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Abstract

The line bundle mean curvature flow is a complex analogue of the mean curvature flow for
Lagrangian graphs, with fixed points solving the deformed Hermitian-Yang-Mills equation. In this
paper we construct two distinct examples of singularities along the flow. First, we find a finite
time singularity, ruling out long time existence of the flow in general. Next we show long time
existence of the flow with a Calabi symmetry assumption on the blowup of P™, if one assumes
supercritical phase. Using this, we find an example where a singularity occurs at infinite time along

the destabilizing subvariety in the semi-stable case.

il



Chapter 1

Introduction

This dissertation works towards constructing singularities of the line bundle mean curvature flow,
which is a geometric flow analogue to a complex mean curvature flow of Lagrangian graphs. It
arises as a tool to construct solutions of the deformed Hermitian-Yang-Mills (dHYM) equation,
which comes from string theory.

String theory predicts that a Calab-Yau manifold (M,w,$2) comes with a mirror (M ,d),Q).
Kontsevich [17] proposed that the mirror symmetry can be explained homologically, as an equiva-

lence of the triangular categories:

DPCoh(M) ~ DFF (M),

where on the left is the derived category of coherent sheaves, and on the right is the derived Fukaya
category. Later, Strominger-Yau-Zaslow |24] proposed that the mirror symmetry can be explained
geometrically. Loosely speaking, M should be obtained by M via T-duality, and the symplectic
geometry of M should be interchangeable with the complex geometry of M by fiberwise Fourier-
Mukai-type transformations.

In the case when the pair M and M have semi-flat dual torus fibration, Leung-Yau-Zaslow gives
an explicit correspondence [20]: the supersymmetric cycles in M are special Lagrangian submani-
folds, which map via the fiberwise Fourier—Mukai transform to a holomorphic submanifold Z of M,

with a holomorphic line bundle (L, V 4) that satisfies the dHYM equation:

A~

Im (e—i@(w - FA)dimZ) —0, R, (1.1)



where Fy € H!(Z) is the curvature form with respect to the connection V4 on L.
We can generalise (1.1) to any compact Kéahler manifold X, as opposed to Calabi-Yau manifold.
Furthermore, we do not have to restrict to the case of a line bundle. Instead, let [ag] be a real (1,1)

Dolbeault cohomology class. The dHYM equation seeks a representative o € [oy] satisfying
Im (e_ié(w v \/—104)") ~0 (1.2)
for a fixed constant e € S, where n is the complex dimension of X.

The Line Bundle Mean Curvature Flow

Extensive work has been done to develop the relationship between the existence of solutions to
(1.2) and notions of geometric stability [2, 3, 4, 5, 8, 15, 23]. One direction is to utilize a parabolic
method motivated by the mean curvature flow. A submanifold will reduce its volume along the
mean curvature flow and become minimal if it converges. The analogue here is to allow a metric to
flow along a line bundle version of mean curvature. This flow will reduce a volume functional, and
the hope is that it will reach a solution upon convergence. Under certain geometric assumption,
this has been verified [16], but much work remains to be done in general.

To write down the flow precisely, let ¢; be a smooth function on X and o; = ag + /—100¢; be

a closed 2-form representing [ag]. The line bundle mean curvature flow is defined by
br = Z arctan(\) — 6 (1.3)
k

where \,’s are the eigenvalues of w™'a;. When the flow converges to a stationary solution, by

choosing a coordinates at a point so that w™ '« is diagonal, we have
0= Z arctan(\g) = argH (1+v—=1\;) = argdet(1 + V—lw ta)" (1.4)
k k

which is a reformulation of (1.2). Hence, convergence of the line bundle mean curvature flow results
in a solution of the dHYM equation.

Here, we can already see a particularly challenging aspect of the equation. In (1.2), the constant



el is a priori only S'-valued, but (1.3) requires a lift of 6 €R. It is in general not known how to
lift the angle 6 (when dimension is higher than 4), which plays an important role in studying (1.2).

Hence, many results are based on the large angle assumption
Z arctan(\) € ((n - 2)%, n%)
k

which lifts @ to the same interval. This assumption also has the advantage of helping with the PDE
theory.

We now introduce the conjectured relationship between solutions to the dHYM equation and
stability. Following the work of Lejmi-Székelyhidi on the J-equation [19], Collins-Jacob-Yau inte-
grated a certain positivity condition along subvarieties to develop a necessary class condition for
existence, and conjectured it was a sufficient condition as well [3]. Specifically, for any irreducible

analytic subvariety V C X, define the complex number:

Z[a][w](v) = _/Ve\/_lw+a7

where by convention we only integrate the term in the expansion of order dim(V). Under the
supercritical phase assumption, Zjq)(,(X) lies in the upper half plane H. The conjecture of Collins-

J.-Yau posits that a solution to the dHYM equation exists if and only if
™ > argZ[a][w](V) > argZ[a][w] (X) (1.5)

Later, when n = 3, Collins-Xie-Yau demonstrated a necessary Chern number inequality [6]
(which has since been extended to n = 4 [12]), which is also useful for defining the lifted angle
6 algebraically. Collins-Yau further conjectured that such a Chern number inequality in higher
dimension was needed [7]. Indeed, recently when n = 3, an example was found where the stability
inequality (1.5) holds, but the Chern number inequality does not, and no solution to the dHYM
equation exists [37]. We note that slightly weaker versions of the Collins-Jacob-Yau conjecture have
been solved by Chen [2] (assuming uniform stability), and Chu-Lee-Takahashi [8] (in the projective

case). Again all of the previous results rest on the large angle assumption.



A few results without the large angle assumption are presented in [15] and later in [14]. Both
authors worked on projectivised vector bundles over projective spaces (e.g. the blowup of P" is
a special case of such). These spaces can be equipped with a symmetry called Calabi symmetry,
allowing us to reduce (1.2) to an ODE. In this setting, the authors was able to prove a stability
condition which tells if a solution to dHYM equation exists, and if the lifted angle 0 is defined.

More precisely, they show that a solution exists in the blowup of P" if and only if

Tm (M) £ 0 (1.6)

fX e—wta

for all analytic subvarieties V' C X, and gives the same sign for all subvarieties of the same dimension.
Singularities

Given an initial class ag, we ask if the line bundle mean curvature flow (1.3) converges. By
(1.4), it is evident that existence of a solution of the dHYM equation is a necessary condition for
convergence. In this dissertation, we show that it is, however, not sufficient, and we give an example
where a finite time singularity occurs. We also give another example with a long time singularity
in the unstable case, i.e. when a solution of dHYM equation is known to be obstructed.

We construct our example on the blowup of P™ with the same Calabi Symmetry as above, since
the stability condition is already well-understood. The symmetry allows us to reduce (1.3) to a
parabolic PDE with one spacial variable, and explicitly describe the singularity that appears in our

setting. We show the following theorem.

Theorem 1.0.1. Let X be the blowup of P™ at a point. There exists a Kdhler form w, and co-
homology class [a] € HY(X,R) admitting a representative oy, for which the flow 1.5 achieves a
finite-time singularity. Specifically, if Aoz (p,t) denotes the largest eigenvalue of w™tay at a point
p € X, then there exists a sequence of points {xr} C X and times ty, — T < oo such that

lim )\Max(xk,tk) = Q.
k—oo

The idea is to observe that the flow (1.3) can be reduced to a flow of graphs of functions in R?,

due to the Calabi Symmetry. It also behaves similarly to the curve shortening flow. Hence, we can



apply avoidance principle which promises the disjointness of subsolutions. Subsolutions are curves
that evolve slower than the flow. We explicitly construct two subsolutions so that they force the
graph to develop a first-order singularity, i.e. a vertical tangency, in finite time.

For infinite time, we need to impose the large angle assumption to help with the PDE theory, in

which we can prove long time existence. From there, we are able to construct a long time singularity.

Theorem 1.0.2. Let (X,w) be the blowup of P™ at a point, n > 3, and consider a class [a] €
HY(X,R). Assumew, ag € [a] have Calabi-symmetry, and furthermore assume ag has supercritical

phase, that is ©(ag) > (n —2)5. Then the flow (1.3) beginning at ag ewists for all time.

