
26.2) (a) Start with the geometric series
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Taking the derivative to both sides, we obtain
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Then, we multiply both sides by x

∞�

n=1

nxn =
x

(1− x)2
for |x| < 1

to obtain the desired result.
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Using the formula derived in a for x =
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Using the formula derived in a for x =
1

3
and x = −1
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, this evaluates to
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26.4) (a) Start with the power series for ex

ex =

∞�

n=0

xn

n!
∀x ∈ R.

Substitution of x by (−x2) gives us

e−x2
=
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x2n ∀x ∈ R.
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(b) Let

F (x) =

� x

0
e−t2 dt

Using the power series obtained in (a) and integrating term-by-term (Theorem 26.4), we arrive at the

power series for F (x)
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26.4) Let

s(x) =
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(−1)
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(2n+ 1)!
x2n+1

and c(x) =
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(a) Differentiating s(x) term-by-term (Theorem 26.5), we have

s�(x) =
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(2n)!
x2n = c(x).

Notice we keep the sum starting at n = 0 since the 1st term of s(x) is not a constant.

Differentiating c(x) term-by-term (Theorem 26.5), we have

c�(x) =
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= −s(x),

where we reindexed the sum with n = k − 1.

(b) We can implicitly differentiate to obtain

(s2 + c2)� = 2ss� + 2cc� = 2sc− 2cs = 0 ∀x ∈ R,

proving the claim.

(c) Applying the Fundamental Theorem of Calculus to the equation obtained in (a), we have

(s2 + c2)� = 0 ∀x ∈ R ⇒ s2 + c2 = C ∀x ∈ R

where C is a constant of integration. Since it holds for all x ∈ R, we let x = 0, then

C = [s(0)]2 + [c(0)]2 = 0
2
+ 1

2
= 1

Hence, C = 1 and we have

s2 + c2 = 1,

proving the claim.
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