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1. Points of equilibrium=rest points

• An equilibrium point or rest point of an equation is a con-
stant state solution of the equation. At the constant state,
“all forces are in balance” in the sense that the dynamics
imposed by the equation keep the state constant.

– Consider first the case of a general autonomous first order
system of ODE’s, (f = f(ū) depends on t only through the
unknown u),

u′ = f(u), (1)

where u = (u1, ..., un) can be a vector with any number
of components. Thus a rest point ū is a constant state
solution where f(ū) = 0 for all t, so that ū′ = 0.

Definition 1. A rest point or equilibrium point of sys-
tem (1) is a constant state ū satisfying

f(ū) = 0. (2)

• For example, if the ODE describes the dynamics of the
populations of some animal species living on an island,
uk=population of species k, then the equilibrium state ū
is a point of stable populations. If you perturb the state,
then f(u) becomes nonzero, so u′(t) becomes nonzero, and
the populations drift away from “perfect balance” ū. The
biggest question then is, once perturbed, will the popula-
tions return to ū, or will they drift away toward another
equilbrium point û?
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Definition 2. If the equations return any sufficiently small
perturbation ū back to ū, then we say the ū is a stable equi-
librium point. If some arbitrarily small peturbation makes
it drift away (perhaps toward another equilibrium point),
then we say ū is an unstable equilibrium point.

–The notion of stable vs unstable equilibria is an important
concept for understanding phenomena in nature even with-
out doing any mathematics at all. For example, consider
the following explanation:

“In 2006, the economy was pretty stable with a steady
4.5 percent unemployment rate. The banking crisis dis-
turbed the equilibrium point, and the economy drifted off
toward another equilibrium point where the unemployment
rate was 9.5 percent. We do not know whether lowering
interest rates and quantitative easing will get us back to the
old equilibrium point.”

The presumption in this statement is that the unemploy-
ment rate r is evolving according to some really complicated
ODE u′ = f(u) with r one of the variables uk = r, and that
we perturbed one equilibrium point ū with ūk = r = 4.5,
and the ODE’s evolved to another one û with ûk = r = 9.5.
The last statement then translates into We do not know
whether changing the function f [by lowering interest rates
and quantitative easing] to u′ = f(u) + g(u) will produce
a new ODE whose solutions will take us back to the old
equilibrium point.

This paradigm pervades the modern way of thinking about
how things work.

• The formal method for determining the stability of a rest
point of an ODE is to “linearize” the equations about the
rest point, and then study the stability of the linearized
equations.
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2. Linearizing a nonlinear ODE at a rest point

• The formal method for linearizing a nonlinear ODE at a
rest point ū is as follows:

(1) Start with constant state ū such that f(ū) = 0 and the
ODE is solved by

0 = ū′ = f(ū) = 0.

(2) Write

u(t) = ū + δv(t),

and look for the equation v(t) solves in the limit δ → 0.

(3) Plug u(t) = ū + δv(t) into the ODE for u.

(4) Taylor expand all nonlinear functions about ū, and
multiply everything out.

(5) Throw away all terms of order O(δ2) and higher, [that
is, any term multiplied by δ2, δ3, ...]

(6) What’s left is a linear equation for perturbation v(t).
This equation is called the “linearization of the ODE about
rest point ū.”

• The method works for ODE’s of any size, and you can
linearize around any known solution u(t) of u′ = f(u), not
just constant state solutions u(t) = ū = const.—it just
gets more complicated. By the same procedure you can
also linearize around both constant state and more general
solutions of PDE’s, but for PDE’s v(x, t) will depend on x
and t, and the linearized equation will be a PDE.

• So far we looked at the two linear ODE’s y′ = ky, y′′ +
a2y = 0 and the nonlinear equation y′ = y2.



4

For examples, we now linearize y′ = f(y) (the general case
of y′ = y2) and y′′+ g

L sin y = 0 about their rest points, and
determine their stability.

3. The case of first order scalar equations
y′ = f(y)

• A rest point y = ȳ ∈ R of the autonomous first order
scalar equation y′ = f(y), is a point where f(ȳ) = 0.

Example 1: Assume the equation is: y′ = y2 − 1.

• The nonlinear function is f(y) = y2−1, so the rest points
satisfy y2 − 1 = 0, and so ȳ = −1, 1.

–Linearizing about ȳ = 1, we plug

y(t) = 1 + δv(t)

into the equation

y′ = y2 − 1

to obtain

(1 + δv(t))′ = f(1 + δv(t)) = (1 + δv(t))2 − 1 = 1 + 2δv(t) + δ2v(t)− 1

= 2δv(t) + δ2v(t).

–Note that the constant term cancels out (this always hap-
pens because ȳ solves the equations exactly!), and what is
left is an order δ term and an order δ2 term.

– Following step (5), we then throw away all terms higher
order than O(δ), and obtain

δv′ = 2δv(t),
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which after canceling the δ on both sides gives

v′ = 2v(t). (3)

The resulting equation (3) is called “the equation obtained
by linearizing the nonlinear ODE y′ = y2−1 about the rest
point ȳ = 1.”

– The linear equation (3) is our fundamental equation for
the exponential v′ = kv with k = 2, so it has the solution

v(t) = v0e
2t.

We conclude that, sufficiently close to the rest point ȳ = 1,
(that is, neglecting errors of order δ2v(t)2), solutions of the
nonlinear ODE evolve like

y(t) = ȳ + δv(t) = 2 + δv0e
2t.

In particular, since k = 2 > 0, the exponential grows in
forward time, so solutions move away from ȳ = 1, and we
conclude that ȳ = 1 is an unstable rest point.

• Linearizing about the other rest point ȳ = −1 of ODE
y′ = y2 − 1, we plug

y(t) = −1 + δv(t)

into the equation

y′ = y2 − 1

to obtain

(−1 + δv(t))′ = f(1 + δv(t))

= (−1 + δv(t))2 − 1

= 1− 2δv(t) + δ2v(t)− 1

= −2δv(t) + δ2v(t).
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–Note again that the constant term cancels out (because
ȳ solves the equations exactly), and what is left is an order
δ term and an order δ2 term. In math analysis we refer to
a term of order δn as O(δn) or O(1)δn, read aloud as Big
Oh of δn, and “Big Oh of One Times δn”, respectively. In
particular O(1) denotes an error bounded by a constant as
δ → 0, so the error notation O(1)δn is convenient because
then we can cancel powers of δ when they appear in every
term of the equation.

– Following step (5), we throw away all terms higher order
than O(δ), and obtain

δv′ = −2δv(t),

which after canceling the δ on both sides gives

v′ = −2v(t). (4)

The resulting equation (4) is “the equation obtained by
linearizing the nonlinear ODE y′ = y2 − 1 about the rest
point ȳ = −1.”

