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This equation holds because max{a, b} = l(a+b)+ ;la - blis true
for all a,b € R, a fact which is easily checked by considering the
cases a > b and a < b. By Theorem 17.4(1), f + 8 and f — g are
continuous at xo. Hence |f — g| is continuous at Xg by Theorem 17.3.
Then 1(f + g) and }|f — g| are continuous at x, by Theorem 17.3,
and another application of Theorem 17.4(i) shows that max(f, g) is
continuous at xg. Cl

Exercises
17.1. Letf(x¥) = /4 —xforx <4and g(x) =’ forallxe R.

17.2.

v17.3.

(a) Give the domains of f +g,fg,fog andgof.

(b) Finj? the values f 0g(0), g of(0), f 0g(1), gof (1), f 0g(2) and
gof(2).

(c) Are the functions fogandgof equal?
(d) Are f og(3) and g o f(3) meaningful?

Let f(x) = 4 forx > 0, f(x) = 0 for x < 0, and g(x) = x? for all x.
Thus dom(f) = dom(g) = R.

(a) Determine the following functions: f + g, fg,fog, gof. Be
sure to specify their domains.

(b) Which of the functionsf, g, f +&, /8, f o8, g° f is continuous?

Accept on faith that the following familiar functions are contin-
uous on their domains: sinx, cosx, €*, 2%, log, x for x > 0, ¥ for
x > 0 [p any real number]. Use these facts and theorems in this
section to prove that the following functions are also continuous.

(a) log,(1 + cos®x)

(b) [sin® x + cos® x]"

(0) 2

(@ &

(e) tanx for x # odd multiple of 7
(F) xsin(2)forx #0

(g) **sin(i) forx #0
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(h) 1sin(3) forx#0 (c
17.4. Prove that the function J/% is continuous on its domain [0, 00). ‘
Hint: Apply Example 5 in §8. @
+17.5. (a) Prove thatifm € N, then the function f(X) = x™ is continuous ‘
on R.

(b) Prove that every polynomial function p(X) = do + A% + -+
anx" is continuous on R.

V17.6. A rational function is a function f of the form p/q where p and g are
polynomial functions. The domain of f is {x € R : g(¥) # 0}. Prove

that every rational function is continuous. Hint: Use Exercise 17.5. “17.11. Le

17.7. (a) Observe that if k is in R, then the function g(¥) = kx is cos
continuous by Exercise 17.5. ;n ,

or

(b) Prove that |x| is a continuous function on R. J
v .
(c) Use (a) and (b) and Theorem 17.5 to give another proof of 17.12. (a

/ Theorem 17.3.
/ 17.8. Let f and g be real-valued functions.
(a) Show that min(f,g) = 3(f +8) ~ Lf —gl. (b;
(b) Show that min(f, g) = — max(—f, —8)-

(c) Use (@) or (b) to prove that if f and g are continuous at Xo in

,/
R, then min(f, g) is continuous at Xo. 17.13. (a,

¥17.9. Prove that each of the following functions is continuous at xo by

verifying the -6 property of Theorem 17.2. ®
@ fW=%%=2
(b) fFR) =X % =0
() f)= xsin(%) for x # 0 and f(0) =0, o = 0; "17.14. For
(@) s(x) = x3, xo arbitrary. :;:;
Hint for (d): 28 — x3 = (x — %)(*¥* + Xox + x2). e
eac

“ 17.10. Prove that the following functions are discontinuous at the in-
dicated points. You may use either Definition 17.1 or the €8

property in Theorem 17.2. . Y17.15. Let

Shc

ery
lim

(a) fx)=1forx > 0and f(x) =0forx <0,x =0;
(b) g(x) =sin(3) for x # 0 and g(0) =0, % = 0;
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Y17.11.

v17.12.

/
17.13.

17.14.

- 17.15.

(c) sgn(¥) = —1forx < 0, sgn(x) =1 forx > 0, and sgn(0) = 0,
X =0;

(d) P(x) =15for0 < x < 1and P(x) = 15+13n forn <x < n+1,
Xp a positive integer.
The function sgn is called the signum function; note that
sgn(x) = ﬁ for x # 0. The definition of P, the postage-stamp
function circa 1979, means P takes the value 15 on the inter-
val [0, 1), the value 28 on the interval [1, 2), the value 41 on
the interval [2, 3), etc.

Let f be a real-valued function with dom(f) € R. Prove that fis
continuous at x, if and only if, for every monotonic sequence ()
in dom(f) converging to Xy, we have lim f(x,) = f(x0). Hint: Don't
forget Theorem 11.3.

(a) Letf beacontinuous real-valued function with domain (a, b).
Show that if f(r) = 0 for each rational number r in (4, b), then
f(x) =0 for all x € (a,b).

(b) Letf and g be continuous real-valued functions on (4, b) such
that f(r) = g(r) for each rational number 7 in (4, b). Prove
that f(¥) = g(¥) for all x € (a, b).

(a) Letf(x) = 1 for rational numbers x and f(x) = 0 for irrational
numbers. Show that f is discontinuous at every x in R.

(b) Let h(x) = x for rational numbers x and h(x) = 0 for irrational
numbers. Show that h is continuous at x = 0 and at no other
point.

For each rational number x, write x as % where p, g are integers

with no common factors and g > 0, and then define f(x) = %. Also
define f(x) = 0 for all x € R\ Q. Thus f(x) = 1 for each integer,
fG)=f(-H=f@3)="- = 3, etc. Show that f is continuous at
each point of R \ Q and discontinuous at each point of Q.

Let f be a real-valued function whose domain is a subset of R.
Show that f is continuous at %y in dom(f) if and only if, for ev-
ery sequence (x,) in dom(f) \ {xo} that converges to X, we have

im f (%) = £ (%).



Since f~1

ous. |

wat g(J) is

- changes
dpoint of

I
y of The-
lere exist
learly we
< 8(x2),
¥)| < €.
) implies
|

‘mediate
function
sver, Ex-
ite value

“hen f is
‘creasing

@)
) >y >
iplied to
1ch that
ff.

Exercises 131

Now select any ag < bp in I and suppose, say, that f(do) < f(bo).
We will show that f is strictly increasing on I. By (1) we have

f(x) < f(ao) for x < ap [since x < ag < by,
f(ao) < f(x) < f(bo) for ap < x < by,
f(be) < f(*) for x > by [since ag < bp < x].
In particular,
f(x) < f(ap) forall x < ay, (2)
f(ag) < f(x) forall x > ao. 3)

Consider any x; < x; inI. If x; < ag < x;, then f(x1) < f(x2) by (2)
and (3). If x; < % < ag, then f(x1) < f(ao) by (2), so by (1) we have
f(x1) < f(x2). Finally, if ap < 21 < %z, then f(ao) < f(x2), so that
f(x1) < f(*2)- =

Exercises

18.1. Letf be as in Theorem 18.1. Show that if the function —f assumes
its maximum at x, € [a, b), then f assumes its minimum at xo.

18.2. Reread the proof of Theorem 18.1 with [a, b] replaced by (a, b).
Where does it break down? Discuss.

18.3. Use calculus to find the maximum and minimum of f(x) = ¥* —
6x2 +9x+ 1 on|[0,5).

V18.4. Let S C R and suppose there exists a sequence (x,) in S that con-
verges to a number x; ¢ S. Show that there exists an unbounded
continuous function on §.