Theorem 1.0.3. Let (X,w) be the blowup of P™ at a point, n > 3. There exists classes [a] and
[w], which are semi-stable in the sense of (1.5), where the flow (1.3) exists for all time and becomes

singular at time t = oo along the destabilizing subvariety.

It is perhaps not surprising that a singularity can appear even when the solution to dHYM
equation exists. The line bundle mean curvature flow is motivated by the Lagrangian mean curvature
flow (LMCF), and Neves demonstrated that singularity formations are abundant along the flow [22].
The singularities he constructs, however, is of second-order, i.e. a curvature blow-up. It will be
interesting if we could find graphical Lagrangians that develop first-order singularity similar to our

examples.

The dissertation is organized as follow. Chapter 2 covers some background of complex geometry.
In Chapter 3, we define the blowup of P™ and explain the Calabi symmetry. In Chapter 4, we
introduce some early results of the line bundle mean curvature flow (1.3), and rewrite it under the
setting of Calabi symmetry. We then prove the main theorems in Chapter 5, and we conclude with

some future directions at the end of that chapter.



Chapter 2

Complex Geometry Background

In this chapter, we provide some background information for complex geometry which will be useful
in understanding the deformed Hermitian Yang—Mills equation. The materials mainly follows from

[11].

2.1 Complexified Tangent Bundle and Differential Forms

Let M be a compcat 2n-dimensional real manifold. It is a complex manifold if there exists an atlas
in which the transition maps are holomorphic. In local coordinates, the tangent space at a point

p € M is given by

0 a 0 0
TpM—bpan{@,-",&En,aylw-,@}.

On each coordinates patch, we define

“oxt Oyt Oy oxt’

Since the transition maps satisfy Cauchy-Riemann equations, J is invariant under change of
coordinates, and defines a complex structure J : TM — TM globally. Define the complexified
tangent space TMC := TM ® C and J extends naturally to TMC. Notice that J? = —I, so v/—1
and —y/—1 are the eigenvalues of J. Denotes TV9M and T%' M to be their eigenspaces respectively,

so that TMC = TYOM & T%' M. To be precise, let

a:_1<a\/_ua)_1<a\/_18>’

9zt~ 2 \ Ozt ori )~ 2 \ ox oy’



Then,

n
TYOM = {X e TMC: JX = \/—1X} - Span{aal} :
=" )i=1

TOLNS = {X ceTMC: JX = —\/—1X} - span{ a_} .
0z' ;4

To define differential forms, we need to dualise the above construction. Write Q!(M,C) :=
T*M ® C, as opposed to QY(M,R) := T*M. Let Q1M and Q' M be the duals of TH°M and

T91M respectively. Similarly, let,

dzt = dz' + \/—_1dyi,

dz' = da' — /—1dy'.

Then,

QYoM = {a e Q' (M,C): Ja = V-la} = Span{dzi}

n
i=1"

Q%M = {a € Q'(M,C) : J*a = —V/~1a} = span {d%i}?zl .

The higher order complex differential forms are defined the same way as with real forms. Define

QPN = QYOM AQY M AQYM M AQYOM .

p times q times

Write (P4 = QP9 M when there is no confusion. This gives a decomposition

(M, C)= P o
ptg=r



This also decomposes the exterior derivative:

O = projop+1.q o d : QP4 — QPTLA,

0 = projgp.grr od : QP9 — Qpatt,

They satisfy 82> = 0 and 0% = 0, which allows us to define the Dolbeault cohomology

HP(M,C) = ker (9 : QP — QP4H1) /im (9 : QP71 — QP9) .

2.2 Riemmanian Metric and Fundamental Form

Let g: TM @ TM — R be a (real) Riemannian metric on M such that it is compatible with J, i.e.
g(_7 _) = g(‘]_v J_) Let

a0 9 90 9
ol oxt’ T oxn Oyl T Oy

be a basis of TM. Then, as a matrix in a coordinates system,

1<jk<n

Extend g to a bilinear form g : TM® @ TMC — C. If we use a different basis,

gl 9 9 0
R W L o oz |

Then,

1<j.k<n

Definition 2.2.1. The fundamental form w € Q?(M,R) associated to the metric g is defined as

w(_v _) = g(']_7 _)'



This real form can be extended to Q22(M,C). In coordinates, we have

or

—gjk 0 ,
1<j,k<n

For notation purpose in Einstein summation convention, write Ikj = Gjk- Then,

/1 .
w= Yo mgrddd AdZH € QY M N QP (M,R).

Definition 2.2.2. M is a Kdhler manifold if the fundamental form w is closed. The metric g is

called the Kdhler metric and w is called the Kdhler form.

2.3 Analytic Hypersurface and Holomorphic Line Bundles

A holomorphic line bundle over a complex manifold M is a locally trivializing C'-bundle with
holomorphic transition maps. To be more precise, let U = {U,}aca be a collection of charts that

defines M. Let t,3 : Uy NUg — C* be holomorphic transition maps such that

® log = 1/t,30w

® taglgytya = 1.

Then, the information (U, {tn3}a,sea) forms a line bundle
L= |_| U, x (C/ (Za, Vo) ~ (28,v8) iff 2o = 25 € Uy N Upg and vy = tap(2a)vs.
aEA

On a line bundle L, we can equip a Hermitian metric h, so that (v,w) — (v, w); := vwh(z) is

a Hermitian inner product for all (z,v), (2, w) € L. In a local chart, h = hy : Uy — (0,00) is a



positive function, satisfying

hg(2) = [tap(2)*ha(2). (2.1)

A holomorphic section s is a map M — L given by z — (z,s(z)) such that when restricted to
any chart U,, the map s, := s|y, : Uy — C is holomorphic. By the structure of the line bundle, s

is well defined if and only if

sa(2) = tap(2)s5(2) (2.2)

for all z € U, NUg. The zero locus of s defines an analytic hypersurface in M.

Definition 2.3.1. Suppose V' C M. We say that V is an analytic hypersurface of M if there
exists a covering U = {Us}aeca of M such that V N U, = f;1{0} for some holomorphic functions
fa: Uy — C.

To serve our purpose, we impose some additional assumptions on f,. We require that f, to
be non-singular and for all «, 8 € A, fo/fs extends to a non vanishing function on U, N Ug. This

allows us to define

tag = f—a :UaNUg — C. (2.3)

- Js

Denote Ly as the line bundle formed by the transition maps t,3 above. Then, fg = t,zf, satisfies

(2.2) and thus form a section of Ly. We prove the following theorem following [11].

Theorem 2.3.2. Let h be any Hermitian metric on Ly . Then,

2

[_‘/?aélogh} e HY'(M,C)n H*(M)

is the Poincaré dual of [V] € Hy,—o(M).

Proof. Suppose [a] € H""2(M). We need to show that

/a:——_l/ 00logh A a.
v 2

10



First, we show that 001logh defines a global closed form on M. Indeed, by (2.1),

00 loghg = 00 (tagfa/jha)
= 00 (logtap +logtas + log hy)

= 001og hq.

The last equality follows because t,4 is holomorphic, and thus 5ta5 = Otap = 0. Similarly, if s is a

non-vanishing holomorphic section, then 9d1log ||s||? = 90 log h. Indeed,
d01og||s||? = 0 log(ssh) = 8 log h.

