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Highlights  

 
� An electrically-coupled pacemaker network in electric fish sets the timing for 

its high-frequency electric organ discharge  

� Synaptic inputs modulate the timing of this pacemaker on millisecond 

timescales to produce electrocommunication signals 

� These synaptic inputs cause variable resetting of pacemaker neurons 

resulting in transient desynchronization at the network level 

� Computational models illustrate how network connectivity can influence the 

temporal features of pacemaker resetting  

� Differences in pacemaker network connectivity may underlie diversity in 

communication signals across species  
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Abstract  

Neuronal networks can produce stable oscillations and synchrony that are under 

tight control yet flexible enough to rapidly switch between dynamical states. The 

pacemaker nucleus in the weakly electric fish comprises a network of electrically-

coupled neurons that fire synchronously at high-frequency. This activity sets the 

timing for an oscillating electric organ discharge with the smallest cycle-to-cycle 

variability of all known biological oscillators. Despite this high temporal precision, 

pacemaker activity is behaviorally-modulated on millisecond time-scales for the 

generation of electrocommunication signals. The network mechanisms that allow for 

this combination of stability and flexibility are not well understood. In this study, we 

use an in vitro pacemaker preparation from Apteronotus leptorhynchus to 

characterize the neural responses elicited by the synaptic inputs underlying 

electrocommunication. These responses involve a variable increase in firing 

frequency and a prominent desynchronization of neurons that recovers within 5 

oscillation cycles. Using a previously-developed computational model of the 

pacemaker network, we show that the frequency changes and rapid 

resynchronization we observe experimentally require that neurons be 

interconnected more densely and with higher coupling strengths than suggested by 

published data. We suggest that the pacemaker network achieves both stability and 

flexibility by balancing coupling strength with interconnectivity and that variation in 

these network features may provide a substrate for species-specific evolution of 

electrocommunication signals. 
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Introduction 

Oscillations and synchrony are ubiquitous features of brain networks (Buzsáki and 

Draguhn, 2004; Steriade, 2006; Buzsáki and Wang, 2012), but too little or too much 

of either can be pathological (Timofeev and Steriade, 2004; Gonzalez-Burgos et al., 

2015; Spellman and Gordon, 2015; Colgin, 2016). Moreover, switching between 

states that involve oscillatory and/or synchronized firing may be critical for 

information processing and memory formation (Fries, 2009; Wang, 2010; Hanslmayr 

et al., 2016; Parish et al., 2018). Therefore, neuronal networks must be robust, 

keeping oscillations and synchrony under tight control, while being sufficiently 

flexible to rapidly switch between distinct dynamical states (Haider and McCormick, 

2009; Palmigiano et al., 2017).  

One network that exhibits this combination of robustness and flexibility is found in 

the pacemaker nucleus of the weakly electric fish, Apteronotus leptorhynchus. The 

pacemaker nucleus comprises a network of synchronized neurons that sets the 

timing for the high-frequency (600-1200Hz) electric organ discharge (EOD) (Bennett 

et al., 1967; Elekes and Szabo, 1985; Salazar et al., 2013) that electric fish use to 

navigate, capture prey, and communicate (Moller, 2005; Krahe and Fortune, 2013; 

Lewis, 2014). The EOD is one of the most precise of all biological oscillators, with 

sub-microsecond variation in cycle period: the coefficient of variation (CV=SD/mean) 

can be as low as 2 × 10-4 (Moortgat et al., 1998, 2000a). Despite this extreme 

temporal precision, electric fish can rapidly modulate the EOD on millisecond 

timescales to produce communication signals called chirps. Chirps come in a variety 

of types and vary across species, but the fastest occur over tens of milliseconds and 

are characterized by varying decreases in EOD amplitude and increases in 

instantaneous EOD frequency of up to 500 Hz (Fig. 1B,C) (e.g. Zakon et al., 2002; 

Zupanc et al., 2006; Hupé and Lewis, 2008; Smith et al., 2016).  

Moortgat et al (2000a,b) hypothesized that the highly precise timing of the EOD is a 

result of dense and strong coupling among neurons in the pacemaker network that 

effectively “average-out” the noise of individual neurons. Their data however did not 

support this idea, as each neuron was found to be only weakly coupled via gap 

junctions to fewer than 5% (between 1% and 7%) of other neurons (Moortgat et al., 
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2000a). These authors concluded that network precision is more likely due to very 

precise firing in individual neurons. However, sparse and weak coupling should 

render the network prone to instability, with long recovery times following a 

perturbation; such dynamics are inconsistent with the production of brief 

electrocommunication signals. How the pacemaker maintains a balance between 

stability and flexibility is unclear. 

In A. leptorhynchus, the pacemaker nucleus (Pn) is made up of approximately 150 

neurons of two main types:  the pacemaker (P) cells, which are intrinsic to the Pn; 

and the relay (R) cells, whose axons project down the spinal cord to innervate 

electromotor neurons of the electric organ (Fig. 1A) (Ellis and Szabo, 1980; Elekes 

and Szabo, 1985; Moortgat et al., 2000a; Smith and Zakon, 2000; Zupanc, 2017). A 

third class of small interneurons, the parvo cells, has also been identified, but their 

function is not known (Smith et al., 2000). Pacemaker and relay cells fire 

synchronously, in one-to-one phase-locking with the EOD cycle (Elekes and Szabo, 

1985; Dye and Heiligenberg, 1987). A chirp is elicited by AMPA-type glutamatergic 

inputs from a subdivision of the prepacemaker nucleus (PPn-C) to relay cells 

specifically (Dye et al., 1989; Juranek and Metzner, 1998; Zakon et al., 2002). 

Electrical stimulation of these afferents, both in vivo (Juranek and Metzner, 1998) 

and in vitro (Dye, 1988) elicits a chirp-like response in Pn neurons that involves 

transient increases in action potential frequency and decreases in action potential 

amplitude. These stimuli can also change the timing relationship between neurons 

(Dye, 1988), resulting in desynchronization of the pacemaker. However, these 

dynamics have not been characterized in detail.  In addition, while it is known that 

the Pn comprises a densely-packed, apparently random, network of neurons, with 

large myelinated axons forming gap junctions via club endings on dendrites, 

proximal segments and axons (Elekes and Szabo 1985; Moortgat et al 2000a), it has 

not yet been possible to evaluate the overall network structure.  