18.5. (a) Let f and g be continuous functions on [a, b] such that f(a) >
g(a) and f(b) < g(b). Prove that f(xo) = g(%) for at least one
xo in [a, b].
(b) Show that Example 1 can be viewed as a special case of
v part (a).
/18.6. Prove that x = cosx for some x in (0, 3).
18.7. Prove that x2* = 1 for some x in (0, 1).

A8.8. Suppose that f is a real-valued continuous function on R and that
f(a)f (b) < 0 for some a,b € R. Prove that there exists x between
a and b such that f(x) = 0.



132 3. Continuity

/{"

y

v18.9. Prove that a polynomial function f of odd degree has at least one
real root. Hint: It may help to consider first the case of a cubic,
ie., f(¥) = a0+ mx + ax’ + a;x® where a3 # 0.

. 18.10. Suppose that f is continuous on [0, 2] and that f(0) = f(2). Prove
that there exist x,y in [0, 2] such that [y — x| =1 and f(x) = f(¥)-
Hint: Consider g(x) = f(x+ 1) — f(¥) on [0, 1].

v 18.11. (a) Show that if f is strictly increasing on an interval I, then —f
is strictly decreasing on I.

(b) State and prove Theorems 18.4 and 18.5 for strictly decreas-
ing functions.

18.12. Let f(x) = sin(3) for x # 0 and let f(0) = 0.
(a) Observe that f is discontinuous at 0 by Exercise 17.10(b).

(b) Show that f has the intermediate value property on R.

§19 Uniform Continuity

Let f be a real-valued function whose domain is a subset of R. The-
orem 17.2 tells us that f is continuous on a set S € dom(f) if and
only if

for each xy € S and € > 0 there is § > 0 so that .
x € dom(f), |x — xo < & imply |f(*) — f(x0)| < €. )

The choice of 5§ depends on € > 0 and on the point x; in S.

Example 1

We verify (*) for the function f(¥) = % on (0,00). Let 3 > 0 and
€ > 0. We need to show that |f(x) — f(xo)| < € for |x — xo| sufficiently
small. Note that

1 1 -2 =
fo—fen) = 5 - = T = TR

X

FIGURI

If IX - X0|
These obs

Thus if wt

This estat
and x;. Ev
that our c.
because w
this case
shows hov
0. [In the :
é that wor

It turn
(*) can be
not depen



1 44 3. Continuity

Exercises (d
+19.1. Which of the following continuous functions are uniformly con- (€
tinuous on the specified set? Justify your answers. Use any ’
theorems you wish. | (£
(a) f(x) =x""sinx — ¢*cos 3x on [0, 7], ; v19.6. (a

(b) f(x) =+ on[0,1], |

3 :

c x)=x"on(0,1),

© f® ( 1 »

@ fx»= ¥ onR,
(€ f(*) =3 on(0,1],
(® f(x) =sinz on (0,1],

“19.7. (a)

‘ (8) f(x)=**sin: on(0,1]. (b)
’“49.2. Prove that each of the following functions is uniformly continu- . .i9.8 (a)
ous on the indicated set by directly verifying the e-§ property in B
Definition 19.1.
(a) f(x) =3x+11 0onR,
() f(*) =" on|0,3], | (b)
(©) f®) =Lon[}, 00). “19.9. Let
19.3. Repeat Exercise 19.2 for the following. (a)
() f(9) = &5 on[0,2]
- 1 (b)
i (b) f(X) T 2x~-1 On[ ,OO).
“/19.4. (a) Prove that if f is uniformly continuous on a bounded set §, (©)
then f is a bounded function on S. Hint: Assume not. Use 19.10. Repe
Theorems 11.5 and 19.4. x |
(b) Use (a) to give yet another proof that ;12- is not uniformly 19.11. Acce
continuous on (0, 1). R; ps

“19.5. Which of the following continuous functions is uniformly contin-
uous on the specified set? Justify your answers, using appropriate
theorems or Exercise 19.4(a).

§20 L

(a) tanxon [0, 7],
(b) tanxon|o0, 7),

A function j
(¢) lsin’xon (0,mn),

near the val
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v19.6.

“19.7.

¢19.8.

“19.9.

19.10.

19.11.

§20

(@) =5 on(0,3),
(e) 35 on (3, 0),

(£) 5 on (4,00).

(a) Let f(x) = «/x for x > 0. Show that f’ is unbounded on (0, 1]
but that f is nevertheless uniformly continuous on (0,1].
Compare with Theorem 19.6.

(b) Show that f is uniformly continuous on [1, 00).

(a) Letf be a continuous function on [0, 00). Prove that if f isuni-
formly continuous on [k, 00) for some k, then f is uniformly
continuous on [0, 00).

(b) Use (a) and Exercise 19.6(b) to prove that /% is uniformly
continuous on [0, 00).

(a) Use the Mean Value theorem to prove that
|sinx — siny| < |{x — yl
for all x, y in R; see the proof of Theorem 19.6.
(b) Show that sin x is uniformly continuous on R.
Let f(x) = xsin(1) for x # 0 and f(0) = 0.

(a) Observe that f is continuous on R; see Exercises 17.3(f)
and 17.9(c).

(b) Why is f uniformly continuous on any bounded subset of R?
() Is f uniformly continuous on R?

Repeat Exercise 19.9 for the function g where g(x) = x*sin(L) for
x # 0 and g(0) = 0.

Accept the fact that the function h in Example 9 is continuous on
RR; prove that it is uniformly continuous on R.

Limits of Functions

A function f is continuous at a point a provided the values f(¥) are
near the value f(a) for x near a [and x € dom(f)]. See Definition 17.1
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Exercises

/' 20.1. Sketch the function f(x) = I_z_l Determine, by inspection, the
limits lim,, o0 £ (%), limyo+ f(%), limyoo- f(%), limy _oo f(¥) and
lim,, o f(x) when they exist. Also indicate when they do not exist.
ir example,

here exists 20.2. Repeat Exercise 20.1 for f(x) = Ix|

[20.3. Repeat Exercise 20.1 for f(x) = % See Example 9 of §19.
1) L20.4. Repeat Exercise 20.1 for f(x) = xsin 1.

“20.5. Prove the limit assertions in Exercise 20.1.

(2) 20.6. Prove the limit assertions in Exercise 20.2.

‘20.7. Prove the limit assertions in Exercise 20.3.

3) /20.8. Prove the limit assertions in Exercise 20.4.
20.9. Repeat Exercise 20.1 for f(x) = =i
sa-f(%) = 20.10. Prove the limit assertions in Exercise 20.9.
and there ~20.11. Find the following limits.
nin{é,, 82: (a) lim,,, ";“22 (b) 11m,¢_+;y ‘/— ,b>0
3—a?

(c) lim,_,, =% a
Hint for (c): x* — a® = (x — a)(¥* + ax + a?).

ind limits +20.12. (a) Sketch the function f(x) = (x — 1)7'(x — 2)™2.
x) = L if (b) Determine lim,._,y+ f(x), lim,,,- f(¥), lim,1+ f(¥) and lim,,1- f(%).
(c¢) Determine lim,.,; f(¥) and lim,,, f(x) if they exist.
) +$0.13. Prove that if lim,_,s f(¥) = 3 and lim,_,, g(¥) = 2, then
a) lim,,.[3f (%) + g(x)*] = 13,
llary 20.8. . ) . " a[1()1 ®
:quivalent (b) liMyosa 55 = 3
¢) lim,.,/3f(x) + 8g(x) = 5.
0 wil (€) lim,»q /37 (%) + 88D
20.14. Prove that lim,,¢+ 2 = 400 and lim,_,¢- = —00.
20.15. Prove lim,, o f(¥) = 0 and lim,_,,+ f(X) = 400 for the function
(2) f in Example 4.

