
Eigenvalues and Eigenvectors

MAT 67L, Laboratory III
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Instructions

(1) Read this document.
(2) The questions labeled “Experiments” are not graded, and should not be turned

in. They are designed for you to get more practice with MATLAB before you start
working on the programming problems, and they reinforce mathematical ideas.

(3) A subset of the questions labeled “Problems” are graded. You need to turn in
MATLAB M-files for each problem via Smartsite. You must read the “Getting started
guide” to learn what file names you must use. Incorrect naming of your files will
result in zero credit. Every problem should be placed is its own M-file.

(4) Don’t forget to have fun!

Eigenvalues

One of the best ways to study a linear transformation

f : V −→ V

is to find its eigenvalues and eigenvectors or in other words solve the equation

f(v) = λv , v 6= 0 .

In this MATLAB exercise we will lead you through some of the neat things you can to
with eigenvalues and eigenvectors. First however you need to teach MATLAB to compute
eigenvectors and eigenvalues. Lets briefly recall the steps you would have to perform by
hand: As an example lets take the matrix of a linear transformation f : R3 → R3 to be (in
the canonical basis)

M :=

1 2 3
2 4 5
3 5 6

 .

The steps to compute eigenvalues and eigenvectors are

(1) Calculate the characteristic polynomial

P (λ) = det(M − λI) .

(2) Compute the roots λi of P (λ). These are the eigenvalues.
(3) For each of the eigenvalues λi calculate

ker(M − λiI) .

The vectors of any basis for for ker(M − λiI) are the eigenvectors corresponding
to λi.
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Computing Eigenvalues and Eigenvectors with MATLAB. As a warning, there are
two very different ways to compute the characteristic polynomial of a matrix in MATLAB.

>> M =[1 2 3 ;2 4 5 ; 3 5 6 ]

M =

1 2 3
2 4 5
3 5 6

>> %compute the c h a r a c t e r i s t i c polynomial
>> poly (M )

ans =

1.0000 −11.0000 −4.0000 1 .0000

>> %convert M in to a symbol ic matrix us ing the symbol ic math t o o l k i t
>> sym B ;
>> B= sym (M )

B =

[ 1 , 2 , 3 ]
[ 2 , 4 , 5 ]
[ 3 , 5 , 6 ]

>> %not i c e how matlab pr in ted out the symbol ic matrix d i f f e r e n t l y than M

>> %compute the c h a r a c t e r i s t i c polynomial again
>> poly (B )
ans =

xˆ3 − 11∗xˆ2 − 4∗x + 1

Next, let us compute the eigenvalues by finding the roots of the characteristic polynomial
and the eigenvectors of M .

>> eigenValues = roo t s ( poly (M ) )

eigenValues =

11.3448
−0.5157
0 .1709

>> f o r i = 1 : l ength ( eigenValues )
>> shiftedM = M − eigenValues (i ) ∗ eye ( s i z e (M ) ) ;
>> r r e f ( shiftedM )
>> end
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ans =

1.0000 0 −0.4450
0 1 .0000 −0.8019
0 0 0

ans =

1.0000 0 1 .2470
0 1 .0000 0 .5550
0 0 0

ans =

1.0000 0 −1.8019
0 1 .0000 2 .2470
0 0 0

It is now easy to see that the kernel of these three matrices are (0.4450, 0.8019, 1)T ,
(−1.2470,−0.5550, 1)T , and (1.8019,−2.2470, 1)T

To double check this, run the following in MATLAB and you should get vectors very close
to zero.

v1= [0 . 4 4 50 , 0 .8019 , 1 ] ' ;
v2= [−1.2470 , −0.5550 , 1 ] ' ;
v3= [1 . 8 0 19 , −2.2470 , 1 ] ' ;

%these should be c l o s e to zero .
M∗v1 − eigenValues (1 ) ∗v1
M∗v2 − eigenValues (2 ) ∗v2
M∗v3 − eigenValues (3 ) ∗v3

Symmetric Matrices. The matrix M in the above example is symmetric, i.e. M = MT

(remember that the transpose is the mirror reflection about the diagonal). It turns out
(we will learn why from Chapter 11 of the book) that symmetric matrices can always be
diagonalized. Recall that to diagonalize a matrix M you need to find a basis of eigenvectors
and arrange these (or better said their components) as the columns of a change of basis
matrix P . Then it follows that

MP = PD

where D is a diagonal matrix of eigenvalues. Thus D = P−1MP .

