
19.2) (a) Let � > 0 be given. Notice

|f(x)− f(y)| = |3x+ 11− (3y + 11)| = 3|x− y|.

Then
|f(x)− f(y)| < � ⇔ 3|x− y| < � ⇔ |x− y| < �

3
.

Choose δ =
�

3
. Thus, if

|x− y| < δ ⇒ |f(x)− f(y)| < �

and f is uniformly continuous on R.

(b) Let � > 0 be given. Notice

|f(x)− f(y)| = |x2 − y2| = |x− y||x+ y|.

So
|f(x)− f(y)| < � ⇔ |x− y||x+ y| < �.

But x, y ∈ [0, 3] which gives us the bound |x+ y| ≤ 6. Then

|x− y||x+ y| ≤ 6|x− y| < � if and only if |x− y| < �

6
.

Choose δ =
�

6
. Thus, if

|x− y| < δ ⇒ |f(x)− f(y)| < �

and f is uniformly continuous on [0, 3].

19.4) (a) Suppose f is uniformly continuous on a bounded set S, but (for a contradiction) f is not
bounded. So for any n ∈ N there exists an xn ∈ S where |f(xn)| > n. In particular, we can use this fact
to construct a sequence {xn} with lim

n→∞
|f(xn)| = ∞. By the Bolzano-Weierstrass theorem, {xn} has a

convergent subsequence {xnk}. Since {xnk} converges, it’s a Cauchy sequence. By the uniform continuity
of f , {f(xnk)} and consequently {|f(xnk)|} are both Cauchy sequences (Theorem 19.4). On R, Cauchy
sequences are convergent which means {|f(xnk)|} is bounded, but lim

k→∞
|f(xnk)| = ∞. Contradiction.

Hence, f is uniformly continuous.

(b) f(x) =
1

x2
is not bounded because of the division by zero at x = 0. By homework 19.4a), since

interval (0, 1) is a bounded set, f is not uniformly continuous on (0, 1).

19.6) (a) f �(x) =
1

2
√
x

is unbounded on (0, 1] because of the division by zero that occurs at x = 0.

We can build a (trivial) continuous extension of f(x) =
√
x on (0, 1] by f̃(x) =

√
x on [0, 1], which is

continuous since xp is continuous for p = 1/2 and x ≥ 0. Since there exists a continuous extension of f(x)
on (0, 1], f is uniformly continuous on (0, 1] (Theorem 19.5).

(b) Notice that |f �(x)| < 1
2 for all x ∈ (1,∞). Hence, f is differentiable with f � bounded on the interval

(1,∞), which implies f is uniformly continuous on [1,∞) (Theorem 19.6).
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19.8) Let f(x) = sinx which implies f �(x) = cosx, so f is differentiable on R. Let x, y ∈ R. By the
Mean Value Theorem, there exists c ∈ R such that

f �(c) =
sinx− sin y

x− y
⇒ |f �(c)| = | sinx− sin y|

|x− y| .

But |f �(x)| = | cosx| ≤ 1 ∀x ∈ R. Thus,

| sinx− sin y|
|x− y| ≤ 1 ⇒ | sinx− sin y| ≤ |x− y|

(b) Let � > 0 be given. Choose δ = �. If

|x− y| < δ ⇒ |f(x)− f(y)| = | sinx− sin y| ≤ |x− y| < �,

using inequality proved in homework 8a). Hence, f is uniformly continuous on R.

18.10) (a) Yes. I observe

g(x) =

�
0 if x = 0

x2 sin( 1x) if x �= 0

is continuous on R.

(b) g is uniformly continuous on any bounded subset R because g is continuous on any closed and
bounded subset of R. So for any bounded set S ⊆ R, we can easily build a continuous extension on the
closure of S (i.e. S− in Definition 13.8).

(c) Yes. g is uniformly continuous on R because g� is bounded away from x = 0 (See the book solution
for homework 19.9 for detailed discussion of this).
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