An Instability of the Standard Model of Cosmology
Creates the Anomalous Acceleration
Without Dark Energy

Revised October 19, 2017

Joel Smoller1 Blake Temple2 Zeke Vogler2

Abstract: We identify the condition for smoothness at the center of spherically symmetric solutions of Einstein’s original equations (without the cosmological constant or Dark Energy), and use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the center of symmetry when the pressure $p = 0$. In this phase portrait, the critical $k = 0$, $p = 0$ Friedmann spacetime appears as an unstable saddle rest point. This phase portrait tells us that the Friedmann spacetime is unstable to spherical perturbations no matter what point in physical spacetime is taken as the center. This raises the question as to whether the Friedmann spacetime is observable by redshift vs luminosity measurements looking outward from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding spacetimes whose accelerations closely mimic the effects of Dark Energy. Namely, a unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of Dark Energy up to second order, and distinguish the theory from Dark Energy at third order. Thus anomalous accelerations are not only consistent with Einstein’s original theory of GR, but are a prediction of it.

1. Introduction

We identify the condition for smoothness at the center of spherically symmetric solutions of Einstein’s original equations of General Relativity, (without the cosmological constant), and use this to derive a universal phase portrait which describes the evolution of smooth solutions near the center of symmetry when the pressure $p = 0$.1 In this phase portrait, the $k = 0$, $p = 0$ Friedmann spacetime appears as an unstable saddle rest point. Earlier attempts to identify an instability in the Standard Model of Cosmology2 (SM) were inconclusive,3 c.f. [30, 39]. The condition for

1Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
2Department of Mathematics, University of California, Davis, Davis CA 95616

1By smooth we mean arbitrary orders of derivatives exist on the scale for which the Friedmann approximation is valid. Making sure appropriate smoothness conditions are imposed on solutions is of fundamental importance to mathematics and physics.

2Assuming the so-called Cosmological Principle, that the universe is uniform on the largest scale, the evolution of the universe on that scale is described by a Friedman spacetime, which is determined by the equation of state in each epoch, [28]. In this paper we let SM denote the approximation to the Standard Model of cosmology without Dark Energy given by the critical $k = 0$ Friedman universe with equation of state $p = \frac{\Lambda}{3}$ during the radiation epoch, and $p = 0$ thereafter, (c.f. the ΛCDM model with $\Lambda = 0$, [13]).

3C.f. [30] for inconclusive attempts to identify the instability in SM by taking a long wavelength limit in LTB coordinates.
smoothness is that all odd order derivatives with respect to \(r \) of metric components and scalar functions, and all even derivatives of the velocity, should vanish at the center \(r = 0 \) when the spacetime metric is expressed in Standard Schwarzschild Coordinates (SSC), (c.f. (1.1) below). We prove that this condition is preserved by the evolution of the Einstein equations, and remark that this smoothness condition appears not to have been identified in previous studies based on Lemaitre-Tolman-Bondi (LTB) coordinates. Here we propose that the correct invariant condition for smoothness of a spherically symmetric spacetime metric given in radial coordinates \((r, \phi, \theta)\) is the condition that all odd order \(r \)-derivatives of metric components vanish at \(r = 0 \) in SSC coordinates.

The constraint of smoothness at the center provides a new ansatz for Taylor expanding smooth spherically symmetric solutions about the center of symmetry in SSC, and we show the ansatz closes in SSC at even orders when \(p = 0 \). The effect of imposing smoothness reduces the solution space, and implies that the local phase portrait is valid with errors one order of magnitude larger than one would obtain if, (as in prior LTB studies), nonzero SSC derivatives of odd order were allowed at the center. From this we prove that smooth perturbations of the Friedmann spacetime trigger an instability when the pressure drops to zero, and the effect of spherical perturbations, as described by the unstable manifold, is to create local uniformly expanding spacetimes with accelerated expansion rates. These spacetimes introduce a new global spacetime geometry given in closed form when the higher order corrections affecting the spacetime far from the center are neglected. We show that in the under-dense case, these local spacetimes mimic almost exactly the effects of Dark Energy, producing precisely the same range of quadratic corrections to redshift vs luminosity during the evolution from the end of radiation to present time, as are produced by the cosmological constant in the theory of Dark Energy. Based on this we conclude: (1) The Friedmann spacetime is unstable in Einstein’s original theory of GR without the cosmological constant, and given this, we should not expect to observe it by redshift vs luminosity measurements looking outward from any point taken as the center, when \(p = 0 \). (2) Because under-dense perturbations create spacetimes that locally mimic the effects of Dark Energy, the anomalous acceleration\(^4\) observed in the supernova data is not only consistent with Einstein’s original theory, but one could interpret this as a prediction of it. Statements (1) and (2) remain valid independently of whether or not the instability of Friedmann actually is the source of the anomalous acceleration observed in the supernova data.

It is natural, then, to test the consistency of the accelerations which are created by the instability with the accelerations observed in the supernova data. In fact, all these ideas arose out of the authors’ earlier attempts to explain the anomalous acceleration of the galaxies within Einstein’s original theory without Dark Energy. These ideas followed from a self-contained line of reasoning stemming from questions that naturally arose from earlier investigations on incorporating a shock wave into SM, [19, 20, 21]. There have been a number of other attempts to model cosmic acceleration by assuming that we live in an under-dense region of the universe, (c.f. [4, 5], and references [37]-[65] of [27], including [29]-[38] listed below). Such

\(^4\)In this paper we use the term anomalous acceleration to refer to the corrections to redshift vs luminosity from the predictions of the \(k = 0, p = 0 \) Friedmann spacetime, as observed in the supernova data. We take these to be given exactly by the corrections obtained by assuming \(\Omega_{\Lambda} = .7 \).
class of models is called the void model. Prior void models have been based on spherically symmetric $p = 0$ solutions represented in LTB coordinates, (coordinates which typically take the radial coordinate to be co-moving with the fluid, c.f. [28]), and until now, a smoothness condition at the center was never identified for the purpose of characterizing smooth solutions in LTB. Although the void models are still discussed and taken seriously, it is generally believed that unless we live in an extreme vicinity of the center of a spherically symmetric space it would be in contradiction with the observation of cosmic microwave background radiation. Moreover, central weak singularities have been shown to exist in LTB at the center in models that appear to account for the anomalous acceleration, [30, 39, 38]. Both the fine-tuning problem of being near the center, and the existence of mild singularities at the center, have both been put forth as possible reasons to rule out the void model explanation for the cosmic acceleration. While we do not address these problems here, we point out there are in fact large scale angular anomalies in the microwave background radiation, [3], and the fine tuning problem persists whether we fine tune the model to be near a center, or fine tune it to make the cosmological constant on the order of the energy density of the universe, (required to correct the redshift vs luminosity relations by the cosmological constant, [21]).

The void models in LTB are essentially based on choosing initial data to match the observations at present time, and then proposing the LTB time reversal of such solutions as the cosmological model. Here we take a different approach by exploring the consequences of assuming that the instability in SSC created the under-density. This is fundamentally different because we identify a mechanism, the instability, by which the redshift vs luminosity data is altered in a specific way from the SM values as a direct consequence of the Einstein equations. Based on this, we explore the connection between the local accelerations created by the instability and the anomalous acceleration observed in the supernova data, making no assumptions about the spacetime far from the center\(^5\). The universal phase portrait applies up to fourth order errors (in distance from the center) in the density variable and third order errors in the velocity, implying that neglecting these errors, the phase portrait only affects the linear and quadratic terms in the observed redshift vs luminosity relations. We prove that the accelerations created by the instability are consistent with the supernova observations out to second order in the redshift factor z. However, to obtain a third order correction which provides a prediction different from Dark Energy, some assumption must be made about the third order velocity term. For this prediction, we propose that the under-density is created (at that order) by a distinguished 1-parameter family of smooth perturbations of the Friedmann spacetime that exist during the radiation epoch, when $p = \frac{c^2}{3} \rho$. [18]. In [21], the authors identified these self-similar perturbations, and proposed them as a possible source of the anomalous acceleration observed in the supernova data without Dark Energy. Now it is commonly stated that the radiation epoch ends, and the pressure drops approximately to zero, about one order of magnitude (one power of ten) before the uncoupling of radiation and matter, the latter occurring some three to four hundred thousand years after the Big Bang. To make precise the connection between these self-similar solutions from the radiation epoch and the instability they trigger when the pressure drops to

\(^5\)Author’s work in [8] shows how solutions with positive velocity can be extended beyond a given radius with arbitrary initial density and velocity profiles.
4

$p = 0$, we make the simplifying assumption that the pressure drops discontinuously to zero at some temperature between $3000^\circ K$ and $9000^\circ K$. That is, we model the continuous drop in pressure from the radiation epoch to the matter dominated epoch as a discontinuous process, but allow the temperature at which the drop takes place to be essentially arbitrary. The approximation of a discontinuous drop in the pressure is commonly made in Cosmology. Indeed, to quote Longair [13], page 276, “...the transition to the radiation-dominated era would take place at redshift $z \approx 6000$. At redshifts less than this value, the Universe was matter-dominated and the dynamics were described by the standard Friedman models [with scale factor] $t^\frac{2}{3}$ [the case $p = 0$]...”. Thus our assumption that the pressure drops precipitously to zero at a temperature $3000^\circ K \leq T_s \leq 9000^\circ K$, is reasonable. Since our numerics show that the results are independent of that temperature, we are confident that the conclusion would not change significantly if a continuous process were modeled. Thus the conclusions derived from the assumption of a precipitous drop in pressure to $p = 0$ are justified. By numerical simulation we identify a unique wave in the family that accounts for the same values of the Hubble constant and quadratic correction to redshift vs luminosity as are implied by the theory of Dark Energy with $\Omega_\Lambda \approx 0.7$, and the numerical simulation of the third order correction associated with that unique wave establishes the testable prediction that distinguishes this theory from the theory of Dark Energy. Here we characterize the sought after instability, show it is triggered by a family of simple wave perturbations from the radiation epoch, and as a bonus obtain a testable alternative mathematical explanation for the anomalous acceleration of the galaxies that does not invoke Dark Energy.

