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The glider’s velocity as a function of time is

% = v(t) = —(3sint)i + (3cost)j + 2tk.

Integrating both sides of this last differential equation gives

' _ r(d) = 3cos i + (3sinf)j + 12k + C,.

We then use the initial condition r(0) = 3i to find C,:
3i = (3cos0)i + (3sin0)j + (0)k + C;
3i = 3i + (0)j + (0)k + C;
Cz = 0.

The glider’s position as a function of ¢ is
r(t) = (3cos )i + (3sine)j + t%k.

This is the path of the glider we know from Example 4 and is shown in Figure 13.7."

Note: It was peculiar to this example that both of the constant vectors of inte‘
C,; and C,, turned out to be 0. Exercises 31 and 32 give different results for
constants. '

Motion in the xy-plane 7. Motion on the cycloid x = ¢ — sint, y = 1 — cos?

In Exercises 1-4, r(f) is the position-of a particle in the xy-plane at r(t) = (t — sing)i + (1 — cosp)j; ¢ = wand 3w/2
time ¢. Find an equation in x and y whose graph is the path of the par-
ticle. Then find the particle's velocity and acceleration vectors at the

8. Motion on the parabola y = x+1

given value of 7. r(f) = ti+ (2 + j; t=-1,0, and1
Lr@)=@+ i+ -1)j t=1 '
— (42 + —_ 3 = N . .
260 =+ Di+ - Dj =172 Velocity and Acceleration in Space

In Exercises 9-14, r(¢) is the position of a particle in space at tmle
Find the particle’s velocity and acceleration vectors. Then find the X
ticle’s speed and direction of motion at the given value of t. Wrm
particle’s velocity at that time as the product of its speed and directi

9. r() =(t+ i+ (2-1Dj+2k, t=1

3. r(f) = e'i + %ezfj, t=1n3

4, r(t) = (cos2t)i + 3sin2s)j, t=0

Exercises 5-8 give the position vectors of particles moving along vari-
ous curves in the xy-plane. In each case, find the particle’s velocity

. . 2 3
and acceleration vectors at the stated times and sketch them as vectors 10. ¥() = (1 + i + N i+ £ K =1
on the curve. NG 3
5. Motion on thecircle x? + y? =1 11. r(r) = (2cos#)i + (3sing)j + 41k, ¢ = 7/2
r(¢) = (sint)i + (cost)j; ¢ = w/4and 7/2 12. ¥(t) = (sec )i + (tan2)j + %tk, t= /6
6. Motion on the circle x2 + y? = 16 2
13. r(t) = QIn(t + )i + £ +5k t=1

— (aeost )i + (a5t 1=
r(n) = (4“’52)' + (4 S“‘z)” t = mand3m/2 14. r(r) = (¢™)i + (2cos3n)j + (2sin30k, t=0




Exercises 15-18, r(¢) is the position of a particle in space at time ¢.
ind the angle between the velocity and acceleration vectors at time
0

1,15. () = Gr + i + V3rj + 1%

1 x() = (I (2 + 1) + (tan™ 1) + V7T 7 1k

). r(t) = (t — sini + (1- cost)j, 0 =r=27
2. r(t) = (sin#)i + 1 + (cosdk, t=0

ntegrating Vector-Valued Functions
uate the integrals in Exercises 21-26,
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hitial Value Problems for Vector-Valued
nctions

the initial value problems in Exercises 27-32 for r as a vector
tion of ¢, '

+ Differential equation: "(11—; ==t —tj -1k
Initial condition: r(0) =i+ 2j + 3k

 Differential equation: — 2F = (101 + (180¢ - 1612
Initial condition: r(0) = 100j
Differential equation: %;: = %(f + DY+ e+ #k
Initial condition: r(0) =k
Differentia) equation: ‘:T: =+ i + 1 + 212k

Initia) condition: r0) =j+j

13.1  Vector Functions 901

2

I; = ~32k

Initial conditions: r(0) = 100k and

dr . .
ar |, = 8 + 8j

31. Differential equation:

2
32. Differential equation: % =—-(i+j+k)
Initial conditions: r(0) = 10i + 10§ + IOk and
dr
dt

=0

Tangent Lines to Smooth Curves

As mentioned in the text, the tangent line to 2 smooth curve
r(f) = f(0i + gBj + h(Ok at ¢ = % i8 the line that passes through
the point ( f(#,), &(t), h(%)) parallel to v(#), the curve’s velocity vec-

tor at #. In Exercises 33-36, find parametric equations for the line
that js tangent to the given curve at the given parameter value ¢ = y,.

