28.2) (a) Let f(z) = x3. By definition, we have
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(b) Let g(x) = = + 2. By definition, we have
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(c) Let f(x) = 2% cosz. By definition, we have
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(d) Let r(x) . By definition, we have
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28.6) Let
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(a) Let 2 # 0. We have

1
f'(z) = 2zsin — — cos —
x x
through the use of the Product Rule (Theorem 28.3) and the Chain Rule (Theorem 28.4). Since z # 0 was
arbitrary, the derivative exists for all a # 0 and.

1 1
f'(a) = 2asin — — cos —
a a
(b) By definition, we have
_ 24 1
f'(0) = lim J@) = 1) — im 2 lim z sin —,
z—0 z—0 z—0 X z—0

since = # 0 in the limit. Notice we have the following bound

o1
—x < zsin— <z Vr
T



Since {z} — 0 and consequently {—z} — 0, we have

f'(0) = lim :Usinl =0

z—0 T

by the Squeeze Theorem (Exercise 8.5). Thus, f is differentiable at x = 0 with f/(0) = 0.

1
(c) f'(z) is discontinuous because cos — is discontinuous through oscillation. See Exercise 28.6b for a
x
way to prove this.

28.6) Let

(a) f is continuous at x = 0 by Exercise 17.9c.

(b) By definition, we have

_ ini
f/(0) = lim f@) = /() — lim 22 _ iy sin —,
z—0 xz—0 z—0 T z—0 T

1
since z # 0 in the limit. This limit does not exist through oscillation. More specifically, let g(z) = sin —

T
and construct the sequence {z,} by

Vn € N

Ty = —
" %+27rn

For this sequence we have
{zpn} -0 and g(z,) =1 Vn.

Consequently, h_)m g(xy) = 1. Construct another sequence {y,} by
n [o.¢]

1
Yn = —— VnéeN
2mn

For this sequence we have
{yn} =0 and g(y,) =0 Vn.

Consequently, lim g(y,) = 0. So we have
n—oo
lim g($n) =1# lim g(yn) =0,
n—oo n—oo
where {z,,} — 0 and {y,} — 0. So by definition of the limit,

lim g(x) = lim sin —
z—0 z—0 x

does not exist. Thus, f is not differentiable at x = 0.

28.8) Let
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(a) Let x = 0 and consider a sequence {x,} — 0. Break this sequence into two subsequences {z,,} C I
and {zy,} € Q where {z,} = {zy,} U {wzy,,}. There are 2 cases to consider: Case 1) {zy, } is an infinite
set and Case 2) {zy,} is an infinite set.

Case 1) Assume {x,, } is an infinite subsequence. Then {x,, } — 0 since {z,,} — 0 by Theorem 11.2.
Because z,, € Q Vk, we have

klglolo f(xnk) = klggo (Ink)Q = 0.

Consequently,
lim f(z,) =0.

n—oo

Case 2) Assume {z,,} is an infinite subsequence. Then {x,;} — 0 since {z,,} — 0 by Theorem 11.2.
Because x,,; € [ Vj, we have
lim f(zy,)= lim 0=0.
j—)OO ]-}OO
Consequently,
nh_)rglo f(zn) =0.
If both subsequences happen to be infinite, then from Case 1 and Case 2, we have

lim f(z,)=0.

n—oo

Since {x,,} — 0 was an arbitrary sequence, we have

lim  f(zn) = f(0) =0

n—oo

for all sequences converging to 0. Thus, f is continuous at x = 0 by definition.

(b) Let  # 0. Since R = Q U I, there are two cases: Case 1) x € Q and Case 2) z € I. We need the
following

Proposition 1 For all x € R there exists a sequence of rational numbers which converges to x. Also, there
exists a sequence of irrational numbers which converges to x.

Case 1) Let x € Q where x # 0. Consider a sequence of irrationals {z,} C I where {x,} — z. Then

lim  f(zn) = lim 0=0%# f(z) = 22,

n—oo

Thus, f is not continuous at x by definition.
Case 2) Let « € I. Consider a sequence of rationals {z,,} C Q where {x,,} — x. Then

lim f(z,) = nh_)rgo (zn)* = 2% # f(z) = 0.

n—oo

Thus, f is not continuous at x by definition.
Since x # 0 was arbitrary, f is not continuous when z # 0.

(c) By the definition of the derivative and limits, we have

f/(0) := lim @) = 1) = lim J(@) = lim f(am)

z—0 z—0 N noo X,

where {z,,} — 0. Like part a), we break this sequence into two {x,,} subsequences {z,,} C I and {z,, } CQ
where {z,} = {7y, } U {7y, }.



For {z,, } C Q, if this is an infinite subsequence, we have

2
lim M: lim M: lim M: lim z,, =0,
n—oo  Tp k—oco  Tn, k—oco  Tp, k—o0

since {z,, } — 0.
For {x,,} C I, if this is an infinite subsequence, we have

Tn;
lim f(@n) = lim M = lim v =0.
n—oo  ITp J—00 T, J—>00 Tn;

For any sequence {x,} one (if not both) subsequences {z;,} C I and {z,, } € Q must be infinite. For
each of the three options, the above analysis gives us

=0.

F(0) = lim @)

n—oo Iy

Hence, f is differentiable at x = 0 with f/(0) = 0.

28.14) (a) Using the definition, we have

) tim T @

T—a T —a

Now let h = x — a which is equivalent to x = a + h. So the limit can be transformed to

oy f@)—fla) . flath)—fla) .. flath)— f(a)
Ja):= i r—a xllc{go h B Ilzl—% h '
Thus, ( ) (@
, L fla+h)— f(a
fHa) = finy h '
(b) From (a), we have
/ _ f((l + h) - f((l)
fa) = fim h
Substituting h = —h, we also have
o) = i 0D =S0) _ y, S0)= a1

So adding them together, we obtain

2 (a) — tim F@F 1) = S(a)

11m
h—0 h h—0 h h—0 h

Thus, dividing by 2 gives us