We now discuss the perturbations from the radiation epoch in more detail. Most of the expansion of the universe before the pressure drops to $p \approx 0$, is governed by the radiation epoch, a period in which the large scale evolution is approximated by the equations of pure radiation. These equations take the form of the relativistic p-system, [24], of shock wave theory, and for such highly nonlinear equations, one expects complicated solutions to become simpler. Solutions of the p-system typically decay to a concatenation of self-similar simple waves, solutions along which the equations reduce to ODE’s, [12, 6, 21]. Based on this, together with the fact that large fluctuations from the radiation epoch (like the baryonic acoustic oscillations) are typically spherical, [13], the authors began the program in [26] by looking for a family of spherically symmetric solutions that perturb the SM during the radiation epoch when the equation of state $p = \frac{c_s^2}{3} \rho$ holds, and on which the Einstein equations reduce to ODE’s. In [20, 21], we identified a unique family of such solutions which we refer to as a-waves, parameterized by the so called acceleration parameter $a > 0$, normalized so that $a = 1$ is the SM6. The a-waves are the only known family of solutions of the Einstein equations which both perturb Friedman spacetimes, and reduce the Einstein equations to ODEs, [1, 21, 2]. Since when $p = 0$, under-densities relative to the SM are a natural mechanism for creating anomalous accelerations, (less matter present to slow the expansion implies a larger expansion rate, [13]), we restrict to the perturbations $a < 1$ which induce under-densities relative to the SM, [20, 21]. Thus our starting hypothesis in [20, 21] was that the anomalous acceleration of the galaxies is due to a local under-density relative to the SM, on the

6This family of waves was first discovered from a different point of view in the fundamental paper [1]. C.f. also the self-similarity hypothesis in [2]. As far as we know, our’s is the first attempt to connect this family of waves with the anomalous acceleration.
scale of the supernova data [4], created by a perturbation that has decayed (locally near the center) to an \(a\)-wave, \(a < 1\), by the end of the radiation epoch.\(^7\) Here we use the \(a\)-waves to obtain a third order correction to redshift vs luminosity to be compared with Dark Energy. We can now state the results precisely.

In this paper we prove the following: (i) The \(k=0, p=0\) Friedman spacetime is unstable, and smooth spherical perturbations evolve, locally to leading order near the center, according to a \textit{universal phase portrait} in which the SM appears as an unstable saddle rest point \(SM\), (c.f. Figure 1); (ii) Under-dense perturbations of \(SM\) at the end of radiation trigger evolution along the unstable manifold from \(SM\) to \(M\), and this describes the formation of a local region of accelerated expansion, (one order of magnitude larger in extent than would be expected if the smoothness condition were not imposed), which extends further and further outward from the center, becoming more flat and more uniform, as time evolves. Comparing these local uniformly expanding solutions generated by the phase portrait, to the critical uniformly expanding Friedmann spacetime accelerated by the cosmological constant, we find that evolution along the unstable manifold produces precisely the same range of quadratic corrections \(Q\) to redshift vs luminosity as Dark Energy—for apparently a completely different reason; (iii) A unique \(a\)-wave perturbation at the end of radiation which creates the same \(H_0\) and \(Q\) at present time as Dark Energy, provides a predictive third order correction \(C\) that has the same order, but a different sign, from Dark Energy.

Spherically symmetric spacetimes can generically be transformed near the center to Standard Schwarzschild Coordinates (SSC) where the metric takes the canonical form

\[
d s^2 = -B(t, r) \, dt^2 + \frac{1}{A(t, r)} \, dr^2 + r^2 \, d\Omega^2, \quad d\Omega^2 = d\theta^2 + \sin^2 \theta \, d\phi^2,
\]

\(d\Omega\) giving the standard line element on the unit 2-sphere, [18]. Letting

\[
H \, dt = z + Q \, x^2 + C \, x^3 + O(x^4)
\]

\((1.2)\)

denote the relation between redshift factor \(z\) and luminosity distance \(d_L\) at a given value of the Hubble constant \(H\) as measured at the center\(^8\), the value of the quadratic correction \(Q\) increases from the value \(Q = .25\) at rest point \(SM\) at the end of radiation, to the value \(Q = .5\) for orbits evolving along the unstable manifold to \(M\) as \(t \to \infty\). This is precisely the same range of values \(Q\) takes on in Dark Energy theory as the fraction \(\Omega_{\Lambda}\) of Dark Energy to classical energy increases from its value of \(\Omega_{\Lambda} \approx 0\) at the end of radiation, to \(\Omega_{\Lambda} = 1\) as \(t \to \infty\). In particular, this holds for any \(a < 1\) near \(a = 1\), and for any value of the cosmological constant \(\Lambda > 0\), assuming only that \(a\) and \(\Lambda\) both induce a negligibly small under-dense correction to the SM value \(Q = .25\) at the end of radiation.\(^9\) Indeed, this holds

\(^7\)Since time asymptotic wave patterns typically involve multiple simple waves, we make no hypothesis regarding the space-time far from the center of the \(a\)-wave.

\(^8\)For FRW, \(Q\) is determined by the value of the so-called \textit{deceleration parameter} \(q_0\), and \(C\) is determined by the \textit{jerk} \(j\), c.f., [13]. The deceleration parameter gives \(Q\) through \(H_0 \, dt = z - \frac{2}{3} q_0 \, x^2 + O(x^3)\), with \(q_0 = -10/3 < 0\) in SM.

\(^9\)We qualify with this latter assumption only because, in Dark Energy theory, the value of \(\Omega_{\Lambda}\) is small but not exactly equal to zero at the end of radiation; and in the wave model, the value of \(Q\) jumps down slightly below \(Q = .25\) at the end of radiation before it increases to \(Q = .5\) from that value as \(t \to \infty\).
for any under-dense perturbation that follows the unstable trajectory of rest point SM into the rest point M, (c.f. Figure 1).

These results are recorded in the following theorem. Here we let present time in a given model denote the time at which the Hubble constant H (as defined in (1.2)) reaches its present measured value $H = H_0$, this time being different in different models. We refer to the model in which the anomalous acceleration is created by an a-wave from radiation, the wave model, [23].

Theorem 1. Let $t = t_0$ denote present time in the wave model and $t = t_{DE}$ present time in the Dark Energy model. Then there exists a unique value of the acceleration parameter $a = 0.99999426$ corresponding to an under-density relative to the SM at the end of radiation, such that the subsequent $p = 0$ evolution starting from this initial data evolves to time $t = t_0$ with $H = H_0$ and $Q = .425$, in agreement with the values of H and Q at $t = t_{DE}$ in the Dark Energy model. The cubic correction at $t = t_0$ in the wave model is then $C = 0.359$, while Dark Energy theory gives $C = -0.180$ at $t = t_{DE}$. The times are related by $t_0 \approx 0.95 t_{DE}$.

In principle, adding acceleration to a model increases the expansion rate H and consequently the age of the universe because it then takes longer for the Hubble constant H to decrease to its present small value H_0. The numerics confirm that the age of the universe well approximates the age obtained by adding in Dark Energy.

We emphasize that t_0, Q and C in the wave model, are determined by a alone. Indeed, the initial data at the end of radiation, which determines the $p = 0$ evolution, depends, at the start, on two parameters: the acceleration parameter a of the self-similar waves, and the initial temperature T_x at which the pressure is assumed to drop to zero. But our numerics show that the dependence on the starting temperature is negligible for T_x in the range $3000^\circ K < T_x < 9000^\circ K$, (covering the range assumed in cosmology, [13]). Thus for the temperatures appropriate for cosmology, t_0, Q and C are determined by a alone.

A measure of the severity of the instability created by the $a = a$ perturbation of the SM , is quantified by the numerical simulation. For example, comparing the initial density ρ_{wave} for $a = a$ at the center of the wave, to the corresponding initial density ρ_{sm} in the SM at the end of radiation $t = t_*$ gives $\frac{\rho_{wave}}{\rho_{sm}} \approx 1 - (1.88) \times 10^{-6} \approx 1$. During the $p = 0$ evolution, this ratio evolves to a seven-fold under-density in the wave model relative to the SM by present time, i.e., $\frac{\rho_{wave}}{\rho_{sm}} t = 0.144$ at $t = t_0$.

