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1. Introduction

In the last section we showed that the nonlinear wave equa-
tion admits nonlinear elementary waves that propagate to
the left and to the right. But, because the equations are
nonlinear, different solutions cannot be superimposed like
solutions of the linear wave equation. That is, when the
sound speed c = c(v) depends on the solution v, general
nonlinear solutions do not decompose exactly into a sum of
left and right going waves as do solutions of the linear wave
equation, when c is constant. We ended the last section by
describing a sort of nonlinear superposition of left and right
going waves for the nonlinear wave equation, based on Rie-
mann invariants: functions r and s of the unknowns (u, v)
that are constant along characteristic curves, the path of
sound waves ẋ = c(v) in the (x, t)-plane. By this we ex-
plained the propagation of left and right going nonlinear
waves along the characteristics ds/dt = ±c, when c de-
pends on the solution.

In this section we describe a very general method for con-
structing the left and right going simple waves based on
eigenvalues and eigenvectors that decompose the solution,
something like the eigensolutions of linear constant coeffi-
cient ODE’s. We apply the method to the linear and non-
linear wave equations and re-derive the simple left and right
going wave from this eigenvalue point of view. This more
general framework extends essentially unchanged to very
general nonlinear systems of conservation laws. As a final
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payoff, we will find the simple waves for the compressible
Euler equations as originally given in physical space,

ρt + (ρu)x = 0, (1)

(ρu)t + (ρu2 + p(ρ))x = 0, (2)

and use them to calculate the speed of sound for the fully
nonlinear equations. Recall that we got the speed of sound
c =

√
p′(ρ) for the linearized Euler equations, and we got

the speed of sound c =
√
−p′(v) for the p-system in La-

grangian coordinates, (that’s the speed dξ/dt relative to a
transformed spatial coordinate ξ), but we have not yet de-
rived the speed of sound directly from (1) and (2). We end
the section by giving sharp conditions for shock wave for-
mation in simple waves, thereby demonstrating shock wave
formation in the nonlinear wave equation and the compress-
ible Euler equations of gas dynamics.

• Recall, then, that the wave equation wtt− c2wxx = 0 can
be written as a first order system,

vt − ux = 0, (3)

ut − c2vx = 0, (4)

using wt = u, wx = v. This is valid for both the linear wave
equation c = const, as well as the nonlinear wave equation
c = c(v), and so applies to the p-system of gas dynamics
when v = 1/ρ and u is the original velocity. To discover
the simple waves by eigenvalue methods, write (3), (4) as
a first order matrix system,(

v
u

)
t

+

(
0 −1
−c2 0

)(
v
u

)
x

= 0,

of general form

Ut + A(U)Ux = 0, (5)
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where

U =

(
v
u

)
,

and A is the 2× 2 matrix

A(U) =

(
0 −1
−c2 0

)
,

depending on U through the sound speed c(v).

• The first order nonlinear PDE (5) has a structure com-
parable to a constant coefficient linear system of ODE’s

d

dt

(
x
y

)
=

(
a b
c d

)(
x
y

)
,

of form

ẏ = Ay

where

y =

(
x
y

)
, A =

(
a b
c d

)
,

and for which a basis of solutions can be determined by the
eigensolutions (

x(t)
y(t)

)
=

(
r1
r2

)
eλt

where

(
λ,R =

(
r1
r2

))
is any eigenpair satisfying

AR = λR.

That is,

ẏ = λReλt = AReλt = Ay.

We now develop an analogous eigenvalue method for (5),
the big difference being that our new methods will apply
not to linear, but to fully nonlinear systems, and the sys-
tems will be PDE’s, not ODE’s.
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2. Eigenfamilies of Simple Waves

• So consider a general first order nonlinear system of PDE’s
of the form (5),

Ut + A(U)Ux = 0,

and let (λ,R) be an eigenpair for A satisfying

AR = λR,

where R 6= 0. Now since the 2 × 2 matrix A = A(U)
depends on the unknowns U = (v, u), it follows that both
λ and R must depend on U as well,

λ = λ(U) ∈ R, R = R(U) =

(
r1(U)
r2(U)

)
,

so that

A(U)R(U) = λ(U)R(U),

holds for each U in some set U ∈ U , the set of values of the
unknowns U in which we look for solutions. Scalars λ and
vectors R that depend on U are called scalar and vector
fields, respectively.