The goals of the present study are to quantify the responses of Pn neurons to chirp-

like synaptic stimulation and then use these responses to evaluate how network 

connectivity influences Pn function. Using an in vitro pacemaker preparation, we 

show that PPn-C stimulation results in small but variable increases in action potential 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5 
 

frequency of Pn neurons. In addition, we find that the relative timing of spikes 

between pairs of neurons varies extensively over several post-stimulus cycles, 

confirming that neurons in the Pn desynchronize during a chirp. We were able to 

reproduce this behaviour in a network model of the Pn (Moortgat et al., 2000b). 

However, to match the observed frequency changes and post-stimulus recovery 

dynamics while also allowing for robust oscillations and synchrony, the model 

neurons are required to be much more densely interconnected than is supported by 

previous experimental data.  
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Experimental Procedures 

Animals 

Adult brown ghost knifefish (Apteronotus leptorhynchus) were obtained from 

commercial fish suppliers then housed in flow-through tanks containing several 

individuals. Environmental conditions were held constant with a 12/12 hour 

light/dark dark cycle with temperature at ~27-28°C, and conductivity at ~150-250 μS. 

All housing and experimental protocols were in accordance with guidelines approved 

by the Animal Care Committee of the University of Ottawa (BL-229 and BL-1773). 

Tissue Preparation 

Tissue preparation protocols were similar to those used previously (Dye, 1988; 

Moortgat et al., 2000a; Smith and Zakon, 2000; Lewis et al., 2007). Fish were 

anesthetized with Tricane Methanosulfate (0.2%, TMS, Syndel Canada, Nanaimo, BC) 

and then transferred to a holder, where their gills were continuously perfused with 

oxygenated water containing the anesthetic. The brain was then quickly removed 

and transferred to an ice-cold bath of artificial cerebrospinal fluid (ACSF): NaCl (124 

mM), NaHCO3 (24 mM), D-glucose (10 mM), KH2PO4 (1.25 mM), KCl (2 mM), MgSO4 

(2 mM) and CaCl2 (2 mM). While holding the anterior part of the brain with forceps, 

the meninges and blood vessels overlying the pacemaker nucleus and surrounding 

tissues were carefully removed with fine forceps. The pacemaker nucleus, visible as 

an ovoid protrusion on the ventral brainstem, was then cut away with fine scissors 

(approximately 1 mm rostral, 0.5 mm caudal, and 1 mm dorsal). The tissue was 

immediately transferred to a brain slice chamber that was continuously perfused 

with oxygenated room-temperature (~21°C) ACSF. 

Electrophysiological studies 

Stimulation protocols were similar to those used by Dye (1988). Bipolar stimuli were 

delivered through silver wire electrodes, placed rostral of the Pn on each side of the 

brainstem. Stimuli were constant current pulses (100 μs, 50 μA or 500 μA) delivered 

using a Multichannel systems STG1004 stimulator (Multi Channel Systems, 

Reutlingen, Germany). Intracellular recordings were performed with borosilicate 
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glass microelectrodes (60-90 M� resistance; P-2000 electrode puller, Sutter 

Instrument Company, Novato, CA, USA) using an Axoclamp 2B amplifier (Molecular 

Devices, Sunnyvale, CA, USA). Data acquisition was performed using a National 

Instruments PCI-6052E data acquisition board (National Instruments, Austin, TX, 

USA), at a sampling frequency of 10 kHz using custom Matlab scripts (Mathworks, 

Natick, MA, USA). Single-pulse stimuli were triggered 0.2 seconds into a 1-second 

recording sweep, with at least 5 seconds between successive stimuli to prevent long-

term frequency changes (Oestreich and Zakon, 2002). Glutamate receptor 

antagonists AP-5 (50 μM) and CNQX (20 μM) were obtained from Tocris 

(Minneapolis, MN, USA), and bath applied in the same manner as control ACSF.  

Data Analysis 

The recordings of the Pn cell membrane potential were analyzed using custom 

Matlab scripts (MathWorks, Natick, MA). To determine the onset times for each 

oscillatory cycle (i.e. phase zero), zero-crossings were first calculated for the mean-

subtracted membrane voltage waveforms; a linear interpolation between the points 

immediately below and above zero was used to determine the time of cycle onset. 

For the phase resetting analysis, post-stimulus cycle periods (T1, T2, T3) were 

normalized by the control pre-stimulus period, T0 (Fig. 2). The phase difference (�) 

between a simultaneously recorded neuron pair was defined as the time difference 

between spikes normalized by the cycle period (�=�t/T0; Fig. 4). The effect of a 

stimulus on these phase relationships was quantified by the change in phase 

difference (i.e. the pre-stimulus phase difference subtracted from the post-stimulus 

phase difference (��; Fig. 4C). We discarded a total of 8 trials (across all cells) 

because either the stimulus artefact made identification of cycle times ambiguous or 

cells in a pair were not phase-locked over the pre-stimulus cycles. Unless otherwise 

indicated, statistical comparisons were made using ANOVA on Ranks in R (www.r-

project.org). Some of the experimental data has been presented previously in thesis 

form (Warrington, 2008). 
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Network Model 

We used a modified computational model of the pacemaker network proposed by 

Moortgat et al. (2000b). The model included 120 pacemaker and 30 relay neurons, 

both comprising a somatic and axonal compartment. The somatic compartments are 

modelled as spheres of diameter ds; the axonal compartments are modelled as 

cylinders of length la and diameter da.  Membrane potential dynamics are described 

using a Hodgkin-Huxley formalism with membrane currents (INa, IK, and IL), synaptic 

current (Isyn), bias current (Ibias), coupling current due to gap junctions between 

neurons (Ic), and the current arising from the adjacent compartment of the two-

compartment neuron (Iaxial); parameter values differed for each neuron type and 

compartment (Table 1):  

The ionic currents are given by:  

The dynamics of each gating variable (m, h, n) are given by:  

j=m, h, or n 

and     
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The somatic and axonal compartments of each neuron are coupled by an axial 

current Iaxial = ga (Vadj - V), where ga is the axial conductance and Vadj is the 

membrane potential of the adjacent compartment.   