33’." r(f) = (sins)i + (£* - cos Dj+ek =0
34. r(s) = (2sing)i + (2cost)j + Stk, 1 = 45
35. r(t) = (asin)i + (acos)j + brk, ty =27

36. r(¢) = (cosp)i + (sint)j + (sin20k, ¢ = g

Motion on Circular Paths

37. Each of the following equations in parts (a)—(e) describes the mo-
tion of a particle having the same path, namely the unit circle

x2+ 2=, Although the path of each particle in parts (a)(e)

is the same, the behavior, or “dynamics,” of each particle is differ-
ent. For each particle; answer the following questions.

i. Does the particle have constant speed? If so, what is its con-
stant speed?

ii. Is the particle’s acceleration vector always orthogonal to its
velocity vector?

iii. Does the particle move clockwise or counterclockwise
around the circle?

iv. Does the particle begin at the point (1,0)?
a. (1) = (cos#)i + (sin Nj, t=0
b. r(t) = cos (20)i + sin 20, t=0
e r(f) = cos(r — m/2)i + sin (¢ — w/2)j, t=0
d. r(t) = (cos 9)i — (sint)j, =0
e r(7) = cos (:})i + sin(2)j, r=0
38. Show that the vector-valued function
r(t) = (2i + 2j + k)

1 1 . 1 1 1
teost| —i——=j)| +sins =it ——=j+—k
- v71) <o % v
describes the motion of a particle moving in the circle of radius l
centered at the point (2, 2, 1) and lying in the plane
X+y—2z=2,
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Motion Along a Straight Line

39. Attime ¢ = 0, a.particle is located at the point (1, 2, 3), It travels
in a straight line to the point (4, 1, 4), has speed 2 at (1, 2, 3) and
constant acceleration 3i ~ j + k. Find an equation for the posi-
tion vector r(f) of the particle at time ¢.

40. A particle traveling in a straight line is located at the point
(1, -1, 2) and has speed 2 at time ¢ = 0. The particle moves to-
ward the point (3, 0, 3) with constant acceleration 2i + jtk
Find its position vector r(?) at time ¢.

Theory and Examples

41. Motion along a parabola A particle moves along the top of the
parabola y? = 2x from left to right at a constant speed of 5 units
per second. Find the velocity of the particle as it moves through
the point (2, 2).

Motion along a cycloid A particle moves in the xy-plane in
such a way that its position at time ¢ is

42

r(f) = (¢ = sind)i + (1 — cos?)j.

8. Graph r(f). The resulting curve is a cycloid.

b. Find the maximum and minimum values of |v|and|a|. (Hint:
Find the extreme values of |v|? and |a ? first and take square
roots later.)

43

Motion along an ellipse A particle moves around the ellipse
(#/3)* + (z/2)*> = 1 in the yz-plane in such a way that its posi-
tion at time ¢ is

r(f) = (3cost)j + (2sin k.

Find the maximum and minimum values of |v| and |a|. (Hint:
Find the extreme values of |v{* and [a|? first and take square
roots later.)

44. A satellite in circular orbit A satellite of mass m is revolving
at a constant speed v around a body of mass M (Earth, for exam-
ple) in a circular orbit of radius rq (measured from the body’s cen-
ter of mass). Determine the satellite’s orbital period T (the time to
complete one full orbit), as follows:

a. Coordinatize the orbital plane by placing the origin at the
body’s center of mass, with the satellite on the x-axis at
¢t = 0 and moving counterclockwise, as in the
accompanying figure.

6 = vt/rp and hence that

vt ), .
r(t) = <r0 cos ,.—0)1 + (ro sin :‘}T)t)j'

b. Find the acceleration of the satellite.

