Then

$$M_{xy} = \iint_{S} z\delta \,d\sigma = \delta \iint_{R} z \frac{a}{z} \,dA = \delta a \iint_{R} dA = \delta a(\pi a^{2}) = \delta \pi a^{3}$$
$$\bar{z} = \frac{M_{xy}}{M} = \frac{\pi a^{3} \delta}{2\pi a^{2} \delta} = \frac{a}{2}.$$

The shell's center of mass is the point (0, 0, a/2).

Surface Area

- 1. Find the area of the surface cut from the paraboloid $x^2 + y^2 z =$ 0 by the plane z = 2.
- 2. Find the area of the band cut from the paraboloid $x^2 + y^2 z =$ 0 by the planes z = 2 and z = 6.
- 3. Find the area of the region cut from the plane x + 2y + 2z = 5by the cylinder whose walls are $x = y^2$ and $x = 2 - y^2$.
- 4. Find the area of the portion of the surface $x^2 2z = 0$ that lies above the triangle bounded by the lines $x = \sqrt{3}$, y = 0, and y = x in the xy-plane.
- 5. Find the area of the surface $x^2 2y 2z = 0$ that lies above the triangle bounded by the lines x = 2, y = 0, and y = 3x in the xy-
- **6.** Find the area of the cap cut from the sphere $x^2 + y^2 + z^2 = 2$ by the cone $z = \sqrt{x^2 + y^2}$.
- 7. Find the area of the ellipse cut from the plane z = cx (c a constant) by the cylinder $x^2 + y^2 = 1$.
- 8. Find the area of the upper portion of the cylinder $x^2 + z^2 = 1$ that lies between the planes $x = \pm 1/2$ and $y = \pm 1/2$.
- 9. Find the area of the portion of the paraboloid $x = 4 y^2 z^2$ that lies above the ring $1 \le y^2 + z^2 \le 4$ in the yz-plane.
- 10. Find the area of the surface cut from the paraboloid $x^2 + y + z^2 =$ 2 by the plane y = 0.
- 11. Find the area of the surface $x^2 2 \ln x + \sqrt{15}y z = 0$ above the square $R: 1 \le x \le 2, 0 \le y \le 1$, in the xy-plane.
- 12. Find the area of the surface $2x^{3/2} + 2y^{3/2} 3z = 0$ above the square $R: 0 \le x \le 1, 0 \le y \le 1$, in the xy-plane.

Surface Integrals

13. Integrate g(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, z = a.

- 14. Integrate g(x, y, z) = y + z over the surface of the wedge in the first octant bounded by the coordinate planes and the planes x = 2 and y + z = 1.
- 15. Integrate g(x, y, z) = xyz over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.
- 16. Integrate g(x, y, z) = xyz over the surface of the rectangular solid bounded by the planes $x = \pm a$, $y = \pm b$, and $z = \pm c$.
- 17. Integrate g(x, y, z) = x + y + z over the portion of the plane 2x + 2y + z = 2 that lies in the first octant.
- 18. Integrate $g(x, y, z) = x\sqrt{y^2 + 4}$ over the surface cut from the parabolic cylinder $y^2 + 4z = 16$ by the planes x = 0, x = 1, and z = 0.

Flux Across a Surface

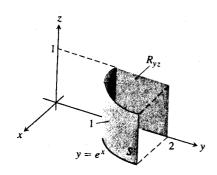
In Exercises 19 and 20, find the flux of the field F across the portion of the given surface in the specified direction.

- 19. F(x, y, z) = -i + 2j + 3k
 - S: rectangular surface z = 0, $0 \le x \le 2$, $0 \le y \le 3$, direction k
- **20.** $F(x, y, z) = yx^2i 2j + xzk$
 - S: rectangular surface y = 0, $-1 \le x \le 2$, $2 \le z \le 7$, direction -i

In Exercises 21-26, find the flux of the field F across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

- **21.** F(x, y, z) = zk
- **22.** F(x, y, z) = -yi + xj
- 23. F(x, y, z) = yi xj + k 24. $F(x, y, z) = zxi + zyj + z^2k$
- **25.** F(x, y, z) = xi + yj + zk
- **26.** $\mathbf{F}(x, y, z) = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}}$