Model neurons are coupled electrically through gap junctions with a conductance gc, 

such that the coupling current to cell 1 from cell 2 is Ic=gc(V2-V1) where V2 and V1 

are the membrane potentials of the appropriate compartment of each cell. Unless 

otherwise noted, the gap junction conductance (gc) for all connections was set to 

0.00001 mS (i.e. 10 nS), which is at the top of the range used in the original model by 

Moortgat et al. (2000b). Connections between pacemaker neurons, from 

pacemaker-to-relay and from relay-to-pacemaker are axo-somatic (axon 

compartment to soma compartment) and fully-rectifying (Ic=0 if V2<V1); connections 

between relay neurons are soma-to-soma and non-rectifying. Random networks 

were generated based on connectivity parameters that describe the likelihood of 

one neuron type connecting to another (P:P, pacemaker-to-pacemaker; P:R, 

pacemaker-to-relay; R:P, relay-to-pacemaker; R:R, relay-to-relay); unless otherwise 

indicated, P:P=7%, P:R=10%, R:P=6%, and R:R=23%, based roughly on previous 

experimental data (Dye and Heiligenberg 1987; Dye, 1988; Elekes and Szabo, 1985; 

Moortgat et al., 2000a), but slightly different from the original model (where 

P:P=7%, P:R=35%, R:P=0%, R:R=0%) that was optimized based on cycle-to-cycle 

variation specifically (Moortgat et al., 2000b).  

Synaptic stimulation is modelled as an alpha-function conductance (Gsyn) with 

equilibrium potential equal to zero (Esyn=0), delivered to a fraction of the relay 

neuron population (see Results): 
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where gsyn determines the strength of the synaptic connection (e.g. gsyn = 0.00009 

mS, or 90nS) and � is the time-to-peak (� = 1.83ms; Dye 1988). Numerical simulations 

were performed using the Euler method with a time step of 0.5μs. Model 

parameters are based on Moortgat et al. (2000b) and are shown in Table 1. For this 

parameter set, isolated pacemaker neurons fire action potentials at 678 Hz, but 

isolated relay neurons do not fire spontaneously. In our initial analysis, we generated 

10 random networks using the connectivity parameters above with the condition 

that the network recovered to the original synchronous state after stimulation. 

Phase resetting curves and change in phase (Δ�) were calculated for model neurons, 

as in the experimental analyses.  We also explored network responses over a range 

of connectivity parameters (gc from 5 nS to 15 nS, and P:P from 2% to 40%). In these 

studies, we generated either 10 (Fig. 8) or 100 (Fig. 9) unique networks (see Results) 

for each parameter set (pair of gc, and P:P values).  
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Results 

In the following, we first describe the responses of neurons in the pacemaker 

nucleus (Pn) to the synaptic inputs that underlie electrocommunication signalling. In 

doing so, we experimentally test the hypothesis that the communication signal 

called a chirp involves the transient desynchronization of Pn neurons. We then use a 

computational model of the Pn to explore the network features that can account for 

the experimentally observed responses. 

Pacemaker (Pn) network in vitro 

Using an in vitro Pn preparation (Dye 1988), we explored the effects of electrically 

stimulating synaptic inputs from the PPnC on the timing and phase relationships of 

Pn neurons.  Figure 2A shows an example of a simultaneous recording from a 

pacemaker (P) and relay (R) neuron.  In general, it is possible to identify cell type by 

membrane potential waveform (Bennett et al., 1967). The action potentials of R 

neurons do not exhibit a gradually depolarizing rising phase (pacemaker potential), 

so appear less symmetrical than those of P neurons (Fig. 2A). In this example, the 

stimulus (500 μA amplitude) produced slight changes in spike timing (<3% of the 

control cycle period, T0), as well as a decrease in amplitude of the R neuron action 

potential. In a second example (Fig. 2B), two stimulus trials with the same stimulus 

timing resulted in different responses in the same P neuron (spike timing and 

amplitude vary). In the following analyses, we characterize this variability using two 

temporal features of the responses: (1) changes in the oscillation cycle period 

(interspike interval) of individual neurons as a function of stimulus timing (phase 

resetting curve), and (2) changes in the relative timing among pairs of neurons, i.e. 

change in phase difference (��). 

Phase resetting curves 

We first quantified the changes in Pn cell cycle duration as a function of the stimulus 

phase. These phase resetting curves included the first three post-stimulus cycles (T1, 

T2, T3; Fig. 2A) in a total of 40 neurons (29 P neurons, 11 R neurons in 8 fish). A weak 

50 μA stimulus had no significant effect on normalized cycle durations (median and 

[interquartile range] over all cells: T1=1.00 [0.998, 1.005]; T1=2.00 [1.994, 2.005]; 
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T1=3.00 [2.993, 3.007]).  In contrast, a stronger 500 μA stimulus produced variable 

changes in cycle duration with a trend towards shortening at all stimulus phases (Fig. 

3A; median and [interquartile range] for P neurons: T1=0.99 [0.975, 1.006; T2=1.95 

[1.887, 1.998]; T3=3.00 [2.979, 3.005]; and for R neurons: T1=1.00 [0.984, 1.016]; 

T2=1.92 [1.877, 1.960]; T3=2.98 [2.953, 3.001]). These effects were weakly (but not 

significantly) dependent on stimulus phase (p=0.07) and cell type (p=0.08, two-way 

ANOVA on ranks).  Closer inspection of T1 (Fig. 3B) shows that these trends are 

reflected in the individual cells as well and that some individual neurons had very 

different responses to similar stimulus phases (filled symbols in Fig. 3B are for an 

individual cell of each type). In summary, the 500 μA stimulus produced relatively 

small decreases in cycle duration that were variable across the population of cells as 

well as a single cell.  In the context of a chirp, changes in cycle duration of a similar 

magnitude would result in a 40-60Hz increase for a fish with an EOD frequency of 

800Hz (similar to a type II or small chirp, Fig. 1; Zakon et al 2002; Smith et al 2016).  