720.16. Suppose that the limits L; = lim,, .+ fi(¥) and L, = lim,, 4+ f2(X)
exist.
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(a) Show that if fi (%) < f2(x) for all x in some interval (a, b), then
Ly < La.

(b) Suppose that, in fact, fi(¥) < fo(x) for all x in some interval
(a, b). Can you conclude that L; < Ly?

/20.17. Show thatiflim,q+ fi(¥) = liMeser f3(¥) = Landiffi(x) < fo(x) <
f3(x) for all x in some interval (a, b), then lim,, o+ f2(¥) = L. Warmn-
ing: This is not immediate from Exercise 20.16(a), because we are
not assuming that lim,, 4+ f2(¥) exists; this must be proved.

20.18. Let f(¥) = ﬁf—z"—z—ﬂ for x # 0. Show that lim, o f(x) exists and
determine its value. Justify all claims.

'/20.19. The limits defined in Definition 20.3 do not depend on the choice
of the set S. As an example, consider a < by < b, and suppose
that f is defined on (a, by). Show that if the limit lim,_, os f(X) exists
for either 8 = (a,b1) or 8 = (a,by), then the limit exists for the
other choice of S and these limits are identical. Their common
value is what we write as limy_, 4+ f(%).

20.20. Let f; and f, be functions such that limy—as fi(X) = +o0o and such
that the limit L, = lim,_zs f2(X) exists.

(a) Prove that lim,as(fi + f)(%) = +oo if Ly # —oo. Hint: Use
Exercise 9.11.

(b) Prove that lim,_ s (fif2)(¥) = +00 if0 < Ly < 4o00. Hint: Use
Theorem 9.9.

(c) Prove that lim,,.s(fif2)(¥) = -0 if ~o0o <Lz < 0.
(d) What can you say about lim,es(fif2)(%) if Lz = 07

§21 * More on Metric Spaces:
Continuity

In this section and the next section we continue the introduction to
metric space ideas initiated in §13. More thorough treatments appear
in [25], [33] and [36]. In particular, for this brief introduction we avoid
the technical and somewhat confusing matter of relative topolo-
gies that is not, and should not be, avoided in the more thorough
treatments.
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Exercises

\21.1.

‘\121.2.

\/21.3.

21.4.

\21.5.

S,

21.7.

L21.8.

21.9.

Show that if the functions fi,f,...,fx in Proposition 21.2 are
uniformly continuous, then so is y.

Consider f: S — §* where (S,d) and (§*,d*) are metric spaces.
Show that f is continuous at s, € S if and only if

for every open set U in 8* containing f(so), there is
an open set V in S containing sp such that f(V) € U.

Let (S, d) be a metric space and choose s € S. Show that f(s) =
d(s, so) defines a uniformly continuous real-valued function f on
S.

Consider f: 8 — R where (8, d) is a metric space. Show that the
following are equivalent:
(i) f is continuous;
(i) f~'((a,b))isopeninSforalla < b;
(i) f~!((a, b)) is open in § for all rational a < b.

Let E be a noncompact subset of R¥.

(a) Show that there is an unbounded continuous real-valued
function on E. Hint: Either E is unbounded or else its clo-

sure E- contains x; € E. In the latter case, use é where

g(x) = d(x, xo).

(b) Show that there is abounded continuous real-valued function
on E that does not assume its maximum on E.

For metric spaces (S, d1), (82, d2), (83, d3), prove that iff:8 = 8
and g: 8, — S are continuous, then g o f is continuous from §;
into S3. Hint: It is somewhat easier to use Theorem 21.3 than to
use the definition.

(a) Observe that if E C § where (S, d) is a metric space, then
(E,d) is also a metric space. In particular, if E C R, then
d(a,b) = |la — b| for a, b € E defines a metric on E.

(b) For y:[a,b] > Rk, give the definition of continuity of y.

Let (S, d) and (S*, d*) be metric spaces. Show that if f:8 > 8 is
uniformly continuous, and if (s,) is a Cauchy sequence in §, then
(f(sn)) is a Cauchy sequence in §*.

We say a function f maps a set E onto a set F provided f(E) = F.
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(a) Show that there is a continuous function mapping the unit
square

{(t1,2) eR*: 0<% <1,0<x <1}
onto [0, 1].

(b) Do you think there is a continuous function mapping [0, 1]
onto the unit square?

21.10. Show that there exist continuous functions
(a) mapping (0, 1) onto [0, 1],
(b) mapping (0, 1) onto R,
(c) mapping [0,1]U[2, 3] onto [0, 1].
'*éi.ll. Show that there do not exist continuous functions
(a) mapping [0, 1] onto (0, 1),
(b) mapping [0, 1] onto R.

§22 * More on Metric Spaces:
Connectedness

Consider a subset E of R that is not an interval. As noted in the proof
of Corollary 18.3, the property

YY2€E and y1 <y<y, imply yeE
must fail. So there exist yi, Y2,y in R such that

Y1 <Y < Y YnY2 € E, Y €E. ™)

The set E is not “connected” because y separates E into two pieces.
Put another way, if we set U; = (—o00,y) and U, = (y, 00), then we
obtain disjoint open sets such that

ECU,UU, ENU#8, ENU,#@.

The last observation can be promoted to a useful general definition.

22.1 Defi
Let Ebe a
there are

AsetEis

Example
As noted 1
disconnec
this fromt
U, and U,
andaj € I

Clearly a,
not both. 1

or

In case (1
cannot be
bound. In
bound for |
least upper
I must be

22.2 Theo
Consider m
IfE is a co

Proof
Assume f(
sets Vi anc



168 3- Continuity

22.6 Definition.
Let S be a subset of R. Let C(S) be the set of all bounded continuous
real-valued functions on § and, for f, g € C(S), let

da(f, 8) = sup{lf(x) — g(*)| : x € S}.

With this definition, C(S) becomes a metric space [Exercise 22.6].
Now note that a sequence (f,,) in this metric space converges to a
point [function!] f provided lim,_, o d(fs, f) = 0O, that is

nl_iglo[sup{lfn(x) ~f(®)|:xeS}j=0. ™
Put another way, for each € > 0 there exists a number N such that
Ifn(®*) —f(x)l <€ forall xe€S§ and n > N.

We will study this important concept in the next chapter, but without
using metric space terminology. See Definition 24.2 and Remark 24.4
where (*) is called uniform convergence.

A sequence (fy) in C(S) is a Cauchy sequence with respect to
our metric exactly when it is uniformly Cauchy as defined in Defi-
nition 25.3. In our metric space terminology, Theorem 25.4 simply
asserts that C(8) is a complete metric space.

Exercises
\2/2.1. Show that there do not exist continuous functions
(a) mapping [0, 1] onto [0, 1]U [2, 3],
(b) mapping (0, 1) onto Q.
\22.2. Show that {(x1,%2) € R? : ¥ + ¥5 = 1} is a connected subset of R2.