– The linear equation (4) is our fundamental equation v′ =
kv for the exponential but with k = −2, so it has the
solution

v(t) = v0e
−2t.

We conclude that, sufficiently close to the rest point ȳ =
−1, (neglecting errors of order δ2v(t)), solutions of the non-
linear ODE evolve like

y(t) = ȳ + δv(t) = 2 + δv0e
−2t,

and since k = −2 < 0, the exponential decreases in forward
time, so solutions move back toward the rest point ȳ = −1
in forward time, and we conclude that ȳ = −1 is a stable
rest point.
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• From the example, the general picture emerges: If we
linearize y′ = f(y) about a rest point ȳ where f(ȳ) = 0,
we set y(t) = ȳ + δv(t) and get a linearized equation for
v(t)...but since this linear equation is scalar, the only first
order linear equation we get is v′ = kv for some k (no t
term because f(y) doesn’t depend on t!), so the sign of k
tells us the stability of the rest point!

• For example, consider the ODE y′ = f(y) where f is the
nonlinear function with the following graph:

Figure 1. A nonlinear function with five rest points.

– Then (generically) the rest points come in two kinds: (i)
Where the graph crosses the x-axis going up from left to
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Figure 2. The phase portrait for a nonlinear function
with five rest points.

right; (ii) Where the graph crosses the x-axis going down
from left to right.

– Now using Taylor’s theorem to expand f(ȳ+δv(t)) about
rest point ȳ, we obtain

f(ȳ + δv(t)) = f(ȳ) + f ′(ȳ)δv(t) +O(δ2v(t)2).

Using this we can obtain a general formula for the lineariza-
tion of the ODE y′ = f(y) about a rest point ȳ. Namely,
substituting ȳ + δv(t) for y in the ODE y′ = f(y) gives

(ȳ+ δv(t))′ = f(ȳ+ δv(t)) = f(ȳ)+f ′(ȳ)δv(t)+O(δ2v(t)2).
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Using that f(ȳ) = 0 and throwing away the higher order
terms in δ, we obtain the linearized equation

v′ = f ′(ȳ) v,

which is stable if

f ′(ȳ) < 0, [case(i)],

and unstable if

f ′(ȳ) > 0, [case(ii)].

– The stability result above is confirmed by phase diagram
for solutions of y′ = f(y) in Figure 2. The point is that
the sign of the derivative at a rest point is determined by
the sign of f on either side of the rest point, and so we can
graph the directions of solution curves without having to
know any exact formulas for solutions. We have proven the
following theorem:

Theorem 3. At a non-degenerate rest point ȳ of an au-
tonomous scalar ODE y′ = f(y), (a value of ȳ where f(ȳ =
0 but f ′(ȳ) 6= 0), the solution enters or leaves the rest point
exponentially. That is, y(t) = ȳ + δv(t) +O(1)δ2 where

v(t) = v0e
f ′(ȳ)t.

4. Linearizing about a rest point of the
nonlinear pendulum

• For a nonlinear 2× 2 example, we consider the nonlinear
pendulum. To derive the equations from Newton’s laws,
consider a mass m swinging on a massless frictionless pen-
dulum of length L. Balancing the forces leads to the non-
linear equation ,

θ̈ +
g

L
sin θ = 0. (5)
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Our purpose here is simply to describe the linearization
process at rest points, so we refer to Strogatz for a complete
derivation and phase portrait description of solutions of the
nonlinear pendulum.

Now θ̄ = 0 is a rest point, so to find the behavior of solu-
tions near θ = 0 we linearize the equations about the rest
point. For this, let θ(t) = θ̄ + δv(t), plug this into (5),
expand in powers of δ using Taylors theorem, collect the
O(1)δ term, and throw higher order terms away, to recover
a linear equation for the perturbation v(t). Thus,

0 =
{
θ̄ + δv

}′′
+
g

L
sin
{
θ̄ + δv

}
= δv̈ +

g

L
sin δv

= δv̈ +
g

L
δv +O(1)δ3

where we used that θ̄ = 0 together with the Taylor expan-
sion

sin δv = δv − 1

6
(δv)3 + · · · .

Throwing away higher order terms and canceling the re-
maining δ yields the linearized equations for the perturba-
tion v:

v̈ +
g

L
v = 0. (6)

But this is our harmonic oscillator ÿ + a2y = 0 with y ≡ v
and a2 = g/L. Thus solutions of the linearized equations
are the sines and cosines

v(t) = A sin

√
g

L
t+B cos

√
g

L
t.

From this we can conclude that for small perturbations
from the rest point θ̄ = 0, the solutions look like

θ(t) = v(t),
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which are sinusoidal oscillations of period 2π
√

L
g . In par-

ticular, at the linearized level, the oscillations are indepen-
dent of the mass and the amplitude, thereby explaining
why pendulum clocks were so popular in the old days!

The second order nonlinear pendulum (5) can be written
as a first order nonlinear autonomous system

ẏ = f(y),

where y = (x, y) ≡ (θ, θ̇) and

f(y) =

(
y

−
√

g
L sinx

)
=

(
f1(x, y)
f2(x, y)

)
.

For such systems we already know that two solutions can-
not cross in the (x, y)-plane, so this means that the struc-
ture of solutions is determined by their structure at the rest
points, and this is given by the linearized equations at the
rest point. Working generally, at a rest point ȳ = (x̄, ȳ),
f(ȳ) = 0, which is the vector equivalent of f1(x̄, ȳ) = 0 =
f2(x̄, ȳ), and to linearize we set y(t) = ȳ + δv(t) which is
the vector form of

y(t) = ȳ + δv1(t), (7)

x(t) = x̄+ δv2(t). (8)

The linearized equations at rest point ȳ are always of the
constant coefficient homogeneous form

v̇ = Av,

where A is the 2×2 matrix A whose first row is∇f1(ȳ), and
second row ∇f2(y). For completeness, the phase portrait of
solutions of the nonlinear pendulum is given in Figure 3.

In general, the elementary solutions of the linearized equa-
tions v̇ = Av are given by v(t) = Reλt where (R, λ) is an
eigen-pair of A, (AR = λR), because these solve v̇ = Av
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Figure 3. Phase portrait of solutions of the nonlinear
pendulum in the (θ, θ̇)-plane.

exactly. It follows then, that the stability of a rest point ȳ is
determined by the real part a of the eigenvalues λ = a+ ib.
Indeed, a rest point is stable (in the sense that every small
perturbation of the rest point returns the solution to the
rest point in positive time) if and only if the real part
of every eigenvalue is negative, so that the exponential in
Re(a+ib)t decays to zero as t→ 0. In particular, we see from
this that in general, solutions near rest points of ODE’s
evolve (to leading order in δ) according to the exponential
function eλt. A systematic working out of this theory is a
central topic of MAT119A.
These examples lead to the following definitions:

Definition 4. A rest point is called asymptotically stable if
sufficiently small perturbations of the rest point evolve back
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to the rest point. The rest point is called marginally stable
or just stable if sufficiently small perturbations of the rest
point stay small for all time. The rest point is unstable if
there exists a small but fixed ball open ball centered at the
rest point such that there exist arbitrarily small perturba-
tions starting in that ball that leave the open ball in positive
time.

