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Abstract

In the first chapter, we extend previous analysis of dissipative modes derived using a wave

radiation boundary condition at the tropopause by considering the effects of relaxing hydrostatic

balance, finding agreement in the hydrostatic limit. The absence of hydrostatic balance on shorter

horizontal length scales introduces a singular perturbation of the problem which corresponds to the

emergence of a novel barotropic mode. The frequency of this barotropic mode provides a limit to the

frequency and decay rate of the high horizontal wavenumber baroclinic modes, thereby introducing

a scale selective wave drag. The decay of the baroclinic modes can be characterized by the angle of

the wavefront. A damping operator for the bulk equations is proposed, so that the damped rigid

lid solutions approximate this decay.

In the second chapter, we investigate the effect of restricting the sign of the phase velocity of

waves with small wavenumber, nonzero frequency and dispersion in one spatial dimension using

multiscale asymptotics. We consider two examples of long waves with these characteristics. The

first investigates breather solutions to the Sine-Gordon equation used in quantum field theory. The

second considers the Yanai wave observed in the equatorial atmosphere. Ultimately, we find that

this restriction of direction changes the description of the waves in a subtle way, but does not

produce any new physics.

In the the third chapter, we investigate the effects of meridional circulation on the equatorial

waves. We find that relaxing the long wave scaling used in previous work no longer guarantees

stability, and find a necessary condition for instability.

In the fourth chapter, we investigate the effects of a zonally moving off-equatorial forcing on

equatorial waves. We find a formula that describes the magnitude of a Kelvin response, as well as

a mechanism for such excitations via the interaction of barotropic and baroclinic waves.
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CHAPTER 1

Leaky Rigid Lid Tropospheric Modes in a Nonhydrostatic

Atmosphere

1.1. Introduction

Tropospheric dynamics is often modeled using a framework whose vertical structure is described

by a set of discrete modes [Majda, 2003,Khouider et al., 2012]. This convenient approxima-

tion restricts convective or dynamical models entirely to the troposphere, whose finite vertical

extent has a discrete spectrum with normal boundary conditions. A finite troposphere is most

commonly modeled via the rigid lid boundary conditions, in which the vertical velocity vanishes at

the tropopause.

In this context, the first justification for the rigid lid boundary condition is that free surface

perturbations at the tropopause are often of much smaller amplitude than those within the tro-

posphere, especially when perturbations arise from convective activity. This was demonstrated in

Franklin’s oil and water experiment [Franklin, 1905], and observed naturally in instances like

the dead water phenomena, where a strong salinity gradient prevents mixing between two layers

of water [Ekman, 1904]. This argument is often used on material of drastically different density,

such as the atmosphere and the ground, which we readily accept. The second justification for using

a rigid lid condition is that the stratosphere has a stronger stratification than the troposphere,

which inhibits vertical motion, and this justification is commonly used at the tropopause. This

assumption is often presented mathematically by stating that the ratio between stratospheric and

tropospheric stratification is infinite.

However, there are several objections to the use of rigid lid boundary conditions. Firstly, the

real atmosphere is closer to a semi-infinite domain, and so is more prone to have a continuous

spectrum of modes. Consequently, [Lindzen, 2003] argues that discrete internal modes that are

observed are incorrectly based on oversimplified models. By contrast, he claims that the atmosphere

“is characterized by a single isolated eigenmode and a continuous spectrum”, and then proceeds
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to provide arguments for the observed properties, such as the observed equivalent depths, are

consistent such a setup.

Despite this objection, the rigid lid framework is a ubiquitous assumption in simplified and

analytical models of tropospheric dynamics. Models of tropical wave dynamics, which have been

successful at describing convectively coupled equatorial waves [Matsuno, 1966,Gill, 1980,Neelin

and Held, 1987,Kiladis et al., 2009,Biello and Majda, 2004] often project the primitive

equations onto the shallow water modes for the first few rigid lid baroclinic modes, yielding a

system of coupled shallow water equations. It has also been used to introduce moist dynamics in

the atmosphere using only the first two baroclinic modes with minimal vertical information [Majda

and Shefter, 2001,Khouider and Majda, 2006]. One process these models must incorporate

into their derivation is how internal gravity waves lose energy over time. A common strategy is to

introduce Newtonian cooling or radiative damping on a scale of 1-10 days [Matsuno, 1966,Gill,

1980], though often it is modelled as being stronger than observation would suggest [Battisti

et al., 1999]. Another strategy in a finite domain is to impose a wave radiation boundary condition

at the tropopause to allow all internal gravity waves to leave the domain [Bennett, 1976,Klemp

and Durran, 1983,Garner, 1986,Purser and Kar, 2002]. However, these boundary conditions

are derived by using the dispersion relation of rigid lid modes to filter out the outgoing waves, rather

than being grounded in some physical mechanism.

Another objection to the use of the rigid lid is that the stratification ratio is close to 2, which

is not large enough to unambiguously justify the approximation. In light of this, [Chumakova

et al., 2013] (henceforth CRT) and [Edman and Romps, 2017] (henceforth ER) both assume

this finite stratification and derive a discrete spectrum of internal gravity waves. Both find that

the waves decay in time without having to artificially impose Rayleigh friction, Newtonian cooling,

or wave filtering. While both use the common assumption of a finite stratification ratio, they

begin with a slightly different set of assumptions that are relevant in their respective analyses and

conclusions. [Lin and Emanuel, 2022,Yano and Emanuel, 1991] also consider the damping

effects of stratospheric coupling, however both simplify the vertical structure of the problem and

as such differ significantly in the analysis of CRT and ER.

CRT approaches the problem by assuming an incompressible, hydrostatic atmosphere with a

vertical density profile that is prescribed by a piecewise constant Brunt-Väisälä frequency, N2.
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The strong gradient in N2 is used to find a jump condition in kinetic energy density. This jump

condition is reformulated as an effective boundary condition that allows for upward wave radiation

of waves from the troposphere, restricting attention to the troposphere alone. A boundary value

problem is then solved to find the discrete spectrum, which includes decay rates proportional to

the horizontal wavenumber.

ER attempts to generalize upon this work by considering a similar setup, but assumes a Boussi-

nesq two layer atmosphere, which has a constant vertical density profile, except when computing

N2. They consider the effect of a buoyancy source in the troposphere and are able to find a Green’s

function response to that source in both the troposphere and stratosphere. As such, due to the

Boussinesq assumption, there is no jump condition at the tropopause coming from the gradient in

N2. This distinction is important to recall when comparing the two analyses.

The primary objective of this manuscript is to relax the hydrostatic assumption taken in CRT

and find the equivalent leaky modes of the troposhere, in an effort to better understand the structure

of these modes at shorter horizontal length scales, as would be appropriate for internal waves

generated by convective activity, such as in recent work by [Marsico et al., 2023], which uses a

parameterized drag. We study the linear equations appropriate to the troposphere in the presence

of a discontinuous Brunt Vaisala frequency at the tropopause, finding a boundary condition that

is consistent with CRT, but presents problems in the analysis. We find modes that are analogous

to the leaky modes computed by CRT, but nonhydrostatic flow introduces a new barotropic mode.

The frequency of this barotropic mode serves as a limit to the frequencies and decay rates of the

baroclinic modes for large horizontal wavenumbers. What results is the decay rate increases with

angle of elevation (defined via a ratio of horizontal and vertical wavenumbers) until a critical angle

of about 60◦, above which the decay rate decreases.

The paper is organized as follows: Section 2 introduces the main equations and the jump

condition, which produce an eigenvalue problem in Section 3. Section 4 discusses the eigenfunctions

of the problem. Section 5 discusses how this decay can be approximated via an empirically derived

operator.
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1.2. Derivation and boundary conditions

We begin with linearized incompressible, nonrotating, non-hydrostatic fluid equations in one

vertical and one horizontal dimension, like in CRT,

ρ0ut + px = 0,

ρ0wt + pz + gρ = 0,

ρt + ρ0zw = 0, and

ux + wz = 0.(1.1)

Here we define x, z and u,w as the horizontal and vertical coordinates and velocities respectively,

p, ρ as the pressure and density perturbations from p0(z), ρ0(z), and g is the gravity constant. We

also impose the rigid lid boundary condition w(z = 0) = 0 for the ground. Letting N2 = −gρ0z/ρ0,

we can reduce the system to a single equation

(1.2)
(ρ0wz)ztt

ρ0
+ wxxtt +N2wxx = 0.

This equation uses the same manipulations of (1) in CRT, and the wxxtt term arises from the

vertical acceleration term. Here the structure of ρ0 plays an important role. If it is constant, then

the density cancels in the numerator and denominator to yield something akin to equation (7) in

ER. If we specify only that the atmosphere is incompressible like in CRT, then the structure of

ρ0(z) becomes important and it can be computed via the Brunt-Väisälä (B-V) frequency N2(z).

To make sure that the structure of ρ0(z) does not obfuscate our findings, the more physically

significant kinetic energy density ϕ2 = ρ0w
2 is used instead of w [Raupp et al., 2019,Kasahara

and Qian, 2000]. Therefore we substitute ϕ =
√
ρ0w to get

(1.3) ϕzztt +

(
−N4

4g2
+

1

2g

dN2

dz

)
ϕtt + ϕxxtt +N2ϕxx = 0.

We nondimensionalize this equation using a typical depth of the troposphere H̃, which sets the

location of the tropopause to z = 1, a tropospheric reference value for the buoyancy frequency Ñ ,

and the ratio of the vertical to horizontal length scales δ. From it emerges the time scale t̃ = (δÑ)−1,

and velocity scales w̃ = H̃/t̃, ũ = w̃/δ. We also see the nondimensional parameter ϵ = ÑH̃/

√
2gH̃

emerge as a ratio between the height of the troposphere and the height scale of density. In total,
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nondimensionalization of the equation yields

(1.4) ϕzztt +

(
−ϵ4N4 + ϵ2

dN2

dz

)
ϕtt + δ2ϕxxtt +N2(z)ϕxx = 0.

For the atmosphere described in CRT, δ = 0.016, ϵ2 = 0.082, and they consider the limits with both

vanishing. We still use ϵ vanishing, but in contrast we also take that δ = H̃/L̃ = 1, approximately on

the scale of a single thunderstorm. It will also be shown in Section 3, via rescaling of the frequency

and horizontal wavenumber that any nonzero δ can always be scaled to 1, i.e. our horizontal

wavenumbers can always be scaled to match the vertical wavenumbers. CRT describes the δ = 0

case, and we call the limiting case of δ → 0 the hydrostatic limit. Since the tropospheric B-V

frequency is used as our time scale, the stratospheric B-V frequency is denoted N2. We integrate

vertically and in time to compute the jump conditions at the tropopause, where it is assumed that

N2(z) has a jump discontinuity

(1.5) [ϕ] = 0, [ϕz] + ϵ2[N2(z)]ϕ = 0,

where [·] captures the difference across the two sides of the layer z = 1. This is equivalent to a

trivial jump condition, obtained by unpacking the definition of ϕ,

(1.6) [w] = 0, [wz] = 0.