+2Z.3. Prove that if E is a connected subset of a metric space (S, d), then
its closure E~ is also connected.

122.4. Consider the following subset of R?:

E = {(x,sin%) :xe(O,l]};

E is simply the graph of f(x) = sin ! along the interval (0, 1].

(a) Sketch E and determine its closure E~.

22'6'

22.7.
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L22.9.

210,

 22.11.

22.12.

(c

. Let

(a

(b)

(a)
(b)

Shc
c(r

Cor
f(sc

on:

Cor
that

Let
let ;
sho

Cor.
that

(@
(b)
(©

Con
& if

The
(a)
(b)



uaous

2.6].
to a

*)
hat

1out
24.4

t to
refi-
iply

R2,

en

Exercises 169

,32.5.

22.6.

22.7.

22.8.

L22.9.

22.10.

\23.11.

22.12.

(b) Show that E~ is connected.

(c) Show that E™ is not path-connected.

Let E and F be connected sets in some metric space.
(a) Prove thatif ENF # @, then EUF is connected.

(b) Give an example to show that E N F need not be connected.
Incidentally, the empty set is connected.

(a) Show that C(S) given in Definition 22.6 is a metric space.

(b) Why did we require the functions in C(8) to be bounded when
no such requirement appears in Definition 24.2?

Show that the metric space B in Exercise 13.3 can be regarded as
C(N).

Consider C(8) for a subset S of R. For a fixed sp in §, define F(f) =
f(so). Show that F is a uniformly continuous real-valued function
on the metric space C(S).

Consider f,g € C(S) where § € R. Let F(t) = tf + (1 — t)g. Show
that F is a uniformly continuous function from R into C(S).

Let f be a uniformly continuous function in C(R). Foreachx € R,
let f, be the function defined by fi(y) = f(* + y). Let F(x) = fx;
show that F is uniformly continuous from R into C(R).

Consider C(8) where S C R, and let £ consist of all f in C(S) such
that §up{|f(x)| cx€e 8} <1.

(a) Show that £ is closed in C(8).
(b) Show that C(S) is connected.
(c) Show that £ is connected.

Consider a subset € of C(S), § € R. A function f; in £ is interior to
€ if there exists a finite subset F of § and an € > 0 such that

{f €C8): If(x)—fo(x)| < eforxe F} C E.
The set £ is open if every function in £ is interior to .
(a) Reread Discussion 13.7.

(b) Show that the family of open sets defined above forms a topol-
ogy for C(S). Remarks. This topology is different from the one
given by the metric in Definition 22.6. In fact, this topology



170 3. Continuity

does not come from any metric at all! It is called the topology
of pointwise convergence and can be used to study the conver-
gence in Definition 24.1 just as the metric in Definition 22.6
can be used to study the convergence in Definition 24.2.

22.13. Show thata function f: R — Ris continuous if and only if its graph
G = {(»,f(») : x € R} is connected and closed in R?. See C.E.
Burgess's article, Continuous Functions and Connected Graphs,
American Mathematical Monthly, vol. 97 (1990), pp. 337-339.
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Exercises

v23.1. For each of the following power series, find the radius of
convergence and determine the exact interval of convergence.

23.2.

23.3.

23.4.

+43.5.

N

“23.7. Foreachn e N , let (%) = (cos x)". Each f, is a continuous function.
Nevertheless, show that

3.6.

(a) X"
(@) X"
(e) (¥

(&) T(Zn"

() T
(@) X Gr"

O Xz X"
() T

Repeat Exercise 23.1 for the following:

(@) X/
() X"

(b) 7"

(d) Z j_"ﬁ x2n+1

Find the exact interval of convergence for the series in Example 6.

Forn=0,1,2,3,..., leta, = [22 Ly

(a) Findlimsup(a,)"",liminf(a,)"/", limsup |%L| and lim inf | %L |,
(b) Do the series )_a, and )_(—1)"a, converge? Explain briefly.

(c) Now consider the power series ) _ a,x" with the coefficients a,
as above. Find the radius of convergence and determine the
exact interval of convergence for the series.

Consider a power series Y . a,x" with radius of convergence R.

(a) Prove that if all the coefficients a, are integers and if infinitely

many of them are nonzero, then R < 1.

(b) Prove that iflimsup|a,| > 0, thenR < 1.

(a) Suppose that ) a,x" has finite radius of convergence R and
that a, > 0 for all n. Show that if the series converges at R,

then it also converges at —R.

(b) Give an example of a power series whose interval of conver-
gence is exactly (—1,1]. \

The next three exercises are designed to show that the notion of
convergence of functions discussed prior to Example 8 has many

defects.

(a) limf,(x) = 0 unless x is a multiple of r,

(k)
()

L'Z?S.B. For
fun

(@)
(b)
1 23.9. Let
(@)
(b)

§24 1

We first fi
Example €

24.1 Defis
Let (fy) be.
The seque:
f defined

We often w

Example 1]
All the fur
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and Exerci
onR, and i

Example 2
Let fu(x) =

f(x) =0 for
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§24. Uniform Convergence 1|77

(b) limf,(x) = 1 if x is an even multiple of =,
(c) limf,(x) does not exist if x is an odd multiple of 7.

,23.8. For each n € N, let fa(x) = 1sinnx. Each f, is a differentiable
function. Show that

(a) limf,(x) =0forallx e R,

(b) but limf;(x) need not exist [at x = 7 for instance].

1 23.9. Let f(x) = nx" for x € [0, 1] and n € N. Show that

(a) limf,(x) = 0 for x € [0, 1). Hint: Use Exercise 9.12.

(b) However, lim,_,« fol fa(x)dx = 1.

§24 Uniform Convergence

\
We first formalize the notion of convergence discussed prior to
Example 8 in the preceding section.

24.1 Definition.

Let (f,) be a sequence of real-valued functions definedonaset § < R.
The sequence (f,,) converges pointwise[i.e., at each point]toa function
f defined on S if

1_13)1o fa(x) =f(x) forall xe€S.

We often write lim f,, = f pointwise [on S] or f, — f pointwise [on §].

Example 1

All the functions f obtained in the last section as a limit of a se-
quence of functions were pointwise limits. See Example 8 of §23
and Exercises 23.7-23.9. In Exercise 23.8 we have f, — 0 pointwise
on R, and in Exercise 23.9 we have f;, — 0 pointwise on [0, 1).

Example 2
Let f(x) = x" for x € [0,1]. Then f, — f pointwise on [0,1] where
f(x)=0forxe[0,1)and f(1)=1.
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t—i—; and its minimum at —ﬁ. Since fn(iﬁ) =+ f' we conclude
at
nll)rglo[sup{lfn(x)l :xe S} = nhr{.lo ZZ-:/—: = 0.

Therefore f,, — 0 uniformly on R by Remark 24.4.

Example 8

Let f,(x) = n?x"(1 —x) for x € [0, 1]. Then we have lim,_, fx(1) = 0.
For x € [0,1) we have lim, n?x" = 0 by applying Exercise 9.12
[since

m+ 1% n41)°

= X —> X,
nZxn n

and hence lim, .« fn(¥) = 0. Thus f, — 0 pointwise on [0, 1]. Again,

to find the maximum and minimum of f,, we set its derivative equal

to 0. We obtain x*(—1) + (1 —x)nx""! =0 or ¥""'[n — (n+ 1)x] = 0.

