
1–Introduction to PDE

MATH 22C

1. Introduction To Partial Differential Equations

• Recall: A function f is an input-output machine for num-
bers:

“Output” y 2 R

“Name of function” ⌘ f

“Input” t 2 R

y = f(t)

t=independent variable∈ R (known)
y=dependent variable∈ R (unknown)
f=name of function...

–PDE’s typically depends on time, so we use t as the input
variable instead of x...

–Functions can be given by exact formulas...famous exam-
ples being: y = (t)2, y = e(t), y = ln (t), y = sin (t), etc.

–But the solution of a differential equation in general has
no such exact formula, so we are forced to talk about solu-
tions with the general notation of functions y = f(t). For
example, if f ′(t) = f(t)2 we say f is a solution to y′ = y2.

–In fact, the transcendental functions that have formu-
las...polynomials, exponentials, logarithms, trig functions
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(together with their rational combinations and composi-
tions)...are really special exact solutions of simple differen-
tial equations.

• Recall the derivative f ′(t) of a function:

f ′(t) = lim
∆t→0

f(t+ ∆t)− f(t)

∆t
= m

= “slope of the line tangent to the

graph of f above the point t ′′

y = f(t)

f(t)

t t + �t

f(t + �t)

�t = dt

�y

dy

m =
dy

dt
= f 0(t)

(t, f(t))

(t + �t, f(t + �t))

m ⇡ �y

�t
=

f(t + �t) � f(t)

�t

t

y

Notation:

y′ = yt =
dy

dt
= f ′(t)

All different names for the same thing...
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•An ordinary differential equation (ODE) is an equation in-
volving an unknown function and its derivatives y′, y′′, y′′′, ...etc.

Examples: y′ = ky, y′′ = a2y, y′ = a2y2, etc.

• If a function depends on more than one independent vari-
able, say f(t, x) instead of just f(t), then we can take par-
tial derivatives:

∂f

∂x
(x, t) = lim

∆x→0

f(x+ ∆x, t)− f(x, t)

∆x

= “slope of the line tangent to the

graph of f along t = const ., above the point (x , t)”

∂f

∂t
(x, t) = lim

∆t→0

f(x, t+ ∆t)− f(x, t)

∆x

= “slope of the line tangent to the

graph of f along x = const ., above the point (x , t)”

Notation: ∂y
∂t = yt = ∂f

∂t = ∂f
∂t (x, t)

Whenever you see a “d” in an equation, it means there is
only one independent variable...when you see ∂, it means
there’s more than one independent variable lurking...

• A partial differential equation (PDE) is an equation in-
volving an unknown function of more than one variable (say
u = f(x, t) and its partial derives derivatives ut, ux, u, utt, uxx, ...etc).

Q: Why are PDE’s so important? ANS: The laws of sci-
ence almost always come to us stated in terms of rates of
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change...(F=ma, rates of chemical reactions, rates of popu-
lation changes, etc.)...thus the starting point for problems in
science are equations for rates of changes of things...solving
them yields scientific predictions.
The PDE’s we consider:

ut − cux = 0 (Transport equation)—Linear
ut + uux = 0 (Inviscid Burgers Equation)—Nonlinear
ut + uux = uxx (Viscous Burgers Equation)—Nonlinear

The Linear Equations of Classical Physics:

utt − c2uxx = 0 (WaveEquation)

ut − kuxx = 0 (HeatEquation)

uxx + uyy = 0 (LaplaceEquation)

The Linear Equation of Quantum Mechanics:

−i~ut = Hu (Schrodinger Equation)

(E.g., Hu =
{
−~2

µ ∆ + V
}
u)

In fact–all these are model problems used to understand
what is happening in really hard PDE’s that are extremely
important—

Eg, one of the Fundamental Equations of Science, the
Navier-Stokes Equations:

• Plan for the class:

–Write down the Navier-Stokes Equation and see how im-
possibly complicated it is at first appearance...

–Review ODE’s for background...get started on PDE’s

–Interpret the listed PDE’s as warmup problems for Navier-
Stokes
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–Study the listed PDE’s one by one to get a sense of what
they are saying, and use this to interpret the meaning of
the Navier-Stokes Equations...

2. The Navier-Stokes Equations:

• The Navier-Stokes equations are a system of PDE’s of
Fundamental Importance to Science...
but far too complicated to understand all at once...