In short, the scaling and limits produces in the following system of equations

ϕzztt + ϕxxtt + ϕxx = 0, 0 < z < 1,

ϕzztt + ϕxxtt +N2
2ϕxx = 0, z > 1,

[ϕ] = 0, [ϕz] = 0, at z = 1, and

ϕ = 0, at z = 0.(1.7)

1.3. Finding the modes

Our next objective is to find a condition which identifies tropospheric modes in (1.7). The

tropopause has been temporarily set to z = 0. The terms in our solution are defined with respect

to the troposphere, we have a incoming (I), reflected (R), and transmitted (T) terms. We assume

the same radiative condition as CRT that there is no incoming stratopsheric terms, producing the
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similar

ϕI = exp

(
ikx+ λt+

|k|
λ

√
1 + λ2z

)
,

ϕR = R exp

(
ikx+ λt− |k|

λ

√
1 + λ2z

)
, and

ϕT = T exp

(
ikx+ λt+

|k|
λ

√
N2

2 + λ2z

)
.(1.8)

Continuity ensures that k, λ will not differ across the tropopause. The vertical wavenumbers above

come from the dispersion relation

(1.9) λ2 =
N2k2

m2 − k2
,

with the signs matching the δ = 0 case covered by CRT. We note that while k is real, λ is complex,

which complicates our analysis. Since energy can leave the troposphere but not enter it, this implies

that the real part of λ ≤ 0, generally resulting in decaying modes. This allows us to define the

branch of the square root term sa(λ; δ) :=
√
a2 + δ2λ2 by setting s(0; δ) = s(λ; 0) = a, with branch

cuts going in a semi-circular arc between the branch points λ = ±ia via the positive real half plane.

This choice of branch allows for agreement with CRT in the hydrostatic limit. In a similar fashion

we implicitly defined above
√
λ2 = λ to get the vertical wavenumbers, with that branch cut on the

positive real axis. The jump conditions in this setup are

T = 1 +R

|k|
λ
TsN2(λ; δ) =

|k|
λ
s1(λ; δ)(1−R).(1.10)

By substituting the first into the second, we can simplify this in terms of the tropospheric terms

alone to obtain

(1.11) sN2(λ; δ)H(ϕx) = −ϕzt.

where H[eikx] = −isign(k)eikx is the Hilbert transform. The sN2(λ; δ) operator is new, but is to be

an extension of the Bochner-Riesz operator S [Stein and Murphy, 1993], where

(1.12) N2S[e
iωt] =

√
N2

2 − ω2eiωt
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from the real frequencies to the whole complex plane λ = µ + iω. Proper use of the Bochner-

Riesz operator on a function requires a Fourier inversion integral over all frequencies |ω| < N ,

which requires a full temporal knowledge of the modes, even before considering our extension. This

renders it incompatible with any attempt to solve an initial value problem.

While we are unable to set up, let alone solve, the differential equation as an initial value

problem, an examination of the modes produced by this boundary condition is still physically

illuminating. Returning to our original vertical coordinate, and using the rigid lid lower boundary

condition and the tropospheric differential equation, we find that the tropospheric terms ϕI , ϕR

sum up to

ϕ = sinh

(
kz

λ
s1(λ; δ)

)
exp(ikx+ λt),

which when substituted into (1.11) produces√
N2

2 + λ2 sinh

(
|k|
λ
s1(λ; δ)

)
+
√
1 + λ2 cosh

(
|k|
λ
s1(λ; δ)

)
= 0(1.13)

OR tanh

(
|k|
λ
s1(λ; δ)

)
= − s1(λ; δ)

sN2(λ; δ)
.(1.14)

The latter expression reduces to the condition found by CRT in the hydrostatic limit δ → 0. As

λ → 0, it also reduces to the CRT condition up to O(λ2), and as such both have an accumulation

point at λ = 0. Since (1.13) is analytic except at λ = 0,±i,±iN2 or along the branch cuts, there

will be only a finite number of zeros in any bounded domain that avoids these. Additionally, we

observe that we can define Λ = δλ, κ = δk for any nonzero δ, which allows for us to choose δ = 1

without loss of generality.

Solutions to Equation (1.13,1.14) in the complex plane were found numerically, with no differ-

ence between the two. The complex square root terms were defined such that the above branches

satisfy the same conditions as above. Additional runs of the numerical solver used different branch

cuts, none of which affected our numerical solutions. Further checks were made for λ purely real

and purely imaginary to ensure no solutions there were missed. Most of our solutions correspond to

the modes found by CRT. We also find a new mode barotropic mode that is analogous to a trivial

solution to the eigenvalue problem in the rigid lid non-hydrostatic problem.

Completeness. Even with the inability to produce a initial value problem, a natural question

to ask is if the modes we produce from (1.14) are complete, and that no additional modes our
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missed in our analysis. The rigid lid modes are also known to be a complete set of solutions. And

while CRT was able to prove that the hydrostatic leaky rigid lid modes were also complete, we are

not able to do so here. It is not possible to use the completeness of the modes in CRT to prove

completeness here by some argument of continuously transforming one problem to the other, since

relaxing hydrostatic balance is a singular perturbation to the problem. In spite of this, because the

modes in CRT are complete, and the additional nonhydrostatic motion can be accounted for in a

novel barotropic mode in addition to modifications to the modes found by CRT, we have reason to

expect that the solutions enumerated below are a complete set of solutions.

1.4. Features of the modes

The solutions of (1.14) constitute a discrete set of eigenfunctions and complex-valued eigenval-

ues, with decay rates and oscillation frequency given by the real and imaginary parts of λ = µ+ iω,

as well as their complex conjugate. As a second order problem in z for all k, λ, we know that the

solution space will have multiplicity of at most two. The rigid lid boundary condition then reduces

the multiplicity to at most one, with the upper boundary condition serving as arbiter of λ being

an eigenvalue or not.

Most of the solutions are the family of baroclinic modes, denoted by their eigenvalue λm for

integers m ≥ 1, which exhibits both decay and oscillation. There is also a barotropic mode with

a purely imaginary eigenvalue ω0 and a stratospheric-CRT mode with a purely real eigenvalue

µ− < 0. The indexing of the barotropic and baroclinic modes reflects the vertical structure of u

when decomposed as a Fourier series. The stratospheric-CRT mode generalizes the n = 0 mode

discussed in CRT Section 4 Part d, but is notated separately due to its unique structure, with the

− subscript used to reflect its real decay rate. All of these solutions are parameterized using real

k, since the horizontal extent of the domain is close to unbounded relative the length scale.

Beyond these caveats listed in part (a), the value of N2 does not affect the qualitative inter-

pretation of this section. As such, we restrict our attention to the case N2 = 2 unless otherwise

stated.

1.4.1. The rigid lid limit. To understand the characteristics of the leaky rigid lid, we begin

with what is known about the rigid lid in the nonhydrostatic case. When 1/N2 → 0, as assumed

in the rigid lid case, which amounts to setting the right hand side of (1.14) to 0. The solution to

8
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Figure 1.1. Comparison of the decay rates (top) and frequencies (bottom) of the
first baroclinic mode for hydrostatic and non-hydrostatic atmospheres over a range
of horizontal wavenumbers, N2 = 2. The eigenmodes do not decay in a rigid lid
atmosphere, and the choice of boundary condition does not impact the frequency
structure. In the limit of small horizontal wavenumbers, the frequency of the non-
hydrostatic solutions matches that of the hydrostatic solutions, as is evidenced from
the overlap in the frequency plots. The frequency and decay rates of the non-
hydrostatic theory deviate substantially from those of the hydrostatic theory at
high horizontal wavenumber, as the frequency and decay rate of the nonhydrostatic
baroclinic modes approach the barotropic mode as k → ∞.

this eigenvalue problem is equivalent to (1.9) for m ≥ 0. Relaxing hydrostatic balance introduces

the k2 term in the denominator, which has several consequences.

The first is that m = 0 now has a valid solution for all k. The reason no m = 0 mode is

observed in the rigid lid is due to the boundary condition. Our new boundary condition permits

such a solution, which is discussed in Part (c) of this section. When the rigid lid primitive equations

are solved using Fourier series in the vertical direction, m = 0 denotes the barotropic terms, and

we stick to this convention.

Additionally, the frequency of the m = 0 mode serves as a limiting frequency of the baroclinic

modes as |k| → ∞. As such the baroclinic modes are now dispersive, in contrast to the hydrostatic

case (see Figure 1.1). In our scaling, this frequency is N1/δ, where N1 is the tropospheric B-V

frequency. The novel feature of all of these is that this frequency is not only the short-wave limit

to the frequency terms of the leaky rigid modes, it also serves as a limit for the decay rates, which

is shown best in Figure 1.1.
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Figure 1.2. Decay rates for the various baroclinic modes as a function of horizontal
wavenumber, using N2 = 2. We observe that for each mode there is a transition from
a k1 power law in the hydrostatic limit to one of k−3 in the non-hydrostatic regime.
Although the maximum decay rate, and the zonal wavenumber at which that maxi-
mum is achieved depend on the vertical wavenumber, the low and high wavenumber
power law behavior of the decay rate as a function of horizontal wavenumber is in-
dependent of vertical wavenumber. Below we show how the decay rates for different
vertical wavenumbers can be collapsed onto one function.

1.4.2. The baroclinic modes. Relaxing the rigid lid and hydrostatic assumptions for gravity

waves primarily characterize the behavior of the frequency and decay rates of the baroclinic modes

as a function of wavenumber.

The behavior of the frequency of the baroclinic modes, ωm, is primarily due to whether or not the

atmosphere is hydrostatic. For the hydrostatic case, the frequency of each mode is independent of

the boundary condition, seen in CRT, ER and [Lin and Emanuel, 2022]. In the non-hydrostatic

case, the boundary condition does affect the frequency, but only weakly. The effect is so insignificant

that the rigid lid frequency was reliably used as an initial guess in the root-finding algorithm to

find all of the λm. Consequently, the phase and group velocity are essentially unchanged by the

boundary condition. These quantities were computed in the longwave for the leaky nonhydrostatic

problem, as shown in Table 1.1, and we see general agreement with rigid lid computations and

CRT.

However, the decay rates of the baroclinic modes, µm, are more complicated than the frequen-

cies. When the rigid lid boundary condition is relaxed, it changes the structure of the problem in

such a way that λ is no longer strictly imaginary, but its real component is non-positive, allowing

for decaying modes. This was a major result of CRT, who found that for the hydrostatic leaky lid

10



Table 1.1. Properties of the baroclinic modes, by their index, with N2 = 2. First
row: Maximal decay rates seen in Figure 1.2. Second row: the horizontal wavenum-
ber which corresponds to the maximum in the first row, which is in units relative
to H̃−1. Third row: Decay rates at the length scales used by CRT, and showing
approximate agreement with (20) therein. Fourth row: Horizontal phase velocity in
the k → 0 limit, as seen in the frequency plot of Figure 1.1, which is in agreement
with CRT.

Baroclinic Mode m = 1 m = 2 m = 3 m = 4
Max Decay Time (hr) 0.48 0.97 1.45 1.96
Wavenumber of Max 1.74 3.56 5.74 7.28

CRT Decay Time (days) 1.5 5.1 11.1 19.5
Phase Velocity (m s−1) 49.4 25.3 17.0 12.7

atmosphere, the relation between decay rate and horizontal wavenumber was linear, µm ∝ −|k|/m2,

much like the frequency of the same modes. The nonhydrostatic problem agrees with the hydro-

static in the longwave limit, see Table 1.1 and Figure 1.1 for a comparison. Again however, the

eigenvalue of the barotropic mode serves as a limit for the eigenvalue of the baroclinic modes. Since

the barotropic mode is purely oscillatory, what is thus observed is a non-monotonic relation be-

tween the decay rate and the horizontal wavenumber (Figure 1.1). We find that the maximal decay

rates for the gravest baroclinic modes are on time scales appropriate for thunderstorms [Rudlosky

and Fuelberg, 2013], suggesting that this may be a mechanism contributing to their dissipation.

Amidst this, there is a similarity structure that is discussed in Part (e) of this section that helps

characterize this behavior.

The complex nature of λ also has consequences on the vertical structure of the modes (Figure

1.3). When the functions are scaled such that the real component vanishes at the tropopause,

the real and imaginary components of the eigenfunction can be understood as the rigid and leaky

components respectively. The rigid component approximates the structure of the corresponding

rigid lid mode. The leaky component on the other hand oscillates and grows with until it reaches

the tropopause. The rigid component has a notably larger amplitude than the leaky component,

even when compared to the ratios of the hydrostatic case, which also agrees with Figure 5 of [Lin

and Emanuel, 2022].

