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In this section we consider the initial value problem (ivp)
for first order autonomous systems of ODE’s of the form

y′ = f(y), (1)

y(t0) = y0. (2)

Here y(t) = (x(t), y(t)) denotes an unknown curve in the
plane parameterized by t. The equation (1) states that

(i) the tangent vector to the solution curve y′(t) should be
tangent to the known vector field f(y) = (f1(y), f2(y)) at
each point, and

(ii) the speed

ds

dt
= ‖y′(t)‖ =

√
ẋ(t)2 + ẏ(t)2

of the curve should equal the length

‖f(y)‖ =
√
f1(y)2 + f2(y)2

of the vector field f(y) at each point. (In fact, the existence
theorems are the same for general non-autonomous systems
of n equations y′ = f(y, t) where y(t) = (y1(t), ..., yn(t)),
but to keep it easy to visualize, we’ll restrict to scalar and
2×2 systems, and we’ll assume autonomous, the case when
f does not depend explicitly on t.)

1. The fundamental existence theorem for first
order scalar ODE’s

• Consider first the (ivp) for a scalar first order autonomous
ODE in one unknown function y = f(t):

y′ = f(y) (3)

y(t0) = y0. (4)
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–We always assume f is a continuous function, i.e., its
graph is an unbroken surface in the sense that at all points
we have

lim
yn→y

f(yn) = f(y).

The most interesting thing is that continuity of f is not
enough, but we don’t need f to be differentiable either. All
we need is that f be Lipschitz continuous as the following
theorem asserts.

Theorem 1. Suppose f is Lipschitz continuous in y. Then
a unique solution y(t) exists for all t.

Definition 2. f(y) is Lipschitz continuous in y if there
exists a constant K such that

|f(y2)− f(y1)| ≤ K|y2 − y1|. (5)

Now we know from fundamental ODE (3) ẏ = y2 that
solutions do not always exist for all t when the equation
is nonlinear. So we know we can only get a local existence
theorem that can apply to nonlinear equations in general.
Here is the modification to (4) that generalizes:

Theorem 3. Suppose f is Lipschitz continuous for all y1, y2
in some interval [y0−δ, y0+δ]. Then a unique solution y(t)
of

y′(t) = f(y(t)),

y(t0) = y0.

exists for all t in some interval t ∈ (t0 − ε, t0 + ε).

• Example: y′ = ky

– We check that f(y) = ky is Lipschitz continuous in y. For
this we write:

|f(y2)− f(y1)| = |ky2 − ky1| = |k(y2 − y1)| = |k||y2 − y1|.
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– Thus by Definition 2, f(y) is Lipschitz continuous with
uniform K = |k| which is independent of t, so Theorem 4
tells us that a solution y(t) satisfying y′ = ky, y(t0) = y0
exists for all time −∞ < t <∞.

– We already know this, since we have a formula for the
solution given by

y(t) = y0e
k(t−t0).

• Example: y′ = y2

– y′ = y2 = f(y, t) means f(y, t) = f(y) = y2, and again f
doesn’t depend on t (except through the unknown function
y(t)).

– We check that f(y) = y2 is Lipschitz continuous in y. For
this we write:

|f(y2)−f(y1)| = |y22−y21| = |(y2+y1)(y2−y1)| = |y2+y1||y2−y1|.

– Now for y1 and y2 sufficiently close to y0, say

y1, y2 ∈ [y0 − δ, y0 + δ] ⊂ (−2y0, 2y0),

we have |y2 + y1| ≤ 4y0. Thus we can take K = 4y0 for y
sufficiently close to y0

– Therefore: The assumptions of Theorem 3 hold, so we
conclude from it that a unique solution y(t) satisfying y′(t) =
y(t)2, y(0) = y0 exists in some interval t ∈ (t0 − ε, t0 + ε).

–This confirms what we already know, since we have a for-
mula for the solution y′ = y2 given by

y(t) =
1

1
y0
− (t− t0)

=
y0

1− y0(t− t0)
.
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– For example, in the case when the initial condition is
taken at t0 = 0, y(0) = y0, we have the formula

y(t) =
1

1
y0
− t

.

Thus, for example, if y0 > 0, we know the solution only
exists so long as

1

y0
− t > 0,

or

y <
1

y0
.

Thus solutions y(t) exist only so long as

−∞ < t <
1

y0
,

–This confirms: the ε guaranteed by Theorem 3 must sat-
isfy

ε <
1

y0
.

–That is: the interval of existence shrinks to zero as y0 →
∞.

– Conclude: When ODE’s are nonlinear, we can only ex-
pect a short time local existence theorem. In fact, Theorem
3 is the best general existence theorem we have.

• Instructive Example: y′ =
√
y

–We can solve this as a separable equation: y′√
y = 1, so

integrating both sides gives∫ y(t)

y0

y′
√
y
dy =

∫ t

0

dξ = t,

where
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∫ t

0

y′
√
y
dy = 2

[√
y(t)−

√
0
]

= 2
√
y(t),

so 2
√
y(t) = t, or y(t) = t2/4.

–This leads to the following conundrum:

Both y = t2

4 and y(t) = 0 solve the initial value problem
y′ =

√
y, y(0) = 0. But if Theorem 3 applies, then there is

not a unique solution.

–The resolution is that f(y) =
√
y is NOT Lipschitz con-

tinuous in a interval around y0 = 0.