ρt + div (ρu) = 0, (1)

(ρui)t + div (ρuiu + pei) = ξ
∂

∂xi
(div u) + µ∆ui. (2)

• Equations (1) and (2) express:

– Newton’s Laws for Continuous Media (like air) with Fric-
tion.

–Equation (1) is the Balance of Mass or Continuity Equa-
tion

–Equation (2) is the Balance of Momentum Equation

• Here x = (x1, x2, x3) and:

ρ = density = mass/volume

u = (u1, u2, u3) = velocity,

p = pressure,

µ = dynamic/shear viscosity

ξ = bulk viscosity.
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• Also:

ρt =
∂ρ

∂t
,

divF =

(
∂F1

∂x1

)
+

(
∂F2

∂x2

)
+

(
∂F3

∂x3

)
,

∆f =
∂2f

∂ (x1)2 +
∂2f

∂ (x2)2 +
∂2f

∂ (x3)2 .

• The equations express the principle that mass is con-
served, and changes in momentum come from acceleration
of the fluid in response to the gradient of the pressure,
minus losses of momentum due to the friction of viscosity
whose magnitude is measured by µ & ξ

• The Navier-Stokes Equations are EXTREMELY IMPOR-
TANT.

– They are the starting point of Fluid Mechanics.

– They model fluid flow in cellular dynamics

– They model shock wave explosions in air.

– Most fluid flow problems are modeled by some modifi-
cation of these equations, so if you know something about
these equations, you have a starting point for modeling
pretty much all fluids.

–They model flow of air so well that airplane designers use
them to numerically simulate the flow of air over airplane
shapes on a computer. (If you discover a new numerical
algorithm that solves these equations significantly faster
on a computer, you will become rich!)
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–The shock waves that come off the wing of a plane that cre-
ate sonic booms can be modeled by these equations. Away
from the boundary layer, to very good approximation, you
can take λ = µ = 0, but on the plane’s boundary, ξ&µ
dominate.

–Different fluids are modeled by adjusting the equation of
state, that is, how the pressure p depends on the density ρ.
(There is another variable that effects p, namely the tem-
perature, and another equation for the time rate of change
of the temperature, but for our purposes we assume p de-
pends only on ρ, called a barotropic equation of state.)

• THE MAIN POINT TO UNDERSTAND: The Navier-
Stokes equations are a fiercely nonlinear system of 4 cou-
pled PDE’s, far too complicated to understand all at once.
No one is close to a complete mathematical understanding
of the solutions that satisfy these equations. They are as
complicated as the wheather!

–For example, it is not known to what degree the Navier-
Stokes equations model the turbulent motion of fluids. There
is a million dollar Clay Prize for the first person to prove
mathematically that either

(1) Solutions ρ(x, t), u(x, t) always exist starting from some
initial configurations of the density and velocity of the fluid
at some starting time, or

(2) Some starting configuration of density and velocity leads
to a singularity where the density or velocity or one of their
partial derviatives becomes infinite...indicating the onset of
turbulence.
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3. Warmup Problems for the Navier-Stokes
Equations:

–If you neglect viscosity and set ξ = µ = 0 in (2), you
get the famous compressible Euler equations, which accu-
rately describe the flow of a gas without friction or heat
conduction, (first written down correctly by Leonard Euler
in about 1750...),

ρt + div (ρu) = 0, (3)

(ρui)t + div (ρuiu + pei) = 0. (4)

If you assume zero bulk viscosity ξ = 0, (often a good as-
sumption), assume ρ = 1 is constant and neglect the con-
vective terms (with the x-derivatives), the second equation
gives you the heat equation in each component of velocity,

ut = ∆u. (5)

The heat equation isolates the pure effect of viscosity. So-
lutions of the heat equation typically decay as t → ∞ to
time-independent solutions with ut = 0, so time indepen-
dent solutions solve Laplace’s equation

∆u = 0. (6)

–Taking another direction, if you restrict the Navier-Stokes
equations to one dimension by assuming everything de-
pends only on x, so in particular u = u = dx/dt, you
get the 1-dimensional Navier-Stokes equations

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + p

)
x

= εuxx,

which uses that ∂
∂x (div u) = uxx = ∆u so ε = ξ + µ.