Recall that f is a section of Ly, which vanishes exactly on V. Hence, away from a neighnorhood
of V, we have ddlogh = d0log||f||?. Since we assume that f is non-singular, we can choose a
coordinates such that f(z) = 2!, and let N, = {|z!| < €} be a tubular neighborhood of V = f~{0}

for small € > 0. Then,

——_1/ aélogh/\azlim——_lf 00logh A «
M M\Ne

2T e—0 2

L —1 = 2
—tim -V /M\Néaalognfuhm
— | _1 ) 2
—im -V /M\Ne d(8— ) log |If]2 A
e VA1 5 2
_l%_?/_m(a—@)logllfllwa
:hm—v_l/ (5= 0)log(fFh) Aa
=0 41 Jon.
:hm_v_l/ (5—6)(logf+logf+logh)/\a
e—0 41 AN,

lim/ dlogh A a = lim ddlogh A a
ON¢

e—0 N,

= lim 00logh A a
e—0



=0 (as lim Vol(N,) = 0) .

e—0

Similarly, we have lim,_,q |, aN. Ologh A a = 0. Hence,

——_1/ 8510gh/\oz—hm— (0—0) (log f +log f) A
T M e—0 AN,
L )
= lim «
e—0 47 ON.
o of
—lgr(l) %Im 7/\04

Since f(z) = z! and N, is a tubular neighborhood of V', we have ON, = {|z!| =€} x V. So

/ %/\a:/ idzl-/a
ON. f {]z1|= e}z v

:27r\/—_1-/va

The result follows immediately. O

Remark 2.3.3. When there is no confusion, we also write [V] = [ raa log h| as a cohomology

class. This class is in fact the Chern class of the line bundle Ly .

12



Chapter 3

Setting of the Calabi Symmetry

In studying extremal Kéahler metric, Calabi explicitly constructs examples on a family of projective
bundles over projective spaces [1]. The rich symmetry on those spaces allows us to reduce the
complexity of the equation. The same symmetry is used to study the dHYM equations, first in
[15] and then in [14]. Here, we provide details of Calabi symmetry on the blowup of P", which are

described explicitly in coordinates.

3.1 Generating Class of Projective Space

Define the complex projective space as P := C""\{0}/(w ~ Aw) with w as the homogeneous

coordinates, i.e.

[wozwl:---:w"}:[)\wo:)\wlh--:)\w”].

Let U; be the local charts covering P™ defined as

0 i1 i+1 n ‘
Uizz{[w—:---:w. 1. :---:w—}epnzwz;ﬁ()}.

wt wt wt wt

Let H be a hyperplane in P™ defined as

H:={0:w":w?: - :w")} C P".

13



When restricted to U;, H N U; is the zero locus of f; = w®/w’. Hence, by (2.3), the transition

functions

defines a line bundle Ly over P™. Define also h; : U; — R by

]

p— —2.
ZZ:o |wk|

hi(w)

Since w® # 0 on U;, h; is a positive function. It also satisfies (2.1) and hence it is a Hermitian metric

on Ly. Identify Uy = C" and let z* = w’/w® be its coordinates. Notice that Uy = P™\H. Then,

1

hO(Z) = W

We use Theorem 2.3.2 to compute the Poincaré dual of H.

\/—1 = . k V -1 Zk : k
_ 9.1 J sk _ . J 5
o 00 log hg dz? N dz o 0; T+ P dz? N dz

\/—1( (53' 2kz
2r \1+[z2 (1422

) d2? A dzF
Let gg; = 0jx/(1 + |z|2) — 2827 /(1 4 |2|?)%. The following lemma shows that Jr; is positive definite.
Lemma 3.1.1. Suppose (z1,22,---,2") € C. Then the eigenvalues of
adjy, + b2k
are \y =a+bz? and g = X3 =--- =\, = a.
Proof. Let Aji, = adji, + bz*7I. Then, as a matrix,

A =al + bzz".

So, we have Az = (a + b|z|?)z, which gives the first eigenvalue. Let w be a vector orthogonal to z,
so z*w = 0. Then, we have Aw = aw. Since there are n — 1 linearly independent vectors orthogonal

to z, this gives the rest of the n — 1 eigenvalues. O

14



The above lemma implies that gz; is a metric. Hence, we have the following definition.

Definition 3.1.2. Let

WES 1=

vV —1 ( 5j Zkgj

- dzl A dz*.
2 \1+|2 (1+\Z|2)2)

This is a Kéhler metric on P™ and is called the Fubini—Study metric. The class [wps| = [H] €

H?(P") generates the cohomology of P, as it is the Poincaré dual of H, which generates Ha, _2(P").
Remark 3.1.3. Being a Poincaré dual implies that [wrg] € H?(P",7Z) is an integral class.

Using the Fubini—Study metric, we can prove the first half of the Calabi symmetry. Suppose
C™ is identified with Uy C P™. Let u(p) : R — R be a smooth function, where p = log |z|?>. Write

w= g@éu, which is defined on C™\{0}.
Theorem 3.1.4.

1. w is then a Kdhler form on C"\{0} if and only if v'(p) > 0 and u"(p) > 0,

2. Let Uso(r) := u(—logr) + alogr. If Uy extends smoothly to r = 0, then w can be extended
smoothly to P"\{0}, and [w] = a[H] as a cohomology class on P"\{0}.

Proof. 1. Notice that

_ / kzj )
ddu = (:—pajk + (U — u)zeTj) 23 A dzF, (3.1)

where the derivatives v’ and u” are with respect to p. By Lemma 3.1.1, its eigenvalues are
A =u"/ef and Ay = --- = \,, = u//eP. Hence, w is positive if v’ > 0 and u” > 0.

2. Recall that
1

v
S )Y, | S
WFS o og 1 + |Z|2

So,

Ve , 1
— =—00 1 log— ).
w = awps = ~o— u (log |2|°) +a Ogl—HzP

We need to show that this is a global exact form on P"\{0}, which is to show that

1
= (1 2 log ———
f(2) :==u(log|z]*) + a og1+|z|2

15



extends smoothly to P™\{0}. Indeed. suppose zs, := [0,2%, -+ ,2"] € P"\Up. Then

1,2 n

r—0+ T r r

1,2 n 5

zt oz z ) r
f(7;7,-..,7>:u(—log|rz|)+alogm

2

,
=U. 2) —al 2 log ———.
% (Irz]*) — alog|rz|” + alog ERpEE

This extends smoothly if Uy, extends smoothly to r = 0.

3.2 Generating Class of Bl,C"

Let BlyC™ be the blowup of C" at the origin. By definition, it is the total space of the tautological

line bundle of P"~!. In local coordinates, we can describe it as follow.
BlyC" := {(wo,wl, - Luw) € Cx CM{0}}/ (wo,w1,~- ,w') ~ (wo/)\,)\wl,--- Aw™)
where A € C*. Any equivalence class in BloC™ can be represented as
[wo;w1 cw? w”] € BlyC".
Similar to the previous section, let U/ be the local charts covering BlyC™ defined as

Uy = {[L; 0" : ww? - ww"] € BloC™ : w® # 0}

1 i1 i+1 n
;W w w w -
U-’:z{[wowz;:--o: —ili—— e — EBZOC":wZ#O}.
w; w w w

Let E be the exceptional divisor in BlyC™ defined as

E:={[0;w':w?:---:w"]} C Bl,C"

16



E is topologically the same as P"~'. When restricted to U/, ENU/ is the zero locus of f; = wOw!

(we set fo =1 on U]). Then, by (2.3), the transition functions

iy w*
w = —
M i

tio = w°

defines a line bundle Lz on BlyC". Similarly, we define h; : U] — (0,00) by

0

It satisfies (2.1) and thus it is a Hermitian metric on Lg. Let 2* = w%w® as the coordinates of Uj.

Notice that U} = Bl,C"\E = C"\{0}. We see that the cohomology class of

——_185 log hg = ——_185 log | 2|2
27 27

generates H?(BlyC"), as it is the Poincaré dual of E, which generates Ha, o(BIlyC").

Remark 3.2.1. Strictly speaking, since BlgC" is not compact, we need to modify the 2-form by a
gluing function A to make it compactly support, as the Poincaré dual of E should be a cohomology

class in H2(BloC"). This will be addressed in the next section.

3.3 The Blowup of P"

Let X = BlyP" be the blowup of P" at one point. We can define it explicitly by replacing Uy C P™

in Section 3.1 with BlpC". Then,
X\(HUE) =Uo\{0} = Up\{0} = C"\{0}.

Let z = (z%,--+,2") be the coordinates on X\(H U E), and let p = log|z|?. As in Section 3.1,
let u(p) : R — R be a smooth function and w = */2—:18511. Calabi symmetry provides asymptotic

conditions in which w can be extended to X.

