29.2) Let f(x) = cosx which is continuous and differentiable on R from known facts. Consider z,y € R.
By the Mean Value Theorem, there exists a ¢ between x and y such that

RPN COST —cosy _ ..
=Yy r—y
Taking the absolute values of both sides, we obtain

COS T — COS
|COST = COS Y|

= |sinc| < 1.
|z =y

Rearranging, gives us the final result of
|cosz — cosy| < |z —y|.

Since z,y € R were arbitrary, this inequality holds for all z,y € R, proving the claim.

28.8) Let f be differentiable on (a,b).

(i) Suppose f'(z) < 0 Vz € (a,b). Consider z; and x2 with a < x; < g < b. Since f is differentiable
on (a,b), it is continuous and differentiable on [z, x2] by Theorem 28.2. By the Mean Value Theorem,
there exists a ¢ € (1, z2) such that

f(z2) — f(21)

/
— 0,
2L - (o) <

where the inequality comes from the assumption. Since zo — x1 > 0, we have

f(x2) = f(z1) < 0= f(a2) < f(21).

Thus, f is strictly decreasing.

(iii) Suppose f'(z) > 0 Vz € (a,b). Consider 1 and zo with a < x1 < x5 < b. Since f is differentiable
on (a,b), it is continuous and differentiable on [z1, 23] by Theorem 28.2. By the Mean Value Theorem,
there exists a ¢ € (1, z2) such that

flz2) = f(21)

T2 — I

=f ,(C) >0,
where the inequality comes from the assumption. Since zo — x1 > 0, we have

f(x2) = f(z1) 2 0= f(x1) < f(x2).

Thus, f is increasing.

(iv) Suppose f'(z) <0 Vz € (a,b). Consider x1 and 25 with a < x1 < 23 < b. Since f is differentiable
on (a,b), it is continuous and differentiable on [z, z2] by Theorem 28.2. By the Mean Value Theorem,
there exists a ¢ € (1, x2) such that

f(z2) — f(x1)

T2 — X1

= f'(c) <0,
where the inequality comes from the assumption. Since zo — x1 > 0, we have

f(x2) = f(z1) <0 = f(z2) < f21).



Thus, f is decreasing.

28.14) Suppose f is differentiable on R, 1 < f/(z) <2 Vz € R, and f(0) = 0. For 2 = 0, the inequality
z < f(x) < 2z hold trivially.

Let > 0. Since f is differentiable on R, it is continuous on R by Theorem 28.2. By the Mean Value
Theorem, there exists a ¢ € (0, z) such that

f(@) = f(0) _ . iy J(@)
xi_o—f(c)@f(c)—T
Since 1 < f/(z) <2 Vz € R, we have
1<f§:;)<2<:>:v<f(x)<2x

Since x > 0 was arbitrary, the inequality holds for all x > 0. Combining this with the x = 0 case, we
obtain
x < f(x) <2z Vx>0,

proving the claim.

28.18) Let f be differentiable on R with a := sup{|f’(z)| : x € R} < 1. Choose sy € R and define
sequence {sp} by s, = f(sy—1) for n > 1. Since f is differentiable on R, it is continuous on R by Theorem
28.2. Consider n € N. By the Mean Value Theorem, there exists a ¢ between s, and s,_1 such that

Plsn) = Fon1) _ oy oy St =80 _ gy o s =snl o

Sp — Sp—1 Sp — Spn—1 |5n - 5n—1|

by the assumption. Rearranging this inequality and the fact that n € N was arbitrary, gives us
|Snt1 — Sn| < alsp — sp—1| forn > 1.
Notice by repeated use of the above inequality, we obtain
|50 — Sn_1] < a|sn_1 — Sn_2| < a|sn_2 — sp_3| < ... <a" sy —so| Vn €N
Consider m,n € N where without loss of generality n > m, with the above inequality, we have
[$n = Sm| =180 — Sn—1 + Sn+1 — Sn—2 + - + Sm+1 — Sm

<|sp — Sp—1| + |Snt1 — Sn—2| + .- + [Smt1 — Sm

< a" sy — so| +a"2[s1 — so| + ... +a™|s1 — so|

n—m-—1 o] am
Sam( Z ak> |s1 — so| < a™ (Zak) |51—50\:1 |s1 — sol,
—a
k=0

k=0

since its a geometric series with a < 1. Then, we have the following

am

50— sl < 7151 = s0l. (1)

—a



Now we are going to prove that {s,} is a Cauchy sequence. Let ¢ > 0 be given. From (1), we have the

following

|sp, — sm| <€ if |sn—sm]§1a |s1 — sol. <€

—a
for m,n € N where n > m. But

am

l1—a

1—
|s1 — so| < € if and only if m > log, ((a)e)

51— S0
N =log, ((1 — a)e>.

|s1 — so]

Choose

If m,n > N with n > m, then
|sn, — sm| < €

Thus, the sequence {s,} is Cauchy. Since R is complete, the sequence {s,,} converges.



