\begin{aligned}
& \vec{a}=-\left(\frac{H^{2}}{r^{3}}-\dot{r}\right) \frac{\vec{r}}{r}=-\frac{H^{2} A}{r^{2}} \frac{\vec{r}}{\vec{r}}
\end{aligned}
$$

This completes the proof of Thu (2)

Proof of Thy 3 :
Newton's idea that the fore e is coming from the sun, and the acceleralion depends only on the distance from the sun, requires
$A H^{2}=\hat{f}$ a universal constant ${ }^{\dagger}$ independent ot planet.

How do we conform this?
The final "miracle" - this follows from
Keplers third low -

$$
\frac{T^{2}}{a^{3}}=\text { constant incept ot planet }
$$

$T=$ time of one complete orbit
$a=$ major axis of the ellipse

- To see this: Recall" $=$ area in $=$ time" means

$$
\begin{aligned}
& \frac{d A}{d t}=\text { cons }=2^{-1} H\left(=I^{-1} r^{2} \dot{\theta}\right) \\
& \therefore \int_{0}^{T} \frac{d A}{d t} d t=\int_{0}^{T-1} H d t \\
& A(T)=2^{-1} H T
\end{aligned}
$$

$A(T)=$ area of whole ellipse $=\pi a b$

$$
\begin{aligned}
& \pi a b=2^{-1} H T \\
& T=\frac{2 \pi a b}{H}
\end{aligned}
$$

Thats all we need -
(11) Kepler's Third Law: $\frac{T^{2}}{a^{3}}=\left(\begin{array}{c}A \\ \text { constant } \\ \text { lndept d d } \\ \text { planet }\end{array}\right)$
(2)

$$
\begin{gathered}
"=\operatorname{arca} \operatorname{in}=\text { time" }+ \text { ellipse } \Rightarrow \\
\vec{a}=-A H^{2} \frac{1}{r^{2}} \frac{\vec{r}}{r}
\end{gathered}
$$

where

$$
\begin{aligned}
& A=\frac{a}{b^{2}} \Rightarrow \\
& \vec{a}=-\frac{a H^{2}}{b^{2}} \frac{\vec{r}}{r^{3}}
\end{aligned}
$$

(3) " $\frac{d A}{d t}=$ Const. $\Rightarrow T=\frac{2 \pi a b}{H}$

Putting (3) into (1) gives

$$
\begin{aligned}
& \frac{T^{2}}{a^{3}}=\frac{4 \pi^{2} a^{2} b^{2}}{H^{2}} \frac{1}{a^{2}}=\frac{4 \pi^{2}}{1} \frac{b^{2}}{a H^{2}}=4 \pi^{2} \frac{1}{1}\left(\frac{a H^{2}}{b^{2}}\right) \\
& \Rightarrow\left(\frac{a H^{2}}{b^{2}}\right)=4 \pi^{2}\left(\frac{T^{2}}{a^{3}}\right)^{-1}=\begin{array}{c}
\text { constant independent } \\
\text { ot the planet }
\end{array} \\
& \frac{a H^{2}}{b^{2}}=\hat{G} \quad \hat{G} \text { incept of } \\
& \text { planet }
\end{aligned}
$$

Putting this into (2) gives:

$$
\overrightarrow{\vec{a}}=-\hat{b} \frac{1}{r^{2}} \frac{\vec{r}}{r}
$$

Conclude: Newton's Law $\vec{a}=-6 \frac{1}{r^{2}} \frac{\vec{r}}{r}$ is consistent with all three of Kepler's Laws.o with f a constant independent of the planet?

Summary: Newton unified all of the laws of planctang motion known in his time, by showing that the orbits of the planets were all explained by a gravitational force pointing toward (emanating from) thesvo), with magnitudedependin only on the position, and independent of the planet. It doesnt take much from here to postulate $\hat{G}=G M_{S}$, so

$$
\vec{F}=M_{p} \vec{a}=-6 \frac{M_{s} M_{p}}{r^{2}} \frac{\vec{r}}{r}
$$

(ie, the simplest way to make it symmetric in $M_{S} M_{p}$) Note: We never had to solve a differential equation?

