Notice that the radius of gyration about the z-axis is the radius of the cylinder around which the helix winds.

EXAMPLE 4 Finding an Arch's Center of Mass

A slender metal arch, denser at the bottom than top, lies along the semicircle $y^2 + z^2 = 1$, $z \ge 0$, in the yz-plane (Figure 16.5). Find the center of the arch's mass if the density at the point (x, y, z) on the arch is $\delta(x, y, z) = 2 - z$.

We know that $\bar{x} = 0$ and $\bar{y} = 0$ because the arch lies in the yz-plane with its mass distributed symmetrically about the z-axis. To find \bar{z} , we parametrize the circle as

$$\mathbf{r}(t) = (\cos t)\mathbf{j} + (\sin t)\mathbf{k}, \qquad 0 \le t \le \pi.$$

For this parametrization,

$$|\mathbf{v}(t)| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} = \sqrt{(0)^2 + (-\sin t)^2 + (\cos t)^2} = 1.$$

The formulas in Table 16.1 then give

$$M = \int_{C} \delta \, ds = \int_{C} (2 - z) \, ds = \int_{0}^{\pi} (2 - \sin t)(1) \, dt = 2\pi - 2$$

$$M_{xy} = \int_{C} z \delta \, ds = \int_{C} z(2 - z) \, ds = \int_{0}^{\pi} (\sin t)(2 - \sin t) \, dt$$

$$= \int_{0}^{\pi} (2 \sin t - \sin^{2} t) \, dt = \frac{8 - \pi}{2}$$

$$\bar{z} = \frac{M_{xy}}{M} = \frac{8 - \pi}{2} \cdot \frac{1}{2\pi - 2} = \frac{8 - \pi}{4\pi - 4} \approx 0.57.$$

With \bar{z} to the nearest hundredth, the center of mass is (0, 0, 0.57).

Fig. 15.5 Example 4 shows how to find the center of mass of a circular arch of variable density.

EXERCISES 16.1

olis of Vector Equations

Match the vector equations in Exercises 1-8 with the graphs (a)-(h) given here.

b.

c.

e.

f.

g

h.

1.
$$\mathbf{r}(t) = t\mathbf{i} + (1-t)\mathbf{j}, \quad 0 \le t \le 1$$

2.
$$\mathbf{r}(t) = \mathbf{i} + \mathbf{j} + t\mathbf{k}, -1 \le t \le 1$$

3.
$$\mathbf{r}(t) = (2\cos t)\mathbf{i} + (2\sin t)\mathbf{j}, \quad 0 \le t \le 2\pi$$

4.
$$\mathbf{r}(t) = t\mathbf{i}, -1 \le t \le 1$$

5.
$$\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 2$$

6.
$$\mathbf{r}(t) = t\mathbf{j} + (2 - 2t)\mathbf{k}, \quad 0 \le t \le 1$$

7.
$$\mathbf{r}(t) = (t^2 - 1)\mathbf{j} + 2t\mathbf{k}, \quad -1 \le t \le 1$$

8.
$$\mathbf{r}(t) = (2\cos t)\mathbf{i} + (2\sin t)\mathbf{k}, \quad 0 \le t \le \pi$$

Evaluating Line Integrals over Space Curves

9. Evaluate $\int_C (x + y) ds$ where C is the straight-line segment x = t, y = (1 - t), z = 0, from (0, 1, 0) to (1, 0, 0).

10. Evaluate $\int_C (x - y + z - 2) ds$ where C is the straight-line segment x = t, y = (1 - t), z = 1, from (0, 1, 1) to (1, 0, 1).

11. Evaluate $\int_C (xy + y + z) ds$ along the curve $\mathbf{r}(t) = 2t\mathbf{i} + t\mathbf{j} + (2 - 2t)\mathbf{k}$, $0 \le t \le 1$.

12. Evaluate $\int_C \sqrt{x^2 + y^2} ds$ along the curve $\mathbf{r}(t) = (4 \cos t)\mathbf{i} + (4 \sin t)\mathbf{j} + 3t\mathbf{k}, -2\pi \le t \le 2\pi$.

13. Find the line integral of f(x, y, z) = x + y + z over the straight-line segment from (1, 2, 3) to (0, -1, 1).

14. Find the line integral of $f(x, y, z) = \sqrt{3}/(x^2 + y^2 + z^2)$ over the curve $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}, 1 \le t \le \infty$.

15. Integrate $f(x, y, z) = x + \sqrt{y} - z^2$ over the path from (0, 0, 0) to (1, 1, 1) (Figure 16.6a) given by

$$C_1$$
: $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j}$, $0 \le t \le 1$
 C_2 : $\mathbf{r}(t) = \mathbf{i} + \mathbf{j} + t\mathbf{k}$, $0 \le t \le 1$

FIGURE 16.6 The paths of integration for Exercises 15 and 16.

16. Integrate $f(x, y, z) = x + \sqrt{y} - z^2$ over the path from (0, 0, 0) to (1, 1, 1) (Figure 16.6b) given by

$$C_1$$
: $\mathbf{r}(t) = t\mathbf{k}$, $0 \le t \le 1$

$$C_2$$
: $\mathbf{r}(t) = t\mathbf{j} + \mathbf{k}$, $0 \le t \le 1$

$$C_3$$
: $\mathbf{r}(t) = t\mathbf{i} + \mathbf{j} + \mathbf{k}$, $0 \le t \le 1$

17. Integrate $f(x, y, z) = (x + y + z)/(x^2 + y^2 + z^2)$ over the path $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}, 0 < a \le t \le b$.

18. Integrate $f(x, y, z) = -\sqrt{x^2 + z^2}$ over the circle

$$\mathbf{r}(t) = (a\cos t)\mathbf{j} + (a\sin t)\mathbf{k}, \qquad 0 \le t \le 2\pi.$$

Line Integrals over Plane Curves

In Exercises 19-22, integrate f over the given curve.

19.
$$f(x, y) = x^3/y$$
, C: $y = x^2/2$, $0 \le x \le 2$

20. $f(x, y) = (x + y^2)/\sqrt{1 + x^2}$, C: $y = x^2/2$ from (1, 1/2) to (0, 0)

21. f(x, y) = x + y, C: $x^2 + y^2 = 4$ in the first quadrant from (2, 0) to (0, 2)

22. $f(x, y) = x^2 - y$, C: $x^2 + y^2 = 4$ in the first quadrant from (0, 2) to $(\sqrt{2}, \sqrt{2})$

Mass and Moments

23. Mass of a wire Find the mass of a wire that lies along the curve $\mathbf{r}(t) = (t^2 - 1)\mathbf{j} + 2t\mathbf{k}, 0 \le t \le 1$, if the density is $\delta = (3/2)t$.

24. Center of mass of a curved wire A wire of density $\delta(x, y, z) = 15\sqrt{y+2}$ lies along the curve $\mathbf{r}(t) = (t^2 - 1)\mathbf{j} + 2t\mathbf{k}, -1 \le t \le 1$. Find its center of mass. Then sketch the curve and center of mass together.

25. Mass of wire with variable density Find the mass of a thin wire lying along the curve $\mathbf{r}(t) = \sqrt{2}t\mathbf{i} + \sqrt{2}t\mathbf{j} + (4 - t^2)\mathbf{k}$. $0 \le t \le 1$, if the density is (a) $\delta = 3t$ and (b) $\delta = 1$.