1.4.3. The barotropic mode. The barotropic mode corresponds to the m = 0 case of the

nonhydrostatic rigid lid problem, having frequency ω0 = 1 from our chosen values of N1, δ. If we

11
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the dashed line indicates the leaky component. The mode is scaled such that the
leaky component takes a unit value at the tropopause (z = 1).

consider solutions of the form ϕ(z)eikx+it, the tropospheric equations reduce to

ϕzz = 0, 0 < z < 1,

ϕ = 0, z = 0.(1.15)

The vertical structure is a linear profile, which would has a trivial solution when paired with rigid

lid boundary conditions. In addition to the aforementioned reasons for calling it barotropic, a

linear profile of ϕ corresponds to a uniform vertical structure of horizontal winds. The value λ0 is

the solution resulting from the singular perturbation of relaxing hydrostatic balance, however the

existence of a non-trivial mode also requires appropriate boundary conditions, which the rigid lid

does not satisfy.

1.4.4. The stratospheric-CRT mode. This mode is notable in that λ is real and negative,

and consequently does not have a rigid lid counterpart. This was a novel result in CRT, who label

it n = 0. Due to the aforementioned indexing conflict, we instead refer it as the stratospheric-CRT

mode, since it is mostly nonzero near the tropopause as k → ∞. It shares many of the same

properties such as the nonoscillatory vertical structure, and vanishing as N2 → 1.

The decay rate of this mode is significantly stronger than that of the corresponding set of

generic modes, which is described by CRT as a ”fast adjustment”. CRT is able to compute this

analytically by µ− = −|k| tanh−1(1/N2), but to find it numerically, we begin with the empirical
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estimate µ− ∼ −e|k| tanh−1(1/N2). This indicates that as we investigate smaller scales, it decays

significantly faster than any other process, especially with the baroclinic decay rates becoming

weakened by loss of hydrostatic balance and the introduction of the barotropic mode. Since it is so

fast, it imposes a constraint on the time step for a numerical simulation of gravity waves in a similar

fashion as acoustic waves. However unlike acoustic waves, it is unknown if they carry significant

amounts of kinetic energy to dissipate. This and our statements regarding the non-monotonic decay

rates of the baroclinic modes do not conflict with the decay rates computed by CRT since they

agree in the limit k → 0 as expected.

1.4.5. Similar decay characterization in the baroclinic modes. However, when we com-

pare one baroclinic mode to the other, we have the option to instead define the characteristic height

and length in terms of the wave numbers. Doing so implies the existence of a similarity in the decay

rates across the baroclinic modes. As such, we find the decay rates follow a profile

(1.16) µ(k,m;N2) =
−1

πm
f

(
|k|
πm

;N2

)
.

The example of function f(θ;N2 = 2) is plotted in Figure 1.4, in terms of the angle of the

wavenumber vector from the horizontal (or the angle of the wave front from the vertical), θ =

cot−1(|k|/(πm)). Testing for various N2 values from 1 to 10, we find that the qualitative behavior

of f does not vary significantly, and that the similarity remains robust up to the vanishing lid limit

N2 → 1. The m−1 leading factor corresponds to the fact that waves of smaller vertical length have

to travel proportionally farther before encountering the tropopause. We note agreement with the

approximation µ ∼ −|k|/N2(πm)2 used in (15) of CRT for the hydrostatic decay rates in the long

wave limit.

A consequence of this scaling is that the time dependence of a wave can be characterized

primarily by its angle from the horizontal and the 1/(πm) factor. For small values of |k|/(πm), the

waves travel upward, radiating through the tropopause, and decaying like the hydrostatic modes

computed by CRT. For large values of |k|/(πm), the waves travel nearly horizontally, and behave

much like the barotropic mode in being in that they decay slowly in time and have a velocity field

which is nearly horizontal in time. Based on the similarity profile shown in Figure 1.4, for a fixed

vertical wavenumber, the decay is maximal a approximately a 60◦ angle from the horizontal.
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Figure 1.4. Similar solutions for the decay rates across several baroclinic modes,
for m = 1...5. This examines the structure in terms of the angle of the wavenumber
vector from the horizontal, with the maximum decay occurring at about 60◦. This
matches the asymptotic power laws in Figure 1.2, keeping in mind that the angle
close to π/2 corresponds with the longwave limit.

This analysis provides a geometric framework for tropospheric wave dissipation in terms of

hydrostatic adjustment on air columns across the tropopause. When the wave travels close to

vertically, the perturbation mostly remains in the same air column, and so most of the necessary

energy to restore hydrostatic balance remains within the column. As such energy dissipates slowly,

and a vertically traveling wave (k = 0) would in theory never dissipate. However, a wave traveling

at an angle arrives at the tropopause away from its original air column, and energy is spent trying

to reestablish hydrostatic balance to both columns. This is also a feature of the low wavenumber

regime of CRT.

However, as the wavefront travels closer to horizontally, energy crosses the tropopause more

slowly, so the dissipation slows down. It is important to note that this does not take into account

other dissipative mechanisms such as the effects of surface friction, which [Lin and Emanuel,

2022] determine is additive with stratospheric damping, with the note that they assume hydrostatic

balance on the equatorial scale.

1.5. Approximate decay operator

While the similarity profile does not have a closed form, we can use the limiting asymptotics in

|k| to get an estimate of µ. In the longwave limit, it grows as O(|k|) like the hydrostatic problem. In

the high wavenumber limit, the decay rate shrinks like O(|k|−3), as observed in Figure 1.2. Based
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on these asymptotics and the similarity assumption, we can fit the decary rate to the curve

(1.17) µ =
−b|k|π2m2

(π2m2 + a2k2)2

where a, b are coefficients that control the asymptotics in the large and small |k| regimes respectively.

An empirical fit determines that a2 = 0.96, b = 0.54 estimates λ forN2 = 2, with at most 2% relative

error across all k.

This analytic form also allows us to express the damping in the rigid lid approximation not as

a boundary condition, but as an operator on the interior attached to the time derivatives. To do

so, we invert the Fourier transform of (1.17), and arrive at the linear operator,

(1.18) D = b∂zzH[∂x](−∆a)
−2,

where H is the Hilbert transform, and the inverse of the anisotropic Laplacian is ∆a = ∂zz +a
2∂xx.

Since our measured a2 is close to 1, the possibility emerges of using the isotropic Laplacian ∆1, at

the expense of an increase in maximum relative error to 6%.

We compute this operator in order to contrast it with other damping operators, such as linear

damping and (hyper-)viscosity. As a damping term, we include it in the original equations as

follows,

ρ0ut + px = Dρ0u,

ρ0wt + pz + gρ = Dρ0w,

ρt + ρ0zw = Dρ, and

ux + wz = 0.(1.19)

We believe that this approximation might provide a model for the gravity wave decay of the

baroclinic modes in rigid lid simulations using Fourier spectral methods. The damping operator

in Equation (1.17) could be used while computing the operators in Fourier space with rigid lid

boundary conditions. Since D is a differential operator, formal considerations of its use would

require additional analysis of the equations, as would be required if one were to use a tradional

Stokes, or hyper-diffusive damping term. Furthermore, given that an initial value problem cannot
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be fully posed with our boundary condition, this may be the closest way to approximate gravity

wave drag.

1.6. Conclusions

The leaky rigid lid boundary condition was introduced by [Chumakova et al., 2013] to

resolve the question of whether tropospheric dynamics could be usefully modelled with a vertically

finite atmosphere. They concluded that it can be. We extend this framework by considering what

happens in a two-layer, infinite, nonhydrostatic atmosphere, to better understand the behavior of

these waves at small horizontal scales. The vertical structure of these waves suggest that the waves

do exist in an infinite atmosphere, but they are trapped near the tropopause, thereby yielding

a discrete spectrum of modes. The question of how to define a boundary condition to solve the

problem exclusively in the troposphere remains.

In addition to the discrete family of baroclinic modes common to the rigid lid problem, plus

the stratospheric-CRT mode, relaxing the hydrostatic approximation introduces a new barotropic

mode that is compatible with the jump conditions at the tropopause. The frequency of this mode

serves as a limit to the decay rate and frequency of the baroclinic modes in the limit of large

horizontal wavenumber. As a result, the decay becomes a nonlinear function in |k|, the horizontal

wavenumber differing from the hydrostatic atmosphere.

The behavior of the barcolinic modes is primarily characterized by the angle of elevation of

the wave front. That the decay rate is a function of the angle of the wavefront could be useful in

providing a geometric explanation to various observed phenomena. We found that the maximum

decay rates corresponded to a front moving at an angle of about 60◦ from the horizontal.

Using the limiting asymptotics of the decay rate curve and the angular properties, an estimate

for the decay rates was derived in general agreement with the actual decay. A linear operator was

then found that can produce the decay for the baroclinic modes, even in a rigid lid system. The

non-hydrostatic leaky rigid lid theory provides a model to study the dynamics of gravity waves

while incorporating the effects of stratospheric wave radiation.
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CHAPTER 2

Unidirectional Dispersive Waves

2.1. Introduction

The simplest way to account for the behavior of a family of waves is to consider its linear

dispersion relation F (ω, k) = 0 for wavenumber k and frequency ω, often expressed as a set of

functions ωi(k). A dispersive wave is a wave with non-constant group velocity dω
dk . A unidirectional

wave is a one-dimensional wave whose phase velocity ω
k is the same sign across all wave numbers.

Among these unidirectional waves, we consider the subset where limk→0 ω(k)sgn(k) = ω0 ̸= 0,

which we call a frequency jump. In this paper we study two examples of nonlinear interactions

of dispersive, unidirectional waves with a frequency jump via multiscale asymptotics in the low

wavenumber limit.

A number of previous works apply similar asymptotic analyses on similar but distinct prob-

lems. J.P. Boyd used this to describe the nonlinear behavior of equatorial waves, starting with

the dispersionless, unidirectional Kelvin wave [Boyd, 1980b], before moving on to the weakly

dispersive unidirectional equatorial Rossby waves [Boyd, 1980a], which lack the strong dispersion

studied herein, and the frequency jump. Boyd then completed his study of the equatorial waves

by considering the strongly dispersive waves with potential for a frequency jump [Boyd, 1983a],

but distinguished the waves by the sign of their frequencies, and not their phase velocities. Further

description of Boyd’s work begins section 3. A similar approach is used in studying the Sine-Gordon

equation as seen in [Rosales, 2003]. Finally, [Biello and Hunter, 2010] studies the behavior

of a unidirectional wave with frequency jump, lacking dispersion. One interesting property of the

equatorial waves is that there is an asymmetry between eastward and westward waves, and so dis-

tinguishing the two may be important. As such, we apply the techniques of [Biello and Hunter,

2010] to the strongly dispersive waves of [Boyd, 1983a], in particular, we examine the results on

the Yanai waves. To understand these techniques in a simpler light, we also apply this analysis to

the Sine-Gordon equation.
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Following in the wake of these previous analyses, we use a weakly nonlinear expansion, which

at first order linearizes the system, resulting in a linear dispersion relation in the low wavenumber

regime. One of the consequences of operating in the low wavenumber regime is that spatial deriva-

tives are of higher order in the expansion. At the higher orders, nonlinear terms act as a signed

sum of frequencies and wavenumbers of the various waves, which resonate if this signed sum simul-

taneously matches the linear dispersion relation in both frequency and wavenumber. To resolve

any resonance, a long time scale is introduced which produces a long time solvability condition for

the wave packet. To properly handle the unidirectional aspect, a Hilbert transform in space is used

to distinguish the waves going in the different directions.

We consider two examples in this paper. First, we look at the Sine-Gordon equation from

particle physics, to demonstrate the essence of the method. Second, we consider the Yanai wave

from equatorial dynamics, whose longwave components are a prominent feature in the observational

record despite an observed asymmetry in the zonal phase velocity. In both cases, we find the

asymptotics are dictated by an equation that is essentially the Nonlinear Schrodinger equation.