Assume now that both λ(U) and R(U) are real valued, and
depend smoothly on U , so that we can take derivatives
of λ and R with respect to U as needed. Our goal is to
make precise, and then verify, the following principle for
constructing the simple wave solutions of system (5) asso-
ciated with the λ-characteristic family:

The Simple-Wave Principle: A λ-simple wave that solves
(5) is constructed from states on an integral curve of the
eigenvector R(U) by asking that each state U on the in-
tegral curve propagate in the (x, t)-plane at its eigenspeed
ẋ = λ(U).
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In particular, the state U , and consequently the speed λ(U),
remains constant along the λ-characteristic (x(t), t),

ẋ = λ(U).

Conclude that for a simple wave, the characteristic curve
of speed ẋ = λ(U) is a straight line of speed λ in the (x, t)-
plane along which the solution is constant.

The Simple-Wave Principle provides a general version of
the principle we already know for the Burgers equation ut+
uux = 0. That is, for Burgers equation, the eigenvalue is
λ = u, the eigenvector is 1, the integral curve is the u-axis,
and the principle says that states u propagate as constant
along lines of speed λ(u) = u, which we already know is
correct.

We first define an integral curve of R(U).

Definition 1. An integral curve of the vector field R(U)
is a curve R in the (u, v) plane with tangent vector R at
each point; i.e., a curve whose parameterization U(ξ) =
(v(ξ), u(ξ)) satisfies

U ′(ξ) = R(U(ξ)),

at every point. Indeed, we know a unique such curve always
exist through each point U0 because it is the unique solution
of the initial value problem

U ′ = R(U),

U(0) = U0, (6)

an autonomous ODE in the two unknowns U = (v, u).
Note that changing the parameterization of the integral
curve merely changes the length of the eigenvector R, and
hence eigenvectors are nonzero, but otherwise independent
of length. So we can without loss of generality choose any
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parameterization, and in particular, if λ changes monoton-
ically along the integral curve R, then we can take ξ = λ as
the parameter. We now take ξ = λ as the parameterization
of the integral curve of R, but this requires the assumption
that λ change monotonically along R. We make this a def-
inition, (first due to Peter Lax in about 1960).

Definition 2. We say the eigenfield (λ,R) is genuinely
nonlinear if λ changes monotonically along the integral curve
R, so that R can be parameterized as U(λ). This is equiv-
alent to requiring that the directional derivative of λ in the
direction of R be everywhere nonzero,

∇λ ·R 6= 0. (7)

As we will see, the condition of genuine nonlinearity applies
and is correct for the characteristic fields of the nonlinear
wave equation and the p-system, as well as the original
2 × 2 compressible Euler equations, but it does not apply
to the characteristic fields of the wave equation. (Nor does
it apply to one of the characteristic fields of the compress-
ible Euler equations that emerges when we incorporate the
energy equation, not considered here.) To cover the case
of these additional fields, we make the following definition,
also due to Peter Lax:

Definition 3. We say the eigenfield (λ,R) is linearly de-
generate if λ is constant along the integral curve R. This is
the case when the directional derivative of λ in the direction
of R is identically zero,

∇λ ·R ≡ 0. (8)

We now verify the Simple-Wave Principle for both cases
(7) and (8).

• Assume first the case that an eigenfield (λ,R) of (5) is
genuinely nonlinear in the sense of (7), so that λ = ξ and
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U(λ) can be taken as the parameterization of the integral
curve R. According to the Simple-Wave Principle, if we
make each state U ∈ R propagate along a straight line
whose speed is the eigenvalue associated with that state,

dx

dt
= λ(U),

then we have a simple solution of the nonlinear equations
associated with the λ-eigenvalue. To see this, assume U(λ)
smoothly parameterizes the states on the integral curve R
by it’s eigenvalue λ(U) at that state. We look for λ(x, t)
as a function of (x, t) such that U(λ(x, t)) solves (5). But
according to the principle, the state U(λ) should propagate
as constant along straight lines of speed ẋ = λ, so λ(x, t)
should also propagate as constant along lines of speed λ.
But this is just our condition that λ solve the Burgers equa-
tion! We can now put it all together.

Assume λ(x, t) is a smooth solution of Burgers equation

λt + λλx = 0.

We prove U(λ(x, t)) solves (5). But

∂

∂t
U(λ(x, t)) = U ′(λ)λt,

∂

∂x
U(λ(x, t)) = U ′(λ)λx, (9)

so

Ut + AUx = U ′(λ)λt + AU ′(λ)λx

= U ′(λ)λt + λU ′(λ)λx

= U ′(λ) {λt + λλx} = 0,

because U ′(λ) = R is the eigenvector tangent to R at U(λ),
and λ(x, t) is assumed to solve Burgers equation λt+λλx =
0.
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Conclude that when (λ,R) is genuinely nonlinear so λ can
be taken as a parameterization of the integral curve of R,
a λ-simple wave is created by making states on the integral
curve of an eigenvector propagate as constant along lines
in the (x, t)-plane moving at the speed equal to the eigen-
value at that state–and asking the eigenvalue propagate as
constant along lines of speed λ means λ(x, t) solves Burgers
equation.