Our examples show that for scalar ODE’s, the rest points
ȳ solving ẏ = f(y) (so f(ȳ) = 0) are asymptotically stable
when f ′(ȳ) < 0, and unstable when f ′(ȳ) > 0. On the other
hand, the rest point at θ = 0, θ̇ = 0 is marginally stable.
In fact, we cannot determine from the linearized equations
that the rest point is marginally stable, because arbitrarily
small errors of order δ2 could take the solutions away from
θ = 0. However, we can see from the phase portrait of the
full nonlinear pendulum in Figure 3 that the rest point is
actually marginally stable.

Linearizing partial differential equations (PDE’s) goes
the same way, except it is much more difficult to determine
stability or instability of equilibrium points of PDE’s be-
cause it is difficult to calculate the “eigenvalues”. However,
linearizing complicated PDE’s is one of the most important
ways of understanding what they mean!

5. Linearizing PDE’s

• Consider first the nonlinear inviscid Burgers equation,
the case of the transport equation when the sound speed
c depends on the solution in the simplest way: Namely,
c = u,

ut + uux = 0.

Again, this says that u is constant along (straight) lines of
speed u—that is, the speed is the same as the value of the
solution along the characteristic curve. When the density of
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a gas, say air in a shock tube, is given by ρ(x, t) = u(x, t)
then asking that u be a solution of Burgers is the sim-
plest model for the nonlinear effects in propagation of sound
waves down the tube. In fact, the formation of shock waves
represents the breaking of the sound waves, something like
the breaking of waves in the ocean, and leads to the dissi-
pation of the sound wave signal.

Now u = ū solves the Burgers equations, (think of it as
a constant density solution which propagates no waves).
Let’s now linearize the Burgers equation about the rest
point u = ū to see what solutions do to leading order when
the constant state is perturbed by a small amount δv.

To find the equations for the perturbations v, we linearize
Burgers equation ut + uux = 0 about the constant state ū.
The procedure follows exactly the steps (1)-(6) above, only
this time v = v(x, t) depends on x and t, not just t, because
Burgers is a PDE, not an ODE. So as before, set u(x, t) =
ū+δv(x, t), plug this into the Burgers equation, expand all
nonlinear functions, throw away all terms of order O(1)δ2,
and what is left is δ times the linearized equations for v.

So plugging ū+ δv into 0 = ut + uux gives

0 = (ū+ δv(x, t))t + (ū+ δv(x, t))(ū+ δv(x, t))x

= δvt + (ū+ δv)δvx

= δ(vt + ūvx) + δ2vvx.

Neglecting the O(1)δ2 term and dividing by δ we are led to
the linearized equations for the perturbation v(x, t):

vt + ūvx = 0.

Since the constant state ū is fixed, we recognize this a trans-
port to the right with speed ū. This makes sense because
the Burgurs equation give transport to the right at speed
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u, so for solutions u(x, t) ≈ ū, it should be transport to
the right at approximately, (that is, to leading order in δ),
transport to the right at speed ū. The linearized equations
confirm this.

The natural question to ask then is: Are the constant solu-
tions of the Burgers equation stable? But the perturbations
solve the transport equation which keep things constant
along characteristics, so the perturbations do not decay
back to the constant state. That is, we know the linearized
equations keep small perturbations small, which indicates
at the linearized level, the constant states are marginally
stable. Thus the best we can expect is that the constant
states of Burgers are marginally stable. To verify this, we’d
have to go back to solutions of the nonlinear equations to
check the nonlinear evolution of the perturbations. Since
the nonlinear equations can create shock waves, the per-
turbations will only be defined up until the shocks form.
In fact, at shocks, the derivatives of the solutions tend to
infinity, but the solution still keeps its values near the con-
stant state ū. Thus whether you want to call the constant
state ”nonlinearly stable” depends on whether you include
the derivative of the solution in your stability criterion. We
say the stability depends on the norm in which you mea-
sure the difference! This makes PDE’s a lot harder then
ODEs!

• Consider next the problem of linearizing around a general,
possibly non-constant solution ū(x, t) of Burgers equation.
For this, assume ū(x, t) is a known solution that exactly
solves

ūt + ūūx = 0.

We ask: how do small perturbations of ū(x, t) propagate,
to leading order in δ? To find the leading order linear
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equations for the perturbation v(x, t), write

u(x, t) = ū(x, t) + δv(x, t),

plug this into Burgers equation ut + uux = 0 and obtain

0 = (ū(x, t) + δv(x, t))t + (ū(x, t) + δv(x, t))(ū(x, t) + δv(x, t))x

= ūt + δvt + (ū+ δv)(ūx + δvx

= ūt + ūūx + δvt + δūxv + δūvt + δ2vvx.

Now the zero order terms in δ vanish, namely ūt + ūūx =
0, because ū(x, t) solves Burgers exactly, (the reason we
always linearize around solutions is so that the zero order
terms in δ will vanish!), so neglecting the O(1)δ2 term and
dividing by δ we are led to the linearized equations for
the perturbation v(x, t) around a general solution ū(x, t) of
Burgers:

vt + ūvt + ūxv = 0. (9)

Now ū and ūx are treated as known functions of (x, t), (they
are linear coefficients), so the equation is still linear homo-
geneous in the unknown function v, but the last term is
new; its ūx(x, t)=known function of (x, t) times undiffer-
entiated v, and is called a zero order term or source term
because the unknown function v comes in undifferentiated.
This term only appears in the linearized equations when
the solution ū is non-constant.