In the next section, we quantify changes in the firing relationship between cells 

(change in phase difference, ��) to assess the impact of response variability on the 

synchrony of neurons in the pacemaker during a chirp stimulus.  

Change in phase difference between neuron pairs 

Similar to previous studies (Dye 1988; Moortgat et al 2000a), we found that pairs of 

neurons were in general phase-locked with near non-zero phase differences during 

on-going pacemaker activity (i.e. not perfectly synchronized with zero-phase 

difference). Figure 4B shows a histogram of phase difference (defined in Fig. 4A) for 

the 20 pairs of neurons in our data set.  The distribution is consistent with previously 

reported data (Dye 1988; Moortgat et al 2000a); the largest phase differences (0.13 

and 0.19 in Fig 4B) occur between pacemaker and relay (PR) cell pairs and the 

smallest between P cell pairs. The variable change in cycle duration described in the 

previous section suggests that these phase relationships change in response to a 

chirp stimulus. We therefore measured the change in phase difference (��) 

produced by the stimulus (i.e. if the stimulus does not change the relative timing of 

action potentials between the cell pairs, then �� is zero). Because cycle duration 

does not significantly depend on stimulus phase, we combined data across stimulus 
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phases for this analysis. As expected, the weak 50 μA stimulus produced little change 

in � over 10 post-stimulus cycles (absolute value of ��=0.0027 [0.0012, 0.0058], 

median and [interquartile range] over N=16 cell pairs). The 500 μA stimulus however 

(Fig. 4C) caused a significant change in phase difference (ANOVA on ranks, p ≈ 10-14; 

N=20 cell pairs) over the first four post-stimulus cycles in a manner that depended 

on neuron pair type (p≈10-5); these differences are due largely to an increase in 

variance over the first four post-stimulus cycles. Overall, this increased variability in 

phase difference confirms that a chirp stimulus not only increases frequency but also 

desynchronizes neurons in the pacemaker nucleus.  

The in vitro Pn preparation contains the projections from two different brain areas, 

the diencephalic prepacemaker nucleus (PPn) and the mesencephalic sublemniscal 

prepacemaker nucelus (SPPn). Slow EOD modulations occurring over minutes, are 

elicited by glutamatergic input from the SPPn and the PPn subdivision PPn-G (PPn-

Gradual rise) via NMDA receptors on both P and R neurons (Heiligenberg et al., 

1996; Juranek and Metzner, 1997, 1998; Oestreich and Zakon, 2002). Chirps on the 

other hand are elicited via glutamatergic inputs from the PPn subdivision PPn-C 

(PPn-Chirping) through activation of AMPA receptors on R cells (Dye et al., 1989; 

Juranek and Metzner, 1998). We therefore selectively blocked the NMDA-type 

inputs from PPnG and SPPN, and the AMPA-type inputs from PPnC in 5 cell pairs. The 

NMDA receptor antagonist AP-5 (50 μM) did not alter the �� response; similar to 

control conditions, stimulation resulted in a significant change in phase over five 

post-stimulus cycles (p<0.001). However, blocking AMPA-type inputs from the PPnC 

with CNQX (20 μM) eliminated the stimulus-induced change in phase over all post-

stimulus cycles (p=0.45). This, along with the fact that the brief single-pulse stimuli 

used here do not elicit NMDA-induced long-term changes in the pacemaker 

frequency (Oestreich and Zakon, 2002), suggests that the effects we observe are 

dominated by the chirp-specific AMPA-type synaptic inputs from PPnC. 

Pacemaker (Pn) network models 

Moortgat et al (2000b) developed a network model to investigate the experimentally 

observed precision and synchrony of the Pn. Here, we use this model to explore 
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pacemaker network dynamics in the context of our experiments using synaptic 

stimulation.  In particular, we focus on two parameters that can have a significant 

impact on network synchronization: (1) the likelihood of connections between 

neurons (network connectivity), and (2) the strength of these connections (gap 

junctional conductance, gc). As described in the Experimental Procedures, we 

generated random model networks of 120 P and 30 R neurons connected via gap 

junctions using connectivity probabilities based on previous work (Moortgat et al 

2000b): pacemaker-to-pacemaker P:P=7%, pacemaker-to-relay P:R=10%, relay-to-

pacemaker, R:P=6%, and relay-to-relay R:R=23%. Note that this connectivity was 

slightly more dense than estimated from experimental observations (Moortgat et al 

2000a; Elekes and Szabo, 1985), but this was necessary to achieve a sufficiently low 

CV (Moortgat et al 2000b). The gap junctional conductance (gc) was set to 10 nS, at 

the top of the range used by Moortgat et al. (2000b). We used an alpha-function 

synaptic conductance to generate the EPSP produced by the brief stimulus used in 

our experiments (see Experimental Procedures).  

Figure 5 shows representative network responses elicited when a stimulus (gsyn = 

90nS) was delivered simultaneously to 15 relay (R) cells (half of the R cell 

population). In all panels, the first four cycles (Fig. 5, pre-stimulus) show the stable 

near-synchronous firing state; membrane potential traces are overlays of all neurons 

(120 P and 30 R neurons) so the thickness of the traces are related to the level of 

synchrony. We found similar responses for different stimulus phases in the same 

network (compare Fig. 5A and B). The firing rate of R neurons receiving direct input 

(dark red) was transiently increased (period decreased), whereas the other R 

neurons (light red) became slightly less synchronized with relatively little change in 

frequency. There was also a variable decrease in action potential amplitude in the 

stimulated R neurons, with an occasional skipped or additional spike. The pacemaker 

(P) neurons responded in a much more consistent manner, with a decreased level of 

synchrony and only a small change in frequency or action potential amplitude 

(similar to the unstimulated R neurons).  While the stimulus had a greater effect on R 

neurons during the first cycle, the effect spread to P neurons over subsequent 

cycles.  These observations were similar across different networks with the same 
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connectivity parameters (compare responses to the same stimulus in three different 

networks, Fig. 5 A, C and D).     

