185A Homework 8

Question 1 Study the convergence of the sequence of functions $\{f_n\}$ with

$$f_n(z) = \sum_{k=0}^n \frac{1}{z^k}$$

Hint, first describe the effect of the mapping $z \mapsto \frac{1}{z}$ on the unit disc.

Question 2 Sterographic Projection and the Riemann Sphere: Consider the following mapping: Lay the complex plane \mathbb{C} out on a tabletop and take a sphere S^2 with unit radius and put it on the origin. Call the top of this sphere the north pole. Now stand on the table and point a telescope at the north pole. To do this, you will have to sight through a point on the sphere (draw a picture). Call this point the image of the stereographic projection $P : \mathbb{C} \to S^2$. Write a formula for a point $(X, Y, Z) \in S^2$ (where $X^2 + Y^2 + (Z - 1)^2 = 1$) in terms of $z \in \mathbb{C}$. Also give the inverse, *i.e.* z in terms of (X, Y, Z). (A hint, look for similar triangles). Do you have an interpretation for $P(\infty)$? Try to show that circles and lines¹ in \mathbb{C} are mapped to circles in S^2 .

Question 3 Develop and prove a ratio test and comparison test for the convergence of complex series.

Question 4 Develop an asymptotic series expansion for the integral

$$I(t) = \int_0^\infty \frac{dx e^{-x}}{1 + (xt) + (xt)^2} \, dx \, dx \, dx$$

valid when t is small. You may compute just the first five terms in this series. Investigate how well your expansion works for explicit small values of t.

Question 5 Find out what the group of angle preserving transformations for \mathbb{R}^3 is. Compare its dimensionality to the same group in two dimensions. (*Hint;* For "googlers", the word *conformal* might help.)

¹The equation of a circle or line in \mathbb{C} is $Az\bar{z} + \bar{B}z + B\bar{z} + C = 0$ for B complex and A and C real. It helps to take $|B|^2 > C$.