2.2. Sine-Gordon

One example of a dispersive nonlinear equation is the Sine-Gordon equation, whose weakly

nonlinear expansion is well understood to characterize breather solutions [Rosales, 2003]. To

focus upon the unidirectional problem, we consider the simplest nonlinearity from the Sine-Gordon

equation,

(2.1) uTT − uXX + sin(u) = 0.

We decouple the time scales to t = T, τ = 1
2ϵ

2T, which yields the derivative ∂TT = ∂tt + ϵ2∂tτ +

1
4ϵ

4∂ττ . We also work in the single long variable x = ϵX. Like the other problems previously

considered, we use the weakly nonlinear expansion u = ϵu1+ ϵ2u2+ ϵ3u3+O(ϵ4). At O(ϵ) through

O(ϵ3), we have

u1tt + u1 = 0(2.2a)

u3tt + u3 = −u1tτ + u1xx +
1

6
u31.(2.2b)
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The O(ϵ) equation is often decomposed as (∂t + i)(∂t − i)u1 = 0, which has a solution of the form

u1 = f(x, τ)e−it + g(x, τ)e+it, which are the positive and negative frequency solutions respectively.

However we could also factor this by using the Hilbert transform in spatial variable. The Hilbert

Transform H : L2(R) → L2(R) is defined here by

(2.3) H[eikx] = −isgn(k)eikx.

Note that it satisfies H ◦ H = −Id (the identity operator) on L2(R). Any automorphism which

satisfies that identity can be used to build a linear complex structure, enabling the use of many of the

properties of complex variables. We use algebraic closure to refactor the equation as (∂tt + 1)u1 =

(∂t +H)(∂t −H)u1 = (∂t − H)(∂t +H)u1 = 0, which we can split to the linear Hilbert equation.

The generic solution to this problem is u = etHf(x, τ) + e−tHg(x, τ), now denoting the terms with

positive and negative phase velocity respectively. The time evolution operator can be expanded as

(2.4) etHf = (cos(t) + sin(t)H)f(x, τ)

via Euler’s identity applied to the Hilbert transform. To investigate the effect of unidirectionality

we consider g(x, τ) = 0, or ut = H[u]. Euler’s identity also gives a way to account for phase shifts

in the wave without the explicit use of complex numbers, which significantly simplifies the analysis.

In effect this changes the system into

(∂t −H)(2H[u1]) = 0(2.5a)

(∂t −H)(2H[u3]) = −H[u1]τ + u1xx +
1

6
u31.(2.5b)

To be asymptotically consistent, the right hand side must satisfy the Fredholm alternative for this

problem, which here states the equation

(2.6) ut −H[u] = eαtHB(x)

has the particular solution eαtHA, where A = H[B]
1−α . This produces an acceptable solution for α ̸= 1,

and requires the condition B = 0 if α = 1 (Proposition 4.1, [Biello and Hunter, 2010]). This

condition becomes our solvability requirement at O(ϵ3) in both cases. At O(ϵ2) we note that the

homogeneous solution can be arbitrarily absorbed into the O(ϵ) solution. No particular solution is
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needed at this order, but would be necessary if we had a quadratic nonlinearity, to be seen in the

atmospheric example, but eschewed here for clarity. At O(ϵ3) we expand the nonlinear contribution

to find its resonant terms

(2.7) u31 =
3

4
(f2 + (Hf)2)etHf + e3tH

(
1

3
f3 − fH[f ]2

)
and apply the solvability condition from (2.6) to the resonant terms of (2.5c) to obtain the long

time evolution equation

(2.8) −H[f ]τ + fxx +
1

8
(f2 +H[f ]2)f = 0.

While this appears to be novel, this is similar to the Nonlinear Schrodinger (NLS) equation,

(2.9) ifτ + fxx +
1

8
|f |2f = 0.

Both of these equations operate over a linear complex structure, but with different automorphisms,

H and i respectively. These automorphisms both act on the fτ terms directly, and the f2 +H[f2]

captures the modulus of the function when presented as f + iHf , which is analogous to |f |2.

One feature that significantly streamlines this problem is the cubic nonlinearity, where the

interactions of the wave with itself can produce a response at the same frequency (i.e. ±1±1±1 =

±1,±3). By contrast, the Burgers-Hilbert equation and the equatorial waves have a quadratic

nonlinearity, which does not produce a response at the same frequency (i.e. ±1 ± 1 = 0,±2), so

resonance may arise on if the quadratic response interacts with the linear wave (e.g. u1u2).

2.3. Equatorial Waves

Convectively coupled equatorial waves play an important role in the control of tropical pre-

cipitation. The horizontal properties and dispersion of these waves are first unified in [Matsuno,

1966] from the linear theory of the equatorial shallow water equations. These solutions describe

a family of discrete waves with a meridional index m, named the Kelvin (m = −1), equatorial

Rossby (m ≥ 1), mixed Rossby-gravity (MRG)(m = 0), and east/west inertio-gravity (EIG/WIG)

(m ≥ 0/m ≥ 1) waves in a unified manner over the equatorial β plane.A review of the importance

of these waves can be found in [Kiladis et al., 2009].
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One major development of the theory was to incorporate the effects of nonlinear advection of

the shallow water equations via multiscale asymptotics. This was done by Boyd in the early 1980’s

using the weakly nonlinear expansion. One of the main distinctions that is made for the asymptotics

is the dispersion of the linear wave, which determine both the long time scale in terms of ϵ(the

amplitude of the linear wave) and the equation that describes it. Boyd’s study of equatorial waves

using these techniques starts in [Boyd, 1980b], which describes the nonlinear Kelvin wave, which

operates on a time scale τ = ϵt. The solvability condition is the inviscid Burgers’ equation where

the advection dominates dispersion (since there is none). For long Rossby waves, [Boyd, 1980a]

computes that the solvability condition is the (modified) Korteweg-deVries ((M)KdV) equation for

τ = ϵ3/2(ϵ3) for odd (even) meridional index, which the weak dispersion of the wave balances the

advection. In [Boyd, 1983a], all other waves have strong dispersion that dominates the advection,

and are described using a NLS equation on a time scale τ = ϵ2.

Boyd’s program saw a few additional developments over the years. Most of the strongly dis-

persive waves are described using the NLS model from [Boyd, 1983a] that capture four wave

resonances, but there are some three wave resonances in the long wave and second harmonic in-

teractions that are fleshed out in [Boyd, 1983b,Boyd, 1983c]. In [Majda et al., 1999], the

long Kelvin waves are coupled to other large scale equatorial waves via topographic resonance in

an effort to mitigate the breaking inherent to the inviscid Burgers’ equation. In [Majda and

Biello, 2003,Biello and Majda, 2004], a multilayer model is used to investigate the resonant

interaction between the baroclinic and barotropic Rossby waves, which has significant implications

on the study of teleconnections between the tropics and midlatitudes.

This theory assumed a wave packet centered about some fixed zonal wavenumber k = k0. The

group velocity dω
dk , is computed using the dispersion relation of the wave, which has nondimensional

form

(2.10) ω2 − k2 − k

ω
= 2m+ 1

Since the dispersion is characterized a relation and not a function, there is the possibility of multiple

frequencies operating at the same zonal and meridional numbers. For most k this is not an inherent

problem, since the dispersion relations for the Matsuno modes are discrete, disconnected branches

where the frequency and phase speed change continuously. The exception to this at k = 0, where
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the phase speed diverges for many of the waves. There are two possibilities to describe the wave over

the positive and negative wavenumbers: to keep the sign of the frequency the same, or to change the

sign of the frequency, but keep the phase velocity in the same direction. This choice of description is

examined in Figure 2.1, where we can either consider the waves as distinguished by their frequency

or phase velocity. In his paper, Boyd implicitly makes the choice to keep the frequency continuous.

In contrast, we make the latter choice, which is the distinction that is generally used to distinguish

the waves [Kiladis et al., 2009]. This will allow us to consider one wave, for example the EIG0

wave, without having to consider its counterpart, in this case the MRG wave. Furthermore, in

making the latter choice, the waves will satisfy the condition ω(−k) = −ω(k), which ensures they

will be real-valued.

Here we investigate the consequences of choosing unidirectional waves, specifically for merid-

ional index 0, corresponding to the MRG and EIG0 waves, collectively called the Yanai wave.

This wave has been observed to have strong OLR (outgoing longwave radiation) signal in the low

zonal wavenumber limit (see Figure 2.2). Our analysis was done in an effort to determine if the

long-time evolution equation would produce a soliton that woud cause this signal to appear. A

multiscale analysis of another unidirectional wave in the same limit was done previously [Biello

and Hunter, 2010] on the Burgers’-Hilbert equation, which capture the solvability condition as

a cubic nonlinear equation. One major distinction to be made is that the linear Burgers’-Hilbert

equation is nondispersive, but the Yanai wave is.
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(a) (b)

Figure 2.1. The dispersion relations of the simplest equatorial waves (meridional
index m ≤ 1), with the m = 0 waves distinguished in two different ways. (a) has

them split by sign of the frequency, which will have solutions of the form e±iω(k)t,
whereas (b) has them split by sign phase velocity, which will have solutions of the

form e±isgnkω(k)t. Colored in (b) are the MRG (orange) and the EIG m = 0 (blue)
waves.

Figure 2.2. OLR observations of he Matsuno modes plus the Madden Julian Os-
cillation. We observe in b), a strong signal at zonal wavenumber 0 in the Yanai
frequency band. It is this signal that we attempt to understand via this analysis.
(Used with permission from [Kiladis et al., 2009]).

2.3.1. Derivation of the Long Time Behavior. Our derivation begins with the nonlinear

equatorial shallow water equations

ut − yv + px = −uux − vuy,(2.11a)

vt + yu+ py = −uvx − vvy,(2.11b)

pt + ux + vy = −(up)x − (vp)y,(2.11c)
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Where x, y are the zonal and meridional coordinate and u, v are their respective velocities. p

is scaled to the depth of the fluid layer H. Velocities are scaled to the dry gravity wave speed

c =
√
gH, where g gravitational constant. The horizontal lengths are scaled by the equatorial

deformation radius
√
c/β, where β is the meridional gradient of the Coriolis force at the equator.

This generates the time scale
√
cβ.

The high-frequency equatorial long waves all have a nonzero group velocity, which is resolved by

working in a coordinate moving in the zonal direction, which has the following defining properties

θ = x− cgt, ∂x = ∂θ, ∂t = ∂t − cg∂θ.

For our analysis of the MRG and EIG0 waves, we cancel out the longwave group velocity by using

cg = dω
dk |k=0 =

1
2 , which is computed via (2.10). As stated from the outset, we consider the analysis

for weakly nonlinear waves, i.e. solutions will take the form ψ = (uϵ, vϵ, pϵ) where

f ϵ = ϵf1 + ϵ2f2 + ϵ3f3 +O(ϵ4)

We work in a strictly long wave expansion ∂θ = O(ϵ), which differs from the long wave expansions of

the low frequency equatorial waves where ∂t and |v| are also O(ϵ), though this comes into play when

we analyze the low frequency responses to the nonlinear interactions. We also define τ = ϵ2t as the

long time scale, which is the appropriate scale for the strongly dispersive waves found in [Boyd,

1983a].