Since f, takes the value 0 at both endpoints of the interval [0, 1], it

follows that f, takes it maximum at w+i- We have

w() =7 () (o) = () - @
"\n+1) n+1 n+l) n+1\n+1/ " 1)

The reciprocal of (;77)" is (1+ ) the nth term of a sequence which
has limit e. This was mentloned but not proved, in Example 3 of §7
a proof'is glven in Theorem 37.11. Therefore we have lim( -2 =) =

Since lim(- +1] = +o00, we conclude from (1) that lim f,(;35) = +oo
see Exercise 12.9(a). In particular, (f,) does not converge uniformly
to 0.

Exercises
24.1. Letfo(x) = 1-+2—f/—‘l,;sz—"x- Prove carefully that (f,,) converges uniformly
to 0 on R.

/
“24.2. For x € [0,00), let fo(x) = 2

(a) Find f(x) = lim f,(x).
(b) Determine whether f;, — f uniformly on [0, 1].

(c
/
!24.3. Re

24(4) Re
24.5. Re

Vﬁ.ﬁ. Le

(a

®
24.7. Re;
’“é4.8. Re;
24.§ Co:
©
@b,

. (c)
V{4.10. (a)
(b)

/ |
V24QD Let

for

(@)
(k)

24. TO"

v
v24.13./Pro

on ¢
also
in tl

041.14. Let,

(@
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(c) Determine whether f, — f uniformly on [0, c0).

124.3. Repeat Exercise 24.2 for f,(x) = -
xn

itx
Xﬂ

n+x"’

24.4] Repeat Exercise 24.2 for f(x) =
24.5. Repeat Exercise 24.2 for f,(x) =
V24.6. Let f(x) = (x — L2 forx € [0,1]. -

(a) Does the sequence (f,,) converge pointwise on the set [0, 1]?
If so, give the limit function.

(b) Does (f,) converge uniformly on [0, 1}? Prove your assertion.
24.7. Repeat Exercise 24.6 for f,(x) = x — x".
'24!3/7 Repeat Exercise 24.6 for f(¥) = Y p_, ¥X.
24.9. Consider f,,(x) = nx"(1 — x) for x € [0, 1].
(a) Find f(x) = lim fu ().
(b) Does f,, = f uniformly on [0, 1]? Justify.
(c) Does fol fn(x) dx converge to fol f(x) dx? Justify.

24.10. (a) Prove that if f, — f uniformly on a set §, and if g, —> g
uniformly on §, then f, + g, — f + g uniformly on §.

(b) Do you believe that the analogue of (a) holds for products?
If so, see the next exercise.

[/14@ Let f(¥) = x and g,(x) = 1 forall x € R. Let f(x) = x and g(x) = 0
for x € R.

(a) Observe thatf, — f uniformly on R [obvious!] and that g, —
g uniformly on R [almost obvious).

(b) Observe that the sequence (f,gn) does not converge uni-
formly to fg on R. Compare Exercise 24.2.

24.( rove the assertion in Remark 24.4.

'\)’24.{13. rove that if (f,,) is a sequence of uniformly continuous functions
on an interval (g, b), and if f, — f uniformly on (a, b), then f is
also uniformly continuous on (a, b). Hint: Try an § argument as
in the proof of Theorem 24.3.

/
(24.14. Let f(X) = =2

14+nZx% "

(a) Show that f; — 0 pointwise on R.

/e
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(b) Does f, = 0 uniformly on [0, 1]? Justify.

(c) Does f, — 0 uniformly on [1, 00)? Justify.

V’24.15. Let fu(x) = 135 for x € [0, 00).

(a) Find f(x) = lim fu(x).

(b) Does f, — f uniformly on [0, 1]? Justify.
(c) Does f, = f uniformly on {1, 00)? Justify.

nx

24.16. Repeat Exercise 24.15 for fu(¥) = 1352

</£4.17. Let (f,) be a sequence of continuous functions on [a, b that con-
verges uniformly to f on [a, b]. Show that if (x,) is a sequence in
[a, b] and if x, — %, then limp o fn(%) = f(¥)-

§25 More on Uniform Convergence

Our next theorem shows that one can interchange integrals and
uniform limits. The adjective “uniform” here is important; compare
Exercise 23.9.

25.1 Discussion.
To prove Theorem 25.2 below we merely use some basic facts about

integration which should be familiar [or believable] even if your
calculus is rusty. Specifically, we use:
(a) Ifgandh areintegrable on|a, blandifg(x) < h(x) for allx € [a, D),
then [’ g(x)dx < [ h(x)dx. See Theorem 33.4.
We also use the following corollary:
(b) If g is integrable on [a, D), then:

/a bg(X)dx

Continuous functions on closed intervals are integrable, as noted
in Discussion 19.3 and proved in Theorem 33.2.

b
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Example 5
Show that if the series ) g, converges uniformly on a set S, then

nl_iz&[sup{lg,,(x)l :x € 8}]=0. €y

Solution
Let € > 0. Since the series ) g, satisfies the Cauchy criterion, there
exists N such that

n>m > N implies <¢€ forall xeS.

) &

k=m

In particular,
n > N implies [g.(¥)] <€ forall xeS.
Therefore
n > N implies sup{|g.(¥)|:x € S} <e.

This establishes (1). O

E§ercises

“25.1. Derive 25.1(b) from 25.1(a). Hint: Apply (a) twice, once to g and
lg| and once to —|g| and g.

“25.2. Let f,(%) = % Show that (f,) is uniformly convergent on [—1, 1]
and specify the limit function.

% H

7 et
v 2513/ Let fu(¥) = yoon for all real numbers x.

(a) Show that (f,) converges uniformly on R. Hint: First de-
cide what the limit function is; then show (f,) converges
uniformly to it.

(b) Calculate limy,, f27 fa(x)dx. Hint: Don't integrate f,.
v'25.4. 'Let (fn) be a sequence of functions on a set § C R, and suppose
~that f,, — f uniformly on S. Prove that (f;,) is uniformly Cauchy on

~.S. Hint: Use the proof of Lemma 10.9 as a model, but be careful.

25.5. I:LLet (f») be a sequence of bounded functions on a set S, and sup-
/pose thatf, — f uniformly on 8. Prove that f is abounded function
on S.

el

25.7. Si
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L25. (i/)(a) Show that if ) |ax| < oo, then }_ axx* converges uniformly
n [—1, 1] to a continuous function.

(b) Does Y .7, —;x represent a continuous function on [-1, 1]?

25.7. Show that ) )., 2 cos nx converges uniformly on R to a continu-
ous function.

25.8. Show that Y oo - has radius of convergence 2 and that the
series converges uniformly to a continuous function on [—-2, 2].

/25.9. (a) Let 0 < a < 1. Show that the series Y o> x" converges
uniformly on [—a,a] to .
(b) Does the series Y .. x" converge uniformly on (—1,1) to
-l—l—x? Explain.
25.10./ (a) Show that ) i—% converges for x € [0, 1).

(b) Show that the series converges uniformly on [0, a] for each
a,0<ax<]l.

(c) Does the series converge uniformly on [0, 1)? Explain.
25.11. (a) Sketch the functions gy, g1, g2 and gz in Example 3.