To illustrate the response properties of the model networks in more detail, we show 

a phase resetting analysis for one example network using a slightly weaker stimulus 

(gsyn = 90nS applied to 10 R neurons).  While in general, noise sources in the 

experiments contribute to more variable responses, the phase resetting curves from 

model networks are similar to those observed in the experiments. The stimulus 

caused a small decrease in cycle duration that was variable across individual neurons 

(Fig. 6A,B). There is some dependence on stimulus phase in the first cycle (T1), 

especially for R neurons. When the stimulus was applied in the first part of the cycle 

(stimulus phase of 0 to 0.5), there is a bimodal response in R neurons, with the lower 

band (phase advance) representing the neurons receiving direct inputs (see Fig. 5, 

dark red). This propagates through the network, producing increased timing 

variability for both P and R neurons in subsequent cycles (T2 and T3) that alters the 

initial dependence on stimulus phase. In the experimental curves, the phase 

dependence of T1 was seen in later stimulus phases (>0.5); this difference could be 

due to synaptic or propagation delays that were not included in the model. Small 

changes in stimulus strength (defined by the value of gsyn and the number of R 

neurons receiving inputs) resulted in qualitatively similar responses, with stronger 

stimuli producing larger effects on cycle period (Fig. 6C,D show mean responses over 

all cells of a given type). For the intermediate stimulus used in Fig. 6A,B, the 

decreases in cycle period were similar to those seen in experiments, with the 

exception of T1 in R neurons which was about 10% larger (Fig. 6C,D; compare 

colored lines for “90nS on 10 R cells” to dashed-line showing median responses for 

T2 in the experiments). 

We also measured the change in phase difference (��) between cells in the model 

network (Fig. 7A; combined data from all stimulus phases as in Fig. 4C) produced by 

the stimulus used for Fig. 6A,B.  As in the experiments, the model neuron pairs were 

transiently desynchronized after the stimulus. The variability in phase difference 

between model neurons generally increased over the first few post-stimulus cycles, 

with a peak �� for all pair types occurring in the third post-stimulus cycle (Fig. 7A). In 
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general, recovery was slower than in experiments, with stimulus effects lasting 

longer than 5 cycles (Fig. 7B). These effects depended on the stimulus: larger values 

of gsyn acting on more R neurons produced larger and longer lasting effects (Fig. 7B). 

In some cases, the strongest stimuli perturbed the network such that it did not 

recover to its original synchronized state (see Fig. 7B, light gray in lower panel).  Note 

that while the stimulus used for the responses shown in Fig. 7A (gsyn=90nS on 10 

relay neurons) produces resetting responses that are similar in magnitude to those 

observed experimentally, the effects on phase difference are much stronger (Fig. 7B 

upper panel; compare open symbols with light gray closed symbols). In order to 

match the recovery of phase differences to those in experiments, a much weaker  

model stimulus was required (gsyn =50nS onto 15 relay cells; Fig. 7B, middle panel). 

Indeed, the results shown in Figures 6 and 7 suggest that a single stimulus 

magnitude can not easily account for both the phase resetting and changes in phase 

differences observed in the experiments. To address this inconsistency, rather than 

optimizing model parameters to precisely fit the data, we instead explore the 

influence of different network features using a broad survey of randomly generated 

networks with varying properties.   

Influence of network connectivity on post-stimulus response  

Previous modeling of the pacemaker (Pn) network focused on reproducing the high 

level of firing precision (i.e. low CV of oscillation period) (Moortgat et al 2000b). The 

results presented in the previous sections suggest that, in addition to oscillator 

precision, network stability (i.e. ability to recover from a chirp-like synaptic 

perturbation) should also be considered when evaluating pacemaker network 

models. Thus far, we have shown that the Pn network model captures at least some 

features of Pn dynamics. However, for a given stimulus strength, there is a mismatch 

in the resetting responses and recovery times between experiment and model. 

Therefore, we further explored network response properties as determined by two 

parameters that control the strength and density of network connections 

respectively: gap junctional conductance (gc) and pacemaker connectivity (P:P).   

We generated 10 unique random networks for a given pair of values of P:P 

connectivity and gap junctional conductance. We characterized the responses of 
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model P and R neurons to a relatively large synaptic stimulus (gsyn =90nS onto 15 R 

neurons, as in Fig. 6A,B and Fig. 7A) that results in longer recovery times, and thus an 

increased ability to detect differences between networks. Our analyses focused on 

three metrics: (1) “chirp FM”, the frequency increase as indicated by the minimum 

cycle duration (averaged over all cells) in the first 5 post-stimulus cycles; (2) “chirp 

AM”, the peak level of desynchronization as indicated by the maximum variation in 

phase difference between cell pairs (peaks of curves in Fig. 7B); and (3) “chirp 

duration”, the post-stimulus recovery time, as indicated by the number of cycles 

required for neurons to re-synchronize following a stimulus. We consider these 

three metrics as analogs to those commonly used to describe chirp responses i.e. 

chirp frequency modulation (FM), chirp amplitude modulation (AM), and chirp 

duration, respectively (e.g. Smith et al 2016).  

In general, P neuron response metrics decreased with increasing network 

connectivity, i.e. increases in P:P and gc (Fig. 8). The largest effects are seen in chirp 

duration (Fig. 8E, blue), with recovery times becoming more than three times faster 

as networks become more densely coupled (P:P increases from 4% to 30%; gc=5nS). 

The effect of gc on recovery is largest for P:P less than 10%, with networks recovering 

about twice as fast when gc = 15nS compared to gc = 5nS.  For more dense networks, 

increasing gc had relatively little effect.  Interestingly, the overall effects on R 

neurons was much less.  Again, chirp duration was most sensitive, decreasing slightly 

with increases in gc (mean over all networks of 6.2 and 4.6 cycles for gc = 5 and 15nS 

respectively; Fig. 8E,F, red) but changing relatively little with changes in P:P 

connectivity.  These results suggest that R neurons are buffered somewhat from 

chirp-induced changes in P neuron dynamics, at least when coupling strength (gc) is 

low.  Note however that because the stimulus acts directly on R neurons, the overall 

effect of the stimulus on R neurons is generally much larger than on P neurons:  

chirp FM (maximum shortening, Fig. 8A,B), chirp AM (peak phase variation, Fig. 

8C,D), and chirp duration (recovery time, Fig. 8E,F) are in general greater for R than P 

neurons.  

