
17.6) Homework assignment 17.5b gives us the following:

Proposition 1 Every polynomial is continuous on R.

Suppose f(x) = p(x)
q(x) on the domain {x ∈ Rq(x) �= 0} where p(x) and q(x) are polynomials. By Proposition

1, both p(x) and q(x) are continuous on R. As long as q(x) �= 0, the ratio
p(x)
q(x) is continuous (Theorem

17.4). But all x’s where q(x) = 0 are not in the domain of f(x). Hence, f(x) is continuous on dom(f).

17.8) (a) If f(x) ≤ g(x) for a given x, then f(x)− g(x) ≤ 0. So we have

min(f, g)(x) =
1

2
(f(x) + g(x))− 1

2
(−(f(x)− g(x))) = f(x)

and we obtain the minimum function output f(x).
If f(x) ≥ g(x) for a given x, then f(x)− g(x) ≥ 0. So we have

min(f, g)(x) =
1

2
(f(x) + g(x))− 1

2
(f(x)− g(x)) = g(x)

and we obtain the minimum function output g(x).
Hence, min(f, g) function can be correctly defined as

min(f, g) :=
1

2
(f + g)− 1

2
|f − g|

(b) A quick calculation using formula in Section 17 Example 5 shows

−max(−f,−g) = −
�
1

2
(−f − g)− 1

2
|− f + g|

�
=

1

2
(f + g)− 1

2
|f − g| = min(f, g)

(c) Looking at the formula obtained in (a), suppose f and g are continuous. Then f + g and f − g are

continuous because of the addition and subtraction laws of continuity (Theorem 17.4), respectively. The

function |f − g| is continuous because the absolute value function preserves continuity (Theorem 17.3).

Also, the functions
1
2(f + g) and 1

2 |f − g| are continuous through the scaler multiplication law (Theorem

17.3). Finally, min(f, g) is continuous by another application of the addition law of continuity.

17.10) (a) The given function is

f(x) =

�
1 if x > 0

0 if x ≤ 0

Construct the sequence {xn} by xn =
1
n ∀n ∈ N. For this sequence we have

{xn} → 0 and f(xn) = 1 ∀n

Consequently, lim
n→∞

f(xn) = 1 �= f(0) = 0. Hence, f is not continuous at x = 0.

(b) The given function is

g(x) =

�
0 if x = 0

sin(
1
x) if x �= 0
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Construct the sequence {xn} by

xn =
1

π
2 + 2πn

∀n ∈ N

For this sequence we have

{xn} → 0 and g(xn) = 1 ∀n

Consequently, lim
n→∞

g(xn) = 1 �= g(0) = 0. Hence, g is not continuous at x = 0.

(d) The given function P (x) with domain [0,∞) is

P (x) =

�
15 if 0 ≤ x < 1

15 + 13n if n ≤ x < n+ 1

Choose x0 ∈ N, and let m = x0 − 1. Construct the sequence {xn} by xn = x0 − 1
n ∀n ∈ N. For this

sequence we have

{xn} → x0 and P (xn) = 15 + 13m ∀n

since m ≤ xn < m+ 1.

Consequently,

lim
n→∞

P (xn) = 15 + 13m �= P (x0) = 15 + 13(m+ 1)

since m + 1 ≤ x0 < m + 2. Hence, P is not continuous at x0. Since x0 was an arbitrary positive integer,

P (x) is discontinuous on the positive integers.

17.12)(b) Homework assignment 17.12a gives us the following:

Proposition 2 Let f be a continuous function with domain (a, b). If f(r) = 0 for each rational number r
in (a, b), then f(x) = 0 for all x ∈ (a, b).

Suppose f and g are continuous on (a, b) and f(x) = g(x) ∀x ∈ Q. Consider the difference function

(f − g)(x) on (a, b), which is continuous by the subtraction law of continuity (Theorem 17.4). By our

assumption, (f − g)(x) = f(x)− g(x) = 0 ∀x ∈ Q. By the above Proposition, (f − g)(x) = 0 ∀x ∈ (a, b).
This implies f(x)− g(x) = 0 ∀x ∈ (a, b). Thus, f(x) = g(x) ∀x ∈ (a, b).

17.13)(b) First we show h is continuous at x = 0. Suppose {xn} is any sequence converging to 0. If xn
is rational, then h(xn) = xn. If xn is irrational, then h(xn) = 0. Either way, |h(xn)| ≤ |xn|.

Now, we will show that {h(xn)} converges to h(0). Let � > 0 be given. Since {xn} converges to 0, for

this �, there exists an N such that whenever n ≥ N we have |xn| < �. But then for this same N , we have

that |h(xn)| ≤ |xn| < � whenever n ≥ N . Since � > 0 was arbitrary, we conclude that h(xn) → h(0), i.e. h
is continuous at x = 0.

Before showing that h is discontinuous at any x �= 0, we state and prove the reverse triangle inequality:

for any a, b ∈ R we have

����|a|− |b|
���� ≤ |a− b|
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To prove this, one uses the regular triangle inequality, which says that for any x, y ∈ R we have

|x+ y| ≤ |x|+ |y|

Let x = a− b, y = b in the triangle inequality. Then

|a| ≤ |a− b|+ |b|

Subtracting |b| from both sides of the equation, we see that

|a|− |b| ≤ |a− b| (1)

Now let x = b− a, y = a in the triangle inequality. Then

|b| ≤ |b− a|+ |a| = |a− b|+ |a|

Subtracting |a| from both sides of this equation gives

|b|− |a| ≤ |a− b| (2)

Combining (1) and (2) yields the reverse triangle inequality.

Now, we will prove that h is discontinuous at every nonzero x using the reverse triangle inequality.

Suppose x �= 0. Then there exists some � > 0 such that |x| > 2�. Fix this �. (A side note: we use 2� rather
than � to make the end result neater, but the process is entirely the same either way, up to dividing all �
terms in the proof by 2.) We now break the situation up into two separate cases.

First, suppose x ∈ R \ Q. Then there exists a sequence {xn} ⊂ Q such that {xn} → x. This means

that for our particular �, there exists some N such that whenever n ≥ N we have |xn−x| < �. Fix this N .

Since {xn} ⊂ Q, h(xn) = xn for all n. Since x ∈ R \Q, h(x) = 0. Thus

|h(xn)− h(x)| = |xn| = |x− (x− xn)|

By applying the reverse triangle inequality to a = x, b = x− xn, we see that

|h(xn)− h(x)| ≥
����|x|− |x− xn|

���� =
����|x|− |xn − x|

����

For our fixed N , we have |xn − x| < � whenever n ≥ N , so that

|h(xn)− h(x)| >
����2�− �

���� = �

whenever n ≥ N . The fact that this above inequality holds for a particular � and for any n ≥ N means

that h(xn) cannot converge to h(x), i.e. h is not continuous at x.

The second case can be proved without resorting to the reverse triangle inequality. Suppose x ∈ Q
and let {xn} ⊂ R \ Q be a sequence converging to x. Since x �= 0, we will continue to operate under the

assumption that |x| > 2�. In this case, we have h(xn) = 0 for all n, while h(x) = x. Thus

|h(xn)− h(x)| = |0− x| = |x| > 2�
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for our particular choice of � and for any n ∈ N. Thus h(xn) does not converge to h(x), i.e. h is not

continuous at x.

Since we have shown h is discontinuous at any nonzero x ∈ Q as well as any nonzero x ∈ R \ Q, we

conclude that h is discontinuous at any nonzero x ∈ R. (Thanks to Evan Smothers)
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