–If you neglect viscosity and set ε = 0 in the 1-D Navier-
Stokes, you get the 1-D compressible Euler equations, the
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setting for the mathematical theory of shock waves,

ρt + (ρu)x = 0, (7)

(ρu)t +
(
ρu2 + p

)
x

= 0. (8)

This system is the “Eulerian” version of the equations,
meaning they describe the flow in physical space. If you
linearize the equations about a constant density ρ = ρ̄+δρ̂,
then to leading order in δ, (i.e., for small amplitude solu-
tions near ρ̄, after a calculation to “linearize the equations”,
which we will do later on), the compressible Euler equa-
tions reduce to the wave equation in the perturbations of
the density ρ̂,

ρ̂tt − c2ρ̂xx = 0. (9)

The wave equation is the setting for the mathematical the-
ory of sound waves, and this tells us that the sinusoidal
waves that solve the wave equation, the modes of vibration
in the theory of sound, are the solutions of the compressible
Euler equations you get in the limit of weak waves. In fact,
c =

√
p′(ρ), so from this we can also calculate the speed of

sound from knowledge of how the pressure depends on the
density alone.
–Finally, one can show (7)-(8) is equivalent to the “La-
grangian” version of the equations, (based on moving with
the particles), which is called the p-system, (so coined by
Joel Smoller),

vt − ux = 0, (10)

ut + p(v)x = 0, (11)

where v = 1/ρ is the specific volume, and u is the velocity.
If you differentiate the first equation with respect to t and
the second equation with respect to x you get

vtt = uxt = utx = −p(v)xx = [−p′(v)vx]x ,
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which gives the nonlinear wave equation

vtt − [p′(v)vx]x = 0.

In particular, if we take the sound speed

c ≡
√
−p′(v),

then the nonlinear wave equation takes the form

vtt −
[
c2vx

]
x

= 0.

Now in the limit of “weak waves”, we can assume the sound
speed c = constant, in which case the nonlinear wave equa-
tion reduces to the linear wave equation

vtt − c2vxx = 0.

In particular, this is equivalent to the first order system

vt − ux = 0,

ut − c2vx = 0,

as seen by differentiating the first equation with respect to
x and the second equations with respect to t and setting

vtt = uxt = utx = c2vxx.

So the linear wave equation emerges from the nonlinear
theory of sound in the limit of weak waves.

In these notes, the nonlinear wave equation is introduced
as the equation describing the nonlinear theory of sound
neglecting friction and dissipation, and this reduces to the
linear wave equation for weak signals. The heat equa-
tion is introduced to tell us how to incorporate dissipation,
and Laplace’s equation is introduced to describe the steady
state solutions of the heat equation. Thus the main point
of these notes is to describe the difference between linear
and nonlinear PDE’s through a comparison of the linear
and nonlinear wave equation.
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The wave equation comes up everywhere. It’s ubiqui-
tous. Indeed, we show in the next section that every non-
linear oscillator generated by a restoring force, oscillates
sinusoidally according to the harmonic oscillator when the
waves are sufficiently weak, so everywhere oscillators are
generating sinusoidal oscillations according to the equation
ÿ + k2y = 0. Correspondingly, the wave equation is the
simplest equation that propagates sinusoidal oscillations,
moving in time, at the same speed in every direction. As
a result, the wave equation has played a central role in the
most fundamental discoveries of the 18’th, 19’th and 20’th
centuries.

Indeed, in the middle of the 18’th century, in 1753, Leonard
Euler derived the compressible Euler equations, linearized
them to get the wave equation (the same equation his col-
league D′Alembert obtained several years earlier to de-
scribe a vibrating string), and Euler thereby resolved the
greatest question of his era: What is sound? In the mid-
dle of the next century, in 1853, Maxwell realized that he
could get a wave equation out of the equations for electro-
magnetic fields if he added an additional equation to the
equations he got from Faraday, and in so doing he used the
wave equation to answer the greatest question of that era:
What is light? And finally, at the beginning of the next
century, in 1905, Albert Einstein made the bold leap that
the wave equation from Maxwell’s theory should be the
same in every inertial frame, and hence the speed of light
should also be constant in every inertial frame. By this he
derived the spacetime transformations of special relativity
from the invariances of the wave equation, thereby answer-
ing the greatest question of that era: How are space and
time entangled? In these notes we will relive all of these dis-
coveries from the point of view of the linear and nonlinear
wave equation, the point of view of PDE’s.
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4. The Compressible Euler Equations and
Einstein’s General Relativity:

Writing out the four compressible Euler equations (3),
(4) in a matrix form clarifies the equations:

Divt,x


ρ ρu1 ρu2 ρu3
ρu1 ρu21 + p ρu1u2 ρu1u3
ρu2 ρu2u1 ρu22 + p ρu1u3
ρu3 ρu3u1 ρu3u2 ρu23 + p

 ≡ Div T = 0. (12)

This means take the t-derivative of the first column plus the
x1-derivative of the second column plus the x2-derivative of
the third column plus the x3-derivative of the fourth column
and set each row equal to zero.

