Properties of Triple Integrals

If F = F(x, y, z) and G = G(x, y, z) are continuous, then

- 1. Constant Multiple: $\iiint kF \, dV = k \iiint F \, dV$ (any number k)
- **2.** Sum and Difference: $\iiint_{R} (F \pm G) dV = \iiint_{R} F dV \pm \iiint_{R} G dV$
- 3. Domination:

(a)
$$\iiint_D F \, dV \ge 0 \qquad \text{if } F \ge 0 \text{ on } D$$

(b)
$$\iiint_D F dV \ge \iiint_D G dV$$
 if $F \ge G$ on D

4. Additivity:
$$\iiint_D F dV = \iiint_{D_1} E dV + \iiint_{D_2} F dV$$

if D is the union of two nonoverlapping regions D_1 and D_2 .

EXERCISES 15.4

Evaluating Triple Integrals in Different Iterations

- 1. Evaluate the integral in Example 2 taking F(x, y, z) = 1 to find the volume of the tetrahedron.
- 2. Volume of rectangular solid Write six different iterated triple integrals for the volume of the rectangular solid in the first octant bounded by the coordinate planes and the planes x = 1, y = 2, and z = 3. Evaluate one of the integrals.
- 3. Volume of tetrahedron Write six different iterated triple integrals for the volume of the tetrahedron cut from the first octant by the plane 6x + 3y + 2z = 6. Evaluate one of the integrals.
- 4. Volume of solid Write six different iterated triple integrals for the volume of the region in the first octant enclosed by the cylinder $x^2 + z^2 = 4$ and the plane y = 3. Evaluate one of the integrals.
- 5. Volume enclosed by paraboloids Let D be the region bounded by the paraboloids $z = 8 - x^2 - y^2$ and $z = x^2 + y^2$. Write six different triple iterated integrals for the volume of D. Evaluate one of the integrals.
- 6. Volume inside paraboloid beneath a plane $\ \ \$ Let $\ \ D$ be the region bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 2y. Write triple iterated integrals in the order dz dx dy and dz dy dx that give the volume of D. Do not evaluate either integral.

Evaluating Triple Iterated Integrals

Evaluate the integrals in Exercises 7-20.

7.
$$\int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) \, dz \, dy \, dx$$

8.
$$\int_0^{\sqrt{2}} \int_0^{3y} \int_{x^2 + 3y^2}^{8 - x^2 - y^2} dz \, dx \, dy$$
 9.
$$\int_1^e \int_1^e \int_1^e \frac{1}{xyz} \, dx \, dy \, dz$$

9.
$$\int_{1}^{e} \int_{1}^{e} \int_{1}^{e} \frac{1}{xyz} dx dy dz$$

10.
$$\int_0^1 \int_0^{3-3x} \int_0^{3-3x-y} dz \, dy \, dx$$
 11. $\int_0^1 \int_0^{\pi} \int_0^{\pi} y \sin z \, dx \, dy \, dz$

11.
$$\int_0^1 \int_0^{\pi} \int_0^{\pi} y \sin z \, dx \, dy \, dz$$

12.
$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} (x + y + z) dy dx dz$$

13.
$$\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{\sqrt{9-x^2}} dz \, dy \, dx$$
 14. $\int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_0^{2x+y} dz \, dx \, dy$

14.
$$\int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_0^{2x+y} dz \ dx \ dy$$

15.
$$\int_0^1 \int_0^{2-x} \int_0^{2-x-y} dz \, dy \, dx$$
 16. $\int_0^1 \int_0^{1-x^2} \int_3^{4-x^2-y} dz \, dy \, dx$

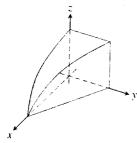
16.
$$\int_0^1 \int_0^{1-x^2} \int_3^{4-x^2-y} x \, dz \, dy \, dx$$

17.
$$\int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \cos(u + v + w) \, du \, dv \, dw \quad (uvw\text{-space})$$

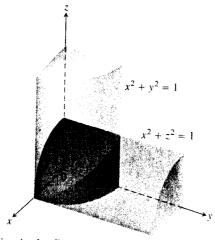
18.
$$\int_{1}^{e} \int_{1}^{e} \int_{1}^{e} \ln r \ln s \ln t \, dt \, dr \, ds$$
 (rst-space)

19.
$$\int_0^{\pi/4} \int_0^{\ln \sec v} \int_{-\infty}^{2t} e^x \, dx \, dt \, dv$$
 (tux-space)

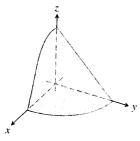
28. The region in the first octant bounded by the coordinate planes, the plane y = 1 - x, and the surface $z = \cos(\pi x/2)$, $0 \le x \le 1$



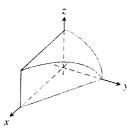
29. The region common to the interiors of the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$, one-eighth of which is shown in the accompanying figure.



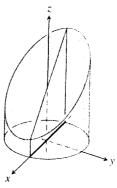
30. The region in the first octant bounded by the coordinate planes and the surface $z = 4 - x^2 - y$



31. The region in the first octant bounded by the coordinate planes, the plane x + y = 4, and the cylinder $y^2 + 4z^2 = 16$



32. The region cut from the cylinder $x^2 + y^2 = 4$ by the plane z = 0



- 33. The region between the planes x + y + 2z = 2 and 2x + 2y + z = 4 in the first octant
- 34. The finite region bounded by the planes z = x, x + z = 8, z = y, y = 8, and z = 0.
- 35. The region cut from the solid elliptical cylinder $x^2 + 4y^2 \le 4$ by the xy-plane and the plane z = x + 2
- **36.** The region bounded in back by the plane x = 0, on the front and sides by the parabolic cylinder $x = 1 y^2$, on the top by the paraboloid $z = x^2 + y^2$, and on the bottom by the xy-plane

Average Values

In Exercises 37–40, find the average value of F(x, y, z) over the given region.

- 37. $F(x, y, z) = x^2 + 9$ over the cube in the first octant bounded by the coordinate planes and the planes x = 2, y = 2, and z = 2
- 38. F(x, y, z) = x + y z over the rectangular solid in the first octant bounded by the coordinate planes and the planes x = 1, y = 1, and z = 2
- **39.** $F(x, y, z) = x^2 + y^2 + z^2$ over the cube in the first octant bounded by the coordinate planes and the planes x = 1, y = 1, and z = 1
- **40.** F(x, y, z) = xyz over the cube in the first octant bounded by the coordinate planes and the planes x = 2, y = 2, and z = 2

Changing the Order of Integration

Evaluate the integrals in Exercises 41–44 by changing the order of integration in an appropriate way.

41.
$$\int_0^4 \int_0^1 \int_{2y}^2 \frac{4\cos(x^2)}{2\sqrt{z}} dx \, dy \, dz$$

42.
$$\int_0^1 \int_0^1 \int_{x^2}^1 12xz e^{zy^2} dy dx dz$$

43.
$$\int_0^1 \int_{\sqrt[3]{z}}^1 \int_0^{\ln 3} \frac{\pi e^{2x} \sin \pi y^2}{y^2} dx dy dz$$

44.
$$\int_0^2 \int_0^{4-x^2} \int_0^x \frac{\sin 2z}{4-z} \, dy \, dz \, dx$$