17



Theorem 3.3.1. Let

Uo(r) :=u(logr) —blogr,

Uso(r) := u(—logr) + alogr.

If Uy and Uy extends smoothly to r = 0, then w extends smoothly to X, and [w] = a[H] — b[E] as
a cohomology class in HY1(X,C) N H?(X,R).

Proof. Let A\ : R — R be a smooth function such that

1 ifp<—1
A1 (p) =
0 ifp>1.

Write A2 = 1—\;. As in the proof of Theorem 3.1.4, to extend g@é()\gu) to a closed form in the
class a[H], we need
212
Aot (log ‘—‘ ) +alog ———
r 1+ |z/r|
to extend smoothly as r — 0. Similarly, to extend %85(/\110 to a closed form in the class —b[E],

we need

Au (log |zr|2) — blog |rz|?
to extend smoothly as » — 0F. Both are satisfied by the assumption on Uy and U,,. Hence,

J=1 _
w = or 00(A1u + Aqu)
s

extends smoothly to X and w € a[H] — b[E]. O

18



Chapter 4

The Line Bundle Mean Curvature Flow

Let (X,w) be a compact Kéhler manifold with Kédhler form w, and A cohomology class [a] €
HY1(X,R) solves the deformed Hermitian—Yang-Mills (AHYM) equation if there exists a represen-
tative a € [o] satisfying
N 1)
Im (e—x/—_la W+ v-1a)" Vno‘)> =0, (4.1)
w

where e=V=10 ¢ S1 is a fixed constant. First, we notice that this is a topological constant that

depends only on the class [w] and [«], which satisfies
Im (e_‘/__lé/ ([w] + \/—1[04])”) =0, (4.2)
X

assuming that the integration is non-zero. Under this assumption, Jacob—Yau |[16] defines the volume

functional V' : [a] — R by

V(a) = /X

(w + \/—7104)n

wTL

w” n
—~ 2 '/ (w+\/—1a) ‘
n. b'e

Equality holds iff

JV—Ta)" R
arg ((w+w—n1a)> = constant = 0, (4.3)

which is a reformulation of (4.1). Hence, a solution to the dHYM equation is a global minimizer of

the functional V.
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At any given point p € X, it is possible to choose a coordinates in which their differentials are
orthonormal on 7, X with respect to the metric associated to w. We can diagonalize o with this

basis. So, locally at the point p, we can write
A . V—1 < . .
w= TZCM ANdZ, o= TZ)\idz’ AdZ.
i=1 i=1

Implicitly, A;’s are the eigenvalues of w™'a. Define © : X — R as

SRR (EEE D

W

= argdet (1 ++v-1 w_la)

:argH(lﬂL\/—_l)\i)

=1

= arctan(\;), (4.4)
i=1

where we are choosing the principle branch of the arctan function. As a reformulation of (4.3), the

dHYM equation seeks a representative « € [] such that

O(z) =4. (4.5)

4.1 Early Results

We state some early results here as well as some general elliptic theory. Interested readers can refer

to [16]. First, we have the uniqueness theorem.
Theorem 4.1.1. [16]

1. Suppose ¢(t) : X — R is some time-dependent smooth function. Let ay = o + V/—1006¢.

Then,

LO06(1)) = Byt ( : ¢<t>) -

dt
Hence, the dHYM equation s elliptic.

2. If a solution exists, i.e. oy solves the dHYM equation, then ¢ is unique up to a constant.
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Proof. 1. We will not prove this here, but we will show in the next section that the dHYM

equation is elliptic when X = BlgP™, in the proof of Lemma 5.2.2.

2. Following [16]. First, we show that § is unique. suppose ag, and ag, both solves (4.5).
Consider the point p € X that achieves the minimum of ¢ — ¢9, which has semi-positive

definite Hessian. If we write \;(c) as the k-th eigenvalue of w™'a, we have

Ak (a¢1—¢2) (p) >0
Ak (ag,) (P) 2 Ak (@g,) (P)

S (a¢1) (r)>© (a¢2) (p)-

The last inequality follows from (4.4), by noticing that arctan is an increasing function. Since
ag, and ag, solves (4.5), we have © (o, ) = O (ay,) (p) = 6, and © (ag,) = O (ag,) (p) = 0.

Hence, él > ég. Interchanging ¢; with ¢2, we see that él = 632.

So,

1
P d
0="0, -0 = / 0 (o1 (1-1)0,)
0

= (/01 Ay dt) (¢1 — ¢2).

The last equality follows from part 1, where A; is some time-dependent elliptic operator. By

the strong maximum principle, ¢; — ¢2 = constant.

O

Since we will be using the maximum principle quite often, it is convenient to state it here as a

part of the general elliptic theory.

Definition 4.1.2. A differential operator L : C"(X) — C" 2(X) is an elliptic operator if in a local

coordinate chart,

gf. + cf,

w’L

0% f
L(f) = Zajkm +Zbi
J:.k i

where a;p, b;, ¢ are smooth functions, and (a;i) forms a positive definite matrix.
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Theorem 4.1.3 (The maximum principles). Let X be a compact manifold and L be an elliptic
operator, and ¢ be a smooth function as in Definition 4.1.2. Let f = f(t,z) : [0,T) x X - R be a

time-dependent smooth function.
1. Suppose (% — L) >0, fo >0 and ¢c>0. Then, f; > min fy.
2. Suppose (% — L) <0, fo >0 and ¢ <0. Then, f; > max fy.

Proof. We will show the first statement. The second statement is similar. First, we can replace f
by f + et? and let € \, 0 at the end. This allows us to assume (d/dt — L)f > 0 instead. Now,
suppose otherwise that 0 < f(tp,z0) = yo < min fy for the first time at t = to, i.e. f(¢t,z) > yo for

all t < tg. Then, Vf = 0. Also,

0
8tf to, zg) < Zajkaxk(?:ﬂ >

Since ¢ > 0, we see that (% — L) f <0, which is a contradiction. O

There are numerous result regarding the relationship between the existence of solution to (4.1)
and notions of geometric stability |2, 3, 4, 5, 8, 15, 23|. Different parabolic methods have been
developed [10, 13, 16, 33, 34]. One of such is known as the line bundle mean curvature flow.
Suppose oy = o + \/=100¢ as in Theorem 4.1.1. The time dependent smooth function ¢ is said to

satisfy the line bundle mean curvature flow if
—¢( ) = O(ag) — 0. (4.6)
Suppose the flow exists and converges to ¢ smoothly as t — co. Then
O (g, )— 0= li d¢—o (4.7)
@6) =0 = Jimg 26 =0, -

which solves the dHYM equation (4.5). This method is used in [16] to show existence results under

some additional assumption.

Theorem 4.1.4. [16] Suppose (X,w) has non-negative bisectional curvature, and ag = /—10d¢y
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satisfies the hypercritical phase assumption, that is,
O(ag) > (n — 1)m/2.

Then, the line bundle mean curvature flow (2.2) converges smoothly to the solution of the dHYM

equation.

The hypercritical phase assumption is imposed for two reasons. First, the maximum principle
guarantees that ©(a;) > min ©(ag) > (n — 1)7/2. So, the eigenvalues \; of w™lay, stay positive in
view of equation (4.4). Together with the assumption of non-negative bisectional curvature, those
eigenvalues are also bounded above. Second, the hypercritical phase assumption implies that O(-)
has convex level sets, in which Evans—Krylov theory applies [3]. In essence, Theorem 4.1.4 is the

consequence of the following.

Theorem 4.1.5. [16] Let \;’s be the eigenvalues of w™a,. Suppose
€ < )\i < C(t)

Then, the flow (4.6) exists for all time.

This is the key theorem in proving Theorem 1.0.2 and to construct a singularity example in

Theorem 1.0.3.

4.2 Flow Equations in the Blowup of P"

Let X = BlyP", and let w be a Kéhler form and « be a closed (1, 1)-form satisfying Calabi symmetry,
as in Theorem 3.3.1. By rescaling, assume that w € a[H| — [E] and « € p[H| — ¢[E]. Then, in local

coordinates of X\(H U E), there exists u(p),v(p) : R — R with p = log |z|? such that

w= —_laéu, o= 2—_16511.

