
28.2) (a) Let f(x) = x3. By definition, we have

f �
(2) := lim

x→2

f(x)− f(2)

x− 2
= lim

x→2

x3 − 8

x− 2
= lim

x→2

(x− 2)(x2 + 2x+ 4)

x− 2
= lim

x→2
x2 + 2x+ 4 = 12.

(b) Let g(x) = x+ 2. By definition, we have

g�(a) := lim
x→a

g(x)− g(a)

x− a
= lim

x→a

x+ 2− (a− 2)

x− a
= lim

x→a

x− a

x− a
= lim

x→a
1 = 1.

(c) Let f(x) = x2 cosx. By definition, we have

f �
(0) := lim

x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 cosx

x
= lim

x→0
x cosx = 0.

(d) Let r(x) =
3x+ 4

2x− 1
. By definition, we have

r�(1) := lim
x→1

r(x)− r(1)

x− 1
= lim

x→1

3x+4
2x−1 − 7

�
2x−1
2x−1

�

x− 1
= lim

x→1

3x+ 4− (14x− 7)

(x− 1)(2x− 1)

= lim
x→1

−11(x− 1)

(x− 1)(2x− 1)
= lim

x→1

−11

2x− 1
= −11.

28.6) Let

f(x) =

�
x2 sin 1

x if x �= 0

0 if x = 0

(a) Let x �= 0. We have

f �
(x) = 2x sin

1

x
− cos

1

x

through the use of the Product Rule (Theorem 28.3) and the Chain Rule (Theorem 28.4). Since x �= 0 was

arbitrary, the derivative exists for all a �= 0 and.

f �
(a) = 2a sin

1

a
− cos

1

a

(b) By definition, we have

f �
(0) = lim

x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 sin 1
x

x
= lim

x→0
x sin

1

x
,

since x �= 0 in the limit. Notice we have the following bound

−x ≤ x sin
1

x
≤ x ∀x
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Since {x} → 0 and consequently {−x} → 0, we have

f �
(0) = lim

x→0
x sin

1

x
= 0

by the Squeeze Theorem (Exercise 8.5). Thus, f is differentiable at x = 0 with f �
(0) = 0.

(c) f �
(x) is discontinuous because cos

1

x
is discontinuous through oscillation. See Exercise 28.6b for a

way to prove this.

28.6) Let

f(x) =

�
x sin 1

x if x �= 0

0 if x = 0

(a) f is continuous at x = 0 by Exercise 17.9c.

(b) By definition, we have

f �
(0) = lim

x→0

f(x)− f(0)

x− 0
= lim

x→0

x sin 1
x

x
= lim

x→0
sin

1

x
,

since x �= 0 in the limit. This limit does not exist through oscillation. More specifically, let g(x) = sin
1

x
and construct the sequence {xn} by

xn =
1

π
2 + 2πn

∀n ∈ N

For this sequence we have

{xn} → 0 and g(xn) = 1 ∀n.
Consequently, lim

n→∞
g(xn) = 1. Construct another sequence {yn} by

yn =
1

2πn
∀n ∈ N

For this sequence we have

{yn} → 0 and g(yn) = 0 ∀n.
Consequently, lim

n→∞
g(yn) = 0. So we have

lim
n→∞

g(xn) = 1 �= lim
n→∞

g(yn) = 0,

where {xn} → 0 and {yn} → 0. So by definition of the limit,

lim
x→0

g(x) = lim
x→0

sin
1

x

does not exist. Thus, f is not differentiable at x = 0.

28.8) Let

f(x) =

�
x2 if x ∈ Q
0 if x ∈ I := R \Q
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(a) Let x = 0 and consider a sequence {xn} → 0. Break this sequence into two subsequences {xnj} ⊆ I
and {xnk} ⊆ Q where {xn} = {xnj} ∪ {xnk}. There are 2 cases to consider: Case 1) {xnk} is an infinite

set and Case 2) {xnj} is an infinite set.

Case 1) Assume {xnk} is an infinite subsequence. Then {xnk} → 0 since {xn} → 0 by Theorem 11.2.