Our wave model is based on the self-similarity variable $\xi = r/ct < 1$, which we introduce as a natural measure of the outward distance from the center of symmetry $r = 0$ in the inhomogeneous spacetimes we describe in SSC. We call ξ the fractional distance to the Hubble radius because $1/c t$ is the Hubble radius in the Friedman spacetime, and t is chosen to be proper time at $r = 0$ in our SSC gauge. Thus it is convenient to define $1/c t$ to be the Hubble radius in our inhomogeneous spacetimes as well. Moreover, the SSC radial variable approximately measures arclength distance at fixed time in our SSC spacetimes when $\xi \ll 1$, and exactly measures arclength at fixed time in the Friedman spacetime in co-moving coordinates. Thus

10By the Dark Energy model we refer to the critical $k = 0$ Friedman universe with cosmological constant, taking the present value $\Omega_{\Lambda} = .7$ as the best fit to the supernova data among the two parameters (k, Λ),[15, 16].
when $\xi << 1$, ξ tells approximately how far out relative to the Hubble radius an observer at the center of our inhomogeneous spacetimes would conclude an object observed at ξ were positioned, if he mistakenly thought he were in a Friedman spacetime.\footnote{Here ξ is just a measure of distance in SSC, and need not have a precise physical interpretation for $\xi >> 1$, \cite{28,18,21}.} We show below (c.f. Section 3.4), that if we neglect errors $O(\xi^4)$, and then further neglect small errors between the wave metric and the Minkowski metric which tend to zero, at that order, with approach to the stable rest point M, and also neglect errors due to relativistic corrections in the velocities of the fluid relative to the center (where the velocity is zero), the resulting spacetime is, like a Friedman spacetime, independent of the choice of center. Thus the central region of approximate uniform density at present time $t = t_0$ in the wave model extends out from the center $r = 0$ at $t = 0$ in SSC, to radial values r small enough so that the fractional distance to the Hubble radius $\xi = r/c t_0$ satisfies $\xi^4 << 1$.

The cubic correction C to redshift vs luminosity is a verifiable prediction of the wave model which distinguishes it from Dark Energy theory. In particular, $C > 0$ in the wave model and $C < 0$ in the Dark Energy model implies that the cubic correction increases the right hand side of (1.2), (i.e., increases the discrepancy between the observed redshifts and the predictions of the SM) far from the center in the wave model, while it decreases the right hand side of (1.2) far from the center in the Dark Energy theory. Now the anomalous acceleration was originally derived from a collection of data points, and the $\Omega_\Lambda \approx .7$ critical FRW spacetime is obtained as the best fit to Friedman spacetimes among the parameters (k, Λ). We understand that the current data is sufficient to provide a value for Q, but not C, \cite{10}. Presently it is not clear to the authors whether or not there are indications in the data that could distinguish $C < 0$ from $C > 0$.

In Section 2 we give a physical motivation for our smoothness condition imposed at the center $r = 0$ of a spherically symmetric spacetime in SSC. Our results are presented in Section 3. In Section 3.1 we derive an alternative formulation of the $p = 0$ Einstein equations in spherical symmetry, and in Section 3.2 we prove that the evolution preserves smoothness. In Section 3.3 we introduce our new asymptotic ansatz for corrections to the SM which are consistent with the condition at $r = 0$ for smooth solutions derived in Section 2. In Section 3.4 we use the exact equations together with our ansatz to derive asymptotic equations in (t, ξ) for the corrections, and use these to derive the universal phase portrait. In Section 3.5 we derive the correct redshift vs luminosity relation for the SM including the corrections. In Section 3.6 we introduce a gauge transformation that converts the a-waves at the end of radiation into initial data that is consistent with our ansatz. In Section 3.7 we present our numerics that identifies the unique a-wave $a = a$ in the family that meets the conditions $H = H_0$ and $Q = .425$ at $t = t_0$, and explain our predicted cubic correction $C = 0.359$. In Section 3.8 we discuss the uniform space-time created at the center of the perturbation. Concluding remarks are given in Section 4. Details are omitted in this announcement. We use the convention $c = 1$ when convenient.

2. Smoothness at the center of spherically symmetric spacetimes

The results of this paper rely on the validity of approximating solutions by finite Taylor expansions about the center of symmetry, so the main issue is to
guarantee that solutions are indeed smooth in a neighborhood of the center. Of course the universe is not smooth on small scales, so our assumption is simply that the center is not special regarding the level of smoothness assumed in the large scale approximation of the universe. Smoothness at a point P in a spacetime manifold is determined by the atlas of coordinate charts defined in a neighborhood of P, the smoothness of tensors being identified with the smoothness of the tensor components as expressed in the coordinate systems of the atlas. Now spherically symmetric solutions given in LTB and SSC in GR employ spherical coordinates (r, ϕ, θ) for the spacelike surfaces at constant time, and the subtly here is that $r = 0$ is a coordinate singularity in spherical coordinates, and functions are defined only for radial coordinate $r \geq 0$, but a coordinate system must be specified in a neighborhood of $r = 0$ to impose the conditions for smoothness at the center. Of course, once we have the metric represented as smooth in coordinate system x on an initial data surface in a neighborhood of $r = 0$, the local existence theorem giving the smooth evolution of solutions from smooth initial data for the Einstein equations would not alone suffice to obtain our smoothness condition, as one would still have to prove that this evolution preserved the metric ansatz.

We begin by showing that this issue can be resolved relatively easily in SSC because the SSC coordinates are precisely the spherical coordinates associated with Euclidean coordinate charts defined in a neighborhood of $r = 0$. Based on this, we show below that the condition for smoothness of metric components and functions in SSC is simply that all odd order derivatives should vanish at $r = 0$.

Consider now in more detail the problem of representing a smooth, spherically symmetric perturbation of the Friedman spacetime in GR. To start, assume the existence of a solution of Einstein’s equations representing a large, smooth underdense region of spacetime that expands from the end of radiation out to present time. For smooth perturbations, there should exist a coordinate system in a neighborhood of the center of symmetry, in which the solution is represented as smooth. Assume we have such a coordinate system $(t, x) \in \mathcal{R} \times \mathcal{R}^3$ with $x = 0$ at the center, and use the notation $x = (x^0, x^1, x^2, x^3) \equiv (t, x)$, $x \equiv (x, y, z)$, (there should be no confusion with the ambiguity in x). Spherical symmetry makes it convenient to represent the spatial Euclidean coordinates $x \in \mathcal{R}^3$ in spherical coordinates (r, θ, ϕ), with $r = |x|$. Since generically, any spherically symmetric metric can be transformed locally to SSC form, we assume the spacetime represented in the coordinate system (t, r, θ, ϕ) takes the SSC form (1.1). This is equivalent to the metric in Euclidean coordinates x taking the form

$$ds^2 = -B(|x|, t)dt^2 + \frac{dr^2}{A(|x|, t)} + |x|^2 d\Omega^2,$$ \hspace{1cm} (2.3)$$

with

$$r^2 = x^2 + y^2 + z^2,$$

$$dr = \frac{x dx + y dy + z dz}{r},$$

$$dr^2 = \frac{x^2 dx^2 + y^2 dy^2 + z^2 dz^2 + 2xy dx dy + 2xz dx dz + 2yz dy dz}{r^2},$$ \hspace{1cm} (2.4)$$

and

$$dx^2 + dy^2 + dz^2 = dr^2 + r^2 d\Omega^2.$$ \hspace{1cm} (2.5)$$
To guarantee the smoothness of our perturbations of Friedman at the center, we assume a gauge in which

\[B(t, r) = 1 + O(r^2), \quad (2.6) \]
\[A(t, r) = 1 + O(r^2), \quad (2.7) \]

so also

\[\frac{1}{A(t, r)} = 1 + O(r^2) = 1 + \hat{A}(t, r)r^2, \quad (2.8) \]

where the smoothness of \(A \) is equivalent to the smoothness of \(\hat{A} \) for \(r > 0 \). This sets the SSC time gauge to proper geodesic time at \(r = 0 \), and makes the SSC coordinates locally inertial at \(r = 0 \) at each time \(t > 0 \), a first step in guaranteeing that the spherical perturbations of Friedman which we study, are smooth at the center. Keep in mind that the SSC form is invariant under arbitrary transformation of time, so we are free to choose geodesic time at \(r = 0 \); and the locally inertial condition at \(r = 0 \) simply imposes that the corrections to Minkowski at \(r = 0 \) are second order in \(r \). (These assumptions make physical sense, and their consistency is guaranteed by reversing the steps in the argument to follow.) In particular, the SSC metric (1.1) tends to Minkowski at \(r = 0 \). We now ask what conditions on the metric functions \(A, B \) are imposed by assuming the SSC metric be smooth when expressed in our original Euclidean coordinate chart \((t, x)\) defined in a neighborhood of a point at \(r = 0, t > 0 \).