2 s

The asymptotic conditions in Theorem 3.3.1 shows that

lim u/(p) =1, lim v/ (p) = a.

p—+—00 p—>00
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Since w is a Kéhler form, Theorem 3.1.4 implies that «” > 0 and so a > 1. Similarly, we have

lim o'(p) =¢, lim u/(p) =p.

p——00 p—00

As in finding the eigenvalues of equation (3.1), the eigenvalues of w™!a are v’/u/ with multiplicity
(n — 1), and v”/u” with multiplicity one. Furthermore, since u”(p) > 0, we have a change of
coordinates (Legendre transform)

z=1'(p) € [1,d].

Here, x is defined at 1 and a due to the asymptotic conditions for u/, and can be treated as a real

variable. This allows us to define f : [1,a] — R as a function representing v’(p) in z, i.e.

Notice that the asymptotic conditions for v’ implies that

f(1) = q, and f(a) = p.

Differentiate f(x) with respect to p, we obtain

f'@)u”(p) ="(p).

Here, we allow a slight abuse of notations, where f’ denotes derivative with respect to x, whereas

«” and v” denotes the derivative with respect to p. In this notation, the eigenvalues of wa ™! are

S with multiplicity (n — 1), and f’ with multiplicity 1.
x

This allows us to write down © explicitly:
O(a) = Z arctan(\;)
i=1

x

= arctan (f') 4+ (n — 1) arctan (i) : (4.8)
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In our setting, since a = /—190v, we can write the line bundle mean curvature flow (4.6) as
v = arctan (f') + (n — 1) arctan (i> — 6.
x

Differentiate with respect to p, we arrive at

f=u" (#4—(71—1)%). (4.9)

Hence, we can rephrase Theorem 1.0.1 as follows.

Theorem 1.0.1°. There exists smooth function fi(z) = f(t,z):[0,T) x [1,a] — R satisfying (4.9),
with f(1) = q and f(a) = p, such that

fi(x) = oo.

lim
(t,x)—(T,x0)

4.3 Stability

As shown in (4.7), the stationary solution to equation (4.9) gives a solution to the dHYM equation

(4.5), which is an ODE in our case:

arctan (f') + (n — 1) arctan (g) = 0.

The constant 6, up to mod 27, is completely determined by the values a,p and ¢, satisfying
equation (4.2). Solutions to this ODE are drawn in the Figure 4.1. The initial values f(1) = ¢
and f(a) = p are determined by the classes [w]| and [a], which are said to be stable if the solution
joining (1,q) and (a,p) is graphical. They are semi-stable if the solution has a vertical tangency,
and wunstable if the solution is not graphical. The matter of stability is completely determined
algebraically in this Calabi symmetry setting (see Lemma 1 in [15]). Our example in Theorem 1.0.1

can be created on classes in the stable case, where solution to the dHYM equation exists.
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Figure 4.1: The unstable, stable, and semi-stable cases

Notions of stability is not known on a general K&hler manifold X. Most results requires an
additional supercritical phase assumption ©(a) > (n — 1)7/2. Collins-Jacob—Yau prove that the
complex number [y —exp(—v/—1 w + a) lies in the upper half space in this case [3]. They further

show that solution to the dHYM equation exists if

> arg/ —eT Wt arg/ —e Wt (4.10)
v b'e

for any analytic irreducible subvariety V' C X. Here, by convention, we only integrate the term in
the expansion of order dim(V'). Later, some necessary Chern number inequalities were discovered
(6] for n = 3 and [12] for n = 4). It is conjectured [7] that the stability inequality (1.6) with some

Chern number inequalities are sufficient for the existence of the dHYM equations.

4.4 Comparison to the Curve Shortening Flow

The line bundle mean curvature flow in the Calabi setting (4.9) has some similarities with the
curve shortening flow. In this section, we will discuss this similarity and demonstrate the avoidance
principle, which will be the main technique in proving our main results in the next chapter.

Let v4(s) : I CR — C be a family of curves, where I C R is an interval and s is the arclength
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parameter. Let k be the usual signed curvature
Kk = — arctan~y’
dS ’Y )

and N be the unit normal vector

The family ~; is said to satisfy the curve shortening flow if
¥ = sN. (4.11)

Let (—, —) be the usual inner product. As the name suggested, the curve shortens as it evolves:

d
— [ ds = AY
i | & /I<’y,’y> s
d
— L (kN A
:—/ﬁ2d8<0.
I

Example 4.4.1. Let ; be circles of radius v R? — 2t, with a fixed center. Then, ~; satisfies the

curve shortening flow (4.11). It becomes extinct when ¢t = R?/2.

In the case when v(z) = (z, f(x)) is a graph of function, we compute

' . 1 , /"
7=(0,f), N=——=(-f.1) and ST

Vi

If we take inner product of equation (4.11) with N, we have

f//

f= Tf’?’ (4.12)

which is the same as the first term in equation (4.9).

Theorem 4.4.2 (The Avoidance Principle). Suppose v and (; are two families of curves satisfying
the curve shortening flow (4.11). If o does not intersect gy, then the distance between the two curve

is non-decreasing along the flow, as long as it is defined.
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Proof. Locally, we can describe the curves as graph of functions f and g that satisfy (4.12). Since
the two curves are disjoint at ¢ = 0, we can assume fy — go > 0. By the maximum principle,
ft — g+ > min(fy, — g¢,) for all tg > 0. This shows that the distance between two curves is non-

decreasing. O

Our flow (4.9) can be described as a flow of curve as well. Let

¢ d ; 1 xy — 'y
= —arctanvy = .
ds T AP
be an extrinsic quantity. Consider the flow
5 =" (3) (5 + (0 — DEN, (4.13)

Then, when v(x) = (z, f(x)) is a graph of function, (4.13) reduces to the line bundle mean curvature

flow (4.9).
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Chapter 5

The Proofs of the Main Theorems

Throughout the chapter, we assume that w = v/—100u satisfies Calabi symmetry. The Kéhler form
extends from C\{0} to X = BlyP" in the class a[H] — [E]. We further assume that v” < R and
u’(x) > k(z — 1)(a — ) for z € [1,a]. This is possible because the Calabi symmetry assumption
requires u” to be positive on (1,a) and vanishes at the boundary. These assumptions are for the
ease of presentation, and we believe that similar results should hold for a general w satisfying Calabi

symmetry.

5.1 A Finite Time Singularity

Consider a real number R > 1 (to be determined later), and set a = 6R. As above, Let u : [1,a] — R
be a smooth function representing a Kéhler form satisfying Calabi symmetry. Consider a class
[a] = p[H] — q[E] and assume p > a. Define a representative «g via the function fy(x), which has
a graph such as in Figure 5.1. We construct a family of shrinking circles, and a traveling family of
hyperbolas, which evolve slower than the flow (4.13). If f; is the evolution of fy via the line bundle
mean curvature flow (4.9), and fj avoids the initial circle and hyperbola at time ¢ = 0, then we see
by the avoidance principle f; must avoid these families for all time. The specific path of hyperbolas
then force f; to achieve vertical slope at some finite time.

We first construct our family of hyperbolas. Observe that both x and £ are invariant under
orthogonal transformation. Hence, by interchanging the x and y coordinates, we have the following

lemma.

Lemma 5.1.1. Suppose y = fi(x) satisfies the flow (4.9). If the inverse x = £ *(y) =: hi(y) eists,
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Figure 5.1: The graph of a function fy which forms a singularity.

then hy(y) satisfies

R yh! — h)

h=wwwncjja+m—nﬁizg (5.1)

Denote the right hand side of (5.1.1) by L(h). We now construct a family of hyperbolas g; that
are sub-solution to (5.1.1), i.e. ¢ — L(g) > 0.

Lemma 5.1.2. Suppose b(t) : [0,T) — R satisfies the initial value problem:

 kboo(bos — 1)(a® = B2)(b — boo)b®

h=
ala® — b2.)(2a2 — 1Z,)?

where 1 < by < by < a are constants. Then

a2 — b2
- 24 32
9t(y) : wﬂ—b%oy +b

is a sub-solution to the equation (5.1) fory € [—\/a2 — b2, \/a? — bgo] .
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Proof. For simplicity, write

2 2 2 2

a®—b b*—b
m=— -, 1—m=——2=".