2.3.2. Linear Response. We start again our expansion at O(ϵ), denoted Lψ1 = 0.

u1t − yv1 = 0(2.12a)

v1t + yu1 + p1y = 0(2.12b)

p1t + v1y = 0(2.12c)

We use the Yanai wave solution, which takes the form u1 = p1 = Q(θ, t, τ)yG(y), v1 = V (θ, t, τ)G(y),

where G(y) = e−y2/2, to get the reduced system

Qt − V = 0

Vt +Q = 0,
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which may also be expressed in the single equation Qtt + 1 = 0. Implicitly in [Boyd, 1983a] this

equation is factored as (∂t + i)(∂t − i)Q = 0 to produce solutions of eit, e−it, which splits the waves

into positive and negative frequencies. However, we decompose by the sign of phase velocity via a

Hilbert transform in θ, as previously done. This produces two solutions corresponding to the MRG

and EIG0, denoted M(θ, t, τ) and E(θ, t, τ) respectively. The full solution to this problem is

(2.13)


u1

v1

p1

 =


ũ

0

p̃

+


(E +M)yG(y)

(H[E]−H[M ])G(y)

(E +M)yG(y)


Where yũ + p̃y = 0 denotes the stationary geostrophic solution, which we neglect since that is

not part of the Yanai wave. When [Boyd, 1983a] derived the NLS equation, he examined both

waves operating at the same frequency. We now can isolate either the MRG or EIG0 waves and

investigate their long time asymptotics independently. To avoid the complications of handling the

Hilbert transform on all positive and negative zonal wavenumbers, we only analyze what happens

for positive zonal wavenumbers and then solve for the negative zonal wavenumbers via symmetry.

For the MRG wave, we define

(2.14) M(θ, t, τ) = F (θ, τ)eit + F ∗(θ, τ)e−it

where F (θ, τ) =
∫∞
0 F̂ (k, τ)eikθdk. We compute

(2.15) −H[M ] = iF (θ, τ)eit − iF ∗(θ, τ)e−it.

For the EIG0 wave, we in a similar manner define

E(θ, t, τ) = D(θ, τ)e−it +D∗(θ, τ)eit,(2.16)

H[E] = −iD(θ, τ)e−it + iD∗(θ, τ)eit.(2.17)

where D(θ, τ) =
∫∞
0 D̂(k, τ)eikθdk.We consider the longwave limit of the MRG wave alone, analysis

for the EIG0 wave can be achieved at any stage by the substitution F → D∗
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2.3.3. Non-Linear Interactions. At O(ϵ2),

Lψ2 =


−v1u1y + 1

2u1θ − p1θ

−v1v1y + 1
2v1θ

−(v1p1)y +
1
2p1θ − u1θ

(2.18a)

There are three main classes of response: the fundamental mode at frequency 1, the stationary

mode at frequency 0, and the second harmonic at frequency 2. Variables will be denoted ψk
n, where

k indicates the frequency, and n denotes the order of ϵn. An important feature to note is that time

derivatives at each frequency will be captured via the operator −kH since we consider waves of the

form e−ktHψk
n. The computation of the nonlinearities at second and third order marks the largest

difference between this problem and the Sine-Gordon example, especially since we are here entirely

concerned with quadratic nonlinearities, in contrast to the cubic nonlinearity of Sine-Gordon.

2.3.3.1. Behavior of the Fundamental Frequency Mode. We consider the response at second

order at the fundamental frequency, which is described by the system

−H[u12]− yv12 = −1

2
∂θM(yG(y))(2.19a)

−H[v12] + yu12 + p12y = −1

2
∂θH[M ](G(y))(2.19b)

−H[p12] + v12y = −1

2
∂θM(yG(y))(2.19c)

The solution to which is

(2.20) u12 = p12 = −∂θH[M ](
1

2
yG(y)), v12 = 0

in agreement with Boyd’s work. We define F i(y) denote the O(ϵ2) meridional profile of field F at

frequency i (e.g. U1(y) = P 1(y) = 1
2yG(y)).

2.3.3.2. Behavior of the Stationary Mode. In the low frequency regime, we see the nonlinear

interaction between the MRG and EIG0. Projecting the stationary terms onto the system we get,

−yv02 = 0,(2.21a)

yu02 + p02y = F2,(2.21b)

v02y = 0,(2.21c)
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where F2 is the meridional stationary forcing that disrupts geostrophic balance, and this leads

to a ill-posed problem in the standard scaling. We resolve this by using the long wave scaling,

which balances ṽ3 (denoted differently to reflect that it comes from a lower order) against the zonal

derivatives of u, p and the forcing of the same equations to produce the system

−1

2
u02 − yṽ03 + p02 = A(2.22a)

yu02 + p02y = B(2.22b)

−1

2
p02 + ṽ03y + u02 = C.(2.22c)

The forcing terms are defined as follows, some of which are expressed by their zontal derivative as

part of the scaling process

Aθ = −u1u1θ − v12u1y − v1u
1
2y = −|F |2θ

[
1

2
y2 +

1

2

]
G(y)2(2.23a)

B = −v1v1y = |F |2[2y]G(y)2(2.23b)

Cθ = −(u1p1)θ − (v12p1)y − (v1p
1
2)y = −|F |2θ

[
y2 +

1

2

]
G(y)2.(2.23c)

This will have a solution at O(ϵ) of the form

(2.24)


u02

v02

p02

 = (|F |2)(θ, τ)


U0(y)G(y)

0

P 0(y)G(y)

 .

To arrive at this solution, we define variables S = u02 + p02, D = u02 − p02. We then decompose

everything in terms of Hermite functions an orthonormal basis {ϕm} of L2(R) (see Appendix A for

further details). We thus can decompose F (y) =
∑

m fmϕm(y) via the projection fm =
∫
R Fϕmdy.

This produces a single equation 1
2S0 = (F1)0 + (F3)0 and a sequence of triples

(2.25)


1/2 −

√
2(m+ 1) 0√

(m+ 1)/2 0
√
m/2

0 −
√
2m −3/2



Sm+1

ṽm

Dm−1

 =


Am+1 + Cm+1

Bm

Am−1 − Cm−1


The full details of this method are discussed in (3.22) - (3.30) of [Boyd, 1983a], though the

projections were done via MATLAB. The solutions to this construct u02, p
0
2 via S,D.
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2.3.3.3. Behavior of the Second Harmonic. We consider now the second harmonic response that

happens at frequency ±2. The system at frequency 2 is described (∂t = −2H) by

−2Hu22 − yv22 = iF 2e2it[y2 − 1]G(y)2(2.26a)

−2Hv22 + yu22 + p22y = −F 2e2it[y]G(y)2(2.26b)

−2Hp22 + v22y = iF 2e2it[2y2 − 1]G(y)2(2.26c)

We begin by applying H to the zonal and pressure equations, which will have everything in phase,

producing a system

2u22 − yHv22 = F 2e2it[y2 − 1]G(y)2(2.27a)

−2Hv22 + yu22 + p22y = −F 2e2it[y]G(y)2(2.27b)

2p22 +H[v22y] = F 2e2it[2y2 − 1]G(y)2(2.27c)

Solutions take the form after undoing the Hilbert transform on v22

(2.28)


u22

v22

p22

 = F 2(θ, τ)


U2(y)G(y)

iV 2(y)G(y)

P 2(y)G(y)

 e2it + c.c.

Where U2, V 2, P 2 can be solved by a similar method as the stationary response. The first equation

is 2S0 = (F1)0 + (F3)0, and the triplet of equations are now

(2.29)


2 −

√
2(m+ 1) 0√

(m+ 1)/2 −2
√
m/2

0 −
√
2m 2



Sm+1

vm

Dm+1

 =


Am+1 + Cm+1

Bm

Am−1 − Cm−1


All of the same caveats applied in this solution method.
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2.3.4. Solvability Condition. Here we see the full effects of resonance, and so we generate

the solvability condition for the following

(2.30) Lψ3 =


Ru

Rv

Rp

 =


−u1τ − u1u1θ −v1u2y − v2u1y +1

2u2θ − p2θ

−v1τ − u1v1θ −(v1v2)y +1
2v2θ

−p1τ − (u1p1)θ −(v1p2)y − (v2p1)y +1
2p2θ − u2θ


We know that is must satisfy the solvability condition

(2.31) lim
T→∞

1

T

∫ T

0

∫
R
[u1Ru + v1Rv + p1Rp] dy dt = 0.

We note that that u1f1θ terms are off frequency, so we need not worry about them. I also note that

specifically for the Yanai wave u1 = p1 meridionally so
∫
R u1v2u1y+p1(v2p1)ydy = 0 via integration

by parts, so these terms should also be zero. The solvability condition from this problem is the

NLS equation

(2.32) iFτ +
1

2
ω′′Fθθ + ν|F |2F = 0,

where ω′′ = −1
4 , in agreement with Boyd, and ν ≈ 0.3666. We note that this may have also been

attempted using the Hilbert transform directly as was done in Sine-Gordon, but the methods are

equivalent.

We note that our ν differs with that Boyd finds (ν ≈ 0.03) with both waves present. Fun-

damentally however, the sign of the two coefficients are of opposite sign, so no solitons can form,

in agreement with Boyd. Therefore we can say that this does not provide an explanation for the

noted peak in the long Yanai wave. This result, while describing the MRG wave, also applies to

the EIG0 wave via the aforementioned substitution F → D∗.

2.4. Conclusion and Future Directions

We have considered the long time asymptotics of a pair of unidirectional dispersive problems.

In both of these cases, the dispersion presents itself in the asymptotics in some version of the

Nonlinear Schrodinger equation. This coincidence is not particularly surprising when we reconsider

the equation at the heart of our analysis

(2.33) utt + u = 0.
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This equation has three solutions bases, whose differences come down to the types of data to dictate

the initial conditions. The first is sin(t)/ cos(t), which best describes pointwise initial positions and

derivatives. Next is eit, e−it, which naturally separates data by the sign of their frequency. The

new pair etH, e−tH, which separates data by the sign of phase velocity. However, these are all

interchangeable via the linear complex structure given by i and H[], and the use of Euler’s identity

consequent of that structure. With this common structure, given the resonance present in both

sinusoidal and complex exponential solutions, it should be of little surprise that the same resonances

arise in the new basis.

Of pure mathematical interest, questions remain about the regularity of the solutions to the as-

ymptotic equations. The Hilbert transform is a singular integral, and is unbounded on L1(R), L∞(R).

The products in the nonlinearities would also not necessarily preserve the regularity of the factors.

For practical interests, in the periodic domain used in equatorial waves, any bounded solution will

be in L2, a space in which the Hilbert transform defined via the Fourier series is bounded.

This is not to say that the Hilbert transform cannot be used to create resonance dictated by

a fundamentally new asymptotic equation. When Boyd conducted his research, he found that

nondispersive, weakly dispersive, and strongly dispersive waves’ asymptotics were described by

the Burgers’, (M)KdV, and NLS equations respectively. For unidirectional waves, [Biello and

Hunter, 2010] studied the nondispersive case to find new asymptotics, and we studied the strongly

dispersive case to find the the NLS variant. There could be an analog for the weakly dispersive

case, but further research would be necessary to find an example.
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CHAPTER 3

Instability via Meridional Circulation

3.1. Motivation

In the study of atmospheric dynamics, interactions between atmospheric waves and mean flows

are an important aspect of characterizing the properties of each, for example their stability. While

zonal mean flows have been the focus of extensive research, much less has been said regarding

meridional/vertical background flow. This is an important consideration in the deep tropics, where

the mean zonal flow vanishes, and since the velocities and their corresponding spatial derivatives

tend to have inverse relative magnitudes, the velocities of all directions are equally important for

transport [Biello and Majda, 2010].

Our work is to understand the effects of meridional circulation on equatorial waves, continuing

that work done by [Back and Biello, 2018]. The major change that we relax the long wave ap-

proximation (i.e. ∂t, ∂x, v → 0 uniformly), thus allowing the possibility of dispersion and instability.

We consider both what happens in the shallow water equations, as well as the primitive equations.