Diagonalization with MATLAB. Above, we computed the eigenvalues and vectors the
long and hard way, but MATLAB has a function that will make your life easy:

>> [ P , D ] = e i g (M )
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P =

0.7370 0 .5910 0 .3280
0 .3280 −0.7370 0 .5910
−0.5910 0 .3280 0 .7370

D =

−0.5157 0 0
0 0 .1709 0
0 0 11.3448

The ith column of P is an eigenvector corresponding to the eigenvalue in the ith column
of D. Notice how MATLAB changed the order the eigenvectors from the previous way I wrote
them down. Also, MATLAB normalized each eigenvector, and changed the sign of v2. This
is ok because eigenvectors that differ by a non-zero scaler are considered equivalent.

>> v1/norm( v1 )

ans =

0.3280
0 .5910
0 .7370

>> v2/norm( v2 )

ans =

−0.7370
−0.3280
0 .5910

>> v3/norm( v3 )

ans =

0.5910
−0.7370
0 .3280

For fun, let us check that MP = PD:

>> M∗P

ans =

−0.3801 0 .1010 3 .7209
−0.1692 −0.1260 6 .7049
0 .3048 0 .0561 8 .3609
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>> P∗D

ans =

−0.3801 0 .1010 3 .7209
−0.1692 −0.1260 6 .7049
0 .3048 0 .0561 8 .3609

Orthogonal Matrices. Symmetric matrices have another very nice property. Their eigen-
vectors (for different eigenvalues) are orthogonal. Hence we can rescale them so their length
is unity to form an orthonormal basis (for any eigenspaces of dimension higher than one,
we can use the Gram-Schmidt procedure to produce an orthonormal basis). Then when
we form the change of basis matrix O of orthonormal basis vectors we find

OTO = I ,

so that O is an “orthogonal matrix”. The diagonalization formula is now

D = OTMO .

Dot Products and Transposes with MATLAB. Taking the standard dot product
over real or complex vectors in MATLAB is easy as it can be done by multiplying two vectors
together:

>> %remove the va r i ab l e i from memory so matlab w i l l know i i s the complex number←↩
.

>> c l e a r i

>> a=[1; 3+i ; 5+i ]

a =

1.0000
3 .0000 + 1.0000 i
5 .0000 + 1.0000 i

>> b = [ 1 ; 2 ; 3 ]

b =

1
2
3

>> % a ' w i l l g ive the Hermitian t ranspose
>> a '

ans =

1.0000 3 .0000 − 1 .0000 i 5 .0000 − 1 .0000 i

>> a ' ∗ b
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ans =

22.0000 − 5 .0000 i

Because MATLAB already gave us normalized eigenvectors, in the notation of the last
sections we have O = P . Let us check OTO = I and D = OTMO.

>> P

P =

0.7370 0 .5910 0 .3280
0 .3280 −0.7370 0 .5910
−0.5910 0 .3280 0 .7370

>> P∗ P '

ans =

1.0000 0 .0000 0
0 .0000 1 .0000 0 .0000

0 0 .0000 1 .0000

>> P ' ∗ M ∗ P

ans =

−0.5157 0 .0000 0 .0000
0 .0000 0 .1709 −0.0000
0 .0000 −0.0000 11.3448

>> D

D =

−0.5157 0 0
0 0 .1709 0
0 0 11.3448

Functions of matrices. If you can diagonalize a matrix then it is possible to compute
functions of matrices f(M) by writing f(x) = 1 + x+ 1

2!
x2 + · · · (a Taylor series) and use

the fact that Mk = (P−1DP )k = P−1DkP so that

f(M) = P−1
(
I +D +

1

2!
D2 + · · ·

)
P = P−1f(D)P .

(so long as the series converges on the eigenvalues). Also f(D) is the matrix with f(λi)
along the diagonal.

Functions of matrices with MATLAB. MATLAB can compute some functions on ma-
trices like eM and

√
M , but care must be taken. For example, to compute eM , the MATLAB



7

function “expm(M)” must be used instead of “exp(M)” as the latter will simply return
there matrix where each entry is replaced with emij , which is not the same thing as taking
the matrix exponential. Also, for some functions (like the square root of a negative or
complex eigenvalue) such things like branch cuts must be considered.

>> expm(M ) − P∗expm(D ) ∗P '

ans =

1 .0 e−09 ∗

0 .0327 0 .0546 0 .0655
0 .0546 0 .1055 0 .1237
0 .0655 0 .1164 0 .1310

>> sqrtm (M ) − P∗ sqrtm (D ) ∗P '

ans =

0 0 0
0 0 0
0 0 0

Exercises.
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Problem 1.
Given a diagonalizable matrix A, let the list (λ1, . . . , λn) be the eigenvalues. Write a

function that will compute the sum
∑

i λi and the product
∏

i λi.
The function signature is

%Input
% A: n x n d i a g ona l i z ab l e matrix
%Output
% theSum : sum of e i g enva lu e s
% theProd : product o f e i g enva lu e s
func t i on [ theSum , theProd ] = ev_sumAndProduct (A )

code here

end

You may NOT use MATLAB’s “eig” function. If you do, you will get zero points.
Hint: you may want to research what properties the determinant and trace function

have.
Problem 2.