Changes in gc and P:P can have a strong effect on the coefficient of variation of the 

cycle period (CV) of the model networks (Moortgat et al 2000b). We found that, as 
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long as P:P was greater than 4%, the CV of P cell activity was at the limit of our 

numerical precision (~3x10-4) and thus very close to the smallest experimentally-

observed levels.  The CV of R cell activity was similarly low for large values of gc 

(15nS), but for gc= 5nS, increased to 5.1x10-3 ± 4.2x10-3 (mean±SD over the 10 

networks). Compared to that of P cells, the variability in CV for R cells from network-

to-network was marked, ranging from values ~10-4 to more than 10-2, two orders of 

magnitude above that seen in experiments (Moortgat et al 1998). Note that this 

variability is due to the dynamics of the system (i.e. attractors that are not simple 

limit cycle oscillations) as there are no stochastic noise terms in the model.  

Many of the random networks we considered here exhibited asynchronous states 

and signs of multistability and thus sometimes failed to recover to the original 

synchronized state after a stimulus perturbation (see Fig. 7B, lower panel). These 

responses were not included in the results shown in Fig. 8, but such behavior is 

nonetheless worth considering. The EOD fires continuously, without pause, for the 

life of the fish so the pacemaker network must be robust to perturbation.  How likely 

is it that the model networks we have described are as robust as the real 

pacemaker? To answer this question, we generated additional sets of 100 random 

networks for each set of network parameters (gc and P:P) and asked what 

percentage of these networks recovered within 10 post-stimulus cycles (recovery 

indicated by median |��|<0.01). Figure 9 shows that for gc=5nS, a very small 

fraction of networks are stable when P:P=4% (the experimental estimate for 

pacemaker connectivity; Moortgat et al 2000a). This fraction increases with 

increased gap junctional conductance (gc=10nS and 15nS) and increased values of 

P:P, but to achieve a large fraction of stable networks, network connectivity (gc and 

P:P) must be stronger and much more dense than previously predicted for the 

pacemaker network.  Interestingly, Moortgat et al (2000b) used P:R connection 

probabilities much higher than experimental data suggests to achieve the robustness 

required for their analysis of pacemaker oscillation CV .  

Overall, these model networks can show stimulus-response dynamics that are similar 

to those described in the experiments. Although sufficiently fast post-stimulus 

resynchronization can be achieved in some weak and sparse networks, this depends 
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on the details of the connectivity; fewer than 5% of networks generated with gc=5nS 

and P:P=4% resynchronized at all. Taking into account responses to chirp-like stimuli, 

post-stimulus recovery dynamics, and oscillator CV suggests that P:P connectivity 

should be at least 10-15% with gc close to 15nS. These values are about double what 

has been predicted from experimental measurements (Moortgat et al 2000a,b). In 

addition, our results suggest that chirp parameters will be more readily controlled by 

the synaptic inputs to relay neurons in sparse, weakly coupled networks. However, 

in more highly-connected networks, pacemaker cell dynamics along with changes in 

strength and density of pacemaker connectivity will have a greater effect on the 

temporal dynamics of chirping. 
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Discussion 

Our study describes a quantitative analysis of the network dynamics of a high-

frequency, highly-precise neuronal oscillator in the weakly electric fish. We show 

that a common electrocommunication signal is associated with a transient 

desynchronization of this pacemaker network and then use this behavior to better 

understand the functional role of network connectivity.  Our results confirm that 

high oscillator precision (low CV) can be achieved with sufficient electrical coupling 

(gc>5nS) in a sparse network (P:P connectivity of 4%), but to ensure physiological 

levels of stability and robustness, network connectivity is required to be stronger 

(larger gc) and more dense (larger P:P) than predicted from previous experimental 

observations.   

Chirping and pacemaker desynchronization 

Chirping behavior and its role in electrocommunication across different species of 

wave-type weakly electric fish has been addressed in many studies (e.g. Zakon et al., 

2002; Zupanc et al., 2006; Hupé and Lewis, 2008; Marsat and Maler, 2010; Smith et 

al., 2016). However, the network mechanisms underlying chirp generation in the 

pacemaker nucleus has received relatively little attention. Early studies described 

the synaptic inputs responsible for chirp generation, along with detailed intracellular 

recordings from pacemaker and relay neurons (Dye and Heiligenberg, 1987; 

Kawasaki and Heiligenberg, 1988; Juranek and Metzner, 1997, 1998). Using the in 

vitro preparation we have adopted, Dye (1988) provided evidence that a chirp 

involves a change in phase relationship between neurons (i.e. desynchronization), as 

well as a transient increase in frequency. We confirmed these results with a 

quantitative analysis and also showed that responses to chirp-like stimuli are 

sufficiently variable to mask dependence on stimulus timing.  Taken together, these 

results support the idea that the diversity of chirp types within a species (Zupanc et 

al., 2006; Turner et al., 2007; Smith et al., 2016) is not achieved by varying the 

relative timing of synaptic inputs (Walz et al., 2013), but is more likely the result of 

differences in the strength and recruitment of synaptic inputs. In addition, chirp 

diversity across species may also involve differences in pacemaker network 
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connectivity (Heiligenberg et al., 1996; Juranek and Metzner, 1997). The pacemaker 

nucleus in Apteronotus albifrons, a closely related species to that considered here 

(Apteronotus leptorhynchus), has more than twice the number of relay neurons and 

about 25% more pacemaker neurons. Interestingly, the Pn in A leptorhynchus 

appears to be more densely interconnected through gap junctions and receives a 

higher density of descending chemical synaptic inputs than in A albifrons (Elekes and 

Szabo 1985). The much longer chirps with a larger FM component in A albifrons 

(Smith et al 2016) is not consistent with weaker descending inputs, and in light of 

our results suggests that pacemaker connectivity plays an important role in 

determining chirp properties (e.g. less dense P:P connectivity leads to longer 

recovery times, Fig. 8E). A more detailed comparative analyses, both at the 

anatomical and electrophysiological levels, and involving additional species will be 

required to test these hypotheses. 