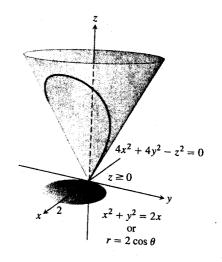
- 27. Find the flux of the field $\mathbf{F}(x, y, z) = z^2 \mathbf{i} + x \mathbf{j} 3z \mathbf{k}$ outward through the surface cut from the parabolic cylinder $z = 4 y^2$ by the planes x = 0, x = 1, and z = 0.
- 28. Find the flux of the field $\mathbf{F}(x, y, z) = 4x\mathbf{i} + 4y\mathbf{j} + 2\mathbf{k}$ outward (away from the z-axis) through the surface cut from the bottom of the paraboloid $z = x^2 + y^2$ by the plane z = 1.
- 29. Let S be the portion of the cylinder $y = e^x$ in the first octant that projects parallel to the x-axis onto the rectangle R_{yz} : $1 \le y \le 2$, $0 \le z \le 1$ in the yz-plane (see the accompanying figure). Let **n** be the unit vector normal to S that points away from the yz-plane. Find the flux of the field $\mathbf{F}(x, y, z) = -2\mathbf{i} + 2y\mathbf{j} + z\mathbf{k}$ across S in the direction of **n**.



- 30. Let S be the portion of the cylinder $y = \ln x$ in the first octant whose projection parallel to the y-axis onto the xz-plane is the rectangle R_{xz} : $1 \le x \le e$, $0 \le z \le 1$. Let **n** be the unit vector normal to S that points away from the xz-plane. Find the flux of $\mathbf{F} = 2y\mathbf{j} + z\mathbf{k}$ through S in the direction of **n**.
- 31. Find the outward flux of the field $\mathbf{F} = 2xy\mathbf{i} + 2yz\mathbf{j} + 2xz\mathbf{k}$ across the surface of the cube cut from the first octant by the planes x = a, y = a, z = a.
- 32. Find the outward flux of the field $\mathbf{F} = xz\mathbf{i} + yz\mathbf{j} + \mathbf{k}$ across the surface of the upper cap cut from the solid sphere $x^2 + y^2 + z^2 \le 25$ by the plane z = 3.

Moments and Masses

- 33. Centroid Find the centroid of the portion of the sphere $x^2 + y^2 + z^2 = a^2$ that lies in the first octant.
- 34. Centroid Find the centroid of the surface cut from the cylinder $y^2 + z^2 = 9$, $z \ge 0$, by the planes x = 0 and x = 3 (resembles the surface in Example 4).
- 35. Thin shell of constant density Find the center of mass and the moment of inertia and radius of gyration about the z-axis of a thin shell of constant density δ cut from the cone $x^2 + y^2 z^2 = 0$ by the planes z = 1 and z = 2.
- 36. Conical surface of constant density Find the moment of inertia about the z-axis of a thin shell of constant density δ cut from the cone $4x^2 + 4y^2 z^2 = 0$, $z \ge 0$, by the circular cylinder $x^2 + y^2 = 2x$ (see the accompanying figure).



37. Spherical shells

- a. Find the moment of inertia about a diameter of a thin spherical shell of radius a and constant density δ . (Work with a hemispherical shell and double the result.)
- **b.** Use the Parallel Axis Theorem (Exercises 15.5) and the result in part (a) to find the moment of inertia about a line tangent to the shell.
- 38. a. Cones with and without ice cream Find the centroid of the lateral surface of a solid cone of base radius a and height h (cone surface minus the base).
 - b. Use Pappus's formula (Exercises 15.5) and the result in part
 (a) to find the centroid of the complete surface of a solid cone (side plus base).
 - c. A cone of radius a and height h is joined to a hemisphere of radius a to make a surface S that resembles an ice cream cone. Use Pappus's formula and the results in part (a) and Example 5 to find the centroid of S. How high does the cone have to be to place the centroid in the plane shared by the bases of the hemisphere and cone?

Special Formulas for Surface Area

If S is the surface defined by a function z = f(x, y) that has continuous first partial derivatives throughout a region R_{xy} in the xy-plane (Figure 16.49), then S is also the level surface F(x, y, z) = 0 of the function F(x, y, z) = f(x, y) - z. Taking the unit normal to R_{xy} to be $\mathbf{p} = \mathbf{k}$ then gives

$$|\nabla F| = |f_x \mathbf{i} + f_y \mathbf{j} - \mathbf{k}| = \sqrt{f_x^2 + f_y^2 + 1}$$
$$|\nabla F \cdot \mathbf{p}| = |(f_x \mathbf{i} + f_y \mathbf{j} - \mathbf{k}) \cdot \mathbf{k}| = |-1| = 1$$

and

$$\iint\limits_{R_{xy}} \frac{|\nabla F|}{|\nabla F \cdot \mathbf{p}|} dA = \iint\limits_{R_{xy}} \sqrt{f_x^2 + f_y^2 + 1} dx dy, \qquad (11)$$