• Consider now the second case when the eigen-field (λ,R)
of (5) is linearly degenerate in the sense of (8), the case
when λ is constant along the integral curve U(ξ) of R. In
this case assume ξ(x, t) solves the linear transport equation

ξt + λξx = 0

expressing that ξ propagates as constant along lines of (con-
stant) speed λ. In this case,

∂

∂t
U(ξ(x, t)) = U ′(ξ)ξt,

∂

∂x
U(ξ(x, t)) = U ′(ξ)ξx, (10)

so

Ut + AUx = U ′(ξ)ξt + AU ′(ξ)ξx
= U ′(ξ)ξt + λU ′(ξ)ξx
= U ′(ξ) {ξt + λξx} = 0,

because U ′(ξ) = R is the eigenvector tangent to R at U(ξ),
and ξ(x, t) solves the transport equation ξt + λξx = 0.

Conclude: Stated simply: A λ-simple wave is created by
making states on the integral curve of an eigenvector prop-
agate as constant along lines in the (x, t)-plane moving at
the speed equal to the eigenvalue at that state. The Simple-
Wave Principle applies to genuinely nonlinear and linearly
degenerate characteristic fields, and in fact can be extended
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to all cases in between. All we required was that the eigen-
value λ be real valued. In fact, we never had to assume
the matrix was 2× 2 either. The Simple-Wave Principle is
valid for any n × n system of form (5) with n unknowns
U = (u1, ..., un) an n×n matrix A. All we needed was that
λ(U) be real valued and A(U)R(U) = λ(U)R(U) for each
U , and from this it follows that the Simple-Wave Principle
applies.

3. Examples of Simple Waves

We now construct the families of simple waves for the linear
and nonlinear wave equations, and then for the 2× 2 com-
pressible Euler equations expressed in the original Eulerian
coordinates. The latter gives us the first calculation of the
speed of sound for the fully nonlinear equations of gas dy-
namics.

Consider first the linear and nonlinear wave equation writ-
ten as the first order system(

v
u

)
t

+

(
0 −1
−c2 0

)(
v
u

)
x

= 0,

of the form

Ut + AUx = 0.

This is linear when c = const and nonlinear when c = c(v).
In either case, to find the eigenvalues of A take

det

(
−λ −1
−c2 −λ

)
= λ2 − c2 = 0,

so as we expected, whether linear or nonlinear, the eigen-
values are the wave speeds

λ± = ±c.
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To find the associated eigenvectors, set r1 = 1 (eigenvectors
can be rescaled to any length), and solve(

∓c −1
−c2 ∓c

)(
1
r2

)
= 0,

which gives
r2 = ∓c.

Thus the two eigenfamilies

(−c, R−), (c, R+)

are

λ− ≡ λ1 = −c, R− ≡ R1 =

(
1
c

)
,

and

λ+ ≡ λ2 = +c, R+ ≡ R2 =

(
1
−c

)
.

The difference between the linear wave equation and the
nonlinear wave equation is whether c is constant (linear) or
c = c(v) depends on v (nonlinear). In either case, we have:

Lemma 4. The integral curves of the eigenvectors R1 ≡
R1(U) are the curves in the (v, u)-plane along which the
opposite Riemann invariant s(u, v) = const, and the inte-
gral curves of the eigenvectors R2 ≡ R2(U) are the curves
in the (v, u)-plane along which the opposite Riemann in-
variant r(u, v) = const, where (as in Section 7,)

r(v, u) = u+ h(v) (1− Riemann invariant) (11)

s(v, u) = u− h(v) (2− Riemann invariant) (12)

where

h′(v) = c(v). (13)

Proof: Consider first the linear wave equation, c = constant,
λ± = ±c = const. and R± = (1,∓c) = const. For the
integral curves of R1 = (1, c) to be the curves s(u, v) ≡
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u − cv = const, we need only verify R1 is orthogonal to
∇s in the (v, u)-plane. But (recall ∇s = (∂s/∂v, ∂s/∂u)
because U = (v, u)),

∇s ·R1 = ∇(u− cv) · (1, c)
= (−c, 1) · (1, c) = 0.

Similarly

∇r ·R2 = ∇(u+ cv) · (1,−c)
= (c, 1) · (1,−c) = 0.

