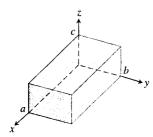
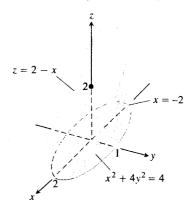

EXERCISES 15.5


Constant Density

The solids in Exercises 1–12 all have constant density $\delta = 1$.

- 1. (Example 1 Revisited.) Evaluate the integral for I_x in Table 15.3 directly to show that the shortcut in Example 2 gives the same answer. Use the results in Example 2 to find the radius of gyration of the rectangular solid about each coordinate axis.
- 2. Moments of inertia The coordinate axes in the figure run through the centroid of a solid wedge parallel to the labeled edges. Find I_x , I_y , and I_z if a = b = 6 and c = 4.

3. Moments of inertia Find the moments of inertia of the rectangular solid shown here with respect to its edges by calculating I_x , I_y , and I_z .

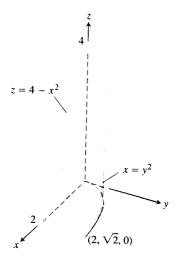


- **4. a. Centroid and moments of inertia** Find the centroid and the moments of inertia I_x , I_y , and I_z of the tetrahedron whose vertices are the points (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).
 - **b. Radius of gyration** Find the radius of gyration of the tetrahedron about the *x*-axis. Compare it with the distance from the centroid to the *x*-axis.
- 5. Center of mass and moments of inertia A solid "trough" of constant density is bounded below by the surface $z = 4y^2$, above by the plane z = 4, and on the ends by the planes x = 1 and x = -1. Find the center of mass and the moments of inertia with respect to the three axes.
- 6. Center of mass A solid of constant density is bounded below by the plane z = 0, on the sides by the elliptical cylinder $x^2 + 4y^2 = 4$, and above by the plane z = 2 x (see the accompanying figure).

- **a.** Find \bar{x} and \bar{y} .
- b. Evaluate the integral

$$M_{xy} = \int_{-2}^{2} \int_{-(1/2)\sqrt{4-x^{2}}}^{(1/2)\sqrt{4-x^{2}}} \int_{0}^{2-x} z \, dz \, dy \, dx$$

using integral tables to carry out the final integration with respect to x. Then divide M_{xy} by M to verify that $\bar{z} = 5/4$.


- 7. a. Center of mass Find the center of mass of a solid of constant density bounded below by the paraboloid $z = x^2 + y^2$ and above by the plane z = 4.
 - b. Find the plane z=c that divides the solid into two parts of equal volume. This plane does not pass through the center of mass
- 8. Moments and radii of gyration A solid cube, 2 units on a side, is bounded by the planes $x = \pm 1$, $z = \pm 1$, y = 3, and y = 5. Find the center of mass and the moments of inertia and radii of gyration about the coordinate axes.
- 9. Moment of inertia and radius of gyration about a line A wedge like the one in Exercise 2 has a = 4, b = 6, and c = 3. Make a quick sketch to check for yourself that the square of the distance from a typical point (x, y, z) of the wedge to the line L: z = 0, y = 6 is $r^2 = (y 6)^2 + z^2$. Then calculate the moment of inertia and radius of gyration of the wedge about L.
- 10. Moment of inertia and radius of gyration about a line A wedge like the one in Exercise 2 has a = 4, b = 6, and c = 3. Make a quick sketch to check for yourself that the square of the distance from a typical point (x, y, z) of the wedge to the line L: x = 4, y = 0 is $r^2 = (x 4)^2 + y^2$. Then calculate the moment of inertia and radius of gyration of the wedge about L.
- 11. Moment of inertia and radius of gyration about a line A solid like the one in Exercise 3 has a = 4, b = 2, and c = 1. Make a quick sketch to check for yourself that the square of the distance between a typical point (x, y, z) of the solid and the line L: y = 2, z = 0 is $r^2 = (y 2)^2 + z^2$. Then find the moment of inertia and radius of gyration of the solid about L.

