17.6) Homework assignment 17.5b gives us the following:

Proposition 1 Fvery polynomial is continuous on R.
Suppose f(x) = ‘;% on the domain {x € Rq(x) # 0} where p(x) and ¢g(z) are polynomials. By Proposition

1, both p(z) and ¢(z) are continuous on R. As long as ¢(z) # 0, the ratio f]% is continuous (Theorem

17.4). But all 2’s where ¢(z) = 0 are not in the domain of f(z). Hence, f(z) is continuous on dom(f).

17.8) (a) If f(z) < g(x) for a given z, then f(z) — g(z) < 0. So we have

min(f,g)() = 5 (7(x) + 9(x)) ~ 3 (~(F(x) ~ g(x))) = F(2)

and we obtain the minimum function output f(x).
If f(x) > g(x) for a given z, then f(z) — g(x) > 0. So we have

min(f, g)(x) = %(f(iv) +g(x) = 5 (f(x) — g(x)) = g(x)

and we obtain the minimum function output g(x).
Hence, min(f, g) function can be correctly defined as

win(f,g) = 37 +9) — 31—l

(b) A quick calculation using formula in Section 17 Example 5 shows

1 1 1 1 )
—max(—f,—g) = — (2(—f -9) - 5’ —f +9|> = §(f+9) - §|f — gl =min(f,g)
(c) Looking at the formula obtained in (a), suppose f and g are continuous. Then f + g and f — g are

continuous because of the addition and subtraction laws of continuity (Theorem 17.4), respectively. The

function |f — g| is continuous because the absolute value function preserves continuity (Theorem 17.3).

Also, the functions %( f+g) and %| f — g| are continuous through the scaler multiplication law (Theorem

17.3). Finally, min(f, g) is continuous by another application of the addition law of continuity.

17.10) (a) The given function is

1 ifxz>0
fm_{o ifz <0

Construct the sequence {x,} by =, = % Vn € N. For this sequence we have

{zp} =0 and f(z,)=1 Vn

Consequently, lim  f(x,) =1 # f(0) = 0. Hence, f is not continuous at x = 0.
n—oo

(b) The given function is



Construct the sequence {x,} by
Vn € N

= 5 +2mn
For this sequence we have
{zp,} =0 and g(z,)=1 Yn

Consequently, lim g(x,) =1 # ¢(0) = 0. Hence, g is not continuous at x = 0.
n—oo

(d) The given function P(z) with domain [0, c0) is

P(x) =
() 154+13n ifn<z<n+1

{w ifo<az<l
Choose zp € N, and let m = zy — 1. Construct the sequence {z,} by =, = xo — % Vn € N. For this
sequence we have

{zn} > 20 and P(z,) =15+13m Vn

sincem <z, <m+ 1.
Consequently,
lim P(z,) =15+ 13m # P(xo) = 15+ 13(m + 1)

n—o0

since m + 1 < xp < m + 2. Hence, P is not continuous at xg. Since xy was an arbitrary positive integer,
P(z) is discontinuous on the positive integers.

17.12)(b) Homework assignment 17.12a gives us the following:

Proposition 2 Let f be a continuous function with domain (a,b). If f(r) =0 for each rational number r

in (a,b), then f(x) =0 for all x € (a,b).

Suppose f and g are continuous on (a,b) and f(x) = g(z) Va € Q. Consider the difference function
(f — g)(x) on (a,b), which is continuous by the subtraction law of continuity (Theorem 17.4). By our
assumption, (f — g)(x) = f(z) — g(x) =0 Vz € Q. By the above Proposition, (f —g)(z) =0 Vz € (a,b).
This implies f(z) — g(z) =0 Vz € (a,b). Thus, f(z) = g(z) Yz € (a,b).

17.13)(b) First we show h is continuous at = 0. Suppose {x,} is any sequence converging to 0. If =,
is rational, then h(zy) = zp. If 2, is irrational, then h(x,) = 0. Either way, |h(xy)| < |2,|.

Now, we will show that {h(x,)} converges to h(0). Let e > 0 be given. Since {x,} converges to 0, for
this €, there exists an N such that whenever n > N we have |z,| < e. But then for this same N, we have
that |h(zy)| < |2,| < € whenever n > N. Since € > 0 was arbitrary, we conclude that h(z,) — h(0), i.e. h
is continuous at z = 0.

Before showing that h is discontinuous at any = # 0, we state and prove the reverse triangle inequality:
for any a,b € R we have

ol - |b|\ <la—t



To prove this, one uses the regular triangle inequality, which says that for any z,y € R we have

|2+ y| <[]+ y]
Let x = a — b, y = b in the triangle inequality. Then

la] < a —b| + 0]

Subtracting |b| from both sides of the equation, we see that

la] = 1b] < |a -] (1)

Now let © = b — a, y = a in the triangle inequality. Then

[b] < |b — af + |a| = [a — b] + |a]

Subtracting |a| from both sides of this equation gives

[b] —[a] < |a — bl (2)
Combining (1) and (2) yields the reverse triangle inequality.

Now, we will prove that h is discontinuous at every nonzero x using the reverse triangle inequality.
Suppose x # 0. Then there exists some € > 0 such that |z| > 2¢. Fix this e. (A side note: we use 2¢ rather
than e to make the end result neater, but the process is entirely the same either way, up to dividing all €
terms in the proof by 2.) We now break the situation up into two separate cases.

First, suppose x € R\ Q. Then there exists a sequence {z,} C Q such that {z,} — z. This means
that for our particular e, there exists some N such that whenever n > N we have |z,, — x| < €. Fix this N.
Since {z,,} C Q, h(zy) = x, for all n. Since z € R\ Q, h(zx) = 0. Thus

[h(zn) = h(@)| = 20| = [z = (2 — z0)]

By applying the reverse triangle inequality to a = x, b = x — x,,, we see that

h(zn) = W) = (2] = |z = zn|| = |[z] = [2n — 2|

For our fixed N, we have |z, — x| < € whenever n > N, so that

|h(zn) — h(z)| > |26 — €| =€

whenever n > N. The fact that this above inequality holds for a particular € and for any n > N means
that h(z,) cannot converge to h(x), i.e. h is not continuous at z.

The second case can be proved without resorting to the reverse triangle inequality. Suppose z € Q
and let {z,} C R\ Q be a sequence converging to x. Since x # 0, we will continue to operate under the

assumption that |xz| > 2e. In this case, we have h(zy) = 0 for all n, while h(z) = z. Thus

h(2a) = ha)| = [0 - 2] = o] > 2¢



for our particular choice of € and for any n € N. Thus h(z,) does not converge to h(z), i.e. h is not
continuous at z.

Since we have shown h is discontinuous at any nonzero x € Q as well as any nonzero z € R\ Q, we
conclude that h is discontinuous at any nonzero z € R. (Thanks to Evan Smothers)