(b) Prove that the function f in Example 3 is continuous.

) 251{) Suppose that Y ., gk is a series of continuous functions grxona, b]

that converges uniformly to g on [a, b]. Prove that

fabg(x)dx= gfabgk(x)dx-

25.13. Suppose that Y 2, gx and Y _r-; i converge uniformly on a set S.
Show that Y r-,(gk + hi) converges uniformly on §.

/25.14. Prove that if 3" gk converges uniformly on a set Sand if h is a

/7)0unded function on S, then )_ hgx converges uniformly on S.
%5.115. Let (f,) be a sequence of continuous functions on [a, b]. Suppose
~ that, for each x € [a, b), (f»(x)) is a nonincreasing sequence of real

numbers.

(a) Prove thatiff, — 0 pointwise on{a, b), then f, — 0 uniformly
on [a, b]. Hint: If not, there exists € > 0 and a sequence (¥y)
in [a, b} such that f,(x,) > € for all n. Obtain a contradiction.

(b) Prove that if f, — f pointwise on {a, b} and if f is continu-
ous on [a, b}, then f, — f uniformly on [, b]. This is Dini's
theorem.

4
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for k > 0. This tells us that if f can be represented by a power series,
then that power series mustbe Y g ﬂ;;f—o-)xk. This is the Taylor series
for f about 0. Frequently, but not always, the Taylor series will agree
with f on the interval of convergence. This turns out to be true for

many familiar functions. Thus the following relations can be proved:

¢ = i —1—xk COSX = }0:03 (_1)kx2k sinx = i —tl—)k—mz"“
k- e (2K —~ (2k + 1)!

for all x in R. A more detailed study of Taylor series is given in §31.

Exercises
26.1. Prove Theorem 26.4 for x > 0.

26.2. (a) Observe that Y02, nx" = g2 for |x| < 1; see Example 1.

(b) Evaluate Y .-, 7. Compare with Exercise 14.13(d).

(c) Evaluate Y oo, 7% and 3307, SOLY
26.3. (a) Use Exercise 26.2 to derive an explicit formula for } 2, n’x".
(b) Evaluate ) 77, % and Yoo 1;;
26.4. (a) Observe that e =Y, L}ll!)—"xz" for x € R, since we have
=32 tx" forxeR.

(b) Express F(x) = [y €™ dt as a power series.

26.5. Let f(X) = D neo Lx" forx € R. Show that f' = f. Do not use the
fact that f(x) = ¢*; this is true but has not been established at this

point in the text.

26.6. Lets(x)zx——%3!+"35;—-~-andc(x)=1—§+%—---forxeR.
(a) Prove thats’ =cand ¢ =-s.

(b) Prove that (s? 4 ¢?) = 0.
(c) Prove thats® +¢”=1.

Actually s(x) = sinx and ¢(x) = cos¥, but you do not need these
facts.

{

aw
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26.7. Let f(x) = |x| for x € R. Is there a power series )_ a,x" such that
f(x) = Y po o anx" for all x? Discuss.

26.8. (a) Show that ) 7 (—1)**" = 5 for x € (-1,1). Hint:
YooY = 1 Lety = —¥%.

(b) Show that arctanx = Y . %x”’“ forx € (—-1,1).

(c) Show that the equality in (b) also holds for x = 1. Use this to
find a nice formula for n.

(d) What happens at x = —1?

§27 * Weierstrass’s Approximation
Theorem

Suppose that a power series has radius of convergence greater than
1, and let f denote the function given by the power series. The-
orem 26.1 tells us that the partial sums of the power series get
uniformly close to f on[—1, 1]. In other words, f can be approximated
uniformly on [—1,1] by polynomials. Weierstrass's approximation
theorem is a generalization of this last observation, for it tells us that
any continuous function on [—1, 1] can be uniformly approximated
by polynomials on [—1, 1]. This result is quite different because such
a function need not be given by a power series; see Exercise 26.7.
The approximation theorem is valid for any closed interval [a, b] and
can be deduced from the case [0, 1]; see Exercise 27.1.

We give the beautiful proof due to S. N. Bernstein. Bernstein
was motivated by probabilistic considerations, but we will not use
any probability here. One of the attractive features of Bernstein's
proof is that the approximating polynomials will be given explicitly.
There are more abstract proofs in which this is not the case. On the
other hand, the abstract proofs lead to far-reaching and important
generalizations. See the treatment in [23] or [36].

We need some preliminary facts about polynomials involving
binomial coefficients.
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It is worth emphasizing that if f is differentiable on an interval I
and if g is differentiable on {f(x) : x € I}, then (g o f)' is exactly the
function (g’ of)-f' on 1.

Example 5

Let h(x) = sin(x’ 4 7x) for x € R. The reader can undoubtedly verify
that h'(x) = (3x* + 7) cos(x® + 7x) for x € R using some automatic
technique learned in calculus. Whatever the automatic technique, it
isjustified by the chain rule. In this case, h = gof where f(x) = x34-7x
and g(y) = siny. Then f'(¥) = 3x¥*> + 7 and g’(y) = cosy so that

W(x) =g'(f(x) - f'(®) = [cos f(x)] - f'(%) = [cos(x® + 7x)] - (3x* + 7).

We do not want the reader to unlearn the automatic technique, but
the reader should be aware that the chain rule stands behind it.

Exercises

‘AS.I. For each of the following functions defined on R, give the set of
points at which it is not differentiable. Sketches will be helpful.

(@) €™ (b) sin |x]
(c) |sinx| (d) x|+ |x—1]
(e) 1¥* —1| 0 1x® -8

“28.2. Use the definition of derivative to calculate the derivatives of the
following functions at the indicated points.

@ fxy=x3atx=2;

(b) gx)=x+2atx=a;
(c) f(x) =x*cosx at x = 0;
@ r(x) =2 atx=1.

128.3. (a) Leth(x) = /x = x'2 for x > 0. Use the definition of derivative
to prove that h'(x) = 1xV/? for x > 0.

(b) Let f(x) = x/3 for x € R and use the definition of derivative
to prove that f'(x) = $x72/3 for x # 0.

(c) Is the function f in part (b) differentiable at x = 0? Explain.
;/i8.4. Let f(x) = #*sin * for x # 0 and f(0) = 0.

N,
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28.5.

. 28.6.

v28.7.

/28.8.

.28.9.

28. 10.

(a) Use Theorems 28.3 and 28.4 to show that f is differentiable
at each a # 0 and calculate f'(a). Use, without proof, the fact
that sin x is differentiable and that cos x is its derivative.

(b) Use the definition to show that f is differentiable at x =
and that f'(0) = 0.

(c) Show that f’ is not continuous at x = 0.

Let f(x) = x? sin% forx#0,f(0)=0, andg(x) = x forx e R.
(a) Observe that f and g are differentiable on R.

(b) Calculate f(x) forx = L n=41,42, ...

m!

xN-g(f (0
HONIO)

Let f(x) = xsin * for x # 0 and f(0) = 0.

(c) Explain why lim,_,¢ & is meaningless.

(a) Observe that f is continuous at x = 0 by Exercise 17.9(c).
(b) Isf differentiable at x = 0? Justify your answer.

Let f(x) = x* forx > 0 and f(x) = 0 for x < 0.

(a) Sketch the graph of f.

(b) Show that f is differentiable at x = 0. Hint: You will have to
use the definition of derivative.