12. Moment of inertia and radius of gyration about a line A solid like the one in Exercise 3 has a = 4, b = 2, and c = 1. Make a quick sketch to check for yourself that the square of the distance between a typical point (x, y, z) of the solid and the line L: x = 4, y = 0 is $r^2 = (x - 4)^2 + y^2$. Then find the moment of inertia and radius of gyration of the solid about L.

Variable Density

In Exercises 13 and 14, find

- a. the mass of the solid.
- b. the center of mass
- 13. A solid region in the first octant is bounded by the coordinate planes and the plane x + y + z = 2. The density of the solid is $\delta(x, y, z) = 2x$.
- 14. A solid in the first octant is bounded by the planes y = 0 and z = 0 and by the surfaces $z = 4 x^2$ and $x = y^2$ (see the accompanying figure). Its density function is $\delta(x, y, z) = kxy$, k a constant.

In Exercises 15 and 16, find

- a. the mass of the solid.
- b. the center of mass.
- c. the moments of inertia about the coordinate axes.
- d. the radii of gyration about the coordinate axes.
- 15. A solid cube in the first octant is bounded by the coordinate planes and by the planes x = 1, y = 1, and z = 1. The density of the cube is $\delta(x, y, z) = x + y + z + 1$.
- 16. A wedge like the one in Exercise 2 has dimensions a = 2, b = 6, and c = 3. The density is $\delta(x, y, z) = x + 1$. Notice that if the density is constant, the center of mass will be (0, 0, 0).
- 17. Mass Find the mass of the solid bounded by the planes x + z = 1, x z = -1, y = 0 and the surface $y = \sqrt{z}$. The density of the solid is $\delta(x, y, z) = 2y + 5$.

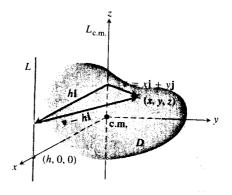
18. Mass Find the mass of the solid region bounded by the parabolic surfaces $z = 16 - 2x^2 - 2y^2$ and $z = 2x^2 + 2y^2$ if the density of the solid is $\delta(x, y, z) = \sqrt{x^2 + y^2}$.

Work

In Exercises 19 and 20, calculate the following.

- **a.** The amount of work done by (constant) gravity g in moving the liquid filling in the container to the xy-plane. (*Hint:* Partition the liquid into small volume elements ΔV_i and find the work done (approximately) by gravity on each element. Summation and passage to the limit gives a triple integral to evaluate.)
- **b.** The work done by gravity in moving the center of mass down to the *xy*-plane.
- 19. The container is a cubical box in the first octant bounded by the coordinate planes and the planes x = 1, y = 1, and z = 1. The density of the liquid filling the box is $\delta(x, y, z) = x + y + z + 1$ (see Exercise 15).
- **20.** The container is in the shape of the region bounded by y = 0, z = 0, $z = 4 x^2$, and $x = y^2$. The density of the liquid filling the region is $\delta(x, y, z) = kxy$, k a constant (see Exercise 14).

The Parallel Axis Theorem


The Parallel Axis Theorem (Exercises 15.2) holds in three dimensions as well as in two. Let $L_{\rm c.m.}$ be a line through the center of mass of a body of mass m and let L be a parallel line h units away from $L_{\rm c.m.}$. The **Parallel Axis Theorem** says that the moments of inertia $I_{\rm c.m.}$ and I_L of the body about $L_{\rm c.m.}$ and L satisfy the equation

$$I_L = I_{\text{c.m.}} + mh^2. \tag{1}$$

As in the two-dimensional case, the theorem gives a quick way to calculate one moment when the other moment and the mass are known.

21. Proof of the Parallel Axis Theorem

a. Show that the first moment of a body in space about any plane through the body's center of mass is zero. (*Hint:* Place the body's center of mass at the origin and let the plane be the yz-plane. What does the formula $\bar{x} = M_{yz}/M$ then tell you?)