It follows by the Simple-Wave Principle that the states in a
left going 1-simple wave lie at s = const. and propagate at
speed λ1 = −c, while the states on a right going 2-simple
wave lie at r = const and propagate at speed λ2 = +c,
confirming what we established in the last section by the
Riemann invariants directly. In the linear case, the wave
speeds and eigenvectors are constant, and the Riemann in-
variants are straight lines in the (v, u)-plane.

Consider next the nonlinear wave equation, so c = c(v),
λ± = ±c(v) and R± = (1,∓c) all depend on (v, u). For the
integral curves of R1 = (1, c(v)) to be the curves s(u, v) ≡
u − h(v) = const, we need only verify R1 is orthogonal to
∇s in the (v, u)-plane. But

∇s ·R1 = ∇(u− h(v)) · (1, c(v))

= (−h′(v), 1) · (1, c(v)) = 0,

because h′(v) = c(v). Similarly

∇r ·R2 = ∇(u+ h(v)) · (1,−c(v))

= (h′(v), 1) · (1,−c(v)) = 0.

It follows by the Simple-Wave Principle that the states in
a left going 1-simple wave lie at s = const. and propagate
at speed λ1 = −c, while the states on a right going 2-
simple wave lie at r = const and propagate at speed λ2 =
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+c, again confirming the Riemann invariant analysis in the
last section. In the nonlinear case, the wave speeds and
eigenvectors depend on the solution, but like the linear case,
the Riemann invariants define known curves in the (v, u)-
plane which describe the simple wave solutions of the p-
system.

Consider for example the case of the isothermal p-system

vt − ux = 0,

ut + p(v)x = 0, (14)

the case when

p = σ2/v,

so

c(v) =
√
−p′(v) =

σ

v
,

and

h(v) = σ ln(v).

In this case, the Riemann invariants are given by

r(u, v) = u+ σ ln(v),

s(u, v) = u− σ ln(v).

The integral curves R1 and R2 for the case p = σ2ρ are
diagrammed in Figure 1. The arrows point in the direction
of increasing λ. The 2- and 1-simple waves corresponding
to the states in bold face in Figure 1, are diagrammed in
Figures 2 and 3.
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u

v

h(v) = σ ln(v)

u = σ ln(v) + const.

u = −σ ln(v) + const.

r = const.

s = con
st.

R1

R2

UL

UR

UL

UR

Figure 1: R1 and R2 for the p-system when p = σ2ρ.

r = u + σ ln(v)

s = u − σ ln(v)

u

v

h(v) = σ ln(v)

u = σ ln(v) + const.

u = −σ ln(v) + const.

r = const.

s = con
st.

R1

R2

UL

UR

UL

UR

Figure 1: R1 and R2 for the p-system when p = σ2ρ.

r = u + σ ln(v)

s = u − σ ln(v)
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x

t

s0(x)
sL sR

s=
co

ns
t

r = r0

dx
dt

=
λ 2

(U
L
)

dx

dt
=
λ 2

(U
R
)

Figure 2: The 2-Simple Wave of Figure 1.

x

t

r0(x)
rRrL

r
=

const

s = s0

Figure 3: The 1-Simple Wave of Figure 1.

dx
dt =

λ
1 (U

L )

dx

dt =
λ

1 (U
R )
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• As a final example, we compute the simple waves for the
original compressible Euler equations in Eulerian coordi-
nates (physical space) (1), (2),

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = 0.

The result provides at last the nonlinear speed of sound,
and gives a rather complete description of the simple waves,
that is, the non-interacting sound waves, that propagate
down a 1-dimensional shock tube.

To start, write (1), (2) in matrix form (5) by setting G =
ρu, and get the equivalent system

ρt +Gx = 0, (15)

Gt +

(
G2

ρ
+ p(ρ)

)
x

= 0. (16)

Differentiating the x-derivative in the second equation gives(
G2

ρ
+ p(ρ)

)
x

=
2G

ρ
Gx −

G2

ρ2
ρx + p′(ρ)ρx

= (−u2 + p′(ρ))ρx + 2uGx,

so that the matrix form reads(
ρ
G

)
t

+

(
0 1

−u2 + p′(ρ) 2u

)(
ρ
G

)
x

= 0,

which is now of the desired form

Ut + AUx = 0,

with

U =

(
ρ
G

)
,

and

A =

(
0 1

−u2 + p′(ρ) 2u

)
.
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To find the eigenvalues of A, solve

0 = Det (A− λI) = Det

(
−λ 1

−u2 + p′(ρ) 2u− λ

)
= λ2 − 2uλ+ u2 − p′(ρ) = 0,

yielding
λ± = u± c,

where c is now the Eulerian sound speed

c =
√
p′(ρ).