Let r(¢) be the satellite’s position vector at time L SM

¢. According to Newton’s law of gravitation, the gravi
exerted on the satellite is directed toward M and s given'h

GmM\r
F=|(- =,
( r02 )ro

where G is the universal constant of gravitation, Usin
Newton’s second law, F = ma, show that v? = GM)y,

d. Show that the orbital period T satisfies vT = 2rr,.
From parts (c) and (d), deduce that

[

-
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T2

That is, the square of the period of a satellite in circulatl”
proportional to the cube of the radius from the orbital ce:

45. Let v be a differentiable vector function of ¢, Shoévk
v+ (dv/dt) = 0 forall 1, then |v|is constant.

46. Derivatives of triple scalar products
a. Show that if u, v, and w are differentiable vector functiong

t, then
d du
- X =—ev X +u- X +
ar (u'v Xw) Y Xwtu w
dw
X =
uv dt
b. Show that Equation (7) is equivalent to
du duy  duy
d Uy Uy u3 dt dt dt
a Vi 2 vz T |y 1773 v3
wp Wy w3 wiy wy w3
U Uz Uus
I L L
dt dr at

wi w2

U uy

v vz

dW2

Equation (8) says that the derivative of a 3 by 3 determinant

differentiable functions is the sum of the three determinants ot
tained from the original by differentiating one row at a time.
result extends to determinants of any order.




47. (Continuation of Exercise 46.) Suppose that r(f) = f(i +

20§ + h(Hk and that f, & and A have derivatives through order
three. Use Equation (D or (8) to show that

d( dr  dur\ dr  dr
dt(’EXF>"(7tXF)' ©)

(Hint: Differentiate on the left and loo
ucts are zero.)

48. Constant Function Rule Prove that if u is the vector function
" with the constant value C, then du/dr = 0,

49. Scalar Multiple Rules

k for vectors whose prod-

a. Prove that if w is a differentiable function of # and ¢ is any real
number, then

d(cu) _ du
dt ¢ dt’

b. Prove thatifuisa differentiable function of ¢ and fisa
differentiable scalar function of ¢, then

d df du
E(fu) = Eu +f7t

50, Sum and Difference Rules Prove that if w and v are differen-

tiable functions of t, then

d _du dv
dt(u+v)— @ +

dt

and
gy —du_dv
dt dt ar

A Component Test for Continuity at a Point Show that the
vector function r defined by r(e) = f(0)i + g0j + k(DK is
. ‘continuous at s = to if and only if f, &, and 4 are continuous at

imits of cross products of vector functions Suppose
that ri(r) = f,(n)i + L0f + f3(0k, ra(0) = g,(1)i + &) +
- &3(0k, lim,., r (¢) = A, and lim,, rx(t) = B. Use the deter-

. Minant formula for cross products and the Limit Product Rule for
-Scalar functions to show that

i

,irr}(rn(t) Xr(f) =AxB

Differentiable vector functions are continuous Show that if

) = fOi + g(nj + h(£)k is differentiable at ¢ = %, then it is
Sontinuoyg at 4 as well,

Establish the following properties of integrable vector functions,
The Consrany Scalar Multiple Rule:

b b
/ kr(e) dr = k/ r(t)dt (any scalar k)

13.1  Vector Functions

The Rule for Negatives,

b b
/(——r(t)) dt = -/ r(t) dr,

is obtained by taking k = —1,
b. The Sum and Difference Rules:

b b b
/(rl(t) + rz(t))dt=/rl(t)dt:i:/rz(t)dt

¢. The Constant Vector Multiple Rules:

b )
/ C-r()dr=C- / r(¢)dt (any constant vector C)
a a

and
) b
/ CXr(t)dt=C x / r(t) dr (any constant vector C)
a a

55. Products of scalar and vector functions Suppose that the
scalar function u(¢) and the vector function r(z) are both defined
fora =t =< p,

a. Show that ur is continuous on
on [a, b).

b. Ifu and r are both differentiable on [a, b], show that ur is
differentiable on [a, b] and that

[a, 75] if u and r are continuous

dow) =, 98 | du
dt(ur)*udt T

56

Antiderivatives of vector functions

a. Use Corollary 2 of the Mean Value Theorem for scalar
functions to show that if two vector functions R, (#) and Ry(s)
have identical derivatives on an interval /, then the functions
differ by a constant vector value throughout J.

b. Use the resuit in part (a) to show that if R(?) is any anti-
derivative of r(f) on I, then any other antiderivative of r on 7
equals R(¢) + C for some constant vector C.

57. The Fundamenta} Theorem of Calculus The Fundamental

% ’l'(T) dr = r(s)

at every point ¢ of (a, b). Then use the conclusion in part (b) of

Exercise 56 to show that if R is any antiderivative of r on [a, b]
then

b
/ r(s) dt = R(p) - R(a).