3.2. Shallow Water Model

We begin with the shallow water equations

ut + uux + vuy − βyv + ghx = F̂ u − d̂u,(3.1a)

vt + uvx + vvy + βyu+ ghy = F̂ v − d̂v, and(3.1b)

ht + ((H + h)u)x + ((H + h)v)y = Q̂− d̂θh.(3.1c)

Here u, v are the zonal and meridional velocities, g is the gravitational constant H,h are the mean

and perturbation geopotential heights, β is the meridional gradient of the Coriolis force, d̂ is the

drag, and d̂θ is the mass damping term. We can rescale h by g to define the gravity wave speed

c2 = gH, from which we can make the equations dimensionless by using the time scale 1/
√
cβ and
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length scale
√
c/β in the horizontal directions, H in the vertical, which becomes

ut + uux + vuy − yv + hx = F u − du,(3.2a)

vt + uvx + vvy + yu+ hy = F v − dv, and(3.2b)

ht + ((1 + h)u)x + ((1 + h)v)y = Q− dθh,(3.2c)

where d, dθ = d̂, d̂θ/
√
cβ.

3.2.1. Instability. We consider perturbations around a simple meridional background flow,

where u = ϵu, v = V (y) + ϵv, h = ϵh, for a small ϵ. At O(1) we get the following forcing balance

(3.3) −yV = F u, V Vy = F v, and Vy = Q.

The zonal and height balances can be thought of as a particular instance of those found in equation

(2.10) of [Majda and Klein, 2003]. Since we are investigating the role of meridional flow in (a)

shallow water (b) in the full spectrum, we assume all of these are met.

At O(ϵ), we obtain the following linear PDEs

ut + V uy − yv + hx = −du,(3.4a)

vt + (V v)y + yu+ hy = −dv, and(3.4b)

ht + (V h)y + ux + vy = −dθh.(3.4c)

It is easy to note that all of the non-advective terms on the left side form a skew self-adjoint system

of equations. We show that V ∂yf +
Vy

2 f is skew self-adjoint by∫ ∞

−∞
g

(
V fy +

Vy
2
f

)
dy = gV f |∞−∞ +

∫ ∞

−∞
−(gV )yf + g

Vy
2
fdy,

= −
∫ ∞

−∞

(
gyV + g

Vy
2

)
fdy,

given that either V or the solutions vanish as |y| → ∞, which we take. While none of the advective

terms are skew self-adjoint in themselves, the addition of ±Vy

2 along the diagonals as appropriate

on both sides will produce a self-adjoint system plus a diagonal system.
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To show what how this can affect the dynamics, we consider the simple circulation V = αy.

While this is unbounded in y, our primary consideration is the deep tropics, where this is a reason-

able approximation. Using Vy = α, we compute the particular system

(3.5)


∂t + αy∂y + α/2 −y ∂x

y ∂t + αy∂y + α/2 ∂y

∂x ∂y ∂t + αy∂y + α/2



u

v

h

 =


−(d− α/2)u

−(d+ α/2)v

−(dθ + α/2)h

 .
The left matrix is skew self-adjoint. The key quality of a skew-self adjoint operator is that for

solutions of the form exp[ikx+ λt], with λ := µ− iω, will have µ = 0 for all k. However, the right

hand side introduces self-adjoint terms to the system, which naturally controls µ. As a result, the

circulation strength and damping ultimately control the statility of the system. A negative definite

diagonal matrix is a sufficient condition to ensure stability. Applied to this damping matrix, this

gives us a sufficient condition

(3.6) max{−d,−dθ} <
α

2
< d.

For this a realistic circulation, we require that α > 0, which make the lower inequality seem

redundant, however, this condition generalizes for a generic circulation V (y), which requires that

over all y, we satisfy.

(3.7) max{−d,−dθ} <
Vy(y)

2
< d.

This entails that the stability of a system can, and will be spatially dependent.

As an example, if we consider the more realistic V = αye−y2/2, then Vy = α(1− y2)e−y2/2. To

guarantee stability (a) near the equator and (b) in the tropics (Vy is minimized at y = ±
√
3,) we

must satisfy

max{−d,−dθ} <
α

2
< d, and(3.8a)

−d < α

e3/2
< min{d, dθ},(3.8b)

respectively (for reference e3/2 ≈ 4.48). Using [Lin et al., 2005,Biello and Majda, 2010] to

estimate the values of d ≈ 0.07, dθ ≈ 0.023, we would ensure stability (a) near the equator with

−0.046 < α < 0.14, and (b) away from it with −0.31 < α < 0.1.
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While the condition is sufficient for stability, it is not necessary. Numerical computation of the

eigenvalues finds that stability depends on the amplitude and structure of the circulation, and the

particular modes themselves.

The first observation is that the sufficient condition held. Damping lowered the growth rates

of these modes a consistent amount between the two models (see the top versus bottom rows of

Figure 3.1). Another observation is that the growth rate of each mode exhibits a symmetry in

the growth rate against α, which arises naturally from the symmetry under the transformation

α→ −α, t→ −t for the dragless scenario.

A more interesting observation is that the structure of the circulation affects the stability of

the different modes. For example, with a purely linear circulation V = αy, all modes observe

dµ
dα > 0, so that increasing α decreases the stabilizing effects of circulation, whereas with the

Hermite circulation the Kelvin wave and some others observe dµ
dα < 0 (see Figure 3.1).

Furthermore, it can be observed that the structure of the circulation affects the meridional

structure of the modes in themselves. For example, in the Hermite circulation we observe a phase

lag in the Kelvin wave for the subtropical regions where Vy is negative, observed consistently in

Figures 3.2-3.4.
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Figure 3.1. Eigenvalues in their components for the various modes at k = 1 (a
fairly representative value) over a range of α values. Top row: no drag; Bottom

row: d = 0.07, dθ = 0.023.. V = αye−y2/2. The red represents a greedy attempt at
finding the Kelvin mode.
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3.2.2. Damping Configurations. One important factor taken into account was the relative

damping values. If we make the assumption that the circulation is driven by heating, i.e. α > 0,

we get that the stability condition (3.8b) reduces to

(3.9) α < min{2d, e3/2dθ, e3/2d}

Each of the possibilities corresponds to a location of instability, and term that is primarily excited

by this change. The 2d option corresponds to the excitation of zonal momentum at the equator,

the e3/2dθ option to the height off the equator, and the e3/2d option to the meridional momentum

off the equator.

The zonal momentum condition will always fail before the meridional momentum, but the height

condition might fail before, between, or after both of these. We examine each of these in turn, using

the value d = 0.07 in all cases. Thermal damping will fail first when dθ < 2e−3/2d ≈ 0.031, as

happens using the previous numbers. Zonal momentum damping fails first when 2e−3/2d < dθ < d.

The third case has thermal damping failing after both momenta dampings, here d < dθ. In this

setup, we find that the growth rates decrease as dθ increases, as expected. In addition, we find the

Kelvin waves structure to mostly stay the same when varying dθ, see Figures 3.2, 3.3, and 3.4. The

one exception to this is the structure of relative potential vorticity ζ = −uy − yh+ vx.
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Figure 3.2. A presentation of the Kelvin mode for d = 0.07, dθ = .023, α = 0.5, k =
1. This has a growth rate of −0.05. The momenta fluxes −uux−uvy and −uvx−vvy,
and the height flux −(uh)x − (vh)y represent the upscale nonlinear contributions
produced by these waves.
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Figure 3.3. A presentation of the Kelvin mode for d = 0.07, dθ = .046, α = 0.5, k =
1. This has a growth rate of −0.06.
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Figure 3.4. A presentation of the Kelvin mode for d = 0.07, dθ = .092, α = 0.5, k =
1. This has a decay rate of −0.08.
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3.3. Primitive Equation Model

The term Vy that characterizes shallow water instability also shows up in equation (18) of [Back

and Biello, 2018], who use |ω| = 1
2 |Vy(y

∗)| as a frequency cutoff for non-singular solutions of a

reduced version of their problem, where the vanishing point of V defines y∗. The nature of this

coincidence produces similar consequences, the larger Vy is, the higher the minimum frequency/drag

needs to be for solutions to exist/remain stable. The big distinction though is that the breakdown

in [Back and Biello, 2018] manifests itself in the meridional structure of the function, whereas

here the problems manifests itself in time.

In order to conduct a proper comparison, it is necessary to repeat this analysis on the primitive

equations. We note that [Back and Biello, 2018] uses the IMMD equations [Biello and Majda,

2010] as their starting point, which is a long wave model built on the primitive equations. One

important difference in using the full primitive equations is that we relax the previous assumption

of meridional geostrophic balance.

We now begin our computation with the primitive equations,

ut + uux + vuy + wuz − yv + px = Du,(3.10a)

vt + uvx + vvy + wvz + yu+ py = Dv,(3.10b)

pz − θ = 0,(3.10c)

ux + vy + wz = 0, and(3.10d)

θt + uθx + vθy + wθz + w = Sθ.(3.10e)

Where Du, Dv, Sθ are the dissipation and heating source the system. We expand the each field in

the system F (y, z)+ ϵf(x, y, z, t), again with ϵ small. Filling out the expansion, at O(1) we get the

40



mean equations,

V Uy +WUz − yV = Du,(3.11a)

V Vy +WVz + yU + Py = Dv,(3.11b)

Pz −Θ = 0,(3.11c)

Vy +Wz = 0, and(3.11d)

VΘy +WΘz +W = Sθ.(3.11e)

At O(ϵ) and using u⃗ = (u, v, w), U⃗ = (U, V,W ) to denote the velocity vectors, we get the anomaly

equations,

ut + u⃗ · ∇U + U⃗ · ∇u− yv + px = 0,(3.12a)

vt + u⃗ · ∇V + U⃗ · ∇v + yu+ py = 0,(3.12b)

pz − θ = 0,(3.12c)

ux + vy + wz = 0, and(3.12d)

θt + u⃗ · ∇Θ+ U⃗ · ∇θ + w = 0.(3.12e)

Computing the energy of the anomaly, we find that it is not conserved,

∂

∂t

(
1

2
(u2 + v2 + θ2) + (uU + vV + θΘ)

)
= −∇ · (u⃗P + U⃗p+ u⃗p) + ...

−∇ ·
(
U⃗
1

2
(u2 + v2 + θ2) + u⃗

1

2
(U2 + V 2 +Θ2) + U⃗(uU + vV + θΘ)

)
+ ...

+uDu + vDv + θSθ − u(u⃗ · ∇U)− v(u⃗ · ∇V )− θ(u⃗ · ∇Θ),

(3.13)

with the nonconservative terms residing on the bottom line. We naturally expect drags and heat

fluxes to play some role in adding or removing energy, so we make no further comment. The other

non conservative terms are that way as a consequence of the linearization, had the nonlinear u⃗∇v

term been included, it would produce the conserved ∇ · (u⃗(vV ) + u⃗1
2(v

2)). An identical argument

follows for the u, θ terms. As such, this linearized system is non-conservative. Of these non-

conservative terms, −v(u⃗ · ∇V ) is the most significant for our analysis of the role of meridional

circulation, which does not appear in [Back and Biello, 2018] due to the long wave approximation,
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where V, v scale with x, y. By contrast, the other two non-conservative terms are ignored because

they are not part of a meridional circulation.