(Recall that the Lagrangian sound speed was
√
−p′(v) which

differs from this by a factor of ρ!) For the eigenvectors use(
−λ 1

−u2 + p′(ρ) 2u− λ

)(
1
r

)
= 0,

which gives1

r = λ.

Thus the two eigenfamilies

(λ−, R−), (λ+, R+)

are

λ− ≡ λ1 = u− c, R− ≡ R1 =

(
1

u− c

)
,

and

λ+ ≡ λ2 = u+ c, R+ ≡ R2 =

(
1

u+ c

)
.

Keep in mind that the components of vectors R1 and R2,
while expressed in terms of ρ and u, provide values for
directions in the (ρ,G)-plane, not the (ρ, u)-plane, where
G = ρu. To finish the description of the simple waves
for the shock tube problem it remains only to describe the
integral curves R1 and R2. Taking the cue from the p-
system, we show

1Note 2u− λ± = u∓ c = λ∓, and −u2 + p′(ρ) = −(λ−)(λ+).
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Lemma 5. The integral curves of the eigenvectors R1 are
the curves R1 in the (ρ,G)-plane along which the oppo-
site 2-Riemann invariant s(ρ,G) = const, and the inte-
gral curves R2 of the eigenvectors R2 are the curves in the
(ρ,G)-plane along which the opposite 1-Riemann invariant
r(ρ,G) = const, where

r(ρ,G) =
G

ρ
+ h(1/ρ) = u+ h(v), (17)

s(ρ,G) =
G

ρ
− h(1/ρ) = u− h(v), (18)

so that r and s are the Riemann invariants of the p-system
expressed as functions of G and ρ because v = 1/ρ.
Proof: As before, in order for the integral curves of R1 =
(1, u + c(ρ)) to be the curves s(ρ,G) ≡ G/ρ − h(1/ρ) =
const, we need only verify R1 is orthogonal to ∇s. To start
note that

dh

dρ
=
dh

dv

dv

dρ
= −c(ρ)

ρ
= −

√
p′(ρ)

ρ
. (19)

Thus

∇s =

(
∂s

∂ρ
,
∂s

∂G

)
=

(
−G
ρ2

+
c

ρ
,

1

ρ

)
=

1

ρ
(−u+ c, 1)

in the (ρ,G)-plane, because h̄′(ρ) = −c(ρ)/ρ. Using this
we find

∇s ·R1 =
1

ρ
(−u+ c, 1) · (1, u− c) = 0,

as claimed. Similarly,

∇r =

(
∂r

∂ρ
,
∂r

∂G

)
=

(
−G
ρ2
− c, 1

ρ

)
=

1

ρ
(−u− c, 1) ,
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so

∇r ·R2 =
1

ρ
(−u− c, 1) · (1, u+ c) = 0,

as claimed again, and the lemma is verified. �

• Conclude: It follows by the Simple-Wave Principle that
the states in a left going 1-simple wave lie at s = const.
and propagate at speed λ1 = u − c, while the states on a
right going 2-simple wave lie at r = const. and propagate
at speed λ2 = u + c, where r = u + h(1/ρ) and s = u −
h(1/ρ). This is consistent with what we found for the p-
system, but now x is physical distance along the shock tube,
and c is the sound speed relative to the shock tube in real
physical space, (the Eulerian sound speed). Thus, one of
the big payoff’s here is that we have found the true and
exact speed of sound for sound wave propagation down a
shock tube, (something Newton tried and failed to do!).
Namely, the sound waves propagate at eigenspeeds λ± =
u ± c, so the speed of sound, which is the speed over and
above the velocity u of the gase, is

Speed of Sound =
√
p′(ρ).

So again, in this nonlinear case, the wave speeds and eigen-
vectors depend on the solution, but the Riemann invariants
are known curves in the (ρ, u)-plane which describe the sim-
ple wave solutions of the compressible Euler equations in
physical space.

• As an explicit example, consider the case of isothermal
gas dynamics, p = σ2ρ. In this case the sound speed c =√
p′(ρ) = σ is constant, h(1/ρ) = −σ ln ρ, and the simple
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wave solutions of the compressible Euler equations

ρt + (ρu)x = 0, (20)

(ρu)t + (ρu2 + σ2ρ)x = 0, (21)

are completely described by the Riemann invariants

r(ρ, u) = u− σ ln ρ,

s(ρ, u) = u+ σ ln ρ.

u

r = con
st.

s = const.

