Iath 125APractice Exam 2Page 2 of 81. (pts) Let $f(x) = \sin \frac{1}{x}$. Use the definition of the limit to prove that $\lim_{x \to 0} f(x)$ does not exist.

2. (pts) Find the interval of convergence for the following power series

$$\sum \frac{2^n}{n5^{n+1}} x^n$$

3. (*pts*) Let the sequence of functions $\{f_n\}$ be $f_n(x) = x - x^n$ for $x \in [0, 1]$.

(a) Find f(x) such that $\{f_n\} \to f$ on [0,1].

(b) Using the definition, prove $\{f_n\}$ does not converge uniformly to f (found in part a) on [0, 1].

Iath 125APractice Exam 2Page 4 of 84. (pts) Let the sequence of functions $\{f_n\}$ be $f_n(x) = \frac{1}{1+nx}$ for $x \in [2,\infty)$. Let f(x) = 0 for $x \in [2,\infty)$. Using the definition, prove $\{f_n\}$ converges uniformly to f on $x \in [2,\infty)$.

5. (pts) For $x \in [0, 1]$, we have the following power series

$$\sqrt{1+x} = \sum \frac{(-1)^n (2n)!}{(1-2n)(n!)^2 (4^n)} x^n.$$

Use this fact to build a power series for $\frac{1}{\sqrt{1-x^2}}$

6. (pts) Prove the following series converges uniformly on \mathbb{R} to a continuous function

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$$

Math 125A

7. (pts) Use the definition of the derivative to prove the Quotient Rule.

8. (*pts*) Use the definition of the derivative to show f(x) = |x| + |x + 1| is not differentiable at x = -1.

9. (pts) Let the sequence of functions $\{f_n\}$ be $f_n(x) = \frac{nx}{1+n^2x^2}$ for $x \in [0,1]$. Let f(x) = 0 for $x \in [0,1]$. Prove $\{f_n\}$ does not converge uniformly to f on $x \in [0,1]$.

Math 125A

The following extra credit problem is OPTIONAL and you are advised to finish the rest of the test before trying this problem.

1. (*pts*) Prove that for all $x_0 \in \mathbb{R}$ there exists a sequence of rational numbers which converges to x_0 . Also, there exists a sequence of irrational numbers which converges to x_0 .