• Consider now the equation (9). The first two terms we
can understand. These describe a transport equation to the
right with variable speed c(x, t) = ū(x, t) a known function.
The terms involving the derivative of v still describe the
characteristics of the PDE (9), since the derivatives provide
the speed of propagation. So as before, the characteristic
curves are curves moving at speed c in the (x, t) plane. Just
as before, these curves are given by solutions of the ODE

ẋ(t) = ū(x, t) = c(x, t), (10)
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which can in principle be determined without knowing the
solution v because ū(x, t) is the known function we are lin-
earizing about. Just for fun, lets see if the solution v(x, t)
is constant along characteristics (x(t), t) like the variable
speed transport equation ut + c(x, t)ux = 0.

d

dt
v(x(t), t) = vt + vxx

′(t) = vt + vxū(x, t) = −ūxv. (11)

That is, v(x, t) is not constant along the characteristic be-
cause of the extra zero order term in the equation (9). So
this time setting the speed of the curve x′(t) = ū(x, t)
doesn’t make v constant along solution curves. That is,
when the source term present, asking that v be constant
along characteristics is too much to ask. But in fact, all
we need ask is that the solution v reduce to an ODE along
such curves. In this case, since vt + vxx

′(t) = −ūxv, (11)
gives us

d

dt
v(x(t), t) = −ū(x(t), t)v(x(t), t). (12)

Thus we can solve (10) by an ODE using the known func-
tion ū(x, t), then, given x(t), we can solve the ODE (12)
for v along the characteristic curve (x(t), t). This gives us
a procedure for solving the PDE by solving for its values
along any characteristic curve, a process by which we only
need solve ODE’s! Putting this together, we could sum-
marize: To solve the linear transport equation with source
terms (9), solve the ODE’s(

x
v

)′
=

(
ū(x, t)

−ūx(x, t)v

)
= f(x, v, t),

which is a non-autonomous ODE for the unknowns (x, v)
whose solution provides the values of the unknown v along
characteristics.
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The lesson, then, is that when a first order linear equation
has zero order terms, it is too much to expect the solution
to be constant along characteristic curves, but we can ask
that the solution reduce to an ODE along the curve, ODE’s
being easier to solve than PDE’s. By this procedure, the
underlying characteristic curve ẋ = c(x, t) is solved by an
ODE using the known function ū, and then we can solve for
the values of the unknown v along any such characteristic
by solving the ODE (12). In fact, the method of character-
istics can be applied in the same way to general first order
nonlinear PDE’s.

Conclude: Linear PDE’s are MovingCordinate=22C-Ch5obtained
from nonlinear PDE’s by linearization. You linearize around
a given solution of the nonlinear equation, and the lin-
earized equations describe the evolution of small changes
from the given solution. Our example was the nonlinear
Burgers equation. When we linearized around a constant
state, we got the linear transport equation. When we lin-
earized around a general solution of the Burgers equation,
we got a general homogeneous first order linear equation.
The linearized equations could be solved by the method of
characteristics, namely, the characteristic curves are curves
of speed c = ū(x, t), and along these curves the PDE re-
duces to an ODE. Since characteristics for a linear equation
never intersect in the xt-plane, and since the speed ū(x, t)
becomes discontinuous if the solution ū (which we linearize
around) develops a shock wave, the ODE’s for the charac-
teristics are no longer Lipschitz, ūx becomes infinite, and we
can no longer expect the linearized equations for Burgers
to approximate the nonlinear evolution after shock waves
form.

We now give an important example in which the lin-
earized equation is not a first order transport equation, but
rather the second order linear wave equation.
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6. Linearizing the Compressible Euler
Equations and the Determination of the

Speed of Sound.

• Recall that the equations that describe the fully nonlinear
motion of a gas with friction modeled by viscosity are the
Compressible Navier-Stokes equations

ρt + div(ρu) = 0,

(ρui)t + div(uiu + pei) = +µ∆ui + ξ(divu)xi.

Here ρ is the density=mass/volume, u = (u1, u2, u3) is the
velocity, p=pressure, and µ and ξ are the shear and bulk
viscosities. This is the fundamental model expressing New-
ton’s laws of motion for a continuous media, with friction.

Note that the Navier-Stokes equations consist of four equa-
tions in the five unknown functions ρ, u1, u2, u3, p, and so
we must be given the equation of state p = p(ρ) in order to
close the equations, that is, have the same number of equa-
tions and unknowns. It turns out that it is not so difficult
to derive these equations from first principles and see that
they must be correct, but at first the equations themselves
look impossibly complicated to understand. So we under-
stand them by breaking them down into warmup problems.

As a first simplification we neglect the viscosity so the equa-
tions reduce to the Compressible Euler Equations

ρt + div(ρu) = 0,

(ρui)t + div(uiu + pei) = 0,

four equations which describe Newton’s laws for a continu-
ous media without friction. This is the setting for the study
of gas dynamics and the theory of shock waves.
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As a second simplification, restrict to one dimensional mo-
tion along a shock tube. (There really are shock tubes,
the largest about three feet in diameter, and in them scien-
tists create one dimensional shock waves moving down the
tube, and can compare them with theoretical predictions
from the equations.)

ρt + (ρu)x = 0, (13)

(ρu)t + (ρu2 + p(ρ))x = 0. (14)

Note that we have assumed we know the equation of state
p = p(ρ), that is, we know p as a known function of density
ρ.1 Note that the first equation would be a Burgers type
transport equation if u in the first equation were ρ, but then
this would mean transport in one direction, so we know it
isn’t right as a gas sends sound waves in both directions.
So the coupling of the first equation to the second through
u must make it more complicated.

We next ask what the linearized theory of sound should be
by asking for the equations that describe the perturbations
from still air to leading order in δ, i.e., perturbations from
a constant density ρ0, assuming we observe from a location
fixed with respect to the fluid particles, so that u0 = 0.
Note that the velocity u measures the velocity of a speck
of dust (a fluid particle), as it is carried through the fluid,
and this does not measure the sound speed, the speed of
wave propagation through the gas.

So we follow our usual procedure for linearization about
the constant state ρ = ρ0, u = u0 = 0. Set ρ = ρ0 + δρ̂,

1In reality, the pressure depends on the temperature as well, so we are assuming
constant temperature here. For the case of an ideal gas of n-molecules, the equation
of state can be derived from first principles, and it’s called the polytropic equation
of state. This is pretty much the only case where the full equation of state can be
determined exactly from first principles. In other cases we can view the equation
of state as given to us by experiments.
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u = u0 + δû = δû, plug these into the compressible Euler
equations (13), (14), multiply everything out, throw away
terms of order δ2, divide the δ from the O(1)δ term, and
thereby obtain a linear equation for the perturbations ρ̂
and û. Start then with equation (13):

0 = [ρ0 + δρ̂]t + [(ρ0 + δρ̂)(δû)]x

= δρ̂t + δρ0ρ̂x + δ2(ρ̂û))x,

so discarding the O(1)δ2 terms and dividing by δ gives the
first linearized equation

ρ̂t + ρ0ûx = 0. (15)

Substituting next into the second Euler equation (14) and
using Taylor’s theorem on the pressure we obtain:

0 = [(ρ0 + δρ̂)(δû)]t + [(ρ0 + δρ̂)(δû)2 + p(ρ0 + δρ̂)]x

= δρ0ût + δ2 [ρ̂û]t + [δ2ρ0û
2 + δ3ρ̂û2 + p(ρ0) + p′(ρ0)δρ̂+O(1)δ2]x

= δρ0ût + δp′(ρ0)ρ̂x +O(1)δ2,

so discarding the O(1)δ2 terms and dividing by δ gives the
second linearized equation

ρ0ût + p′(ρ0)ρ̂x = 0. (16)

Conclude: Equations (15) and (16) are the equations ob-
tained by linearizing the compressible Euler equations (13),
(14) about the constant states ρ0, u0 = 0.