R1

R2

UL

UR

UL

UR s = u + σ ln(ρ)

r = u − σ ln(ρ)

h(ρ) = σ ln(ρ)u = −σ ln(ρ) + const.

u = σ ln(ρ) + const.

ρ

Figure 4: R1 and R2 for Compressible Euler when p = σ2ρ.

Figure 4 gives a complete description of the simple waves
that propagate down a shock tube as modeled by the non-
linear compressible Euler equations. One can see that Fig-
ure 4 could have been obtained from Figure 1 by simply
replacing the v-axis by the ρ-axis, ρ = 1/v . This is no sur-
prise for we know the p-system describes the same physical
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states as the compressible Euler equation, only the spatial
coordinate is different. The simple waves diagrammed in
Figures 2 and 3 will be qualitatively the same as for the
p-system, but the sound speeds at which constant values of
s and r propagate on 1-simple waves and 2-simple waves,
respectively, will be the Eulerian eigenvalues λ1 = u − c
and λ2 = u+ c.

• Characteristics of Euler: Although the simple waves
for the compressible Euler equations (20), (21) are com-
pletely described by Figure 4, a general solution involves
the interaction of nonlinear waves. For interacting solu-
tions, it remains to complete the picture of the compressible
Euler equations by defining the characteristics curves along
which sound waves propagate in general, and to prove that
s is constant along 1-characteristics and r is constant along
2-characteristics as we saw in Section 7 for the p-system.
Thus the value of a solution U(x, t) = (ρ(x, t), u(x, t)) of
(20), (21) is determined from the initial data by the s-value
it receives from the 1-characteristic and the r-value it re-
ceives from the 2-characteristic that passes through (x, t),
as in Figure 5. Keep in mind that the picture is complete
for simple waves, but for interacting solutions, the picture
is incomplete in the sense that the speeds of the charac-
teristics depend on the solution, and the description of the
solution depends on the characteristics. But the method of
characteristics and Riemann invariants gives us an accurate
qualitative picture of nonlinear sound wave propagation as
described by the compressible Euler equations. This non-
linear theory of wave propagation extends and refines the
classical theory of linear wave propagation as described by
the linear wave equation ρtt − c2ρxx = 0, c =

√
p′(ρ0), the

equation you get when you linearize the compressible Euler
equations about a state of constant density ρ0. We finish



21

with the following theorem which completes the picture di-
agrammed in Figure 5 of nonlinear sound wave propagation
down a shock tube, as modeled by the compressible Euler
equations of gas dynamics.

x

t

r0(x) s0(x)

r =
const

x1 x2
,

(x, t)

r(x, t) = r(x2, 0) s(x, t) = s(x1, 0)

s =
co

ns
t

ẋ
=
�
1 (u(x(t), t), ⇢(x(t), t))ẋ

=
� 2

(u
(x

(t
),
t)
, ⇢

(x
(t
),
t)
)

Figure 5: Nonlinear Sound Wave Propagation in Compressible Euler.

r(x, t) = u(x, t) + h(⇢(x, t))

r(x, t) = u(x, t) � h(⇢(x, t))
h(⇢(x, t)) =

r(x2, 0) � s(x1, 0)

2

u(x, t) =
r(x2, 0) + s(x1, 0)

2

Theorem 6. For a general solution U(x, t) = (ρ(x, t), u(x, t))
of the compressible Euler equations (20), (21), the 1-Riemann
invariant r = u+ h(1/ρ) is constant along 1-characteristic
curves (x(t), t) satisfying

ẋ = λ1 = u− c,
and the 2-Riemann invariant s = u − h(1/ρ) is constant
along 2-characteristic curves (x(t), t) satisfying

ẋ = λ2 = u+ c.

Proof: It suffices to show that for a given solution of (20),
(21),

d

dt
r(x(t), t) = 0,
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for 1-characteristic curves , and

d

dt
s(x(t), t) = 0,

for 2-characteristic curves (x(t), t). For example,

ẋ = u− c,
along a 1-characteristic, so

d

dt
r(x(t), t) = rt + rxẋ = rt + (u− c)rx = rt + urx − crx

= ut + h(1/ρ)t + uux + uh(1/ρ)x − cux − ch(1/ρ)x

= {ut + uux − ch(1/ρ)x}1 (22)

−c
ρ
{ρt + uρx + uxρ}2 .