To transform the SSC metric (1.1) to \((t, x)\) coordinates, use (2.5) to eliminate the \(r^2 \) term and (2.4) to eliminate the \(dr^2 \) term to obtain

\[ds^2 = -B(|x|, t)dt^2 + dx^2 + dy^2 + dz^2 + \hat{A}(|x|, t) \left\{ x^2dx^2 + y^2dy^2 + z^2dz^2 + 2xydxdy + 2xzdxdz + 2yzydz \right\}. \quad (2.9) \]

The smoothness of \(\hat{A} \) is equivalent to the smoothness of \(A \), and the smoothness of \(A \) and \(B \) for \(r > 0 \) guarantees the smoothness of the Euclidean spacetime metric (2.9) in \((t, x)\) coordinates everywhere except at \(x = 0 \). For smoothness at \(x = 0 \), we impose the condition that the metric components in (2.9) should be smooth functions of \((t, x)\) at \(x = 0 \) as well. (Again, imposing smoothness in \((t, x) = 0\) coordinates at \(x = 0 \) is correct in the sense that it is preserved by the Einstein evolution equations, c.f. Section 3.2 below.) We now show that smoothness at \(x = 0 \) in this sense is equivalent to requiring that the metric functions \(A \) and \(B \) satisfy the condition that all odd \(r \)-derivatives vanish at \(r = 0 \). To see this, observe that a function \(f(r) \) represents a smooth spherically symmetric function of the Euclidean coordinates \(x \) at \(r = |x| = 0 \) if and only if the function

\[g(x) = f(|x|) \]

is smooth at \(x = 0 \). Assuming \(f \) is smooth for \(r \geq 0 \), (by which we mean \(f \) is smooth for \(r > 0 \), and one sided derivatives exist at \(r = 0 \), and taking the \(n \)'th derivative of \(g \) from the left and right and setting them equal gives the smoothness condition \(f^n(0) = (-1)^n f^n(0) \). We state this formally as:

Lemma 1. A function \(f(r) \) of the radial coordinate \(r = |x| \) represents a smooth function of the underlying Euclidean coordinates \(x \) if and only if \(f \) is smooth for
$r \geq 0$, and all odd derivatives vanish at $r = 0$. Moreover, if any odd derivative $f^{(n+1)}(0) \neq 0$, then $f(|x|)$ has a jump discontinuity in its $n+1$ derivative, and hence a kink singularity in its n'th derivative at $r = 0$.

As an immediate consequence we obtain the condition for smoothness of SSC metrics at $r = 0$:

Corollary 1. The SSC metric (1.1) is smooth at $r = 0$ in the sense that the metric components in (2.9) are smooth functions of the Euclidean coordinates (t, x) if and only if the component functions $A(r, t), B(r, t)$ are smooth in time and smooth for $r > 0$, all odd one-sided r-derivatives vanish at $r = 0$, and all even r-derivatives are bounded at $r = 0$.

To conclude, solutions of the Einstein equations in SSC have four unknowns, the metric components A, B, the density ρ and the scalar velocity v. It is easy to show that if the SSC metric components satisfy the condition that all odd order r-derivatives vanish at $r = 0$, then the components of the unit 4-velocity vector u associated with smooth curves that pass through $r = 0$ will have the same property12, and the scalar velocity $v = \frac{1}{\sqrt{AB}} \frac{dr}{dt}$ will have the property that all even derivatives vanish at $r = 0$ (because v is an outward velocity which picks up a change of sign when represented in x). Thus smoothness of SSC solutions at $r = 0$ at fixed time is equivalent to requiring that the metric components satisfy the condition that all odd r-derivatives vanish at $r = 0$. These then give conditions on SSC solutions equivalent to the condition that the solutions are smooth in the ambient Euclidean coordinate systems x. Theorem 2 of Section 3.1 below proves that smoothness in the coordinate system x at $r = 0$ at each time in this sense is preserved by the Einstein evolution equations for SSC metrics when $p = 0$. In particular, this demonstrates that our condition for smoothness of SSC metrics at $r = 0$ is equivalent to the well-posedness of solutions in the ambient Euclidean coordinates defined in a neighborhood of $r = 0$. Thus we obtain the condition for smoothness of SSC metrics at $r = 0$ based on the Euclidean coordinate systems associated with SSC, and show this is preserved by the evolution of the Einstein equations. Since smoothness of the SSC metric components in this sense is equivalent to smoothness of the x-coordinates with respect to arclength along curves passing through $r = 0$, in this sense, our condition for smoothness is geometric.

3. Presentation of Results

In Sections 3.1-3.5 we derive equations and formulas for smooth spherically symmetric solutions in SSC in the case $p = 0$ sufficient to determine the quadratic correction Q in (1.2) and the phase portrait in Figure 1. Our analysis employs the SSC forms of the SM in which metric components as well as density and velocity variables depend only on the SSC self-similar variable $\xi = r/t$. In Sections 3.6 and 3.7 we incorporate the inhomogeneous self-similar a-waves that exist for $p = \frac{c^2}{3} \rho$ and reduce to the critical Friedman spacetime for pure radiation when $a = 1$, to obtain the third order prediction C in (1.2). Recall that when $p = 0$, no such self-similar perturbations of Friedmann exist, [2, 20, 21, 22, 23]. The asymptotics employed is based on Taylor expanding the solutions in even powers of ξ about the center in SSC.

12This implies that the coordinates are smooth functions of arclength along curves passing through $r = 0$.

3.1. The $p = 0$ Einstein Equations in Coordinates Aligned with the Physics.
In this section we introduce a new formulation of the $p = 0$ Einstein equations that describe outwardly expanding spherically symmetric solutions employing the SSC metric form (1.1). We start with the SSC equations in [8], introduce new dimensionless density and velocity variables (z, w), and transform equations over to (t, ξ) coordinates, where $\xi = r/t$. Recall that the SSC metric form is invariant under transformations of t, and there exists a time coordinate in which SM is self-similar in the sense that the metric components A, B, v and ρr^2 are functions of ξ alone. This self-similar form exists, but is different for $p = c^2/3$ and $p = 0$, [2, 21, 22]. Taking $p = 0$, letting v denote the SSC velocity and ρ the co-moving energy density, and eliminating all unknowns in terms of v and the Minkowski energy density $T_{\mu\nu}^M = \frac{\rho}{1-(\frac{v}{c})^2}$, (c.f. [8]), the locally inertial formulation of the Einstein equations $G = \kappa T$ introduced in [8] reduce to

$$\left(\kappa T_{M}^{00} r^2\right)_t + \left\{\sqrt{AB}^2 z \left(\kappa T_{M}^{00} r^2\right)\right\}_r = -2\sqrt{AB}^2 z \left(\kappa T_{M}^{00} r^2\right),$$

$$\left(\psi^2\right)_t + r\sqrt{AB} \left(\frac{\psi}{z}\right) \left(\frac{\psi}{r}\right) = -\sqrt{AB} \left\{\left(\frac{\psi}{z}\right)^2 + \frac{1}{A^2 r^2} \left(1 - r^2 \left(\frac{\psi}{z}\right)^2\right)\right\},$$

$$rA' = \left(\frac{1}{A} - 1\right) - \frac{1}{A} \kappa T_{M}^{00} r^2,$$

$$rB' = \left(\frac{1}{B} - 1\right) + \frac{1}{B} \left(\frac{\psi}{z}\right)^2 \kappa T_{M}^{00} r^2,$$
where prime denotes d/dr. Note that the $1/r$ singularity is present in the equations because incoming waves can amplify without bound. We resolve this for outgoing expansions by assuming that $w = v/\xi$ is positive and finite at $r = \xi = 0$. Making the substitution $D = \sqrt{AB}$, taking $z = \kappa T^0_0 r^2$ as the dimensionless density, $w = v/r$ as the dimensionless velocity with $\xi = r/t$ and rewriting the equations in terms of (t, ξ), we obtain

\begin{align}
 tz_t + \xi \{(-1 + Dw)z \} \xi &= -Dwz, \\
 tw_t + \xi (-1 + Dw) w_\xi &= w - D \left\{ w^2 + \frac{1-\xi^2 w^2}{2A} \left[\frac{1-A}{\xi} \right] \right\} \\
 \xi A_\xi &= (1 - A) - z \\
 \frac{\xi D_\xi}{D} &= \frac{1}{A} \left\{ (1 - A) - \frac{(1-\xi^2 w^2)}{2} z \right\}.
\end{align}

That is, since the sound speed is zero when $p = 0$, $w(t, 0) > 0$ restricts us to expanding solutions in which all information from the fluid propagates outward from the center.

3.2. Smoothness of solutions in the ambient Euclidean coordinate system in a neighborhood of $r = 0$. In this section we prove that smoothness in the ambient Euclidean coordinate system $x = (x^0, x^1, x^2, x^3) = (t, x, y, z)$ associated with spherical SSC coordinates is preserved by the evolution of the Einstein equations. By Lemma 1, smoothness of SSC solutions at $r = 0$ is imposed by the condition that odd order r-derivatives of the metric components and the density vanish at $r = 0$, and even derivatives of the velocity v vanish at $r = 0$. Since $\xi = r/t$, imposing this condition on r-derivatives at $t > 0$ is equivalent to imposing it on ξ-derivatives, and since $w = \xi v$, $D = \sqrt{AB}$, $z = \rho r^2$, smoothness at $r = 0$ is equivalent to the condition that all odd derivatives of (z, w, A, D) vanish at $\xi = 0$, $t > 0$. The following theorem establishes that smoothness in the ambient coordinate system x is preserved by the evolution of the Einstein equations in SSC.