–To see this, use the

Mean Value Theorem: If f(y) is differentiable on (a, b)
and continuous on [a, b], then f(b) − f(a) = f ′(y∗)(b − a)
for some y∗ ∈ (a, b). Applying this to f(y) =

√
y when

a = y1, b = y2, we get

|f(y2)− f(y1)| = |f ′(y∗)(y2 − y1)| =
1

2
√
y∗
|y2 − y1|,

and we see that the constant K = 1
2
√
y∗

is unbounded for y1
and y2 sufficiently near y0 = 0, contradicting the condition
for Lipschitz continuity in an interval around y0.

–Conclude: When f(y) is not Lipshitz continuous in an
interval around y0, we cannot expect y′ = f(y, t), y(t0) = y0
to have a unique solution in an interval about t = 0.

We can now establish an easy to check criteria for existence
and uniqueness of solutions.

Theorem 4. If f(y) is continuously differentiable on (a, b),
then a unique local solution y(t) of the initial value problem
(3), (4) exists for every t0 and every y0 ∈ (a, b).
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Proof: By Theorem 3 it suffices to prove that f is Lipschitz
continuous in some open ball about y0. But by the mean
value theorem,

|f(y2)− f(y1)| = f ′(y∗)|y2 − y1|.

Now since f ′ is assumed continuous, and a continuous func-
tion takes on its maximum and minimum value on a closed
interval [y0 − δ, y0 + δ] ⊂ (a, b), we can set K equal to the
maximum of |f ′(y)| on this interval. It follows that the
conditions of Theorem 3 are met. �

Proof: Note that for y′ = ky and y′ = y2 the function f
is continuously differentiable, but not so for f(y) =

√
y at

y = 0.

2. The fundamental existence theorem for first
order systems of ODE’s

–Recall: A second order equation can always be written
as a first order system: For example, consider x′′+a2x = 0,
or more generally, the general second order ODE

x′′ = g(x, x′, t).

Write it as a first order system by taking y = x′ so(
x
y

)′
=

(
v

g(x, y, t)

)
–In this case, you can let

y(t) =

(
x(t)
y(t)

)
be a vector, and write the system in the same form as the
scalar ODE’s, namely,

y′ = f(y, t) (6)
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where

f(y, t) =

(
−y

g(x, y, t)

)
Note that the first system will be autonomous (f = f(y))
iff the original equation is autonomous (g = g(x, x′)). To
keep the visualization simple, restrict now to general au-
tonomous first order 2× 2 systems of the form

y′ = f(y),

where f is any continuous function of y,

f(y) =

(
f1(x, y)
f2(x, y)

)
,

so the system is (
x
y

)′
=

(
f1(x, y)
f2(x, y)

)
,

a system of two coupled ODE’s, the equations coupled
through the function f . That is, you have to know x(t)
to solve the y(t) equation, and you have to know y(t) to
solve the x(t) equation. Since they have to be solved to-
gether at once, existence of solution is a bit subtle.

–The basic existence theorems are EXACTLY THE SAME
for systems, except you have to change the absolute value
| · | to the Euclidean norm ‖ · ‖:

‖y‖ =
√
x2 + y2.

Here are the theorems...

Theorem 5. Suppose f is Lipschitz continuous in y. Then
a unique solution y(t) of (8), (9) exists for all t.

Definition 6. f(y) is Lipschitz continuous if there exists
a constant K such that

‖f(y2)− f(y1)‖ ≤ K‖y2 − y1‖, (7)
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for all y1,y2 ∈ R.

But again, solutions of nonlinear ODE’s don’t always ex-
ist for all t, as the Ricotti system ẋ = x2, ẏ = y2 tells us,
so the general result is again a short time local existence
theorem:

Theorem 7. Suppose f(y) is Lipschitz continuous in some
interval containing the initial data y0. Then a unique so-
lution y(t) of (6) exists in some interval t ∈ (t0− ε, t0 + ε),
satisfying

y′(t) = f(y(t)), (8)

y(t0) = y0. (9)

By an argument similar to the proof of Theorem 8, the
following sufficient condition for existence and uniqueness
of solution holds.

Theorem 8. If f(y) is continuously differentiable, then a
unique local solution y(t) exists for every y0.

–Recall that in the last section our PDE application for
the existence and uniqueness theorem (7) was that, if the
(ivp) for an autonomous 2×2 system has a unique solution,
then shock waves cannot form when the transport equation
is linear. That is, recall that shock waves form when two
characteristic curves intersect. In the general linear trans-
port equation, the characteristic curves along which the
solutions of the linear PDE a(x, y)ux + b(x, y)uy = 0 are
constant, solve the autonomous ODE

ẏ = f(y),

where

f(x, y) =

(
a(x, y)
b(x, y)

)
.
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(We changed from (x, t) to (x, y) to fit the notation of The-
orem 7.) Now we showed that because we can replace t
with t− t0 in an autonomous system, if two solution cross,
then we can shift the time so that they cross at the same
time, and so there would be two solutions with the same
initial value (9). We conclude then from Theorem 7 that
if (a(x, y), b(x, y) is Lipschitz continuous in an open ball
around every point y0 ∈ R, (a very mild condition!), then
the solution of the initial value problem is unique at every
initial value y0, and hence characteristics cannot cross at
any y0. By Theorem 8, we need only verify that a and b
are continuously differentiable to rule out the shock waves.

Conclusion: By Theorem 7, shock waves are a nonlinear
phenomenon.

–In fact, Theorems 5, 7, hold for systems of arbitrary size,
say y(t) = (y1(t), ..., yn(t)) ∈ Rn with

‖y‖ =
√
y21 + · · ·+ y2n ,

so you only have to remember these two theorems, and they
apply to all systems of ODE’s, of all orders.

–No such unifying theory exists for PDE’s!
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