The desynchronization of Pn neurons during a chirp is not unexpected. The 

heterogeneity of coupling in a relatively sparse random network will generally lead 

to differential effects of synaptic stimulation (Vervaeke et al., 2010). Neurons 

receiving direct inputs will be affected first, and the effects will then spread through 

the network to indirectly affect other neurons. The differences in spike timing lead 

to a dispersion in phase difference followed by a gradual return to pre-stimulus 

levels of synchrony over several oscillation cycles. This is clearly seen in the Pn 

network models (Fig. 5), where the stimulated relay neurons (dark red) are initially 

phase-advanced (fire earlier), while a gradual change in pacemaker neuron timing 

(i.e. phase) occurs over subsequent cycles. In the types of model networks we have 

considered, the synchronized state did not always recover after synaptic stimulation, 

and instead revealed other asynchronous states that are not observed 

experimentally. The instrinsic properties of individual neurons can significantly 

influence phase resetting properties and the stability of network synchronization 

(e.g. Pfeuty et al., 2003; Mancilla et al., 2007; Stiefel et al., 2008; Dodla and Wilson, 

2013), so it is possible that our model neurons do not adequately represent the 

dynamics of real Pn neurons. Future work will focus on experimentally evaluating 

the influence of specific ion conductances (Smith and Zakon, 2000) and 
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heterogeneities of synaptic inputs on network stability, with an aim towards 

improving Pn models.  

Network connectivity and pacemaker resynchronization 

Our results using the synaptically-driven chirp response to evaluate the coupling 

strength (gc) and connectivity (P:P) of model Pn networks suggests that the 

connections in the Pn are stronger and more dense than previously suggested. It is 

not surprising that previous experimental measurements may have underestimated 

Pn connectivity. First of all, it is inherently difficult to accurately determine gap-

junctional coupling strength between neurons in an intact electrically-coupled 

network. This is due in part to uncertainties that arise from unknown electrotonic 

decay over complex spatial geometries, as well as the unknown resistive loads 

provided by other coupled neurons. In addition, dye-coupling techniques, such as 

those used in previous studies of the pacemaker (e.g. Moortgat et al 2000a), can be 

prone to false-negatives (incomplete diffusion of the dye through branching 

processes and gap junctions) that would lead to underestimates of connectivity. That 

said, although our results on resynchronization times suggest a strong and densely-

coupled Pn network, this may not be consistent with the network flexibility required 

for chirping: higher levels of network connectivity would likely require stronger 

synaptic inputs to a greater number of neurons for chirp production, leading to 

much higher energy demands (Salazar et al 2013). 

There may however be other ways to achieve higher network connectivity while 

maintaining sufficient flexibility for chirp generation. One possibility is that 

connectivity is more hetereogeneous in the pacemaker than in our simple model 

networks. For example, stronger, more dense, coupling between relay neurons alone 

may provide stability and faster recovery, along with low CV, whereas weaker, more 

sparse, coupling among pacemaker neurons could facilitate transient 

desynchronization required for a chirp while also minimizing the destabilizing 

reverberations that can occur in strongly-coupled sparse networks. 

Another consideration is that the pacemaker nucleus is a tightly packed network of 

relatively large cells firing in near synchrony. The resulting field potentials are 
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significant (Curti et al., 2006; Quintana et al., 2011b, 2011a, 2014) and could lead to 

increased electrical interactions, thus effectively increasing network connectivity 

through field effects or ephaptic coupling (Faber and Korn, 1989; Anastassiou et al., 

2011).  Further, a large number of other cells likely work to modulate and control the 

extracellular space (Zupanc, 2017). In this way, the pacemaker network may be 

optimized such that sparse, relatively weak gap junctional coupling allows the 

flexibility for rapid, transient chirp generation, with ephaptic coupling providing the 

stability and robustness (high temporal precision and fast recovery from synaptic 

perturbation) that are not inherent properties of sparse random networks with gap 

junctional connections alone.  Field effects and ephaptic coupling are well-known, 

but their significance in neuronal processing is not yet clear (Anastassiou and Koch, 

2015). With an easily characterized functional output, the pacemaker network is an 

attractive model in which to address this question directly. 

Conclusion 

Identifying the mechanisms that allow neuronal networks to be robust and 

temporally precise, yet flexible enough to rapidly switch between dynamical states is 

a necessary step towards understanding a variety of brain functions in health and 

disease.  The pacemaker network in weakly electric fish is a neuronal oscillator with 

a well-defined function, and temporal precision that is under behavioral control for 

communication signal generation (Moortgat et al., 1998). This, along with the 

diversity in oscillator frequencies and signalling properties across species (Turner et 

al., 2007; Smith et al., 2016), suggests that there may be similar diversity in the Pn 

connectivity. Our results from A leptorhynchus show that synaptic stimuli underlying 

chirp production cause a transient desynchronization-resynchronization among 

neurons in the pacemaker network. The resulting dynamics suggest that network 

interconnectivity may be optimized to maintain a balance of stability and flexibility.  
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Figure legends 

Figure 1. The pacemaker nucleus (Pn) and the electric organ discharge (EOD). 

(A) Lower: outline of fish showing schematic relationship between the medullary Pn 

network (gray outline) and the electric organ (gray line). Upper: schematic network 

diagram showing electrically-coupled pacemaker (P) and relay (R) neurons; the Pn 

receives synaptic inputs from the prepacemaker nucleus (PPn), while relay axons 

project down the spinal cord to set the timing of the EOD.  

(B) Recording of the quasi-sinusoidal EOD showing the amplitude modulation 

(orange) during an electrocommunication signal called a chirp; vertical scale bar is 

10mV and time scale is shown in panel C. 

(C) Instantaneous frequency (1/period) for each cycle of the EOD waveform in panel 

B shows a change from 1000Hz to 1030Hz during the chirp; vertical scale, 30Hz, and 

time scale, 10ms. 

 

Figure 2.  Example recordings of membrane potential from pairs of neurons in the 

pacemaker nucleus (Pn). 

(A) Paired intracellular recordings from a pacemaker (P) and relay (R) neuron during 

electrical stimulation of the PPn inputs (indicated by stim arrow) in an in vitro Pn 

preparation. Convention for quantifying responses to stimulation are shown above: 

control cycle period and three post-stimulus cycle periods are denoted T0, T1, T2, T3 

respectively. Time scale bar is 5ms and vertical scale bar is 20mV (applies to both 

panels A and B). 

