
21.6) Suppose f : S1 → S2 and g : S2 → S3 are both continuous. Consider the function g ◦ f : S1 → S3.
Let U ⊆ S3 be open. Since g is continuous, g−1(U) ⊆ S2 is open by Theorem 21.3. Since f is continuous,
f−1(g−1(U)) ⊆ S1 is open by another application of Theorem 21.3. Then (g ◦ f)−1(U) = f−1(g−1(U)) by
the definition of composition and inverse. Thus, (g ◦ f)−1(U) ⊆ S1 is open. Since U was arbitrary, this
holds for all U ⊆ S3. Therefore, g ◦ f is continuous by Theorem 21.3.

21.8) Suppose f : S → S∗ is uniformly continuous and {sn} ⊆ S is a Cauchy sequence. Let � > 0 be
given. Since f is uniformly continuous,

∃δ > 0 such that ∀x, y ∈ S with d(x, y) < δ ⇒ d∗(f(x), f(y)) < �. (1)

Since {sn} is Cauchy, for this δ

∃N such that ∀m,n > N ⇒ d(sm, sn) < δ.

Then, for this N , we have

∀m,n > N ⇒ d(sm, sn) < δ ⇒ d∗(f(sm), f(sn)) < �,

by (1). Therefore, {f(sn)} is a Cauchy sequence as well.

21.10) (a) Let f : (0, 1) → [0, 1] be defined as

f(x) =






0 if 0 < x < 1
2

2x− 1
2 if 1

2 ≤ x ≤ 3
4

1 if 3
4 < x < 1

(b) Let g : (0, 1) → R be defined as g(x) = tan(πx− π
2 ).

(c) Let h : [01] ∪ [2, 3] → [0, 1] be defined as h(x) = −1
2x

2 + 2
3x
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31.4) Use the following smooth function at a template

f(x) =

�
e−

1
x if x > 0

0 if x ≤ 0

where f (n)(0) = 0 ∀n ∈ N (See Example 3 in book).
(a)

fa(x) =

�
e−

1
x−a if x > a

0 if x ≤ a

(b)

fb(x) =

�
e

1
x−b if x < b

0 if x ≥ a

(c)

ha,b(x) =

�
e−

1
(x−a)(x−b) if x ∈ (a, b)

0 if x �∈ (a, b)

(d)

h∗a,b(x) =






e
− 1

x−a

e
− 1

x−a+e
1

x−b
if x ∈ (a, b)

0 if x �∈ (a, b)

31.6) Fix x > 0. Let M be the unique solution to

f(x) =
n−1�

k=0

f (k)(0)

k!
xk +

Mxn

n!
.

Define

F (t) = f(t) +
n−1�

k=1

(x− t)k

k!
f (k)(t) +M

(x− t)n

n!
.

for t ∈ [0, x].
(a) Taking the derivative (using the Product Rule)

F �(t) = f �(t) +
n−1�

k=0

�
−(x− t)k−1

(k − 1)!
f (k)(t) +

(x− t)k

k!
f (k+1)(t)

�
−M

(x− t)n−1

(n− 1)!

= f �(t)− f �(t) +
(x− t)n−1

(n− 1)!
f (n)(t) +M

(x− t)n−1

(n− 1)!
=

(x− t)n−1

(n− 1)!
[f (n)(t)−M ],

where the sum collapsed because it was telescoping. Then, F is differentiable on [0, x] with

F �(t) =
(x− t)n−1

(n− 1)!
[f (n)(t)−M ],

(b) We have
F (x) = f(x) + 0 = f(x).
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Also, we have

F (0) = f(0) +
n−1�

k=1

xk

k!
f (k)(0) +M

xn

n!
=

n−1�

k=0

f (k)(0)

k!
xk +

Mxn

n!
= f(x),

by the definition of M . Thus, F (0) = f(x) = F (x), proving the claim.

(c) Since F is differentiable and (thus) continuous on [0, x] along with F (x) = F (0), by Rolle Theorem,
there exists c ∈ (0, x) such that

F �(c) = 0 ⇔ (x− c)n−1

(n− 1)!
[f (n)(c)−M ] = 0 ⇔ f (n)(c) = M,

proving Taylor’s Error Formula (Theorem 31.3).
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