Theorem 2. Assume $z(t, \xi), w(t, \xi), A(t, \xi), D(t, \xi)$ are a given smooth solution of our $p = 0$ equations (3.10)-(3.13) satisfying

\begin{align}
 z &= O(\xi^2), \quad w = w(0,t) + O(\xi^2), \\
 A &= 1 + O(\xi^2), \quad D = 1 + O(\xi^2),
\end{align}

for $0 < t_0 \leq t < t_1$, and assume that at $t = t_0$ the solution agrees with initial data

\begin{align}
 z(t_0, \xi) &= \bar{z}(\xi), \quad w(t_0, \xi) = \bar{w}(\xi), \\
 A(t_0, \xi) &= \bar{A}(\xi), \quad D(t_0, \xi) = \bar{D}(\xi)
\end{align}

such that each initial data function $\bar{z}(\xi)$, $\bar{w}(\xi)$, $\bar{A}(\xi)$, $\bar{D}(\xi)$ satisfies the condition that all odd ξ-derivatives vanish at $\xi = 0$. Then all odd ξ-derivatives of the solution $z(t, \xi), w(t, \xi), A(t, \xi), D(t, \xi)$ vanish at $\xi = 0$ for all $t_0 < t < t_1$.
Proof: Start with equations (3.10)-(3.13) in the form

\[
\begin{align*}
tz_t &= -\xi \{ (-1 + Dw)z \}_\xi - Dwz, \\
tw_t &= -\xi (-1 + Dw) w_\xi + w \\
\xi A_\xi &= (1 - A) - z, \\
\xi D_\xi &= \frac{D}{2A} \{ 2(1 - A) - z + \xi^2 w^2 z \}.
\end{align*}
\] (3.18) (3.19) (3.20) (3.21)

First note that products and quotients of smooth functions that satisfy the condition that all odd derivatives vanish at \(\xi = 0 \), also have this property. Now for a function \(F(t, \xi) \), let \(F^{(n)}(t) \) denote the \(n \)th partial derivative of \(F \) with respect to \(\xi \) at \(\xi = 0 \). We prove the theorem by induction on \(n \). For this, assume \(n \geq 1 \) is odd, and make the induction hypothesis that for all odd \(k < n \), \(F^{(k)}(t) = 0 \) for all \(t > t_0 \) and all functions \(F = z, w, A, D \), (functions of \((t, \xi)\)). We prove that \(F^{(n)}(t) = 0 \) for \(t > t_0 \). For this we employ the following simple observation: If \(n \) is odd, and the \(n \)th derivative of the product of \(m \) functions \(\partial_n \partial^{n}_{\xi} (F_1 \cdots F_m) \) is expanded into a sum by the product rule, the only terms that will not have a factor containing an odd derivative of order less than \(n \) are the terms in which all the derivatives fall on the same factor. This follows from the simple fact that if the sum of \(k \) integers is odd, then at least one of them must be odd. Taking the \(n \)th derivative of (3.18) and setting \(\xi = 0 \) gives the ODE at \(\xi = 0 \):

\[
\begin{align*}
t \frac{d}{dt} z^{(n)}(\xi) &= -n \frac{\partial^{n}}{\partial^{n}_{\xi}} ((-1 + Dw)z) - \frac{\partial^{n}}{\partial^{n}_{\xi}} (DWz).
\end{align*}
\] (3.22)

Since all odd derivatives of order less than \(n \) are assumed to vanish at \(\xi = 0 \), we can apply the observation and the assumptions (3.14), (3.15) that \(D = 1, w = w_0(t) \) and \(z = 0 \) at \(\xi = 0 \), to see that only the \(n \)th order derivative \(z^{(n)}(\xi) \) survives on the RHS of (3.22). That is, by the induction hypothesis, (3.22) reduces to

\[
\begin{align*}
t \frac{d}{dt} z^{(n)}(\xi) &= [n - (n + 1)w_0(t)] z^{(n)}(\xi).
\end{align*}
\] (3.23)

Since under the change of variable \(t \rightarrow \ln(t) \), (3.23) is a linear first order homogeneous ODE in \(z^{(n)}(\xi) \) with \(z^{(n)}(t_0) = 0 \), it follows by uniqueness of solutions that \(z^{(n)}(t) = 0 \) for all \(t \geq t_0 \). This proves the theorem for the solution component \(z(t, \xi) \).

Consider next equation (3.20). Differentiating both sides \(n \) times with respect to \(\xi \) and setting \(\xi = 0 \) gives

\[
(n + 1) A^{(n)}_\xi (t) = -z^{(n)}_\xi (t) = 0,
\] (3.24)

thus

\[
A^{(n)}_\xi (t) = 0
\] (3.25)

for \(t \geq t_0 \), which verifies the theorem for component \(A \).
Consider equation (3.21). Differentiating both sides \(n \) times with respect to \(\xi \), setting \(\xi = 0 \) and applying the observation and the induction hypothesis gives

\[
n D^{(n)}_\xi = \frac{\partial^n}{\partial \xi^n} \left(D \frac{1 - A}{A} \right)
\]

\[
= D^{(n)}_\xi \left(\frac{1 - A}{A} \right) + \sum_{k < n, \text{odd}} c_k D^{(k)}_\xi + D \left(\frac{1 - A}{A} \right)^{(n)}
\]

\[
= 0
\]

for \(t \geq t_0 \) because \(A = 1 \) at \(\xi = 0 \), all lower order odd derivatives are assumed to vanish at \(\xi = 0 \), and we have already verified the theorem for the component \(A \). This proves

\[
D^{(n)}_\xi(t) = 0
\]

for \(t \geq t_0 \), verifying the theorem for component \(D \).

Consider lastly the equation (3.20). Differentiating both sides \(n \) times with respect to \(\xi \), setting \(\xi = 0 \) and applying our observation gives

\[
t \frac{d}{dt} w^{(n)}_\xi = -n(-1 + w_0(t)) w^{(n)}_\xi + w^{(n)}_\xi - \frac{\partial^n}{\partial \xi^n} (w^2)
\]

\[
= -n(-1 + w_0(t)) w^{(n)}_\xi + w^{(n)}_\xi - 2 w w^{(n)}_\xi
\]

\[
= \left[-n(-1 + w_0(t)) + 1 - 2w \right] w^{(n)}_\xi
\]

for \(t \geq t_0 \) because \(A = 1 \) and \(\xi = 0 \), all lower order odd derivatives are assumed to vanish at \(\xi = 0 \), and we have established the theorem for the component \(A \). Thus \(w^{(n)}_\xi(t) \) solves the first order homogeneous ODE

\[
t \frac{d}{dt} w^{(n)}_\xi = \left[-n(-1 + w_0(t)) + 1 - 2w \right] w^{(n)}_\xi,
\]

starting from zero initial data at \(t = t_0 \), so again we conclude

\[
w^{(n)}_\xi(t) = 0
\]

for \(t \geq t_0 \). This verifies the theorem for the final component \(w \), thereby completing the proof of Theorem 2. \(\Box \)

3.3. A New Ansatz for Corrections to SM. In this section we derive the phase portrait which describes any spherical perturbation of the \(k = 0, \ p = 0 \) Friedman spacetime which is smooth in SSC coordinates. Our condition for smooth solutions is that \((z, w, A, B) \) are smooth functions away from \(\xi = 0 \), all time derivatives are smooth, and all odd \(\xi \)-derivatives vanish at \(\xi = 0 \). Since solutions are assumed smooth at \(\xi = 0, t > 0 \), Taylor’s theorem is valid at \(\xi = 0 \), so the following ansatz for corrections to SM near \(\xi = 0 \) is valid in a neighborhood of \(\xi = 0, t > 0 \), with errors bounded by derivatives of the corresponding functions at the corresponding orders.

\[
z(t, \xi) = z_{sm}(\xi) + \Delta z(t, \xi) \quad \Delta z = z_2(t)\xi^2 + z_4(t)\xi^4
\]

\[
w(t, \xi) = w_{sm}(\xi) + \Delta w(t, \xi) \quad \Delta w = w_0(t) + w_2(t)\xi^2
\]

\[
A(t, \xi) = A_{sm}(\xi) + \Delta A(t, \xi) \quad \Delta A = A_2(t)\xi^2 + A_4(t)\xi^4
\]

\[
D(t, \xi) = D_{sm}(\xi) + \Delta D(t, \xi) \quad \Delta D = D_2(t)\xi^2
\]
where \(z_{sm}, w_{sm}, A_{sm}, D_{sm} \) are the expressions for the unique self-similar representation of the SM when \(p = 0 \), given by, [22],

\[
\begin{align*}
 z_{sm}(\xi) &= \frac{4}{3} \xi^2 + \frac{40}{27} \xi^4 + O(\xi^6), \\
 w_{sm}(\xi) &= \frac{2}{3} + \frac{2}{9} \xi^2 + O(\xi^4), \\
 A_{sm}(\xi) &= 1 - \frac{4}{3} \xi^2 - \frac{8}{27} \xi^4 + O(\xi^6), \\
 D_{sm}(\xi) &= 1 - \frac{1}{9} \xi^2 + O(\xi^4).
\end{align*}
\]

(3.35)

This gives

\[
\begin{align*}
 z(t, \xi) &= \left(\frac{4}{3} + z_2(t) \right) \xi^2 + \left\{ \frac{40}{27} + z_4(t) \right\} \xi^4 + O(\xi^6), \\
 w(t, \xi) &= \left(\frac{2}{3} + w_0(t) \right) + \left\{ \frac{2}{9} + w_2(t) \right\} \xi^2 + O(\xi^4).
\end{align*}
\]

Consistent with Theorem 2, we verify the equations close within this ansatz, at order \(\xi^4 \) in \(z \) and order \(\xi^2 \) in \(w \) with errors \(O(\xi^6) \) in \(z \) and \(O(\xi^4) \) in \(w \). Corrections expressed in this ansatz create a uniform spacetime of density \(\rho(t) \), constant at each fixed \(t \), out to errors of order \(O(\xi^4) \). That is, since the ansatz,

\[
z(\xi, t) = \kappa \rho(t, \xi) r^2 + O(\xi^4) = \left(\frac{4}{3} + z_2(t) \right) \xi^2 + O(\xi^4),
\]

(3.37)

neglecting the \(O(\xi^4) \) error gives \(\kappa \rho = (4/3 + z_2(t))/t^2 \), a function of time alone. For the SM, \(z_2 \equiv 0 \) and this gives \(\kappa \rho(t) = (4/3) t^{-2} \), which is the exact evolution of the density for the SM Friedman spacetime with \(p = 0 \) in co-moving coordinates, [18]. For the evolution of our specific under-densities in the wave model, we show \(z_2(t) \to -4/3 \) as the solution tends to the stable rest point, implying that the instability creates an accelerated drop in the density in a large uniform spacetime expanding outward from the center. (C.f. Section 3.8 below.)