(Note for the last term, − c
ρuxρ = −cux.) To finish we show

that {·}1 and {·}2 vanish by equations (21) and (20), re-
spectively. For {·}2 use

{·}2 = {ρt + (uρ)x}2 = 0

by (20). For {·}1 use (19) to write

−ch(1/ρ)x =
c2

ρ
ρx =

p(ρ)x
ρ

,

so

{·}1 =

{
ut + uux +

p(ρ)x
ρ

}
1

= 0,

by the transport equation for u, c.f. equation (12) of Sec-
tion 7. That is, starting from (21) we have

0 = (ρu)t + (ρu2 + p)x

= u(ρt + (ρu)x) + ρ

(
ut + uux +

p(ρ)x
ρ

)
= ρ {·}1 ,

because the first parenthesis is zero by (20). We thereby
conclude that d

dtr(x(t), t) = 0 along 1-characteristics curves,
so r is constant along 1-characteristics, as claimed. The
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proof that s is constant along 2-characteristics is similar.
�

4. Shock Wave Formation in Simple Waves

We have described a method for constructing the nonlin-
ear version of the right and left going waves of the linear
wave equation. Such waves are called simple waves or non-
interacting waves because a general solution consists of the
nonlinear interaction of simple waves from different fam-
ilies. Simple waves are constructed from eigenvalues and
eigenvectors that decompose the matrix A(U) in a first or-
der nonlinear system of form

Ut + A(U)Ux = 0. (23)

Although we explicitly solved for the two families of simple
waves in the 2 × 2 p-system and compressible Euler equa-
tions, the method applies to any system of form (24) with n
unknowns U = (u1, ..., un) and A(U) an n× n matrix. The
conclusion is that if (λ(U), R(U)) is an eigen-field satisfying

A(U)R(U) = λ(U)R(U),

(say for all U ∈ U ⊂ R2), and U(ξ) is a parameterization of
an integral curve R of R(U), so U(ξ) solves the autonomous
ODE

U ′(ξ) = R(U(ξ)), ξ ≤ ξ ≤ ξ̄,

then we obtain simple (non-interacting) solutions U(x, t) of
(24) called λ-simple waves, by asking that states U(ξ) on
R propagate at speed λ(U(ξ)) in the xt-plane. We called
this the Simple-Wave Principle. If further the eigen-family
is genuinely nonlinear,

∇λ ·R 6= 0,

so that λ is monotone along the integral curve R and can
therefore be taken as the parameter ξ = λ, U = U(λ), then
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the λ-simple waves are solutions U(λ(x, t)) where λ(x, t) is
any solution of Burgers equation

λt + λλx = 0.

This is easy to see because Burgers equation expresses that
λ(x, t) should be constant along lines of speed λ, and hence
when λ solves λt + λλx = 0, states U(λ(x, t)) must be
constant along lines of speed λ as well, so the Simple-
Wave Principle holds. We then found that the nonlin-
ear wave equation in the form of the p-system, as well
as the compressible Euler equations in physical space, are
both 2×2 systems with two distinct eigen-families (λ1, R1)
and (λ2, R2), both of which are genuinely nonlinear, the
1-integral curves are s = const, the 2-integral curves are
r = const, and r is constant along 1-characteristics, s is
constant along 2-characteristics. These two systems repre-
sent equivalent formulations of wave propagation down a
shock tube.

We now end this section and begin the study of shock waves
by giving a sharp estimate for the time at which two charac-
teristics must intersect in the Burgers equation. The result
thus characterizes shock wave formation in λ-simple waves,
and in particular establishes that shock waves can form in
any n × n system of form (24) that admits a genuinely
nonlinear family of simple waves. Shock waves form in
Burgers equation whenever the solution is compressive; i.e,
whenever two characteristics approach each other. Since
solutions of Burgers equation ut + uux = 0 are constant
along characteristics, a solution can be continued only if it
is allowed to become a discontinuous function beyond the
time when the first two characteristics intersect. A solu-
tion that suffers a jump discontinuity across a curve in the
(x, t)-plane is called a shock wave. In the next section we
describe the shock waves solutions of the p-system of gas
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dynamics. The theory of shock waves complements the the-
ory of simple waves through the resolution of the so-called
Riemann problem. The Riemann problem gives the com-
plete description of wave propagation down a shock tube.

• Recall the nonlinear Burgers equation

ut + uux = 0. (24)

Since this can be written

∇−−−→
(u,1)

u(x, t) = 0,

the gradient of a solution vanishes in direction
−−−→
(u, 1) in

the (x, t) plane, so solutions are constant along lines of
speed dx/dt = u. Thus a solution starting from initial data
u(x, 0) = u0(x) with u0(x1) = u1 will take the constant
value u(x, t) = u1 along the line of speed dx/dt = u1 em-
anating from x = x1 at t = 0, given in the (x, t)-plane
by

x = u1t+ x1.