G’Q_bgo C”2_bc2>o

We also write ¢ = ¢ for notational simplicity. Notice that by > b > by, from the initial value

problem, so m < 1. We compute

oy _my
my? + b2 g’
which in turn gives
, m  mygd m  m*y?  mg®—m2y?  mb?
g g g g g g

Furthermore the two expressions from (5.1) can be written as

g// mb

1+g?  g(g>+m?y?)’

2

and
yg —g  my*—g> —b?
v+92 92 +9%)  g9(@®+y?)
Thus
/
g yg' —g
L n—l
(9): <1+g )y2+g2)

b2 )
gy +m2 ( )9(92+y2)

( '

(g (g +m2 (g2+y2))
—(1- )b4

g(g* +m2y?)(g* + y?)

—(1 —m)b*
<k(g— 1)(a_9)g(gz +1(n2y2)()92 +y2) —

=u"(g(y))

where the last inequality follows from our assumption v”(z) > k(z — a)(a — x).
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Now, observe that

a? — b2

(a—g><a+g):a2—my2—b2:m( —y2)=m<a2—bio—y2>.

The right hand side is non-negative when y € [— Va2 — b3, /a2 — bgo] . As a result

—k(g — Dm(a® = b3, —y*)(1 — m)b*
g(a+g)(g% +m2y?)(g* + y?)
_ —k(@® =0 — ) (g — 1)(a® = b*) (b + boo) (b — boo)b*
g(a+g)(a® — b%,)*(g* + m?y?)(g* + y?)

L(g) <

)

where we plugged in for m and (1 — m). Because the above expression is negative, the inequalities

m <1, by <g<a,and by < b < by, allow us to conclude

—k(a® — b2 — y?) (oo — 1)(a® — b3)2buo (b — bso)b*
o) £ e

Next, we turn to the evolution of g:

_ T2 + 2bb _ a;fggo y? + 2bb _ % - 2
29 29 g a? — b2,
212 9
_ bb(a® — b5, — y°) <.
gla®>=0b%) ~

Putting everything together we arrive at

j— L(g) > b(a2 - bgo - y2) (b k(boo — 1)(a2 — b%)boo(b _ boo)bS) |

9(a® —12,) afa® — B2,)?(2a% — B2,

The right hand side is zero by the initial value problem. Hence we have demonstrated ¢ — L(g) > 0.
O

Set boo = R, and by = BR. Recall a = 6R, so 1 < by < by < a. Note there exists a constant

M > 0 such that

boo (boo — 1)(a? — b3) o1
a(a? — b2.)(2a%2 — b2.)> — MR3’
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Now, the differential equation (5.2) is separable, yielding

db
—Chdt = ——
T b= boo)b?’

which has the solution

b2, + 262 10g(b — bao) + 2bocb — 2b2 log(b)
203 D2

—Cit+Cy =

where Cj is given by the initial value b(0) = by = 5R. Plugging in ¢ = 0 we see directly that

_ 11/50 + log(4/5)

Co JE

Let T be the time such that b(T) = 2R. Then, we have

(5.3)

1 [(11/50 +1log(4/5) 5/8 —log(2)
T g (P ) <

for some constant A.

Proposition 5.1.3. Let y(t) satisfy (4.13). Ifv(0) does not intersect the hyperbola go(y), then ~v(t)

does not intersect gi(y) for as long as the flow is defined.

Proof. Suppose p = (z9,%0) is the first point of intersection of the two curves, occurring at time
to. Since the hyperbola g; never achieves horizontal slope, we can assume near p that ~(¢) is a
graph of a function h:(y) over the ball Bs(yg) in y-axis solving (5.1). Without loss of generality,
for 0 <t < to assume that g¢(y) > hi(y) over Bs(yo). Then over the region Bs(yo) x [0,t0), we see
(% —L)(g—h) >0, yet g—h > 0 on the parabolic boundary. The result follows from the maximum

principle. U

Next we turn to the family of shrinking circles which act as a barrier. Since £ is relatively small
for a curve far away from the origin, (4.13) behaves similarly to the curve shortening flow in this
case. The idea is to consider a family of circles far away from the origin which evolve slightly faster

than curve shortening flow, in order to absorb the small £ term.
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Proposition 5.1.4. For R = a/6 > 1 as above, assume the graph of fo(x) does not intersect the
ball BR(3R,yo). Then, for yo sufficiently negative, the family of shrinking balls B /pr—im (3R, yo)

does not intersect the family of graphs of fi(x) evolving via via (4.9), as long as the flow is defined.

Proof. Locally, we can write ¢;(x) = —/r(t)2 — (r — 3R)2 + yo as equation representing the lower
boundary of the shrinking balls, where r(t) = vV R? — 4Rt. Direct computation gives

u” ¢// B d) B U” _ 2R - —R
1+ ¢ V2= (z—-3R)?  \/r2—(z-3R)?

since by assumption u” < R. Suppose t = t; is the first time the graph of ¢; intersects f; from
above at a point zo. At this point of intersection we have f; (x0) = ¢} (o), f1o(z0) > b1, (20), and
we can assume fi(x) < ¢¢(x) for all t < to, and so f (xo) < ¢} (x0). Then at t = tg, x = x0, we

have

; L " I zof' — f
f-¢=—0+u (1+f,2+("—1)w)
) " ¢Il $0¢/—¢
R Sl )
. R me oo zo¢' — ¢
< \/r2—(x0—3R)2+u (n 1)7x%+¢2'

To achieve a contradiction we need to show that for yy sufficiently negative the right hand side

above is negative. To control the ¢’ term we can compute directly

R u'(n—1)zo¢)  —R(xd+ ¢*) + (n — 1)u”(z — 3R)

V2 — (z0 — 3R)? g + ¢ (22 + ¢2)\/1% — (0 — 3R)?

Recall that by assumption v’ < R. Choose yo sufficiently negative to ensure —(z3 + ¢?) + (n —
1)(wo — 3R) < —5(x + ¢%). Then
R u”’(n —1)xog’ —R

1
— + < <-z
V2 — (20 — 3R)? g + ¢ 212 — (zg — 3R)Z 2

since r < R. We have now demonstrated that

. 1 d'(n—-1)¢
f=0<=~ "zt
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The function ¢ is negative, so the second term on the right hand side above is positive. However,

we can choose 1y sufficiently negative so that this term is less than %, and the result follows. O

We now demonstrate the existence of a singularity using our two sub-solutions constructed

above.

= g:(y)

y = fi(x)

Figure 5.2: The maximum principle forces f; to achieve vertical slope.

For R > 1, set boo = R, by = 5R, and a = 6R. Consider the circle of radius R centered around
(3R, yo), with yo sufficiently negative so that the hypothesis of Proposition 5.1.4 is satisfied. The
right side of the circle lies on the line z = 4R. Note that the vertex of the hyperbola go(y) lies
on the line z = by = HR. Furthermore, the hyperbola intersects z = a at y = +v/35R2. Since
p > a = 6R, we see (a,p) lies above the top of the hyperbola go(y). Thus, it is possible to choose
a function fp : [1,a] — R with fo(1) = ¢, fo(a) = p, such that fy goes below Br(3R,yo), then
increases above the hyperbola go(y) before arriving at (a, p).

Let fi(x) be the solution of (4.9) starting at fy(¢). By Proposition 5.1.3 and Proposition 5.1.4,
ft(z) can not intersect g:(y) nor B, /ma—7 (3R, yo) as long as the flow is defined. Note it takes time
t = R/4 for B /3R, y0) to shrink a point. Also, if 7' is the time the hyperbola gr(y) has
pushed out to the line z = 2R, as we have seen by (5.3) there exists a constant A such that 7' < A.
Hence, choose R large enough to ensure A < R/4 and thus T' < R/4, which implies the hyperbola

will push past the center of the shrinking circles before they completely disappear. This forces f;
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to first have a vertical tangency, as illustrated in Figure 5.2, demonstrating the existence of a finite

time singularity and proving Theorem 1.0.1.