(¢) Calculate f’ on R and sketch its graph.

(d) Is f’ continuous on R? differentiable on R?

Let f(x) = x* for x rational and f(x) = 0 for x irrational.
(a) Prove that f is continuous at x = 0.

(b) Prove that f is discontinuous at all x # 0.

(c) Prove that f is differentiable at x = 0. Warning: You cannot
simply claim f’(x) = 2x.

Let h(x) = (x* + 13x)".
(a) Calculate 1'(x).

(b) Show how the chain rule justifies your computation in part
(a) by writing h = g o f for suitable fandg.

Repeat Exercise 28.9 for the function h(x) = [cosx + &*]'2.

~28.11.

28.12.

/28.13,

v28.14.

28.15.

28.16.

§29
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“28.11.

28.12.

/28.13.

28.14.

28.15.

28.16.

§29

Suppose that f is differentiable at 4, g is differentiable at f(a), and
h is differentiable at g o f(a). State and prove the chain rule for
(hogof)(a). Hint: Apply Theorem 28.4 twice.

(a) Differentiate the function whose value at x is cos(e*’ ~3%),

(b) Use Exercise 28.11 or Theorem 28.4 to justify your computa-
tion in part (a).

Show that if f is defined on an open interval containing a, if g is
defined on an open interval containing f(a), and if f is continuous
at a, then g o f is defined on an open interval containing a.

Suppose that f is differentiable at a. Prove
(a) limy,_,o f(_a"_”ﬁth — f’(a), (b) limy,_,0 Jﬁi)z‘hf(_“:@ — f’(a).

Prove Leibniz' rule
n

@@= (:)f(")(a)g("“"’(a)

k=0

provided both f and g have n derivatives at a. Here h?) signifies
the jth derivative of h so that h® = h, KV = »’, K@ = ", etc.
Also, (’;) is the binomial coefficient that appears in the binomial
expansion; see Exercise 1.12. Hint: Use mathematical induction.
For n = 1, apply Theorem 28.3(iii).

Let f be a function defined on an open interval I containing a.
Let h be a function defined on an open interval ] containing f(a),
except at f(a), and suppose that f(x) € J and f(x) # f(a) for all
x € I\ {a}. Then hof is defined on I \ {a}. Use Corollary 20.7 to
prove that if lim,_,, f(¥) = f(a) and if lim,_, ¢4 h(y) exists and is
finite, then lim,_,, h o f(%) = limy_ s h(Y).

The Mean Value Theorem

Our first result justifies the following strategy in calculus: To find the
maximum and minimum of a continuous function f on an interval
[a, b] it suffices to consider (a) the points x where f'(x) = 0; (b) the
points where f is not differentiable; and (c) the endpoints a and b.
These are the candidates for maxima and minima.
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shows that

1 1 1
/ —_ — S l/n—lo
g (Yo) vl ny(()n—l)/n Jo
This shows that the function g is differentiable for y # 0 and that
the rule for differentiating ¥* holds for exponents of the form 1/n;

see also Exercise 29.15.

Theorem 29.9 applies to the various inverse functions encoun-
tered in calculus. We give one example.

Example 3
The function f (x) = sin xis one-to-one on[—7, 7], and it is traditional

to use the inverse g of f restricted to this domain; g is usually denoted

sin~! or arcsin. Note that dom(g) = [—1, 1]. For yo = sinxp in (-1, 1)
where xg € (—%, 5), Theorem 29.9 shows that g'(yo) = 55 Since
1 = sin? xy + cos? xy = y2 + cos? xy and cosxy > 0, we may write

-, 1
gWYo) = == for yoe(-1,1).
1 -yo

iﬂ?rcises
L29.1. Determine whether the conclusion of the Mean Value Theorem

holds for the following functions on the specified intervals. If the

conclusion holds, give an example of a point x satisfying (1) of
Theorem 29.3. If the conclusion fails, state which hypotheses of
the Mean Value Theorem fail.
(a) x¥* on[-1,2],

(¢) I¥lon[-1,2], (@ lon[-1,1),

(e) > onll,3], () sgn(x) on [-2,2].
The function sgn is defined in Exercise 17.10.

\(29: \Prove that | cosx — cosy| < |x —y| forall x,y € R.

(b) sinx on [0, 7],

{/Z@‘-:"')/Suppose that f is differentiable on R and that f(0) = 0, f(1) =1
e and f(Z) = 1.

(a) Show that f'(x) = 1 for some x € (0, 2).
(b) Show that f'(x) = 1 for some x € (0, 2).
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29.4. Let f and g be differentiable functions on an open interval I.
Suppose that a,b in I satisfy a < b and f(a) = f(b) = 0. Show
that f'(x) + f(x)g'(x) = 0 for some x € (a,b). Hint: Consider
h(x) = f(x)es™.

@ Let f be defined on R, and suppose that |f(x) — f(y)| < (x —y)? for
- all x,y € R. Prove that f is a constant function.

29.6. Give the equation of the straight line used in the proof of the Mean
Value Theorem 29.3.

29.7. (@) Suppose that f is twice differentiable on an open interval I
and that f”(x) = 0 for all x € I. Show that f has the form
f(x) = ax + b for suitable constants a and b.

(b) Suppose f is three times differentiable on an open interval
I and that f” = 0 on I. What form does f have? Prove your
claim.

(A/98 Prove (ii)-(iv) of Corollary 29.7.

@9 Show that ex < ¢* forall x ¢ R.

29.10. Let f(x) = **sin(1) + § for x # 0 and f(0) = 0.
(a) Show that f'(0) > 0; see Exercise 28.4.

(b) Show that f is not increasing on any open interval contain-
ing 0.
. __(€) Compare this example with Corollary 29.7(i).

Show that sinx < x for all x > 0. Hint: Show that f(x) = x — sinx

is increasing on [0, 00).
29.12. (a) Show thatx < tanx for allx € (0, 3).

(b) Show that X is a strictly increasing function on (0, 3).
(c) Show thatx < Zsinx for x € [0, 5].

(/2/9.13; Prove that if f and g are differentiable on R, if f(0) = g(0) and if

/\f’(x) < g'(x) for all x € R, then f(x) < g(x) forx > 0.
9.14,~”’Suppose that f is differentiable on R, that 1 < f'(x) < 2 forx € R,

.~ and that f(0) = 0. Prove that x < f(x) < 2x for all x > 0.

29.15. Letr be a nonzero rational number = where n is a positive integer,
m is any nonzero integer, and m and n have no common factors.
Let h(x) = x” where dom(h) = [0,00) if n is even and m > 0,

FlA
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dom(h) = (0,00) if n is even and m < 0, dom(h) = R if n is odd
and m > 0, and dom(h) = R\ {0} if n is odd and m < 0. Show that
W(x) = rx’~! for x € dom(h), x # 0. Hint: Use Example 2.

29.16. Use Theorem 29.9 to obtain the derivative of the inverse g =
arctan of f where f(x) = tanx forx € (%, 3).

29.17. Let f and g be differentiable on an open interval I and consider
a € I. Define h on I by the rules: h(x) = f(x) for x < a, and
h(x) = g(x) for x > a. Prove that h is differentiable at a if and
only if both f(a) = g(a) and f'(a) = g'(a) hold. Suggestion: Draw a
icture to see what is going on.