3.4. Asymptotic equations for Corrections to SM. Substituting the ansatz (3.31)-(3.34) for the corrections into the Einstein equations \(G = \kappa T \), and neglecting terms \(O(\xi^4) \) in \(w \) and \(O(\xi^6) \) in \(z \), we obtain the following closed system of ODE’s for the corrections \(z_2(\tau), z_4(\tau), w_0(\tau), w_2(\tau) \), where \(\tau = \ln t, 0 < \tau \leq 11 \). (Introducing \(\tau \) renders the equations autonomous, and solves the long time simulation problem.) Letting prime denote \(d/d\tau \), the equations for the corrections reduce to the autonomous system

\[
\begin{align*}
 z_2' &= -3w_0 \left(\frac{4}{3} + z_2 \right), \\
 w_0' &= -\frac{1}{6} z_2 - \frac{1}{3} w_0 - w_0^2, \\
 z_4' &= 5 \left\{ \frac{2}{27} z_2 + \frac{4}{3} w_2 - \frac{1}{18} z_2^2 + z_2 w_2 \right\} + 5w_0 \left\{ \frac{4}{3} - \frac{2}{9} z_2 + z_4 - \frac{1}{12} z_2^2 \right\}, \\
 w_2' &= -\frac{1}{10} z_4 - \frac{4}{9} w_0 + \frac{1}{3} w_2 - \frac{1}{24} z_2^2 + \frac{1}{3} z_2 w_0 + \frac{1}{4} w_0^2 z_2.
\end{align*}
\]

(3.38) (3.39) (3.40) (3.41)
We prove that for the equations to close within the ansatz (3.31)-(3.34), it is necessary and sufficient to assume the initial data satisfies the gauge conditions
\[A_2 = -\frac{1}{3}z_2, \quad A_4 = -\frac{1}{5}z_4, \quad D_2 = -\frac{1}{12}z_2. \] (3.42)

We prove that if these constraints hold initially, then they are maintained by the equations for all time. Conditions (3.42) are not invariant under time transformations, even though the SSC metric form is invariant under arbitrary time transformations, so we can interpret (3.42), and hence the ansatz (3.31)-(3.34), as fixing the time coordinate gauge of our SSC metric. This gauge agrees with FRW co-moving time up to errors of order \(O(\xi^2) \).

The autonomous 4 \times 4 system (3.38)-(3.41) contains within it the closed, autonomous, 2 \times 2 sub-system (3.38), (3.39). This sub-system describes the evolution of the corrections \((z_2, w_0)\), which we show in Section 3.5 determines the quadratic correction \(Qz^2\) in (1.2). Thus the sub-system (3.38), (3.39) gives the corrections to SM at the order of the observed anomalous acceleration, accurate within the central region where errors \(O(\xi^4) \) in \(z \) and orders \(O(\xi^3) \) in \(v = w/\xi \) can be neglected. The phase portrait for sub-system (3.38), (3.39) exhibits an unstable saddle rest point at \(SM = (z_2, w_0) = (0, 0) \) corresponding to the SM, and a stable rest point at \((z_2, w_0) = (-4/3, 1/3)\). These are the rest points referred to in the introduction. From the phase portrait, (see Figure 1), we see that perturbations of \(SM \) corresponding to small under-densities will evolve away from the \(SM \) near the unstable manifold of \((0, 0)\), and toward the stable rest point \(M \). By (3.35) and (3.36), \(A_2 = 4/9, D_2 = 1/9 \) at \((z_2, w_0) = (-4/3, 1/3)\), so by (3.36) the metric components \(A \) and \(B \) are equal to \(1 + O(\xi^4) \), implying the metric at the stable rest point \((-4/3, 1/3)\) is Minkowski up to \(O(\xi^4) \). Thus during evolution toward the stable rest point, the metric tends to flat Minkowski spacetime with \(O(\xi^4) \) errors.

Note that we have only assumed a smooth SSC solution and expanded in finite Taylor series about the center, so our only asymptotic assumption has been that \(\xi \) is small, not that the perturbation from the \(k = 0, p = 0 \) Friedman spacetime is small. Thus the phase portrait in Figure 1 is universal in that it describes the evolution of every SSC smooth solution in a neighborhood of \(\xi = 0, t > 0 \). We state this as a theorem:

Theorem 3. Let \((z, w, A, B)\) be an SSC solution which is smooth in the ambient Euclidean coordinate system \(x \) associated with the spherical SSC coordinates, and meeting condition (2.8). Then there exists an SSC time gauge in which the solution satisfies equations (3.38)-(3.41) and (3.42) up to the appropriate orders. Thus the phase portrait of Figure 1 is valid in a neighborhood of \(\xi = 0, t > 0 \). We state this as a theorem:

3.5. Redshift vs Luminosity Relations for the Ansatz. In this section we obtain formulas for \(Q \) and \(C \) in (1.2) as a function of the corrections \(z_2, w_0, z_4, w_2 \) to the \(SM \), we compare this to the values of \(Q \) and \(C \) as a function of \(\Omega_\Lambda \) in DE theory, and we show that remarkably, \(Q \) passes through the same range of values in both theories.

Recall that \(Q \) and \(C \) are the quadratic and cubic corrections to redshift vs luminosity as measured by an observer at the center of the spherically symmetric
perturbation of the SM determined by these corrections. The calculation requires taking account of all of the terms that affect the redshift vs luminosity relation when the spacetime is not uniform, and the coordinates are not co-moving.

The redshift vs luminosity relation for the \(k = 0, p = \sigma \rho \), FRW spacetime, at any time during the evolution, is given by,

\[
Hd_\ell = \frac{2}{1 + 3\sigma} \left\{ (1 + z) - (1 + z)^{\frac{1-3\sigma}{2}} \right\},
\]

(3.43)

where only \(H \) evolves in time, [9]. For pure radiation \(\sigma = 1/3 \), which gives \(Hd_\ell = z \), and when \(p = \sigma = 0 \), we get, (c.f. [21]),

\[
Hd_\ell = z + \frac{1}{4} z^2 - \frac{1}{8} z^3 + O(z^4).
\]

(3.44)

The redshift vs luminosity relation in the case of Dark Energy theory, assuming a critical Friedman space-time with the fraction of Dark Energy \(\Omega_\Lambda \), is

\[
Hd_\ell = (1 + z) \int_0^z \frac{dy}{\sqrt{\mathcal{E}(y)}},
\]

(3.45)

where

\[
\mathcal{E}(z) = \Omega_\Lambda (1 + z)^2 + \Omega_M (1 + z)^3,
\]

(3.46)

and \(\Omega_M = 1 - \Omega_\Lambda \), the fraction of the energy density due to matter, (c.f. (11.129), (11.124) of [9]). Taylor expanding gives

\[
Hd_\ell = z + \frac{1}{2} \left(-\frac{\Omega_M}{2} + 1 \right) z^2 + \frac{1}{6} \left(-1 - \frac{\Omega_M}{2} + \frac{3\Omega_M^2}{4} \right) z^3 + O(z^4),
\]

(3.47)

where \(\Omega_M \) evolves in time, ranging from \(\Omega_M = 1 \) (valid with small errors at the end of radiation) to \(\Omega_M = 0 \) (the limit as \(t \to \infty \)). From (3.47) we see that in Dark Energy theory, the quadratic term \(Q \) increases exactly through the range

\[
.25 \leq Q \leq .5,
\]

(3.48)

and the cubic term decreases from \(-1/8\) to \(-1/6\), during the evolution from the end of radiation to \(t \to \infty \), thereby verifying the claim in Theorem 1. In the case \(\Omega_M = .3, \Omega_\Lambda = .7 \), representing present time \(t = t_{DE} \) in Dark Energy theory, this gives the exact expression,

\[
H_0d_\ell = z + \frac{17}{40} z^2 - \frac{433}{2400} z^3 + O(z^4),
\]

(3.49)

verifying that \(Q = .425 \) and \(C = -.1804 \), as recorded in Theorem 1.