(B) Intracellular recordings from a single P neuron for two different trials (indicated 

by black and gray lines) with electrical stimulation of the PPn inputs (indicated by 

stim arrow) at the same phase (indicated by the arrow) but producing different 

responses (compare first post-stimulus cycle: 2.4ms and 2.0ms). For display 

purposes, the stimulus artefact was filtered locally, but in these recordings a 

downward deflection that differed between trials remained, giving the impression of 

different stimulus timing when in fact the timing was the same. 
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Figure 3.  Phase resetting curves for neurons in the pacemaker nucleus (Pn). 

(A) Resetting curve shows post-stimulus cycle durations (T1, T2, T3) normalized by 

the control duration T0 as a function of stimulus phase � for both P (open blue) and 

R (open red) neurons (29 P cells and 11 R cells in 8 in vitro Pn preparations).  

(B) T1 responses in panel A shown at higher magnification. In addition, example 

responses from two individual neurons are shown with filled symbols (P in blue, R in 

red).  

 

Figure 4.  Stimulus-induced changes in neuron phase relationships. 

(A) Illustration showing action potentials from two neurons along with the definition 

for the phase difference, � (i.e. the time �t between spikes relative to the control 

period T0). 

(B) Stacked histogram of phase differences (absolute value) between the neuron 

pairs in our sample, color-coded by pair type: PP, pacemaker-pacemaker; PR, 

pacemaker-relay; RR, relay-relay.  

(C) Change in phase difference (��) between pairs of neurons for the same stimuli 

shown in Fig. 3, plotted against post-stimulus cycle number (20 pairs in 8 

preparations). Colored symbols show all data for each pair type; boxplots are for 

data combined across pair type: middle line is median, box hinges denote the 1st and 

3rd quartiles, and whiskers are 1.5 times the interquartile range from the hinge point. 

    

Figure 5.  Responses of model Pn networks to synaptic input. 

Example traces from three different networks of model pacemaker (P) and relay (R) 

neurons. (A) and (B) show responses of Network 1 to two different stimulus phases 

(stimulus 1 and 2), while (C) and (D) show the responses of Networks 2 and 3 to 

stimulus 1. In all panels, membrane potentials for all R and P neurons are overlaid 

and shown in red and blue respectively (upper), so the thickness of the traces is 

related to the level of synchrony; the stimulus trace is shown in dark gray (lower): 

gsyn = 90nS was delivered simultaneously to 15 relay cells (stimulated cells in dark 

red). Time and voltage scales are 2ms and 40mV, shown in panel D. 
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Figure 6.  Phase resetting in a model Pn network. 

(A) and (B) show phase resetting curves, as in Fig. 3, for model R and P neurons in 

one network; responses for all neurons of each type are combined to show the 

variation across the network, with individual responses indicated by the points and 

black lines indicating the means. Stimulus: gsyn = 90nS applied to 10 R neurons.  

(C) and (D) show mean values for T1 and T2 on a magnified scale for R and P neurons 

respectively and three different stimulus magnitudes (see legend and text for full 

description). The dashed line in the lower panels indicates the median of T2 for the 

experimental data in Fig. 3 for the corresponding cell type; median for T1 for the 

data was 1.0 and 0.99 for R and P neurons respectively and is not shown in the 

figure.   

 

Figure 7. Stimulus-induced changes in phase difference for model networks. 

(A) Change in phase difference (��) between pairs of model neurons for each pair 

type (see legend); boxplots are for responses combined across pair type as in Fig. 4C. 

Stimulus as in Fig. 6A,B. 

(B) Variability in the change in phase difference for different stimulus magnitudes, as 

quantified by 1.5 times the interquartile range from the 1st and 3rd quartiles (i.e. 

range spanned by the whiskers of the boxplot in panel A). Experimental data is 

indicated by the black open circles. 

 

Figure 8. The influence of model network connectivity on chirp properties.  

Panels show changes in three different stimulus-response properties as a function of 

interconnectivity of P neurons (P:P) for both P (blue) and R (red) for gap junctional 

conduction of 5nS (left panels) and 15nS (right panels). Response properties are:  (A 

and B) “chirp FM”, indicated by the minimum cycle duration in the first 5 post-

stimulus cycles (averaged over all cells); (C and D) “chirp AM”, indicated by the 

maximum variation in �� between cell pairs (peaks in Fig. 7B); and (E and F) “chirp 

duration”, as indicated by the number of cycles required for neurons to re-

synchronize following a stimulus (indicated by a median �� within ±0.01). Stimulus 

magnitude: 90nS input to 15 R cells. 
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Figure 9. The influence of model network connectivity on network stability 

Percent of randomized model networks (100 total) that recover to the synchronous 

state within 10 post-stimulus cycles, at different levels of P:P connectivity and 

gc=5ns, 10nS and 15nS (see legend). Stimulus magnitude: 90nS input to 15 R cells. 

 
 
 
 
 
 
 

 

Table 1. Model parameters for pacemaker and relay neurons 

 Pacemaker Relay 

 soma axon soma axon 

ds  (cm) 0.030 -- 0.065 -- 

da  (cm) -- 0.008 -- 0.007 

la  (cm) -- 0.045 -- 0.040 

ga  (mS) 0.0045 0.0045 0.00075 0.00075 

C †  (μF) 1.0As 1.0Ac 1.0As 1.0Ac 

gL  (mS) 0.3As 1.0Ac 1.0As 1.0Ac 

gNa  (mS) 500As 500Ac 500As 500Ac 

gK  (mS) 20As 20Ac 50As 50Ac 

Ibias  (μA) 0.0015 0 0 0 

ENa  (mV) 50 50 50 50 

EK  (mV) -77.5 -77.5 -77.5 -77.5 

EL  (mV) -70 -70 -70 -70 

Esyn  (mV) 0 0 0 0 
†  where As is surface area of the somatic compartment, and Ac is the surface 
area of the axonal compartment. Units as shown in first column unless 
otherwise noted. 
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