Let’s now count the number of equations and unknowns.
Well, these are four equations in the five unknown func-
tions ρ(x, t), p(x, t), u1(x, t), u2(x, t), u3(x, t). Now like al-
gebraic equations, partial differential equations should have
the same number of equations as unknowns to be well posed,
(i.e. in order not to be inconsistent with no solutions, or
to admit too many solutions). Thus (12) has one more un-
known than equation. Thus, we need an “equation of state
to close the equations”, which in the case of a barotropic
fluid, requires imposing p = p(ρ). The equation of state
represents the physics of the fluid that must be added to
the equations. This is all we need to describe in principle
how Albert Einstein discovered the equations of General
Relativity.

To start, Einstein interpreted ρ ≡ ρc2 as the energy den-
sity, (based on E = mc2), and conjecture that

T ≡


ρ ρu1 ρu2 ρu3
ρu1 ρu21 + p ρu1u2 ρu1u3
ρu2 ρu2u1 ρu22 + p ρu1u3
ρu3 ρu3u1 ρu3u2 ρu23 + p

 (13)

measured the energy and the flux of energy at a point in
spacetime, and as such was the source of spacetime curva-
ture. He called T the Stress Energy Tensor and set out to
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look for an equation for the gravitational field, (say of the
sun, replacing Newton’s force law), of the form G = κT ,
where G was a 4 × 4 matrix measuring the curvature of
spacetime, and κ was a coupling constant. Now since T is
a symmetric 4× 4 matrix, Tij = Tji, (note that the matrix
(13) is symmetric about the diagonal!), he required that G
should be a symmetric 4×4 matrix that describes the curva-
ture. But a symmetric 4×4 matrix admits ten independent
entries, (count them). Thus there are ten unknowns in G
and four unknowns in T , so G = κT would produce ten
equations in 14 unknowns. But he wanted the equations to
be independent of spacetime coordinates, which he realized
meant that four more equations could be freely specified to
specify the coordinates system. (You’ll just have to believe
this part.) Thus there are 14 equations in 14 unknowns,
and no more equations can be imposed to make the sys-
tem well posed. But his theory could make no physical
sense unless he could impose that energy and momentum
be conserved. That is, asking that energy-momentum be
conserved, he needed Div T = 0 according to the com-
pressible Euler equations (12), and this then imposes four
more equations—and he can’t impose any more equations
because he already has 14 equations in 14 unknowns. Thus
by counting equations and unknowns, he realized there was
no freedom left, and that he must require Div G = 0 at the
start. This enabled him to guess the form of the curvature
G (from the Riemann curvature tensor proposed by Rie-
mann in 1854), by noticing that there was essentially only
one “curvature tensor” constructible from the Riemann cur-
vature tensor, which also satisfied the condition Div G = 0.
By this line of reasoning he found the equations G = 8πT
of general relativity. This was the most difficult step in
the discovery of the field equations, and it took him several
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years to get it straight, making several missteps along the
way.

Now to understand this in detail requires several upper
division and graduate classes in differential geometry, and
the Stress Energy Tensor T in (12) isn’t exactly correct. To
be precise, it is the relativistic version of T in (13), (based
on Einstein’s Special Relativity of 1905), and the relativistic
compressible Euler equations Div T = 0, that play the role
of imposing conservation of energy as explained above. And
also, to be precise, the ten free functions in G aren’t the
ten independent components of G, but really the ten free
components of the gravitational metric in terms of which
these entries are defined according to Riemann’s formula
for the curvature tensor. But in principle it is the same.
This is how his argument goes.

Conclusion: The compressible Euler equations are abso-
lutely fundamental, and their understanding is the starting
point for arguably the greatest discovery of all time—The
theory of General Relativity, first proposed by Albert Ein-
stein in correct form in 1915, after nine years of struggle.
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