In the case of a general non-uniform spacetime in SSC, the formula for redshift vs luminosity as measured by an observer at the center is given by, (see [9]),

\[
d_\ell = (1 + z)^2 r_e = t_0 (1 + z)^2 \xi_e \left(\frac{t_e}{t_0} \right),
\]

(3.50)

where \((t_e, r_e) \) are the SSC coordinates of the emitter, and \((0, t_0) \) are the coordinates of the observer. A calculation based on using the metric corrections to obtain \(\xi_e \) and \(t_e/t_0 \) as functions of \(z \), and substituting this into (3.50), gives the following formula for the quadratic correction \(Q = Q(z_2, w_0) \) and cubic correction

\footnote{The uniformity of the center out to errors \(O(\xi^4) \) implies that these should be good approximations for observers somewhat off-center with the coordinate system of symmetry for the waves.}
\[C = C(z_2, w_0, z_4, w_2) \] to redshift vs luminosity in terms of arbitrary corrections \(w_0, w_2, z_2, z_4 \) to SM. We record the formulas in the following theorem:

Theorem 4. Assume a GR spacetime in the form of our ansatz (3.31)-(3.34), with arbitrary given corrections \(w_0(t), w_2(t), z_2(t), z_4(t) \) to SM. Then the quadratic and cubic corrections \(Q \) and \(C \) to redshift vs luminosity in (1.2), as measured by an observer at the center \(\xi = r = 0 \) at time \(t \), is given explicitly by

\[
H dz = z \left\{ 1 + \left[\frac{1}{4} + E_2 \right] z + \left[-\frac{1}{8} + E_3 \right] z^2 \right\} + O(z^4),
\]

where

\[H = \left(\frac{2}{3} + w_0(t) \right) \frac{1}{t}, \]

so that

\[
Q(z_2, w_0) = \frac{1}{4} + E_2, \quad C(w_0, w_2, z_2, z_4) = -\frac{1}{8} + E_3,
\]

where \(E_2 = E_2(z_2, w_0), \) \(E_3 = E_3(z_2, w_0, z_4, w_2) \) are the corrections to the \(p = 0 \) standard model values in (3.44). The function \(E_2 \) is given explicitly by

\[
E_2 = \frac{24 w_0 + 45 w_0^2 + 3 z_2}{4(2 + 3 w_0)^2}.
\]

The function \(E_3 \) is defined by the following chain of variables:

\[
E_3 = 2 I_2 + I_3,
\]

\[
I_{2,3} = J_2 + \frac{9 w_0}{2(2 + 3 w_0)}, \quad J_3 + 3 \left[-1 + \left(\frac{8 - 8 J_2 + 3 w_0 - 12 J_2 w_0}{2(2 + 3 w_0)^2} \right) \right],
\]

\[
J_2 = \frac{1}{4} \left\{ 1 - \frac{1 + 9 K_2}{(1 + \frac{3}{2} w_0)^2} \right\}, \quad J_3 = \frac{5}{8} \left\{ 1 - \frac{1 - \frac{18}{5} K_2 - \frac{81}{5} K_2^2 + \frac{9}{5} w_0 + \frac{27}{5} K_4 + \frac{81}{50} Q_3 w_0}{(1 + \frac{3}{2} w_0)^4} \right\},
\]

\[
K_{2,3} = \frac{2}{3} w_0 + \frac{1}{2} w_0^2 - \frac{1}{12} z_2, \quad \frac{2}{9} w_0 + w_0^2 + \frac{1}{2} w_0^3 + w_2 - \frac{1}{18} z_2 - \frac{1}{3} z_2 w_0.
\]

From (3.53) one sees that \(Q \) depends only on \((z_2, w_0) \), \(Q(0, 0) = .25 \), (the exact value for the SM), \(Q(-4/3, 1/3) = .5 \), (the exact value for the stable rest point), and from this it follows that \(Q \) increases through precisely the same range (3.48) of DE, from \(Q \approx .25 \) to \(Q = .5 \), along the orbit of (3.38), (3.39) that takes the unstable rest point \(SM = (z_2, w_0) = (0, 0) \) to the stable rest point \((z_2, w_0) = (-4/3, 1/3) \), (c.f. Figure 1).

3.6. Initial Data from the Radiation Epoch.

In this section we compute the initial data for the \(p = 0 \) evolution from the restriction of the one parameter family of self-similar \(a \)-waves to a constant temperature surface \(T = T_* \) at the end of radiation, and convert this to initial data on a constant time surface \(t = t_* \), these two surfaces being different when \(\alpha \neq 1 \). We then define a gauge transformation that converts the resulting initial data to equivalent initial data that meets the gauge conditions (3.42). (Recall that condition (3.42) fixes a time coordinate, or gauge,
for the underlying SSC metric associated with our ansatz, and the initial data for the \(a\)-waves is given in a different gauge because time since the big bang depends on the parameter \(a\), as well as on the pressure, so it changes when \(p\) drops to zero.) The equation of state of pure radiation is derived from the Stefan-Boltzmann Law, which relates the initial density \(\rho_s\) to the initial temperature \(T_s\) in degrees Kelvin by
\[
\rho_s = \frac{a_s c T_s^4}{4},
\]
where \(a_s\) is the Stefan-Boltzmann constant, \((14)\). According to current theories in cosmology, \(\text{(see e.g. [14])}\), the pressure drops precipitously to zero at a temperature \(T = T_s\) somewhere between 3000\(^o\)K \(\leq T_s \leq 9000\(^o\)K\), corresponding to starting times \(t_s\) roughly in the range 10,000yr \(\leq t_s \leq 30,000yr\) after the Big Bang. We make the assumption that the pressure drops discontinuously to zero at some temperature \(T_s\) within this range. That our resulting simulations are numerically independent of starting temperature, \(\text{(c.f. Section 3.7)}\), justifies the validity of this assumption. Using this assumption, we can take the values of the \(a\)-waves on the surface \(T = T_s\) as the initial data for the subsequent \(p = 0\) evolution. Using the equations we convert this to initial data on a constant time surface \(\bar{t} = \bar{t}_s\), where \(\bar{t}\) is the time coordinate used in the self-similar expression of the \(a\)-waves which assumes \(p = \frac{c^2}{3} \rho\). Our first theorem proves that there is a gauge transformation \(\bar{t} \to t\) which converts the initial data for \(a\)-waves at the end of radiation at \(\bar{t} = \bar{t}_s\), to initial data that both meets the assumptions of our ansatz (3.31)-(3.34), as well as the gauge conditions (3.42).

Theorem 5. Let \(\bar{t}\) be the time coordinate for the self-similar waves during the radiation epoch, and define the transformation \(\bar{t} \to t\) by
\[
t = \bar{t} + \frac{1}{2} \mu (\bar{t} - \bar{t}_s)^2 - t_B,
\]
where \(\mu\) and \(t_B\) are given by
\[
\mu = \frac{a^2}{2(2 - a^2)}, \quad t_B = \bar{t}_s (1 - \alpha),
\]
where
\[
\alpha = \frac{4 \sqrt{2 - a^2}}{7 - 4a^2}.
\]
Then upon performing the gauge transformation (3.56), the initial data from the \(a\)-waves at the end of radiation \(\bar{t} = \bar{t}_s\), meets the conditions for the ansatz (3.31)-(3.34), as well as the gauge conditions (3.42). Our conclusions are summarized in the following theorem:

Theorem 6. The initial data for the \(p = 0\) evolution determined by the self-similar \(a\)-wave on a constant time surface \(t = t_s\) with temperature \(T = T_s\) at \(r = 0\), is given as a function of the acceleration parameter \(a\) and the temperature \(T_s\), by
\[
\begin{align*}
z_2(t_s) &= \hat{z}_2, & z_4(t_s) &= \hat{z}_4 + 3 \hat{w}_0 \left(\frac{1}{3} + \hat{z}_2 \right) \gamma, \\
w_0(t_s) &= \hat{w}_0, & w_2(t_s) &= \hat{w}_2 + \left(\frac{5}{8} \hat{z}_2 + \frac{1}{3} \hat{w}_0 + \hat{w}_0^2 \right) \gamma,
\end{align*}
\]
where \(\dot{z}_2, \dot{z}_4, w_0, \dot{w}_2 \) and \(\gamma \) are functions of acceleration parameter \(a \) given by

\[
\begin{align*}
\dot{z}_2 &= \frac{3a^2\dot{a}^2}{4} - \frac{4}{3}, \\
\dot{z}_4 &= 2a^3(1 - a)\gamma Z_2 + a^4Z_4 - \frac{40}{27}, \\
Z_2 &= \frac{3a^2}{4}, \\
Z_4 &= \left[\frac{9a^2}{16} + \frac{15a^2(1 - a^2)}{40} \right], \\
\dot{w}_0 &= \frac{a}{2} - \frac{2}{3}, \\
\dot{w}_2 &= a^2(1 - \alpha)\gamma W_0 + a^3W_2 - \frac{2}{5}, \\
W_0 &= \frac{1}{5}, \\
W_2 &= \left[\frac{1}{5} + \frac{(1 - a^2)}{20} \right],
\end{align*}
\]

where

\[
\gamma = \alpha \frac{a}{a} = \alpha \left(\frac{2 - a^2}{4} \right), \tag{3.60}
\]

and \(\alpha \) is given in (3.59).

The time \(t_* \) is then given in terms of the initial temperature \(T_* \) by

\[
t_* = \frac{a\alpha}{2} \sqrt{\frac{3}{\kappa\rho_*}}, \quad \rho_* = \frac{a_s}{4c^4 t_*^4}. \tag{3.61}
\]

Taking the leading order part of the initial data gives a curve parameterized by \(a \) in the \((z_2, w_0)\)-plane that cuts through the saddle point \(SM \) in system (3.38), (3.39), between the stable and unstable manifold, (the lighter dotted line in Figure 1). This implies that a small under-density corresponding to \(a < 1 \) will evolve to the stable rest point \(M, (z_2, w_0) = (-4/3, 1/3) \), (c.f. Figure 1).