5.2 Long Time Existence

The example above shows that a finite-time singularity for the flow (4.9) can occur in the interior
of the interval (1,a). In particular, one can not always expect sup(j ,) |f;(z)| to stay bounded for
finite time. However, we can show that, for finite time, the first derivative stays bounded on the

boundary.

Proposition 5.2.1. Suppose fi(z) is defined on (t,x) € [0,T) x [1,a]. Then, there exists uniform
constants A, B such that
W]+ 1 fi(a)] < AP,

Proof. We will only show that |f’(1)] < C(T). The other end point is treated similarly. Con-
sider g;() = q + AeP=V¥(z — 1). Choose A >> 0 sufficiently large to ensure both AePn—1t >
2max{|q|, |q|7'} and fo < go for all z € (1,a]. Choose B > 0 so that u” < B(z — 1). We claim
that f; < g; for all time ¢ € [0, 7).

Suppose not, and assume the curves touch for the first time at * = zg > 1 and ¢t = ¢3. Then,
fro(®0) = gro(w0), fy(x0) = gy (w0), f1(x0) < gfy(w0), and fro(w0) > Gy (wo)- Thus, when z = o,

t = to we have

P f// xOf/_f
el G A )

/
< 8o —1) (g + -0
AxgeB—Dto _ g ABn—1to (xg—1)
73+ (g + AP a(zg — 1))
1— AflefB(nfl)toq
1+ ¢2

=B(xg—1)(n—1)

< ABeB V(20 — 1)(n — 1)

)

since :L‘%—i—(q—i—AeB("*l)tO (z9—1))% > 1+¢>. Furthermore by assumption on A we have —A~le=Bn—1log <

%q2, and so
1— A*lefB(nfl)th 1
1+ q? -
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Hence,

f < ABePU (5 —1)(n — 1) = g,

a contradiction. Thus g; serves as a barrier giving an upper bound for the derivative f’(1) <

AeBm=Dt The lower bound is treated similarly. O

We now turn to the case where we do have long time existence, namely when n > 3 and «g has

supercritical phase, ©(ag) > (n —2)75.
Lemma 5.2.2. The supercritical phase condition is preserved along the flow.

Proof. We compute the evolution of © = ©(«;) using (4.8) and (4.9).

%@(at) = % (arctan(f’) + (n — 1) arctan <£)>
f f
"t Ve p
u’ ru' 1 du"\
=1 m2° +((n_1)w2+f2+1+f'2%)@‘ (5.4)

This shows that the dHYM equation is elliptic, and the result follows from the maximum principle.

Ul
Lemma 5.2.3. We have fi(x) > 0 for all t > 0.

Proof. Suppose there exists a time t¢ and a point xo where f;,(xg) < 0, which implies arctan (%) <

0. Let O(xp) := (n — 1) arctan (%) + arctan ('), and so super critical phase implies

0

arctan (f') > (n — 2)%,

which is impossible for n > 3. ]
Lemma 5.2.4. There exists a uniform constant C so that f{(x) > —C for all t > 0.

Proof. By the supercritical phase condition

X

arctan (f{) > (n — 2)% — (n —1)arctan (ﬁ) .
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Since x > 1 and f; < C by the maximum principle, there exists an € > 0 so that arctan (%) < 5—e
Thus

arctan (f{) > —g + (n —1e.
This gives a lower bound for f/. O

Proposition 5.2.5. A solution fi(x) to (4.9) has bounded first derivative for all times T' < co. In

particular, there exists uniform constants A, B so that

sup | f{(z)| < A(1 +t)e”
z€[1,a]

Proof. By the previous lemma we only need an upper bound for f/. By Proposition 5.2.1 we have

AT P+ 1fia)]) <1

As aresult if sup,¢p g A~Le=BY fl(x)| is large, this supremum must be achieved at an interior point.
Let xp be the interior max. At this point we have f/(z9) > 0, f{'(z¢) = 0, and f;"(z9) < 0. By

direct computation at xg it holds

o d " I xfl /
e D)

du mOfl f// :Ef/—f
<" YVaere 2+f2 (1+f’2+(n_1)m>
Scrf-/_‘_u//(1—{_]“2 (n ) (xOf(xojffl;O)+ff))7

where we repeatedly plugged in that f”(zo) = 0. Since f is positive the term —2zof(f’)? is negative,

and thus
fao+ f2f —aif’

fr<Cf +u"2(n—1) CEYE

<Cf +C

for some constant C.
Now, consider the function A~!e=B!f/(x) — Ct, and by making B larger, if necessary, we can

assume B > C. At an interior maximum we see

d

ZE(A_%TBU”—C%)SO,
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from which the result follows. O

We remark that the above proof fails when the function f is not positive, since then the term
—220f(f)? is positive. Thus the best inequality one can derive in this case is f' < Cf’2, which
is certainly not enough to prevent a finite time singularity, as we have demonstrated. We are now

ready to prove our second main result.

Proof of Theorem 1.0.2. Let ay := o + i00¢;, be the solution to (4.6) starting at g, and assume
the flow is defined for ¢ € [0,7T) for some time 7" < co. By proposition 5.2.5, all the eigenvalues of

Loy are bounded uniformly by a constant Cp. From here the result follows from the argument

o
outlined in Proposition 5.2 in [16].

The idea is that once the eigenvalues are bounded, the operator A, is uniformly elliptic. Given
O(ay¢) solves the heat equation (5.4), the parabolic estimates of Krylov-Safonov ([18] Theorem 11,
Section 4.2) imply ©(ay) is in C® in time which gives ¢; is uniformly bounded in C*% in time.
Now, the uniform eigenvalue bounds also imply ¢; has bounded C? norm. The supercritical phase
assumption implies the operator ©(-) has convex level sets, which allows us to apply Evans-Krylov
theory (see Section 6 of [3]). This gives uniform C*® bounds for ¢; which can be bootstrapped to

higher order estimates. Thus we get smooth convergence ¢; — ¢ to some limit, which allows us

to continue the flow past the time 7. O

5.3 Singular Behavior at t = oo

In this session we construct an example which singularity at infinite times occurs at the exceptional
divisor [E]. We first assume the existence of a stationary solution v, to (4.13). We write v () =

(Z00(0), Yoo (0)) = (roo(0) cos 0,150 (0) sin 8), with 0 € [Opin, Omax]. We also require
1<25(0) <a and Zoo(Omin) = Too(Omax) = a. (5.5)

We prove the following.

Proposition 5.3.1. Suppose

!
r’o >0 and =] < 2tané. (5.6)

Too

39



Then, There exists a subsolution v:(0) = (r¢(0) cosO,r:(0)sinf) such that vo(0) = (a,atan) and

V¢ = Yoo UNiformly as t — oo.

Proof. Our first step is to write down (4.13) in polar coordinates. Note that 4 = (7 cos#,7sin ),

with the normal vector to v given by

1
N = ) 2)1/2(—'r'sin6 —rcosf,r’ cosf — rsind).
2 47

Thus (,N) = 7(7«'2+7;W' In this case the extrinsic quantity £ is simply & = %9 = m
The curvature of a plane curve in polar coordinates is given by xk = % Hence taking the
r’24r2)2
dot product of (4.13) with N we arrive at
. 2’2 — ! 4 2
rr = —u” <—7"2 2 +(n-1)].
Because v is stationary, we have
2712 — roor! 12
— ,2000‘23 X2 +(n—-1)=0. (5.7)
ré + 15
'/
Y0
T
Yt //
7
~ < -
ES

Figure 5.3: v being the interpolation between vy and voo.