This characteristic will intersect a second characteristic

x = u2t+ x2,

emanating from x2 > x1, at time t = T , when both have
the same x value; i.e., when

u1T + x1 = u2T + x2,

or

T = −x2 − x1
u2 − u1

.

Since x2 − x1 > 0, this will happen at T > 0 whenever
u2 < u1. This implies that a shock wave will form if, ini-
tially, a value of u on the left is larger than a value of u on
the right, a condition expressing that two characteristics
are compressive. The sharp result is the following theorem
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which gives the precise first time of shock wave formation
in terms of the initial data u0(x).

Theorem 7. A smooth solution u(x, t) of the initial value
problem

ut + uux = 0, (25)

u(x, 0) = u0(x), (26)

cannot be continued as a smooth solution beyond time

T =
1

Max {−u′0(x)} , (27)

where the Max is taken over all values of x where u′(x) ≤ 0.
(In particular, if u′(x) ≥ 0 for all x ∈ R, then (27) imposes
no restriction.)

The theorem is a direct consequence of the following lemma:

Lemma 8. If smooth initial data u0(x) has a negative de-
rivative u′0(x0) = u′0 < 0 at x = x0, then the solution u(x, t)
of (25) will suffer an infinite derivative along the charac-
teristic emanating from x = x0 before time −1/u′0. That
is,

lim
t→T

ux(x(t), t) = −∞
along the characteristic

x(t) = u0 t+ x0, (28)

at some time T > 0,

T ≤ 1

−u′0
.

Here u0 ≡ u0(x0).

Thus (27) simply identifies the characteristic with the most
negative derivative at t = 0, thereby identifying the short-
est time to shock formation.
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Proof of Lemma: To get an equation for ux along the
characteristic (x(t), t) given in (28), differentiate the solu-
tion ux(x(t), t) with respect to t along the characteristic
(28) to obtain

dux
dt
≡ d

dt
ux(u0t+ x0, t) = uxxu0 + uxt. (29)

But since u(x, t) is assumed to satisfy the Burgers equation,
we can differentiate Burgers with respect to x to get another
equation satisfied by ux, namely

uxt + uuxx + u2x = 0.

In particular, this holds all along the characteristic curve
(28), so along (28) we have

u0uxx + uxt = −u2x,
because u = u0 on (28). Using this in (30) then gives

dux
dt

= −u2x, (30)

and ODE for ux along the curve (28). But (30) is a Ricotti
equation with the solution

ux(x(t), t) =
1

1
u′0

+ t
.

Since u′0 < 0, it follows that

limt→T ux(x(t), t) = −∞,
where

T =
1

−u′0
.

Note however that this argument has assumed the solution
exists along the characteristic all the way up until time T .
(A shock wave created by intersection with another char-
acteristic may have destroyed it before this time!) But this
does not flaw the proof because we only claim the solution
cannot exist beyond time T . The structure of the argument,
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then, is to assume the solution exists up until time T , and
then prove it cannot go beyond. This completes the proof
of the Lemma. �

5. General Hyperbolic First Order Systems

An n× n first order system of the form

Ut + A(U)Ux = 0,

with U = (u1, ..., un) and A(U) an n × n matrix whose
entries depend on U , is said to be strictly hyperbolic if at
each U the matrix admits n real and distinct eigenvalues

λ1(U) < · · · < λn(U),

a condition that implies that the corresponding eigenvec-
tors {R−(U), ..., Rn(U)} form a basis at each point U . We
say the system is non-degenerate if each characteristic field
(λk, Rk) is either genuinely nonlinear or linearly degener-
ate. In this case, there exists n-families of simple waves
obtained by the Simple-Wave Principle, and for a given so-
lution, the k-characteristic curves are the curve (x(t), t) in
the (x, t)-plane that propagate at speed λk,

ẋ = λk(U).

These are the speeds at which information propagates, and
because all λk are finite, the equations exhibit finite speed
of propagation of information. Such equations are called
hyperbolic because they act something like the wave equa-
tion utt−c2uxx = 0, which looks something like t2−c2x2 = 1,
which is an hyperbola. (More generally, utt + c2uxx = 0 is
called elliptic and ut − c2uxx = 0 is called parabolic. This
terminology is somewhat justified by looking at the solu-
tions of form ekx−ωt which solve each equation. The con-
straints are ω2 − k2 = 0 for the wave equation, ω − k2 for
the heat equation and ω2 + k2 = 0 for Laplace’s equation.)
We have developed the the general setting for shock wave
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theory sufficient to contain all of the classical conservation
laws of fluid mechanics. It was put forth by researchers
at the Courant Institute in New York City in the decades
after World War II.
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