3.7 The Numerics

In this section we present the results of our numerical simulations. We simulate solutions of (3.38)-(3.41) for each value of the acceleration parameter \(a < 1 \) in a small neighborhood of \(a = 1 \), (corresponding to small under-densities relative to the \(SM \)), and for each temperature \(T_* \) in the range \(300^\circ K \leq T_* \leq 9000^\circ K \). We simulate up to the time \(t_* \), the time depending on the acceleration parameter \(a \) at which the Hubble constant is equal to its present measured value \(H = H_0 = 100h_0 \text{ km} \text{ mpc}^{-1} \), with \(h_0 = 0.68 \). From this we conclude that the dependence on \(T_* \) is negligible. We then asked for the value of \(a \) that gives \(Q(z_2(t_*), w_0(t_*)) = 0.425 \), the value of \(Q \) in Dark Energy theory with \(\Omega = 0.7 \). This determines the unique value \(a = a = 0.999999426 \), and the unique time \(t_0 = t_* \).

These results are recorded in the following theorem:

Theorem 7. At present time \(t_0 \) along the solution trajectory of (3.38)-(3.41) corresponding to \(a = a \), our numerical simulations give \(H = H_0, Q = 0.425 \), together with the following:

\[
z(t_0, \xi) = (-1.142)\xi^2 + (1.385)\xi^4 + O(\xi^6),
\]

\[
w(t_0, \xi) = 0.247 - (0.348)\xi^2 + O(\xi^4),
\]

and

\[
A(t_0, \xi) = 1 + (0.381)\xi^2 - (0.277)\xi^4, \tag{3.62}
\]

\[
D(t_0, \xi) = 1 + (0.095)\xi^2 + O(\xi^4). \tag{3.63}
\]

The cubic correction to redshift vs luminosity as predicted by the wave model at \(a = a \) is

\[
C = 0.359. \tag{3.64}
\]

Note that (3.62) and (3.63) imply that the spacetime is very close to Minkowski at present time up to errors $O(\xi^4)$, so the trajectory in the (z_2, w_0)-plane is much closer to the stable rest point M than to the SM at present time, c.f. Figure 1. The cubic correction associated with Dark Energy theory with $k = 0$ and $\Omega_\Lambda = .7$ is $C = -0.180$, so (3.64) is a theoretically verifiable prediction which distinguishes the wave model from Dark Energy theory. A precise value for the actual cubic correction corresponding to C in the relation between redshift vs luminosity for the galaxies appears to be beyond current observational data.

3.8. The Uniform Spacetime at the Center. In this section we describe more precisely the central region of accelerated uniform expansion triggered by the instability due to perturbations that meet the ansatz (3.31)-(3.34). By (3.37) we have seen that neglecting terms of order ξ^4 in z, the density $\rho(t)$ depends only on the time. Further neglecting the small errors between (z_2, w_0) and the stable rest point $\left(-\frac{4}{3}, \frac{1}{3}\right)$ at present time t_0 when $a = 2$, we prove that the spacetime is Minkowski with a density $\rho(t)$ that drops like $O(t^{-3})$, so the instability creates a central region that appears to be a flat version of a uniform Friedman universe with a larger Hubble constant, in which the density drops at a faster rate than the $O(t^{-2})$ rate of the SM.

Specifically, as $t \to \infty$, our orbit converges to $\left(-\frac{4}{3}, \frac{1}{3}\right)$, the stable rest point for the (z_2, w_0) system

$$
\begin{pmatrix}
 z_2 \\
 w_0
\end{pmatrix}' = \begin{pmatrix}
 -3w_0 \left(\frac{4}{3} + z_2\right) \\
 -\frac{1}{6}z_2 - \frac{4}{3}w_0 - w_0^2
\end{pmatrix}.
$$

(3.65)

Setting $z_2 = -4/3 + \bar{z}(t)$, $w_0 = 1/3 + \bar{w}(t)$ and discarding higher order terms, we obtain the linearized system at rest point $\left(-\frac{4}{3}, \frac{1}{3}\right)$,

$$
\begin{pmatrix}
 \bar{z} \\
 \bar{w}
\end{pmatrix}' = \begin{pmatrix}
 -1 & 0 \\
 -\frac{1}{6} & -1
\end{pmatrix} \begin{pmatrix}
 \bar{z} \\
 \bar{w}
\end{pmatrix}.
$$

(3.66)

The matrix in (3.66) has the single eigenvalue $\lambda = -1$ with single eigenvector $R = (0, 1)$. From this we conclude that all orbits come into the rest point $\left(-\frac{4}{3}, \frac{1}{3}\right)$ from below along the vertical line $z_2 = -4/3$. This means that $z_2(t)$ and $\rho(t) = z_2(t)/t^2$ can tend to zero at algebraic rates as the orbit enters the rest point, but $w_0(t)$ must come into the rest point exponentially slowly, at rate $O(e^{-t})$. Thus our argument that $\bar{w} = w_0 - 1/3$ is constant on the scale where $\rho(t) = k_0/t^3$ gives the precise decay rate,

$$
\rho(t) = \frac{k_0}{t^{3(1+\bar{w})}}.
$$

(3.67)

That is, $\bar{w} \equiv \bar{w}(t) \to 0$ and $k_0 \equiv k_0(t)$ are changing exponentially slowly, but the density is dropping at an inverse cube rate, $O(1/t^{3(1+\bar{w})})$, which is faster than the $O(1/t^2)$ rate of the standard model.

Therefore, neglecting terms of order ξ^4 together with the small errors between the metric at present time t_0 and the stable rest point, the spacetime is Minkowski with a density $\rho(t)$ that drops like $O(t^{-3})$, a faster rate than the $O(t^{-2})$ of the SM. Furthermore, we show that neglecting relativistic corrections to the velocity of the fluid near the center where the velocity is zero, evolution toward the stable rest point creates a flat, center independent spacetime which evolves outward from the origin, and whose size is proportional to the Hubble radius.
We conclude that the effect of the instability triggered by a perturbation of the SM consistent with ansatz (3.31)-(3.34) near the stable rest point \((-\frac{1}{2}, \frac{1}{3})\), is to create an anomalous acceleration consistent with the anomalous acceleration of the galaxies in a large, flat, uniform, center-independent spacetime, expanding outward from the center of the perturbation.

4. Conclusion

This is a culmination in authors’ ongoing research program to identify a possible mechanism that might account for the anomalous acceleration of the galaxies within Einstein’s original theory, without the cosmological constant or Dark Energy. We have found such a mechanism, namely, our discovery of an instability in the Friedmann spacetime characterized by a universal phase portrait (Figure 1) which describes smooth spherical perturbations about any point. It is universal in the sense that it describes the evolution near the center of any \(p = 0\) spherically symmetric spacetime that solves the Einstein equations in SSC and is smooth at \(r = 0\) in the ambient Euclidean coordinate system that corresponds to SSC. The phase portrait places SM at an unstable saddle rest point \(SM\), and the unstable manifold of \(SM\) provides a specific mechanism which induces anomalous accelerations into the SM without the cosmological constant. This mechanism induces precisely the same range of quadratic corrections to redshift vs luminosity as does the cosmological constant, without assuming it. The phase portrait of the instability shows that only under-dense and over dense perturbations of SM are observable, (not SM itself), and the under-dense case would imply that we live within a large (order \(|\xi|^4 \ll 1\)) region of approximate uniform density that is expanding outward from us at an accelerated rate relative to the SM. The central region created by the instability is different from, but looks a lot like, a speeded up Friedman universe tending more rapidly to flat Minkowski space than the SM. Finally, we prove that a one parameter family of exact perturbations from the radiation epoch trigger the instability, and provide a third order correction to redshift vs luminosity that makes a prediction which can be compared to the predictions of Dark Energy.

Given that SM is unstable, the paper raises the fundamental question as to whether it is reasonable to expect to observe an unperturbed Friedman space-time, with or without Dark Energy, on the scale of the supernova data. But the paper does not purport to solve all the problems of Cosmology. We have made no assumptions regarding the space-time far from the center of the perturbations that trigger the instabilities in the SM. The consistency of this model with other observations in astrophysics would require additional assumptions that apply far from the center. Naively, one might wonder whether a local perturbation, neglecting higher order terms, perhaps only lies at a scale below the large scale on which the Friedmann metric is assumed to apply, (like voids or galaxies). But of course, our theory then implies the Friedmann spacetime is also unstable on that larger scale where it is assumed to apply as well. The instability raises the question as to the observability of the Friedmann spacetime, with or without Dark Energy, on any scale. Regarding the higher order terms, we note that when \(p = 0\) the fluid velocity is the only sound speed, so solutions far from the center should not constrain solutions near the center so long as the velocity remains positive. In light of [8], solutions near the center should be extendable on an initial data surface by arbitrary density and velocity profiles, and this reflects the freedom to impose coefficients of higher order powers.
of \(\xi \) on an initial data surface. So there is a great deal of freedom to extend beyond these local spacetimes, and the extensions would ultimately determine the size of the central region. But to explore further assumptions concerning the spacetime far from the center in this paper, would obscure the clarity of the theory presented. Applications of this theory are topics of authors’ future research.

Ethics statement: This paper did not involve the collection of human data.

Data accessibility statement: This work does not have any experimental data.

Competing interests statement: We have no competing interests.

Author’s contributions: This is all joint work.

Funding: This work was partially supported by NSF grants DMS-060-3754 and DMS-010-2493.

Acknowledgement: The authors would like to thank the editor at RSPA for bringing to their attention references [11] and [37]-[65] of [27] on LTB spacetimes, and for conducting a lengthy impartial review of this paper.

References