Now, let b = b(t) : [0,00) — R be an increasing function to be determined later. We use b(t) to

1 1 b cos? 0
— . 5.8
70) 5 Gz ) (58)

define 7(6) by

For an appropriate choice of b(t), we will show that the family of curves v;(0) = (r:(0) cos 0, r¢(0) sin )
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gives a subsolution to (4.13). The curve is shown in Figure 5.3 as an interpolation between 7y and
Yo Differentiating (5.8) with respect to 8, and suppressing dependence on ¢ and 6 from our notation

for simplicity, we have

r’ 1 (brgo sin(20))

B 1+0b r3, 2a?
as well as
3?1 brit, 3br’2 N cos(20)
ot 14b\ r3 rd a? )
So,
272 —pr!" 4 2 r’ 3?2 N 1 "\ 2 9
—_— == - — —— =) r
4 3 ) 3
1 br’. 3br2  cos(20) b cos?0
- 3 i 3 Ttz vt 3
1+0 T3 Tao a T5 a
B (br’oo sin(2(9))2 (i N c0520>
r3, 2a? r2 a?
By (5.7),
br’’ 3br2 b —b 2, .2 )
T oLt T (o) T
Now, for notational simplicity, set
br! sin(26 b cos?f
A==+ (2 )’ B=— 2
T3 2a r5 a

Then returning to the above we see

-1
2’2 — ! 4 2 1 22 — !l 4 2 '\ 2 1\?2
72 4 2 T2 r4 r3 + r2

B —b 2 2 9 sing A2
= T 5 5 (réo ((n— D(rZ +r3) —rfx,) + 2z B
Hence
2r’2 — !l 4 12 1 Bb Bbr!?,
72 + 72 +(n_1)_A2+B2(_( _1)%_(71_2) rd
Bsin? 0
+ 2 +(n—2)A% + (n — 1)B2) .
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We now compute

Bb 9 b cos? 0
—(n—l)%—i—(n—l)B :(n—l)B<B—%):(n—1)B po

and
e Bbr’2 _ brl, sin(26) N sin?(26) B br'2 cos? 6
rd, a’r3, 4at a’ri,
Combining these, we have
2r"2 — pp! 12 tn—1) (n —1)Bcos? § + Bsin? 6 N (n — 2)sin?(26)
_— n — =
r’2 412 a’(A? + B?) 4a*(A% + B?)
4= 2 (bri sin(20) br'2 cos? 6
A? + B? a’r3, a’rd, '

By assumption,
/
r
o >0 and -= < 2tan,

T'oo

which implies
brigsin(20) br'2 cos? 6

2,3 2,4
asrg, a“rs

> 0.

Additionally, 74,sin6 and cos@ are all bounded above and below away from zero. This implies

there exists a constant Cy so that, for large b,

or'2 — pp!t 4 2 4
2 4 12 +(n—1)27.

Returning to (5.8), we take the derivative of both sides in ¢
2r b i+00520_1+b . b COS2G_L
3 (14+b)2 \ 72, a? 2 ) (1402 \ a2 r2 )’
Multiplying by —r* and plugging in the square of (5.8) for r* gives
- cos2 6 1 b +c0826 726
rr = - || =
a? r2 ) \rZ a?

-2
Too +Ta b cos2 6 .
= (roox — ra) (a27“27“go ) <T2 + 2 b

[e.9]
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for some Cy > 0 whenever b is large. Note that the polar curves r(6) intersect the line = = a to the

zeroth order, which implies there exists a constant C3 > 0 for which
0> inf (v 'rex —ra))+ inf (recz —ra)>—Cs. (5.9)

z€la—e,a] z€[1,qa]

Next, we use the same assumption on the background Kéhler form as before, namely, for x €

[1,a — €] we assume u”(z) > k(z — 1). This implies

u” > k(rcosf — 1)

—k \/(1+b)<%+cof59)10080—1
y \/(1+b)<m+%)_1—1
>k \/(1+b)<b+2)_1—1

For simplicity, write the right hand side above as C(b), which is a smooth positive function ap-

proaching 0 as b — oo. Combining with (5.9) we arrive at,

2 CyC5 1 .
S>> 23 (14 —— )b
u”rr > B2 ( + C(b)) b

If b solves the initial value problem

: 1 \!' o
b=2(14+ — b; b
(+C@) CyC3 0 >0,

then r4(#) defines a subsolution:

O

We now show that the assumption on ro in Proposition 5.3.1 can be satisfied with an explicit
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example.

Lemma 5.3.2. There exists a semi-stable class [a] and an initial representative cg which satisfies

the assumptions in Theorem 1.0.2 such that corresponding stationary solution r« satisfies (5.6) with
')’oo(amax) - (a,p).

Proof. Suppose 1 satisfies (5.7). Let

(o]

tan 3 :=

y'(0)  rhosinf+recost  riorilttanf +1
2/(0)  rlgcosf —reosind L _rx! —tand

As a result
/

oo — cot(B — 0) = tan(n/2 — 3 + 6).

Too
Now, choose ¢ > 0. One can solve the initial value problem (5.7) in a semi-stable configuration,
and set 0y s0 Y0(6p) = (1,q) and 7. (6p) is vertical, which implies 5(6p) = 7/2. In particular at

this point

750 (60)
Too(00)

r’(6p) >0 and = tan(fy) < 2tan(6y).

Thus, there exists a neighborhood of 6y where (5.6) holds.
We now check (5.5). At 6 = 6,

/

x T'so COS 0 (r;.o - tan@) =0

o ,roo

cosf

" / " 2

o= (—2roerl, tan b + rogri, — r3,)
o0

cos 6
= (—27{% + TooTh — 'rgo) >0,
Too

where last inequality follows from (5.7). Hence, z+ achieves local minimum at 6 = 6y. We choose
a slightly greater than 1 such that Zoo(Omin) = Too(fmax) = a. Finally, let 7¢ be an initial curve
connecting (1, q) to (a,p) that lies on the interior of the region R bounded by 7+ and x = a. Note

that the angle of the (1, 1) form «g associated to 7 is given by

O(ap) = (n — 1)arctan(yp) + arctan(y)) = (n — 1)0 + .

The supercritical phase assumption in Theorem 1.0.2 is satisfied if we choose ¢ large enough so 0 is
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sufficiently close to 7/2 over the entire region R O

e

~ —

7

Figure 5.4: Singularity at (1,q) at ¢t = oc.

Choose f; to be above the curve 7y, at t = tg as in Figure 5.4. The avoidance principle guarantees
that foo, ft and ~ are disjoint for all ¢ > tg. Using the subsolution in Theorem 5.3.1 together with
the long time existence result in Theorem 1.0.2, a singularity is guaranteed to occur only at the point
where 75, achieves vertical tangency, which by construction, is at the point (1, q), corresponding to

the exceptional divisor of X.

5.4 Future Directions

There are many exciting and interesting questions which build off my previous results. One question
would be to see whether similar singularity can be constructed on a more general Kéhler manifold,
perhaps by gluing our example in Theorem 1.0.1. The singularity we create occurs along an annulus
region in the blowup of P™, away from the essential divisors, and this is what we would need to
glue in. The idea is as follows. Suppose we have a general Kdhler manifold with a solution to the
dHYM equation. We can fix a point and zoom-in the neighborhood, and replace an annulus in the
neighborhood by the one from the blowup of P". It creates a new representative & € [a]. We let
& to flow along the line bundle mean curvature flow and hopefully, we can get a singularity in the

annulus region before the information outside of the annulus comes in.

It would also be interesting to draw more parallels between the line bundle mean curvature flow

and the graphical LMCF. For a graphical Lagrangian, let \;’s be the eigenvalues of the Jacobian
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of the graph. We say that the Lagrangian is convex if \; > 0 for all i, and it is 2-convex if
(A +25)(1 = XiAj) > 0 for all @ # j. It is shown that both convexity and 2-convexity are preserved
along the LMCF [27, 35|, by computing the evolution of a certain tensor operator. The flow
converges in this settings, and we hope to obtain similar results for the line bundle mean curvature

flow, with curvature assumptions on the background Ké&hler manifold.

Finally, the location where long-time singularity happens is also of interest. Our example in
Theorem 1.0.3 is constructed in the unstable case and the singularity occurs at the destabilizing
subvariety, i.e. at the subvariety in which equation (1.6) fails to hold. One would expect this
relationship between stability and singularity formation to hold in more general settings on the

spaces where stability is defined.
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