¢ gg.,l&/tet f be differentiable on R with a = sup{|f'(x)| : x € R} < 1.
Select s, € R and define s, = f(sp-1) for n > 1. Thus s; = f(s0),
s2 = f(s1), etc. Prove that (s,) is a convergence sequence. Hint:
To show (s,) is Cauchy, first show that |sp41 — 8x] < alsn — Sn—1|
forn>1.

§30 * I’'Hospital’s Rule

In analysis one frequently encounters limits of the form

lim )

x> g(x)
where s signifies a, a*, a~, oo or —oo. See Definition 20.3 concern-
ing such limits. The limit exists and is simply %2—:%%% provided the
limits lim,_, f(¥) and lim,_, g(¥) exist and are finite and provided
lim,—s g(x) # 0; see Theorem 20.4. If these limits lead to an inde-
terminate form such as % or 2, then L'Hospital’s rule can often be
used. Moreover, other indeterminate forms, such as co— o0, 1%, oc?,
0% or 0 - 0o, can usually be reformulated so as to take the form -g or
2, see Examples 5-9. Before we state and prove L'Hospital's rule,

we will prove a generalized mean value theorem.

30.1 Generalized Mean Value Theorem.
Let f and g be continuous functions on [a, b] that are differentiable on
(a, b). Then there exists [at least one] x in (a, b) such that

f'(®)(g(b) — g(@)] = g @If (B) - f(@)}. )
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Neither of the limits lim,o(¢® — 1)} or lim,,ox™' exists, so
lim,_o h(x) is not an indeterminate form as written. However,
lim,_,o+ h(x) is indeterminate of the form co — 0o and lim,_,¢- h(x)
is indeterminate of the form (—oc) — (—00). By writing

x—¢e +1
"=

the limit lim,—_o h(x) becomes an indeterminate of the form %. By
L'Hospital's rule this should be
. 1-¢
lim ——,
x>0 xe* +e* — 1
which is still indeterminate 2. Note that xe* +¢* — 1 # 0 forx # 0

so that the hypotheses of Theorem 30.2 hold. Applying UHospital's
rule again, we obtain

X = 1
lim ———— = ——.
x—>0 xe* + 2¢* 2
Note that we have xe* + 2¢* # 0 for x in (—2, 00). We conclude that
lim,oh(¥) = —3-

Exercises
(/30.1. Find the following limits if they exist.
(a) lim,,o &= (b) lim,—o =52
. 3 . ,/ —J1—
. limy o0 2= (d) limyo —-li—";&
@ Find the following limits if they exist.
(a) limx_,o ;-mx—x:; (b) hmx_,o -@-le—;;——x 2
(€) limeo[gs — 5] (d) lim,—o(cos )"
30.3. Find the following limits if they exist.
(a) limy oo x-—s;mx (b) 1My o0 xsin(l/x)
(C) lim,_, o+ ljxc_?ix (d) lim,_o 1—(:osxz4x—2x2

(30.4. Let f be a function defined on some interval (0, a), and define
gw) =f(;)fory e (a~!, 00); here we set a~' = 0 if a = oo. Show
that lim,o+ f(x) exists if and only if lim,_.8(¥) exists, in which
case they are equal.

/7t
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-
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tgo D d the limi

30.5. Find the limits

\/(a) lim,_,o(1 + 2x)1/* (b) limy,oo(1 + 2y
(c) lim,,o(€* + %)%

(.30.6. Let f be differentiable on some interval (¢, 00) and suppose that
lim,, o [f (%) +f'(¥)] = L, where L is finite. Prove that lim,_, f(x)=
L and that lim,_, f'(x) = 0. Hint: f(x) = &;E.

30.7. This example is taken from [38] and is due to Otto Stolz, Math.
Annalen 15 (1879), 556-559. The requirement in Theorem 30.2 that
g'(x) # 0 for x “near” s is important. In a careless application of -1
L'Hospital’s rule in which the zeros of g’ “cancel” the zeros of f,
erroneous results can be obtained. For x € R, let ¥

f¥)=x+cosxsinx and g(x) = ""*(x + cosxsin x).

(a) Show that lim,., o f(X) = lim,., o g(x) = +00.
(b) Show f'(x) = 2(cosx)? and g'(x) = "* cos ¥[2 cos x + f(¥)].

(c) Show that g(:-% = %4% if cosx # 0 and x > 3.

(d) Show that lim, , %—fg;—f% = 0 and yet the limit lim,_, o %2:)
does not exist.

§31 Taylor’s Theorem

31.1 Discussion.
Consider a power series with radius of convergence R > 0 [R may
be +o0]:

f) =) at. )

By Theorem 26.5 the function f is differentiable in the interval x| <
R and

(e o]
fl(x) = Zkakxk"l.
k=1
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If y» = +, then limy, = +oo [by Theorem 9.10] and we need to
show lim,,_, o yXe™¥ = 0.0t

lim y*e™¥ = 0. 3)

y—

To see (3) note that ¢¥ > - for y > 0 by Example 1(a) so that

(k+1)'

(k +1)!

v <yfk+ 1)y = for y > 0.

The limit (3) also can be verified via k applications of L'Hospital's
Rule 30.2.

Just as with power series, one can consider Taylor series that are
not centered at 0.

31.8 Definition.
Let f be a function defined on some open interval containing x; € R.
If f has derivatives of all order at xy, then the series

®(x
Zf (0)( — x)f

k=0

is called the Taylor series for f about x,.

The theorems in this section are easily transferred to the general
Taylor series just defined.

Exercises

31.1. Find the Taylor series for cosx and indicate why it converges to
cosx for all x € R.

31.2. Repeat Exercise 31.1 forsinhx = (e*—¢™*) and cosh x = s(e+e™).

31.3. In Example 2, why did we apply Theorem 31.3 instead of
Corollary 31.4?

31.4. Consider a,b in R where a < b. Show that there exist infinitely
differentiable functions f;, gy, hsp and h:‘l,b on R with the following
properties. You may assume, without proof, that the sum, prod-
uct, etc. of infinitely differentiable functions is again infinitely

31.6. A
le

fc
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differentiable. The same applies to the quotient provided that the
denominator never vanishes.

(@) f(¥) =0 for x < aand fy(x) > 0 for x > a. Hint: Let f,(x) =
f(x — a) where f is the function in Example 3.

(b) g»(¥) =0forx > b and gy(x) > 0 forx < b.
(€) hap(x) > 0 for x € (a,b)and h,,(x) = 0 for x € (a, b).

(d) h;,(*) = 0 for x < a and h},(x) = 1 for x > b. Hint: Use
fa/(fa + 8b)-

31.5. Let g(x) = e"/* for x # 0 and g(0) = 0.

(a) Show that g™(0) = 0 for all n = 0,1,2,3,.... Hint: Use
Example 3.

(b) Show that the Taylor series for g about 0 agrees with g only at
x=0.

31.6. A standard proof of Theorem 31.3 goes as follows. Assume x > 0,

let M be as in the proof of Theorem 31.3, and let

F() = f(t)+z( Yooy 4. E=

fort € [0, x].
(a) Show that F is differentiable on [0, x] and that

( )nl

e ARGREY!

F()=
(b) Show that F(0) = F(x).

(c) Apply Rolle's Theorem 29.2 to F to obtain y in (0, x) such that
fO ) =M.



