Iath 125APractice Exam 1Page 2 of 81. (pts) Prove that $f(x) = 5x^2 - 7$ is continuous on the interval $(1, \infty)$ by verifying the $\epsilon\delta$ property.

Iath 125APractice Exam 1Page 3 of 82. (pts) Prove that $f(x) = 5x^2 - 7$ is not uniformly continuous on the interval $(1, \infty)$ by definition.

- 3. (pts) Let $f(x) = \lfloor x \rfloor$ be the floor function (i.e. f(x) is the largest integer less than x, which can be defined as $\lfloor x \rfloor := \max\{p \in \mathbb{Z} : p \leq x\}$). Define the function $g(x) = x \lfloor x \rfloor$ to be the fractional part of x.
 - (a) Sketch both functions f(x) and g(x) over the interval [-4, 4], and determine where each function is discontinuous on \mathbb{R} .

(b) Prove g(x) is discontinuous at $x_0 = 0$ using the definition.

4. (*pts*) Prove that $\ln(x+1) = 1 - x$ is solvable.

5. (pts) Give an example of a continuous function f(x) bounded on $[0, \infty)$ that does not obtain it's maximum value (i.e. $\not\exists x^* \in [0, \infty)$ such that $f(x) \leq f(x^*) \quad \forall x \in [0, \infty)$).

6. (*pts*) Which are the following functions on the indicated domain are continuous and/or uniformly continuous or neither? Briefly justify your answer, using any theorem (in the book) you wish.

(a)
$$f(x) = 2^{x^3}$$
 on $[-7, 5]$.

(b)
$$g(x) = \frac{1}{x^3}$$
 on $(0, 1)$.

(c)
$$h(x) = \begin{cases} -1 & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$$
 on $(-2, 2)$.

7. (pts) Let f be a continuous function with domain (a, b). Prove that if f(r) = 0 for each rational number r in (a, b), then f(x) = 0 for all $x \in (a, b)$.

The following extra credit problems are OPTIONAL and you are advised to finish the rest of the test before trying these problems.

1. (*pts*) Prove that for all $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ (i.e. the irrationals) there exists a sequence $x_n \subseteq \mathbb{Q}$ which converges to x_0 .