From here we begin using a Fourier expansion in the vertical direction, with u, v, p = ϕ0 +∑
n ϕn cos(nz), and θ, w =

∑
n ϕn sin(nz). At this stage we have taken that Θ = 0, P = 0, U = 0,

leaving us with V = 2V (y) cos(z),W = −2Vy(y) sin(z), scaled to obtain simpler coefficients. This

will satisfy the following simplified version of (3.11)

W = Sθ(3.14a)

Vy +Wz = 0(3.14b)

We expand (3.12) and split by vertical terms, using trigonometric product identities. For

cos(nz), sin(nz), we get the incompressibility and hydrostatic balance respectively for all n ≥ 1

wn = − 1

n
(unx + vny), and(3.15a)

pn = − 1

n
θn,(3.15b)

which will be used fill in the dynamical equations such that the uncoupled system is skew self-

adjoint. Expanding the remaining three equations will highlight the coupling between the vertical

modes. We start with the barotropic equations,

u0t − yv0 + p0x + (V u1)y = 0(3.16a)

v0t + yu0 + p0y + 2(V v1)y + V u1x = 0(3.16b)

u0x + v0y = 0.(3.16c)

Since it is incompressible, we can use a streamfunction u0 = −ψy, v0 = ψx to simplify this to one

equation by taking the curl of the momentum equation to get

(3.17a) ∆ψt + ψx = (V u1)yy − (V u1)xx − 2(V v1)xy.
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We continue the first baroclinic mode, and get

u1t − yv1 − θ1x = V ψyy − V u2y,(3.17b)

v1t + yu1 − θ1y = −(V ψ)xy − (V v2)y + V w2, and(3.17c)

θ1t − u1x − v1y = −V θ2y.(3.17d)

For higher baroclinic modes n ≥ 2, we get the equations

unt − yvn − 1

n
θnx = −V un−1,y − V un+1,y,(3.17e)

vnt + yun − 1

n
θny = −(V vn−1)y − (V vn+1)y + V (wn+1 − wn−1), and(3.17f)

θ1t −
1

n
u1x −

1

n
v1y = −V θn−1,y − V θn+1,y.(3.17g)

The equations in (3.17) can then be simplified further by projecting onto the Fourier modes

exp(i(kx − ωt)), which in essence replaces derivatives ∂x → ik, ∂t → −iω for time and the zonal

direction, and onto the Hermite functions (see Appendix A) in the meridional direction. This allows

for these systems to be evaluated using spectral methods.

3.3.1. Instability. We start by examining the results for a small number (up to three) of

vertical baroclinic modes, so that it might be compared to the longwave analysis done by [Back

and Biello, 2018]. One major change is that our system is no longer skew self-adjoint. We will

consider the profile given by [Back and Biello, 2018], V = αye−y2/2.
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Figure 3.5. Eigenvalues in their components for the various modes at k = 1 (a

fairly representative value) over a range of α value, for V = αye−y2/2. The top
truncates to the first baroclinic mode, the bottom to the third. The red represents
the a poor guess at finding the Kelvin mode. Here we do not observe instability for
the Kelvin wave.
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We also see instability varying with α, though it is much sparser compared to that observed in

the shallow water equations. Of particular interest when trying to compare to [Back and Biello,

2018] and the shallow water equations is that the the Kelvin wave does not exhibit any growth

rate, even a modest one as seen in the shallow water equations. This is seen eigenvalue plot in

Figure 3.5, but was also verified by simulating the effects of a Kelvin wave initial condition.

We observe a four-fold symmetry in the growth rates, in that if (µ, α) appears in the plot, then

all of (±µ,±α) must as well, when compared to the shallow water equations, where we would only

expect to see (−µ,−α) on the plot.

We do see an increase in the number of unstable horizontal modes as we increase the vertical

resolution. This hypothetically suggests that the mechanism of this instability presents itself in

vertical transfers of energy, and that increasing the vertical resolution will reveal the instability in

full.
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Figure 3.6. Slices of the Kelvin mode when k = 1, α = 0.5 for two vertical baro-
clinic modes. Upper left: 750mb. Upper right: 250mb. Lower left: x = 0. Lower
right: equator. Arrows indicate the winds in the slice, red contours isotherms, blue
contours isobars.

3.4. Discussion

We find that the introduction of meridional circulation possesses a necessary condition for in-

stability to the shallow water equation, as it breaks the skew self-adjointness of that algebraically

ensures neutral stability. The meridional convergence Vy was found to be the key value for determin-

ing instability in the shallow water equations, which was previously found to cut off the physically

viable solutions in the skew self-adjoint long-wave primitive equations [Back and Biello, 2018].

This break from skew self-adjointness naturally occurs in both the shallow water equations and

the synoptic-scale primitive equations. However, in the latter case, we only observe the instability

for a subset of the eigenmodes. Understanding this discrepancy merits further investigation.
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CHAPTER 4

Extratropical Excitation of Equatorial Waves

4.1. Motivation

Convectively coupled equatorial waves play an important role in the control of tropical pre-

cipitation. The horizontal properties and dispersion of these waves are first unified in [Matsuno,

1966] from the linear theory of the equatorial shallow water equations. A full review of these waves

and many of the complexities that arise from them can be found in [Kiladis et al., 2009] and

references therein.

Our primary consideration is the response of the equatorial waves to a moving momentum

forcing and diabatic heating in the extratropics. Significant milestones in this consideration were

the response to stationary diabatic heating in [Gill, 1980], and the equatorial Kelvin response to

forcing within an extratropical storm track found by [Hoskins and Yang, 2000]. Other studies

examine the role of the subtropical jets, such that extratropical Rossby waves would interact with

the equator via shear flow to produce unstable an Kelvin mode [Sakai, 1989,Wang and Xie,

1996,Xie and Wang, 1996,Back, 2017,Barpanda et al., 2023].

Our objective is to understand this extratropical connection as a response to a moving forcing.

It is similar in many regards to [Hoskins and Yang, 2000], however they prescribe the frequency

and wavenumber of the forcing and analyze the nonlinear response; we opt to instead use group

velocity and wavenumber and look at the linear response. While these are significant changes, it

allows us to isolate an equatorial Kelvin response to an extratropical forcing, depending solely upon

the group velocity.

4.2. Shallow Water

We begin with full linearized shallow water equations in the equatorial β-plane, and with a

forcing moving at a fixed latitude a with zonal phase velocity s, in an atmosphere with drag
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coefficient du and thermal damping term dθ.

∂t′u− βyv + ∂x′p = F uδ(x′ − st′)δ(y − a)− duu(4.1a)

∂t′v + βyu+ ∂yp = F vδ(x′ − st′)δ(y − a)− duv(4.1b)

∂t′p+ c2[∂x′u+ ∂yv] = Hδ(x′ − st′)δ(y − a)− dθp(4.1c)

Since this problem is linear, we only need to consider one s without loss of generality. This allows

us to move to coordinates x = x′−st′, t = t′ using a Galilean transform. We nondimensionalize the

problem using β and the speed scale c = 50m s−1 to the length scale
√
c/β = 1500 km and time

scale 1/
√
cβ = 8.3 hr. We note that a wave with wavenumber 1 on a planetary scale corresponds

to a wavenumber of about 0.03 in this system. This yields the system

(∂t − s∂x)u− yv + ∂xp = F uδ(x)δ(y − a)− duu(4.2a)

(∂t − s∂x)v + yu+ ∂yp = F vδ(x)δ(y − a)− duv(4.2b)

(∂t − s∂x)p+ ∂xu+ ∂yv = Hδ(x)δ(y − a)− dθp(4.2c)

We can rephrase the problem using the Riemann invariant q = 1√
2
(u + p), r = 1√

2
(u − p) and

ladder operators L± = 1√
2
(∂y ± y). We also introduce drag D = du+dθ√

2
, d = du−dθ√

2
.

(∂t + (1− s)∂x)q + L−v =
1√
2
[F u +H]δ(x)δ(y − a)−Dq − dr,(4.3a)

(∂t + (−1− s)∂x)r − L+v =
1√
2
[F u −H]δ(x)δ(y − a)−Dr − dq, and(4.3b)

L+q − L−r + (∂t − s∂x)v = F vδ(x)δ(y − a)− duv.(4.3c)

We then project the equations meridionally onto the orthonormal basis of Hermite functions

ϕm(y) = 1√
m!2m

√
π
Hm(y)e−y2/2, (see Appendix A for details), then onto the Fourier mode eikx−iωt

in the zonal direction to the zonal wavenumber k and in frequency ω. Since the forcing does not

change in t, the response will also be steady in time. For all m ≥ 0, we obtain the linear problem
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in qm, rm−2, and vm−1,

(1− s)ikqm −
√
mvm−1 =

F u +H√
2

ϕm(a)−Dqm − drm,(4.4a)

(−1− s)ikrm−2 −
√
m− 1vm−1 =

F u −H√
2

ϕm−2(a)−Drm−2 − dqm−2, and(4.4b)

√
mqm +

√
m− 1rm−2 − sikvm−1 = F vϕm−1(a)− duvm−1.(4.4c)

Terms with negative subscripts (e.g. r−2) are omitted. We denote the full problem using the

short hand (L − iskI)z = F, where z is the state vector, F is the forcing, I is the identity, and

L encapsulates all the remaining terms in the system, including any drag. We consider solutions

(ŝ, ẑ) to the eigenvalue problem problem (L− iŝkI)ẑ = 0, which is dependent on k. If there is no

drag, the system is skew-Hermitian, which implies that ŝ must be real, and the modes be neutrally

stable. In the presence of drag, we compute the stability by examining the Fourier projection in

the inertial reference frame

(4.5) eikx = eik(x
′−ŝt′) = eik(x−ℜ[ŝ]t)eik(−iℑ[ŝ]t) ∼ ekℑ[ŝ]t

Throughout this, we have treated k as a parameter in the eigenvalue, so provided that ω̂ = kℑ[ŝ] <

0, we will have stability. Unless otherwise specificed, we use damping values that come out from [Lin

et al., 2005], du = 0.07, dθ = 0.023. We will have complex ŝ eigenvalues, however the system is

stable, see Figure 4.1.
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Figure 4.1. Left: The frequency wavenumber relation of the computed eigenmodes
for the damped system, which examines the real part, and qualitatively matches
[Matsuno, 1966] in the waves. We note that this dispersion relation captures both
the barotropic (magenta) and baroclinic (red) Rossby waves. Right: The imaginary
component of frequency over wavenumber. We note that it is negative everywhere,
indicating a stable system, and is centered about the du, which is the stronger, save
the behavior of the baroclinc Rossby wave. Both start at the lowest wavenumber
kmin = 0.2334

4.2.1. Forcing Response. This section will assume that d = 0, which consequently decouples

the shallow water equations into the blocks seen in Equation (4.4c). For each block, we can compute

the forcing response ϕF = (L− isk)−1F, since the system is decoupled and has a regular structure,

we can obtain exact solutions for each block. The inverse of a matrix is often expressed with a

factor of its determinant, which for each block is (−ik)∆m where ∆m = s(k2+2m−1)−k2s3+1 is

a speed version of the Matsuno dispersion relation. This indicates that if the source moves like an

equatorial wave of the same speed and wavenumber, then the response will see a resonance, limited

by the damping terms.

We begin by examining the solution for the Kelvin wave, which is

(4.6) q0 =
1

(1− s)ik +D

F u +H√
2

ϕ0(a).

This corresponds to a Green’s function of the form

(4.7)

√
π

1− s
e−D|x|/(1−s)Θ((1− s)x)(F u +H)ϕ0(a)e

−y2/2.
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We observe that when s < 1, the response will be to the east of the forcing, and it will be to the

west when s > 1, which follows from its motion relative to a Kelvin wave.

However, our solution also tells us what must happen to cause resonance. First, we have the

location of the forcing, which here is controlled by ϕ0(a). Since ϕm all have Gaussian terms, anything

that is too far away from the extrema of a particular ϕm will have less of a role. However, ϕm

forms a complete basis of functions, which means that no matter the latitude of forcing, some basis

function will be excited. In particular for the Kelvin wave being excited by ϕ0, the maximum is at

the equator, and it has inflection points at latitudes y = ±1, beyond which the response drops off

super-exponentially.