Given a diagonalizable matrix A, write a function that return true if A is positive definite
and false otherwise.

The function signature is

%Input
% A: n x n d i a g ona l i z ab l e matrix
%Output
% isPosDef : t rue i f p o s i t i v e d e f i n i t e , f a l s e o therw i se
func t i on [ isPosDef ] = ev_isPositiveDefinite (A )

code here

end

A matrix A is called positive definite if ∀x 6= 0, xTAx > 0. Hint, use the fact that A is
diagonalizable and the eigenvector matrix in invertible.

Another hint, the value “true” in MATLAB is typed like this: true.
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Problem 3.
Consider the following Markov Chain on the graph below. The nodes are called states,

and the edge weights represent a probability of moving from a state to another state.

1

2 3

1/3

1/3

1/31/4

1/4

1/2
1/3

1/6

1/2

We can encode the probability of moving from one state to another in a matrix

P =

1/3 1/3 1/3
1/4 1/2 1/4
1/6 1/3 1/2


where Pij is the probability of moving from state i to state j.

If you start at state 1, then you move to a new state randomly according to the proba-
bilities on node 1. Using matrix notation, e1P is a probability vector of which state you
will be in after one iteration, where e1 = (1, 0, 0) encodes you are starting from state 1. It
can be shown that e1P

2 is the probability vector of where you will be if you start at state 1
and then randomly moved twice. This generalizes to e1P

n. Now lets say you do not know
which state you are going to start with; instead, you know you will start at state 1 with
probability 1/2 or state 2 with probability 1/2. Then after 1 step, your probability distri-
bution of where you will be is (1/2, 1/2, 0)P = (7/24, 5/12, 7/24) (so there is a 7/24 chance
you will be in state 1). After n steps, your probability distribution is (1/2, 1/2, 0)P n.

An interesting question is that does there exist an initial probability distribution row
vector π such that your probability distribution as you walk does not change: πP = π?
Write a function to find such a starting probability distribution.

The function signature is

%Input
% P: n x n d i a g ona l i z ab l e Markov matrix
%Output
% pd : row vec tor such that pd ∗ P = pd and the sum of the e lements in pd i s 1 .
%Example
% For the P de f ined above , pd=[6/25 , 2/5 , 9/25 ]
f unc t i on [ pd ] = ev_MarkovSteadyState (P )

code here

end
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Hint, use “eig” in a special matrix.
Problem 4.

Let us breed rabbits, starting with one pair of rabbits. Every month, each pair of rabbits
produces one pair of offspring. After one month, the offspring is an adult, and will start
reproduction. We neglect all kinds of effects like death and we always consider pairs of
rabbits.

To model this dynamical system, we use the space of rabbit vectors r = (j, a)T ∈
R2. The first component of the rabbit vector gives the number of a juvenile pairs, the
second component the number of adult pairs of rabbits. Translating the standard Fibonacci
recurrence into matrix notation, we get

rn+1 =

(
jn+1

an+1

)
=

(
0 1
1 1

)(
jn
an

)
=

(
0 1
1 1

)
rn =: Arn

The standard Fibonacci sequence uses r0 = (1, 0)T , but we could start r0 = (a, b)T at
any point in R2.

Let M be a 3-row k-column matrix. Write a function that takes M and returns a k-vector
f where fi is the m3,i − th Fibonacci sequence number where r0 = (m1,i,m2,i). Compute
the f vector using the above matrix recursion (in a smart way).

For example, if

M =

1 1 3
0 0 5
1 2 10

 ,

then the f vector is (1, 2, 987), because 1 = sum(A(1, 0)T ), 2 = sum(A2(1, 0)T ), and
987 = sum(A10(3, 5)T )

%Input
% M: d e s c r i p t i o n i s above .
%Output
% f : d e s c r i p t i o n i s above .
f unc t i on [ f ] = ev_FastFibonacci (M )

code here

end

Remark: M will contain on the order of 100000 columns. The integers in the 3rd row of
M will contain many digits. The submatrix M(1 : 2, :) may not be integer.

Remark: Your function will be timed and the amount of memory it uses will be recorded.
If it takes too long or uses to much memory, I will assume your function is simply computing
An and you will get zero credit. You must think of a way to find An quickly.