Because xnk ∈ Q ∀k, we have

lim
k→∞

f(xnk) = lim
k→∞

(xnk)
2
= 0.

Consequently,

lim
n→∞

f(xn) = 0.

Case 2) Assume {xnj} is an infinite subsequence. Then {xnj} → 0 since {xn} → 0 by Theorem 11.2.

Because xnj ∈ I ∀j, we have

lim
j→∞

f(xnk) = lim
j→∞

0 = 0.

Consequently,

lim
n→∞

f(xn) = 0.

If both subsequences happen to be infinite, then from Case 1 and Case 2, we have

lim
n→∞

f(xn) = 0.

Since {xn} → 0 was an arbitrary sequence, we have

lim
n→∞

f(xn) = f(0) = 0

for all sequences converging to 0. Thus, f is continuous at x = 0 by definition.

(b) Let x �= 0. Since R = Q ∪ I, there are two cases: Case 1) x ∈ Q and Case 2) x ∈ I. We need the

following

Proposition 1 For all x ∈ R there exists a sequence of rational numbers which converges to x. Also, there
exists a sequence of irrational numbers which converges to x.

Case 1) Let x ∈ Q where x �= 0. Consider a sequence of irrationals {xn} ⊂ I where {xn} → x. Then

lim
n→∞

f(xn) = lim
n→∞

0 = 0 �= f(x) = x2.

Thus, f is not continuous at x by definition.

Case 2) Let x ∈ I. Consider a sequence of rationals {xn} ⊂ Q where {xn} → x. Then

lim
n→∞

f(xn) = lim
n→∞

(xn)
2
= x2 �= f(x) = 0.

Thus, f is not continuous at x by definition.

Since x �= 0 was arbitrary, f is not continuous when x �= 0.

(c) By the definition of the derivative and limits, we have

f �
(0) := lim

x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
:= lim

n→∞

f(xn)

xn
,

where {xn} → 0. Like part a), we break this sequence into two {xn} subsequences {xnj} ⊆ I and {xnk} ⊆ Q
where {xn} = {xnj} ∪ {xnk}.

3



For {xnk} ⊆ Q, if this is an infinite subsequence, we have

lim
n→∞

f(xn)

xn
= lim

k→∞

f(xnk)

xnk

= lim
k→∞

(xnk)
2

xnk

= lim
k→∞

xnk = 0,

since {xnk} → 0.

For {xnj} ⊆ I, if this is an infinite subsequence, we have

lim
n→∞

f(xn)

xn
= lim

j→∞

f(xnj )

xnj

= lim
j→∞

0

xnj

= 0.

For any sequence {xn} one (if not both) subsequences {xnj} ⊆ I and {xnk} ⊆ Q must be infinite. For

each of the three options, the above analysis gives us

f �
(0) = lim

n→∞

f(xn)

xn
= 0.

Hence, f is differentiable at x = 0 with f �
(0) = 0.

28.14) (a) Using the definition, we have

f �
(a) := lim

x→a

f(x)− f(a)

x− a

Now let h = x− a which is equivalent to x = a+ h. So the limit can be transformed to

f �
(a) := lim

x→a

f(x)− f(a)

x− a
= lim

x−a→0

f(a+ h)− f(a)

h
= lim

h→0

f(a+ h)− f(a)

h
.

Thus,

f �
(a) = lim

h→0

f(a+ h)− f(a)

h
.

(b) From (a), we have

f �
(a) = lim

h→0

f(a+ h)− f(a)

h
.

Substituting h = −h, we also have

f �
(a) = lim

h→0

f(a− h)− f(a)

−h
= lim

h→0

f(a)− f(a− h)

h
.

So adding them together, we obtain

2f �
(a) = lim

h→0

f(a+ h)− f(a)

h
+ lim

h→0

f(a)− f(a− h)

h
= lim

h→0

f(a+ h)− f(a− h)

h
.

Thus, dividing by 2 gives us

f �
(a) = lim

h→0

f(a+ h)− f(a− h)

2h
.
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