The next factor are the types and strengths of the different forcings. As a consequence of the

Riemann invariant, the important combination of forcings are the following: (F u+H)/
√
2, F v, and

(F u −H)/
√
2. The first is that which drives the Kelvin wave: a combination of zonal momentum

forcing and diabatic heating promotes a response in the zonal momentum and pressure, which are

the constituents of a Kelvin wave, among other waves. However, we can see the role all three can

play by considering the dragless mixed Rossby-gravity response (m = 1),

(4.8)

q1
v0

 =
1

k2(s− 1)s− 1

sik −1

1 (s− 1)ik

Fu+H√
2
ϕ1(a)

F vϕ0(a)

 ,
or the more general inertio-gravity and Rossby wave responses (m ≥ 2),

(4.9)
qm

rm−2

vm−1

 =
1

∆m


[k2s(s+ 1)− (m− 1)] 1ik

√
m
√
m− 1 1

ik (s+ 1)
√
m

√
m
√
m− 1 1

ik [k2s(s− 1) +m] 1ik (s− 1)
√
m− 1

−(s+ 1)
√
m −(s− 1)

√
m− 1 (1− s2)ik




Fu+H√
2
ϕm(a)

Fu−H√
2
ϕm−2(a)

F vϕm−1(a)

 .
However, the most significant determinant of response to the forcing is the proximity of the

velocity of the forcing to the resonance (i.e. how small ∆m(s; k) is). The amplitude of a resonance

excitation will be O(D−1) for the decoupled case, as shown for the Kelvin wave, and as computed

for the other waves, but omitted for brevity. For the Kelvin wave, we see this resonance uniformly

in k as s→ 1, where as for the other waves, no uniform limit exists in k, s or ω. This uniform limit

is particularly interesting, in that it implies that provided that the forcing moves at speed s = 1,

it will excite the Kelvin wave.
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The velocity of the forcing also impacts the response for non-Kelvin waves in appropriate

limits. In the limit k → ∞ for s = ±1, resonance will excite the appropriate inertio-gravity waves.

Additionally as k → 0 for finite s, the Rossby waves will be excited by resonance.

Another feature that appears from the matrices in Equations 4.8,4.9 is the relative phase of the

different components, captured by factors of i. As such, the meridional forcing and velocity operate

out of phase with the other variables, except when the meridional forcing acts on the meridional

velocity.

In addition to the Kelvin response that arises from the resonance of s = 1, we also expect a

localized response near the forcing. We project to the total computed response onto the computed

eigenmodes of the linear system to get their components. The eigenmodes are then identified as

the equatorial waves by the eigenvalue s. In particular, we setup a forcing that had a strong and

consistent Kelvin resonance across many horizontal wavenumbers k. In the limit k → 0, we observe

strong Rossby wave activity, and as k → ∞, we observe strong eastward gravity wave activity, see

Figure 4.2. The response seems to be dictated in large part by which waves are closest in frequency

to the Kelvin wave, as evidenced by the response of the EIG0 wave.
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Figure 4.2. The inhomogeneous response to the forcing found in to the problem
with F u = H = 1, s = 1, located at x = 0, y = 2.5, with IPESD dampings du =
0.07, dθ = 0.023, over a range of horizontal wavenumbers k, starting with the lowest
phyiscally acceptable value kmin = 0.2334. We observe a transition in the dominant
response from being westward Rossby waves to eastward gravity wave, as well as
the MRGs transition from gravity wave to Rossby wave. Since the activity is purely
baroclinic, then we see no barotropic Rossby response.
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We also note that the transition happens between the dominant response occurs at around

k = 1, which implies that the response can be characterized by the aspect ratio of the zonal and

meridional activity scales. The consequence of this is that in the longwave limit, we can expect

appropriate subtropical forcing to both excite a Kelvin wave and Rossby waves.

4.3. Barotropic Interactions

One difference in the above work and much of the literature on Kelvin-Rossby phenomena is

taking vertical motion into account somehow. As such, we examine the consequences of forcing the

system in a system with barotropic and baroclinic activity, used in [Majda and Biello, 2003].

While this is a nonlinear equation, it seems like a possible avenue of investigation. This differs

from the work in [Back, 2017] in that it investigates how the eigenmodes change as a result of a

background jet with U0 as an eigenvalue.

In the same units as above, we can define the two-layer equatorial β-plane equations for the

barotropic and baroclinic horizontal velocity and pressure. We will denote the baroclinic terms

using u, v, p as before, and the barotropic velocity will be represented by its streamfunction ψ.

This will produce the system of equations

∂t∆ψ + ψx = Fω − J(ψ,∆ψ)−∇ · [(u⃗v)x − (u⃗u)y],(4.10a)

∂tu⃗+ y⊥u⃗+∇p = F u⃗ − J(ψ, u⃗)− (u⃗ · ∇)⊥∇ψ,(4.10b)

∂tp+∇ · u⃗ = H − J(ψ, p),(4.10c)

where J(A,B) = AxBy − AyBx denotes the horizontal Jacobian (J(ψ, ·) describes barotropic ad-

vective terms), and ⊥ denotes a quarter turn matrix

0 −1

1 0

. We note that for the usage of

the stream function, we assert there is not barotropic heating. An immediate consequence of this

derivation is that for barotropic momentum forcing F v⃗0 , only the torque plays a role in forcing the

system.

4.3.1. The Barotropic Rossby Problem. Before continuing, let us consider the barotropic

linear response in isolation to forcing by solving the equation

(4.11) ∂t′∆ψ + ψx′ = Fω0δ(x′ − st′)δ(y − a).
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We perform the Galilean transform as before, and again consider the steady state problem, which

simplifies to

(4.12) (1− s∆)ψx = Fω0δ(x)δ(y − a),

which is the Helmholtz equation when s < 0, and the screened Poisson equation when s > 0.From

this, we can compute that the fundamental solution is

(4.13) vG = ψx,G =
Fω0

s


1
2πK0(r/

√
s) s > 0

1
4Y0(r/

√
−s) s < 0

where Y0, (K0) is the (modified) Bessel function, and r2 = x2 + (y − a)2 denotes the radius from

the forcing point.

Strictly speaking, the full solution of the Helmholtz equation depends on the Hankel function

H0 = J0 + iY0, however, this is scaled by i, and we only take the real part. Furthermore as we

approach the origin, we observe that the dominant balance of this equation is the Poisson equation,

which behaves logarithmically there, so we expect in either case that the solutions here do the

same, and J0 is regular near the origin.

This results in an asymmetric behavior depending on the direction of the forcing. When the

forcing moves westward, the solution oscillates away from the radius r, whereas the eastward

solution exhibits strict decay.

4.3.2. Forcing via wave interaction. Suppose we have two real wave packets, traveling at

phase velocity s1 and s2 at the same wavenumber k. Their product will be two waves, oscillating

at the sum and difference of the wavenumber and speed. We compute that the wave travels at the

average of the speeds at double the wavenumber.

(4.14) eik(x−s1t)eik(x−s2t) = e2ik(x−
s1+s2

2
t)

If we had a sufficiently fast eastward inertio-gravity wave (where s > 1 for all k) interacting with

a barotropic Rossby wave (since the dispersion depends on meridional wavenumber l, which can

be any real number), the forcing it produces could travel at the requisite speed s = 1, exciting a
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Kelvin wave. This would not be found in [Majda and Biello, 2003] since they assume a long-wave

approximation on Equation (4.10c), which filters out gravity waves.

For example, we’ll consider the interaction between the barotropic Rossby wave and EIG0,

which have dispersion relations

(4.15) ωE =
1

2

(
k +

√
k2 + 4

)
, and ωR =

−k
k2 + l2

for k > 0.

To resonantly excite a Kelvin wave, we must satisfy the following conditions

kE + kR = kK , and

ωE(kE) + ωR(kR) = ωK(kK),

since the Kelvin wave is non-dispersive, this simplifies to the resonance relation

(4.16)
1

2
(
√
k2E + 4− kE) = kR

(
1 +

1

k2R + l2

)
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Figure 4.3. Plot of the resonance relation between kE , kR over various l, ranging
from l = 0.1 (dashed line) to l = 10 (solid line).

We observer that solutions to this resonance relation cover the full spectrum in kE , but only a

finite bandwidth in kR. What this implies is that essentially any gravity wave interacting with a

long Rossby wave (kR < 1, or whatever the maximum is for a specific l). If we think about this as

vectors from the origin pointing at various points on the dispersion relations, the EIG and Kelvin
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wave vectors will be pointing in roughly the same direction, that a small nudge from a Rossby wave

can correct.

4.4. Conclusions

In summary, we find that activation of a Kelvin wave by forcing essentially depends upon

producing a forcing that moves at the appropriate phase velocity. We also find a secondary response

by Rossby or eastward inertio-gravity waves depending on the wavenumber of the forcing. In

addition to generic forcing, we find that the nonlinear interaction between eastward inertio-gravity

waves and long barotropic Rossby waves can also excite Kelvin waves.
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APPENDIX A

Hermite Functions

Due to their ubiquity in my problems, I include the details of Hermite functions here. They

are defined

(A.1) ϕm(y) = (2nn!
√
π)−1/2Hm(y)e−y2/2,

where Hm is the “physicist” Hermite polynomial, defined as

(A.2) Hm(y) = (−1)mex
2 dm

dxm
e−x2

.

The set {ϕn}∞n=0 are an orthonormal basis over L2(R) defined via the inner product ⟨f, g⟩ =
∫
R fgdy.

If we define the ladder operators L± = 1√
2
(∂y ± y), they satisfy the properties

L−ϕm = −
√
m+ 1ϕm+1, L+ϕm =

√
mϕm−1.(A.3)

Operating in this basis, these operators act as banded matrices. In particular

(A.4) L̂+ =



0
√
1 0 0 · · ·

0 0
√
2 0 · · ·

0 0 0
√
3 · · ·

0 0 0 0 · · ·
...

...
...

...
. . .


, L̂− =



0 0 0 0 · · ·

−
√
1 0 0 0 · · ·

0 −
√
2 0 0 · · ·

0 0 −
√
3 0 · · ·

...
...

...
...

. . .


,

and by linear combination, one can find the definitions of y, ∂y, ŷ (a symmetric matrix) and ∂̂y

(which is anti-symmetric). Thus we can compute the result of projections via the following formula

for linear operators AB

(A.5)

∫
R
ϕr(y)(ABϕc(y))dy = (ÂB̂)rc
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The Hermite functions are also eigenfunctions of the Fourier Transform,

(A.6)
1√
2π

∫ ∞

−∞
eilyϕm(y)dy = imϕm(l)

This can also be used to project particular waves (e.g. a barotropic Rossby wave) onto the Hermite

functions.

A.1. Primitive Equation Computations

As an example of how this works, we start with (3.17), truncated at n = 1, and apply the

phase shift to u1, p1 = −θ1 by scaling by i, and express these in terms of Riemann invariants and

ladder operators as before. We project the above equations on to the Hermite functions ϕm, which

reduces to the system.

(k − ω)qm+1 −
√
m+ 1vm − 1√

2

∑
n

γm+1,nψn = 0,(A.7a)

(−k − ω)rm−1 −
√
mvm − 1√

2

∑
n

γm−1,nψn = 0,(A.7b)

−
√
m+ 1qm+1 −

√
mrm−1 − ωvm + k

∑
n

βn,mψn = 0,(A.7c)

− 1√
2

∑
n

(k2αn,m + γn,m)(qn + rn)− 2k
∑
n

βn,mvn − [k + ωk2]ψm + ω
∑
n

δm,nψn = 0.(A.7d)

During this projection, the coupling terms with V turn into integrals of a triad of these functions,

which is a nontrivial operation that produces the coupling matrices α, β, γ, δ. These are defined

αa,b = ⟨ϕa, V ϕb⟩ , βa,b = −⟨ϕa, V ∂yϕb⟩ , γa,b = ⟨ϕa, V ∂yyϕb⟩ , δa,b = ⟨ϕa, ∂yyϕb⟩ . There calculation

follows the principles above. Since the functions vanish as |y| → ∞, integration by parts allows for

the same matrices to be used multiple times.
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