To see what the linearized equations (15) and (16) mean,
differentiate (15) with respect to t and (16) with respect to
x, solve for ρ0ûtx in the second equation and substitute it
into the first to obtain

ρ0ρ̂tt + ρ0p
′(ρ0)ρ̂xx = 0,

so that dividing by the constant ρ0 gives the wave equation
in ρ̂!

ρ̂tt + p′(ρ0)ρ̂xx = 0. (17)
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Now we can understand it. Equation (17) tells us that, to
leading order in δ, the perturbations of a constant density
solution of the compressible Euler equations, as observed
in a frame fixed with respect to the fluid, evolve according
the the wave equation

ρ̂tt + c2ρ̂xx = 0.

with speed

c =
√
p′(ρ0).

Conclude: In the weak wave limit, perturbations ρ̂(x, t)
of the still fluid ρ0 look like

ρ̂(x, t) = f(x+ ct) + g(x− ct),
that is, they consist of the superposition of a sound wave
moving to the right plus a sound wave moving to the left,
all waves moving at speed c. An important consequence
of the linearization is that the speed of sound c is different
from the speed u0, the velocity of the underlying fluid. In
fact, this tells us that in the weak wave limit, the sound
waves move at speed u0 ± c, and to get the wave equation,
we have taken u0 = 0; i.e., our coordinate frame has to be
fixed relative to the fluid.

Note that along the way we have discovered some pretty
significant physics. Namely, the speed of sound relative to
the fluid speed u0 is given by

c =
√
p′(ρ0).

We got this from understanding the PDE’s. When Euler
first did this in about 1750, he had solved arguably the
biggest open problem in physics since Newton’s Principia
in 1787: namely, how do you derive the speed of sound
from first principles. He did it by first deriving the nonlin-
ear equations, then linearizing them to get the wave equa-
tion in the density, and then seeing that the resulting wave
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equation gave a formula for the speed of sound in terms of
the pressure, c =

√
p′(ρ0).

Having come this far, it is instructive to linearize the full
3-dimensional compressible Euler equation about the still
fluid solution u = 0 and ρ = ρ0. In this case, the same
procedure leads to the 3-dimensional wave equation ρ̂tt −
p′(ρ0)∆ρ̂ = 0, where ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian,
so the equation is

ρ̂tt − c2

{
∂2ρ̂

∂x2
+
∂2ρ̂

∂y2
+
∂2ρ̂

∂z2

}
= 0

with

c =
√
p′(ρ).

The only vector identity we’ll need is that the Laplacian
is the divergence of the gradient. That is, recall that the
gradient is defined as the vector operator

∇ ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
,

making it easy to express the divergence of a vector function
as

divv = ∇ · v =
∂

∂x
(v1) +

∂

∂y
(v2) +

∂

∂z
(v3)

which leads to,

∆ =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
= ∇·

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= ∇·∇ = div∇.

To carry out the linearization, start with the compressible
Euler equations (Newton’s laws without friction for the con-
tinuum)

ρt + div(ρu) = 0,

(ρui)t + div(uiu + pei) = 0, (18)

and follow our usual procedure for linearization: Set ρ =
ρ0+δρ̂, u = (u1, u2, u3) = u0+δû = δû because we linearize
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around the constant density ρ = ρ0 and constant velocity
u0 = 0. Plug (substitute) this into the equations, Taylor
expand the pressure, and throw away every term with a
power δ2 or higher. Plugging in we obtain:

(ρ0 + δρ̂)t + div([ρ0 + δρ̂] δû) = 0,

([ρ0 + δρ̂] δûi)t + div(ûiδ
2u + p(ρ0 + δρ̂)ei) = 0.

Discarding the zero derivatives and obvious O(δ2) terms
gives

δρ̂t + δdiv(ρ0û) = 0,

δρ0(ûi)t + div(p(ρ0 + δρ̂)ei) = 0.

Taylor expanding p gives

p(ρ0 + δρ̂) = p(ρ0) + δp′(ρ0)ρ̂+O(δ2),

so plugging this in, throwing away the O(δ2) terms, and
dividing by δ gives the linearized equations

ρ̂t + ρ0 div (û) = 0,

ρ0(ûi)t + p′(ρ0) div (ρ̂ei) = 0.

Now

div (ρ̂ei) =
∂ρ̂

∂xi
,

so the three equations

ρ0(ûi)t + p′(ρ0) div (ρ̂ei) = 0

for i = 1, 2, 3 are equivalent to the single vector equation

ρ0ût + p′(ρ0)∇ ρ̂ = 0.

Thus our linearized equations are

ρ̂t + ρ0 div (û) = 0, (19)

ρ0ût + p′(ρ0)∇ ρ̂ = 0. (20)
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To derive the wave equation from these, take the time de-
rivative of the first equation (21), and the divergence of the
second equation (22), and use div∇ = ∆ to obtain

ρ̂tt + ρ0 div (ût) = 0, (21)

ρ0div (ût) + p′(ρ0) ∆ ρ̂ = 0. (22)

Subtracting the two equation we obtain the second order
linearized equation

ρ̂tt − p′(ρ0) ∆ ρ̂ = 0. (23)

Conclude: When we linearize the 3-dimensional compress-
ible Euler equations around the constant state solution cor-
responding to still air u = 0 at constant density ρ0, we
obtain the 3-dimensional wave equation with sound speed
c =

√
p′(ρ). Since the still air has no preferred direction,

from the physics we conclude that the wave equation in
three dimensions must be the equation that propagates ev-
erything at the same speed c in every direction! Said differ-
ently, being linear, the solutions of the wave equation must
be the superposition of waves moving at speed c in all the
different directions. This can be proven mathematically in
a more advanced class on PDE’s.

