Plane Curves

Find T, N, and κ for the plane curves in Exercises 1-4.

1.
$$\mathbf{r}(t) = t\mathbf{i} + (\ln \cos t)\mathbf{j}, \quad -\pi/2 < t < \pi/2$$

2.
$$\mathbf{r}(t) = (\ln \sec t)\mathbf{i} + t\mathbf{j}, -\pi/2 < t < \pi/2$$

3.
$$\mathbf{r}(t) = (2t + 3)\mathbf{i} + (5 - t^2)\mathbf{j}$$

4.
$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j}, \quad t > 0$$

5. A formula for the curvature of the graph of a function in the xy-plane

a. The graph y = f(x) in the xy-plane automatically has the parametrization x = x, y = f(x), and the vector formula $\mathbf{r}(x) = x\mathbf{i} + f(x)\mathbf{j}$. Use this formula to show that if f is a twice-differentiable function of x, then

$$\kappa(x) = \frac{|f''(x)|}{\left[1 + (f'(x))^2\right]^{3/2}}.$$

- **b.** Use the formula for κ in part (a) to find the curvature of $y = \ln(\cos x), -\pi/2 < x < \pi/2$. Compare your answer with the answer in Exercise 1.
- c. Show that the curvature is zero at a point of inflection.

6. A formula for the curvature of a parametrized plane curve

a. Show that the curvature of a smooth curve $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$ defined by twice-differentiable functions x = f(t) and y = g(t) is given by the formula

$$\kappa = \frac{|\dot{x} \, \dot{y} - \dot{y} \, \dot{x}|}{(\dot{x}^2 + \dot{y}^2)^{3/2}}.$$

Apply the formula to find the curvatures of the following curves.

b.
$$\mathbf{r}(t) = t\mathbf{i} + (\ln \sin t)\mathbf{j}, \quad 0 < t < \pi$$

c.
$$\mathbf{r}(t) = [\tan^{-1}(\sinh t)]\mathbf{i} + (\ln \cosh t)\mathbf{j}$$
.

7. Normals to plane curves

a. Show that $\mathbf{n}(t) = -g'(t)\mathbf{i} + f'(t)\mathbf{j}$ and $-\mathbf{n}(t) = g'(t)\mathbf{i} - f'(t)\mathbf{j}$ are both normal to the curve $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$ at the point (f(t), g(t)).

To obtain N for a particular plane curve, we can choose the one of \mathbf{n} or $-\mathbf{n}$ from part (a) that points toward the concave side of the curve, and make it into a unit vector. (See Figure 13.21.) Apply this method to find N for the following curves.

$$\mathbf{b.} \ \mathbf{r}(t) = t\mathbf{i} + e^{2t}\mathbf{j}$$

c.
$$\mathbf{r}(t) = \sqrt{4 - t^2} \mathbf{i} + t \mathbf{j}, -2 \le t \le 2$$

8. (Continuation of Exercise 7.)

a. Use the method of Exercise 7 to find N for the curve $\mathbf{r}(t) = t\mathbf{i} + (1/3)t^3\mathbf{j}$ when t < 0; when t > 0.

b. Calculate

$$\mathbf{N} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|}, \quad t \neq 0,$$

for the curve in part (a). Does N exist at t = 0? Graph the curve and explain what is happening to N as t passes from negative to positive values.

Space Curves

Find T, N, and κ for the space curves in Exercises 9-16.

9.
$$\mathbf{r}(t) = (3 \sin t)\mathbf{i} + (3 \cos t)\mathbf{j} + 4t\mathbf{k}$$

10.
$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + 3\mathbf{k}$$

11.
$$\mathbf{r}(t) = (e^t \cos t)\mathbf{i} + (e^t \sin t)\mathbf{j} + 2\mathbf{k}$$

12.
$$\mathbf{r}(t) = (6 \sin 2t)\mathbf{i} + (6 \cos 2t)\mathbf{j} + 5t\mathbf{k}$$

13.
$$\mathbf{r}(t) = (t^3/3)\mathbf{i} + (t^2/2)\mathbf{j}, \quad t > 0$$

14.
$$\mathbf{r}(t) = (\cos^3 t)\mathbf{i} + (\sin^3 t)\mathbf{j}, \quad 0 < t < \pi/2$$

15.
$$\mathbf{r}(t) = t\mathbf{i} + (a\cosh(t/a))\mathbf{j}, \quad a > 0$$

16.
$$\mathbf{r}(t) = (\cosh t)\mathbf{i} - (\sinh t)\mathbf{j} + t\mathbf{k}$$

More on Curvature

- 17. Show that the parabola $y = ax^2$, $a \ne 0$, has its largest curvature at its vertex and has no minimum curvature. (*Note:* Since the curvature of a curve remains the same if the curve is translated or notated, this result is true for any parabola.)
- 18. Show that the ellipse $x = a \cos t$, $y = b \sin t$, a > b > 0, has a largest curvature on its major axis and its smallest curvature on its minor axis. (As in Exercise 17, the same is true for any ellipse.)
- 19. Maximizing the curvature of a helix In Example 5, we found the curvature of the helix $\mathbf{r}(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j} + bt\mathbf{k}$ $(a, b \ge 0)$ to be $\kappa = a/(a^2 + b^2)$. What is the largest value κ can have for a given value of b? Give reasons for your answer.
- **20. Total curvature** We find the **total curvature** of the portion of a smooth curve that runs from $s = s_0$ to $s = s_1 > s_0$ by integrating κ from s_0 to s_1 . If the curve has some other parameter, say t, then the total curvature is

$$K = \int_{s_0}^{s_1} \kappa \, ds = \int_{t_0}^{t_1} \kappa \frac{ds}{dt} \, dt = \int_{t_0}^{t_1} \kappa |\mathbf{v}| \, dt,$$

where t_0 and t_1 correspond to s_0 and s_1 . Find the total curvatures of

- **a.** The portion of the helix $\mathbf{r}(t) = (3\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + t\mathbf{k}$, $0 \le t \le 4\pi$.
- **b.** The parabola $y = x^2, -\infty < x < \infty$.
- 21. Find an equation for the circle of curvature of the curve $\mathbf{r}(t) = t\mathbf{i} + (\sin t)\mathbf{j}$ at the point $(\pi/2, 1)$. (The curve parametrizes the graph of $y = \sin x$ in the xy-plane.)