26.2) (a) Start with the geometric series
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Taking the derivative to both sides, we obtain
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Then, we multiply both sides by =
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to obtain the desired result.

(b) Notice
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Using the formula derived in a for z = 2 this evaluates to
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Using the formula derived in a for z = 3 and z = —3 this evaluates to
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26.4) (a) Start with the power series for e
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Substitution of z by (—x?) gives us
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(b) Let
F(x) :/ e dt
0

Using the power series obtained in (a) and integrating term-by-term (Theorem 26.4), we arrive at the
power series for F'(z)
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26.4) Let
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(a) Differentiating s(z) term-by-term (Theorem 26.5), we have
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s'(z) = Z ((;712;' %" = c(z).
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Notice we keep the sum starting at n = 0 since the 1st term of s(z) is not a constant.
Differentiating ¢(z) term-by-term (Theorem 26.5), we have
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where we reindexed the sum with n =k — 1.
(b) We can implicitly differentiate to obtain
(s + *) = 255’ + 2¢c = 2s¢ — 2c5s = 0 Vx € R,
proving the claim.
(c) Applying the Fundamental Theorem of Calculus to the equation obtained in (a), we have
(2 + ) =0VzeR= s>+ =CVz R
where C' is a constant of integration. Since it holds for all z € R, we let x = 0, then
C=1[s(0))+[c(0)]?=02+12=1

Hence, C' =1 and we have

proving the claim.