7. Albert Einstein’s Discovery of Special
Relativity by means of the Wave Equation.

• In the last section we linearized the compressible Eu-
ler equations about the fixed background solution ρ = ρ0,
u = u0 = 0, and found that the linearized equations, the
equations that describe small perturbations ρ̂(x, t) from the
constant state ρ0 according to ρ(x, t) = ρ0 + δρ̂(x, t), solve
the wave equation

ρ̂tt − c2ρ̂xx = 0. (24)

In particular, if ρ̂ solves (24), then so does

ρ(x, t) = ρ0 + δρ̂(x, t).
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The wave equation, then, describes weak sound waves that
propagate down a 1-dimension shock tube, and is the start-
ing point for the modern theory of music, explaining the
superposition of sound waves and the consequent theory
of harmonics. The wave equation tells us that small am-
plitude sound waves moving down the shock tube solve the
wave equation, and hence always consist of a left going wave
f(x + ct) superimposed with a right going wave g(x− ct).
Indeed, we showed that every solution ρ(x, t) of the wave
equation decomposes into

ρ(x, t) = f(x+ ct) + g(x− ct).

Because the wave equation is linear and homogeneous, the
right and left going waves can be further decomposed into
the harmonic oscillations that compose the wave by super-
position.

Most important in obtaining the wave equation by lineariz-
ing about the constant state was the assumption that the
velocity u0 = 0. This imposes the condition that the ob-
server who sees the perturbations described by the wave
equation, be fixed with respect to the rest frame of the
fluid. That is, if we were to linearize about the constant
state ρ = ρ0, u = u0 6= 0, so that the constant density ρ0 is
moving down the shock tube at velocity u0, then it would
be the same as if the observer were moving along the shock
tube at speed −u0, and the fluid were fixed. Thus we could
ask, would be get the wave equation if the observer were
moving with a velocity v = −u0 with respect to the fluid?

But we can know immediately without calculation that the
answer must surely be no! The moving observer can never
get the wave equation as description of the linearized waves
moving down the tube unless u0 = 0. Indeed, the wave
equation says there are waves moving in both directions
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at speed c, so if the wave equation describes the waves in
the rest frame of the fluid, then the moving observer, say
moving to the right, will be speeding toward the right going
waves and speeding away from the left going waves, so the
right and left going waves cannot be moving at the same
speed according to the moving observer.

Conclude: Only the observer fixed with respect to the
medium of propagation will see the linearized waves de-
scribed by the wave equation.

We can see this mathematically by trying to linearize the
compressible Euler equations (13),(14) about the constant
state ρ = ρ0, u = u0 6= 0. Following our procedure, let
ρ(x, t) = ρ0 + δρ̂(x, t), u(x, t) = u0 + δû(x, t), plug these
into equations (13),(14), expand, throw away all terms of
order δ2, divide by δ, and obtain two linear equations for
the perturbations ρ̂ and û. Since we only want the lin-
earized equation in ρ, lets use the trick of differentiating
(13) with respect to x and (14) with respect to t at the
start, substitute the expression for (ρu)xt from the second
equation into the first to obtain the exact Euler equation

ρtt = (ρu2 + p)xx. (25)

Now linearize (25) by substituting ρ(x, t) = ρ0 + δρ̂(x, t),
u(x, t) = u0 + δû(x, t), expand, and throw away terms sec-
ond order in δ. To make the algebra transparent, multiply
out the first term on the right hand side of (25) and collect
the O(δ2) as follows:{

ρu2
}
xx

=
{

(ρ0 + δρ̂)(u0 + δû)2
}
xx

=
{

(ρ0 + δρ̂)(u2
0 + 2u0δû) +O(δ2))

}
xx

=
{

(ρ0u
2
0 + δu2

0ρ̂+ 2ρ0u0δû+O(δ2)
}
xx

= δu2
0ρ̂xx + 2ρ0u0δûxx +O(δ2).
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For the second term on the right hand side of (25), Taylor
expand the pressure:

p(ρ0 + δρ̂)xx =
(
p(ρ0) + δp′(ρ0)ρ̂+O(δ2)

)
xx

= δp′(ρ0)ρ̂xx +O(δ2).

Thus our linearization procedure of substituting ρ(x, t) =
ρ0 + δρ̂(x, t) and u(x, t) = u0 + δû(x, t) into (25), using
our expressions for the two terms on the right hand side,
dropping all O(δ2) terms, and dividing by δ, leads to the
linearized equation for the rest point ρ = ρ0, u = u0:

ρ̂tt = 2ρ0u0ûxx +
(
u2

0 + p′(ρ0)
)
ρ̂xx. (26)

Now this is not an equation in ρ̂ alone due to the presence
of the ûxx term. To eliminate this, linearize (13) to obtain

ρ̂t + u0ρ̂x + ρ0ûx = 0,

so differentiating with respect to x and solving for ûxx gives

ûxx = − ρ̂tx + u0ρ̂xx
ρ0

,

an expression for ûxx in terms of known constants ρ0, u0

and derivatives of ρ̂. Substituting this into (26) gives

ρ̂tt = −2ρ0u0
ρ̂tx + u0ρ̂xx

ρ0
+
(
u2

0 + p′(ρ0)
)
ρ̂xx

= (−u2
0 + p′(ρ0))ρ̂xx − 2u0ρ̂tx, (27)

yielding the more complicated wave equation

ρ̂tt − (p′(ρ0)− u2
0)ρ̂xx + 2u0ρ̂tx = 0. (28)

Equation (28) describes the linearized waves when the still
air of constant density ρ0 is moving by the observer at a
constant velocity u0. When u0 = 0, we recover the wave
equation. Thus the mathematics confirms what we knew
from the physics must be true: linearizing the equation
about the constant state ρ0, u0, does not produce the wave
equation when u0 6= 0!
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Conclude: The linearized waves that propagate according
to the wave equation as recorded by an observer fixed with
respect to the rest frame of the fluid, turn out to solve the
more complicated equation (28) in the frame of the moving
observer.

Actually, we can obtain this result more directly by just
taking the wave equation

ρ̂tt − p′(ρ0)ρ̂xx = 0,

correct in the frame moving with the fluid, and see what
this equation transforms over to in the frame of the moving
observer. To be specific, lets assume (without loss of gen-
erality) that u0 < 0, so the observer see’s the fluid going by
to the left at the constant velocity u0 < 0. It follows that
a different observer, moving with the fluid, would see the
original observer moving to the right at speed v = −u0 > 0.
Now let x denote coordinate distance along the shock tube
in the frame fixed with the fluid medium (the unbarred ob-
server), and let x̄ denote the coordinate distance measured
along the shock tube by the (barred) observer moving at
velocity v to the right relative to the fixed unbarred ob-
server, and lets assume that x-axis and x̄-axis coincide at
t = 0. Then the fluid at position x̄ = x at t = 0, will be at
x̄ = x− vt at time t. It follows that

x̄ = x− vt,
must give the x̄-coordinate in terms of the x-coordinate at
time t, (see Figure 4).

Assuming then that ρ(x, t) = ρ0 + δρ̂(x, t) represents the
density that solves the wave equation in the frame of the
fluid (in (x, t)-coordinates),

ρ̂tt − p′(ρ0)ρ̂xx = 0, (29)
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t

x̄
x̄ = xx̄ = x � vt

fluid velocity = �v

Shock Tube

x
=

const.

Shock Tube

Figure 4. The coordinate x stays constant along the
moving fluid particles.

the solution in (x̄, t) coordinates would be

ρ̄(x̄, t) = ρ̄(x− vt, t) = ρ(x, t).

That is, the corrections in the barred frame are described
by a different function ρ̄ of (x̄, t) than ρ̂ is of (x, t) (so we
put a bar over it), but it should be the same function if
we substitute x̄ = x− vt. We find the equation for ρ̄(x, t),
then, by substituting ρ̄(x − vt, t) for ρ(x, t) in (29). Using
this together with the chain rule we can calculate

ρt = ρ̄t − vρ̄x̄; ρtt = ρ̄tt − 2vρ̄x̄t + v2ρ̄x̄x̄,

and

ρx = ρ̄x̄; ρxx = ρ̄x̄x̄.

Thus we have

0 = ρtt − p′(ρ0)ρxx = ρ̄tt − 2vρ̄x̄t + v2ρ̄x̄x̄ − p′(ρ0)ρ̄x̄x̄,

so the right hand side gives the equation ρ̄ satisfies,

ρ̄tt − (p′(ρ0)− v2)ρx̄x̄ − 2vρ̄x̄t = 0. (30)
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Comparing this with (28) (replacing x̄ with x because x̄
is now the frame in which the fluid moves) using that
v = −u0, we see equation (30) is exactly the equation
we obtained by linearizing about the constant state ρ0,
u0 6= 0—and its not the wave equation!

Conclude: The wave equation describes linearized waves
moving in two directions at the same speed through a medium,
but it is only correct in the frame fixed with the medium.

• We now are in a position to understand how Albert Ein-
stein used the wave equation to discover the theory of spe-
cial relativity and the relativity of time.

The story starts back in the year 1861 when J.C. Maxwell
published On physical lines of force. In this paper he pro-
posed that light consisted of the propagation of electro-
magnetic waves. The route by which he came to this con-
clusion is as follows: He started with Faraday’s proposal
that electric and magnetic fields were described by vector
fields E = (E1, E2, E3) and B = (B1, B2, B3) that varied in
space and time. For example, the electric field is the force
per charge exerted on a particle at a point in the field, a
vector because the force has a magnitude and a direction.
Maxwell then derived the partial differential equations that
describe the time evolution of these fields. Three of the
equations he obtained from the physical laws that Faraday
had discovered earlier, but to close the equations, (some-
thing like we closed the Euler equation by setting p = p(ρ)),
he guessed and proposed a fourth equation, and the result-
ing four equations are named Maxwell’s Equations.

Now this is when it gets really interesting. As a conse-
quence of his equations, (for our purposes here the exact
form of Maxwell’s equations is not important), each com-
ponent of E and B solves the wave equation! That is, in
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one dimension, each component, say E, evolves in time ac-
cording to the equation

Ett − ε0µ0Exx = 0.

That is, each component solves the wave equation with
speed

c =
√
ε0µ0.

Thus Maxwell’s equations imply waves of electromagnetic
fields propagate in both directions at speed c =

√
ε0µ0.

Now for the purposes here it also doesn’t matter exactly
what the constants ε0 and µ0 measure, the important point
is that they are physical constants, (called the permittivity
and permeability of empty space), derivable from experi-
ments using only magnets, currents and charges. But when
Maxwell calculated c using the best values he could find for
ε0 and µ0 at that time, he discovered that

√
ε0µ0 ≈ c = speed of light.

This then led Maxwell to the bold proposal that light con-
sisted of the propagation of electromagnetic fields. This
proposal remained controversial for some 26 years, until
Heinrich Hertz proved Maxwell right in 1887 by generating
electromagnetic radiation from spinning magnets.

But now still, there is a real problem. As we saw above, the
wave equation is only valid in the frame fixed with respect
to the medium through which the waves are propagating.
But in Maxwell’s derivation, no medium was ever assumed
at the start. So it was conjectured that there must be some
mysterious ether, filling all of space, and this invisible ether
provided the medium, like the density in the compressible
Euler equations, through which the electromagnetic waves
were propagating.
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Enter now Albert Einstein in 1905. While working in the
patent office in Bern Switzerland, Einstein’s earlier mus-
ings about the nature of time developed into the idea that
perhaps the wave equation was correct in every inertial co-
ordinate system. That is, he proposed that the inertial
frames in which the laws of physics take the same form,
were not related by x̄ = x − vt as Newton proposed, but
rather there was a change in time as well, and it all worked
out to make the wave equation valid for every inertial ob-
server. If so, then an observer moving with velocity v would
see the electromagnetic waves moving to the right and to
the left at the speed of light c, just like every other ob-
server. If so, then the wave equation Maxwell found was
resonantly tuned, so to speak, with the way space and time
were entangled. Turning this around, Einstein realized that
the wave equation was then a doorway to the discovery of
a mysterious and surprising connection between time and
space. But the big question remained: How do you de-
rive the transformation between the inertial frames from
the starting principle that the wave equation is correct in
every frame? We now relive Einstein’s discovery by retrac-
ing his steps to one of the greatest discoveries of all time.
Here is the shortest route to the answer.

To start, instead of the Galilean transformation x = x̄+vt,
consider the transformation(

t
x

)
=

(
cosh θ sinh θ
sinh θ cosh θ

)(
t̄
x̄

)
, (31)

where θ is a constant to be determined later. Recall that

cosh θ =
eθ + e−θ

2
, sinh θ =

eθ − e−θ
2

constructed so that

cosh2 θ − sinh2 θ = 1, (32)
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as is easily verified. So assume that E(t, x) solves the wave
equation in the inertial coordinate frame (t, x). (We always
put t first in relativity!) As a preliminary, note first that
we can without loss of generality assume c = 1. That is,
if we change units of time so τ = ct, (this gives time the
dimensions of length), then

Et = Eτ
dτ

dt
= cEτ , Ett = c2Eττ ,

so

Eττ − Exx = 0,

thereby converting c = 1 in the new units for time. So
assuming c = 1 and writing the function E(t, x) in terms
of (t̄, x̄) gives

E(t, x) = E(t̄ cosh θ + x̄ sinh θ, t̄ sinh θ + x̄ cosh θ) ≡ Ē(t̄, x̄).

That is, the solution in the barred frame should be the
solution from the unbarred frame with the values for (t, x)
substituted by their expressions in terms of (t̄, x̄). We now
find the equation that Ē satisfies in (t̄, x̄)-coordinates. By
the chain rule for partial derivatives,

Ēt̄ = Et cosh θ + Ex sinh θ,

Ēt̄t̄ = Ett cosh2 θ + 2Ext sinh θ cosh θ + Exx sinh2 θ,

and similarly,

Ēx̄ = Et sinh θ + Ex cosh θ,

Ēx̄x̄ = Ett sinh2 θ + 2Etx cosh θ sinh θ + Exx cosh2 θ,

from which we conclude that in (t̄, x̄)-coordinates, E satis-
fies

Ēt̄t̄ − Ēx̄x̄ = Ett

(
cosh2 θ − sinh2 θ

)
− Exx

(
cosh2 θ − sinh2 θ

)
= Ett − Exx = 0. (33)

That is, Ē satisfies the wave equation in transformed coor-
dinates (t̄, r̄) if and only if E satisfies the wave equation in
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(t, x)-coordinates. Here, again, Ē(t̄, x̄) is just the function
you get by substituting into E(t, x) the values of (t, x) in
terms of (t̄, x̄) as given in (31). 2

Conclude: The coordinate changes (31), based on hyper-
bolic sines and cosines, are the sought after changes in x
and t that preserve the wave equation. It remains only then
to interpret the hyperbolic angle θ physically.

So consider finally the coordinate change (31) multiplied
out as (c.f. Figure 5),

t = t̄ cosh θ + x̄ sinh θ (34)

x = t̄ sinh θ + x̄ cosh θ. (35)

t

x1

1

·
·����������!

(sinh ✓, cosh ✓)

����������!
(cosh ✓, sinh ✓)

x̄

t̄

cosh2 ✓ � sinh2 ✓ = 1
dx

dt
= v

Figure 5. The (t̄, x̄) Coordinate System.

2Note that if you wondered how you might guess the transformation (31) in the
first place, consider that if you assumed an arbitrary matrix transformation of the
form (

t
x

)
=

(
a b
c d

)(
t̄
x̄

)
at the start, you would be led at the step (33) to the requirement that b = c,
a2 − b2 = 1, d2 − c2 = 1, which would lead you directly to hyperbolic sines and
cosines by the identity cosh2 θ − sinh2 θ = 1.
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Setting x̄ = 0 we see that the observer fixed at the origin
in the barred coordinate system moves along the curve

t = t̄ cosh θ,

x = t̄ sinh θ,

which we can write in vector form as(
t
x

)
=

(
cosh θ
sinh θ

)
t̄. (36)

That is, he moves along the curve tangent to the vector
(cosh θ, sinh θ) in the (t, x)-plane as his time t̄ increases.
The velocity of the barred observer as measured in the
frame of the unbarred observer is thus the change in x
divided by the change in t along the observer’s direction
vector (cosh θ, sinh θ),

v =
sinh θ

cosh θ
= tanh θ.

We can now derive the Lorentz transformations of special
relativity as Einstein did by writing the coordinate change
(34), (35) in terms of v instead of θ. Dividing the funda-
mental identity cosh2 θ − sinh2 θ = 1 by cosh2 θ yields the
identity

1− tanh2 θ =
1

cosh θ
,

which by v = tanh θ gives

cosh θ =
1√

1− v2
.

Then also

sinh θ =
√

cosh2 θ − 1 =
v√

1− v2
.
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Substituting these into (35) gives the final form of the
Lorentz transformations, the boosts, which are the foun-
dation of Einstein’s theory of special relativity,

t =
1√

1− v2
t̄+

v√
1− v2

x̄ (37)

x =
v√

1− v2
t̄+

1√
1− v2

x̄. (38)

Putting the units of c=speed of light back in would give the
spacetime transformations

t =
1√

1−
(
v
c

)2
t̄+

(
v
c

)√
1−

(
v
c

)2
x̄ (39)

x =

(
v
c

)√
1−

(
v
c

)2
t̄+

1√
1−

(
v
c

)2
x̄. (40)

Conclude: To resolve the problem in Maxwell’s theory
that the wave equation, and hence the speed of light bound,
could only hold in the frame fixed with the medium through
which the wave propagated (called the ether, thought to
be like the still fluid ρ0 in sound wave propagation), Ein-
stein conjectured that there was no such ether medium, and
the wave equation was correct and applied in every inertial
frame. This meant that the inertial frames themselves had
to be modified to make this true. The resulting coordinate
changes that preserve the wave equation have been derived,
as Einstein derived them, in (39), (40). Einstein then pro-
posed that the time t̄ in the barred frame really was the
time at which the barred observer was aging, not the time
t of any other rest frame. In fact, he called it the theory
of relativity, because there is no universal rest frame, only
frames at rest relative to the observer. By this line of think-
ing Einstein was led to propose that time, like distance, is
not universal, but is rather a metrical quantity that elapses
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according to the length of the curve traversed in spacetime.
The ultimate prediction is that a moving observer will age
more slowly than his/her stationary brother, and if the ob-
server goes off near the speed of light and then returns,
he/she can return moments later to meet his/her brother’s
great, great, great, great, grandchildren. All of this, forever
more, is based on the PDE which D’Alambert proposed in
1748 to describe the motions of a vibrating string, the wave
equation.

Note finally, that at the level of the fundamental equations,
the wave equation is not an approximate equation for wave
propagation in electromagnetism as it is for the compress-
ible Euler equations, it starts out linear—electromagnetic
radiation propagates exactly according to the linear, ho-
mogeneous equation Ett − c2Exx = 0. This applies at the
fundamental level of Maxwell’s equations, “fundamental”
meaning at the starting point of the theory, without includ-
ing effects from other sources. For sound waves, the fun-
damental equations are the (fiercely) nonlinear compress-
ible Euler equations, and the theory of sound/music based
on the wave equation emerges in the weak signal limit by
linearization—for light waves, the fundamental equations
are linear at the start! Thus for electromagnetic radia-
tion, the principle of superposition holds exactly. This then
explains why we can fill the airways with so many trans-
missions of cell phone signals all at once, and they don’t
interfere with each other. Indeed, by the principle of su-
perposition, (which holds because the wave equation is lin-
ear and homogeneous), we can add up all the signals at
one end, propagate them through the airways by the wave
equation, and then pull them apart at the other end to re-
cover the exact signal sent out at the start. In contrast,
for sound waves moving through the air, the wave equation
only holds approximately for weak signals, and for large
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amplitude signals, or after a long time, the nonlinearities
of the compressible Euler equations take over, and shock
wave dissipation attenuates, and eventually destroys the
signal.
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