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Abstract

The Virtual Element Method (VEM) is a recently introduced extension of the Finite Element

Method (FEM) to general polygonal and polyhedral (polytopal) meshes. By using a set of virtual

canonical basis functions, the method provides flexibility for meshing complex geometries with

convex and nonconvex polygonal elements, as well as providing a simple approach to handling

non-matching meshes and fracturing. Polynomial projection operators are introduced to provide

approximation accuracy and to preserve polynomial consistency. However, one limitation of the

VEM, is the need to devise a problem dependent stabilization term to retain coercivity. The choice

of stabilization adds complexity in formulating new problems and an incorrect choice can adversely

affect the solution accuracy. In this dissertation, we develop virtual element methods that do not

rely on a stabilization term for problems in planar linear elasticity.

We first present strain-based approaches, which use higher order polynomials to enhance the

strain polynomial approximation. In these methods, the polynomials are only chosen to preserve

the stability of the system. We give theoretical arguments for the stability, well-posedness and

prove convergence estimates for the first-order case. These approaches are numerically tested on

benchmark elasticity problems, and the results show that the methods attain optimal convergence

rates and provide a viable alternative to the standard VEM for compressible materials. However,

for thin structures or nearly-incompressible materials, we find that the strain-based approaches and

the standard VEM are overly stiff and suffer from locking phenomena.

To alleviate locking, we appeal to stress-based approaches that rely on the Hellinger–Reissner

variational formulation. These methods use selectively chosen higher order divergence-free polyno-

mials that preserve the stability as well as alleviate locking. Starting with quadrilateral elements,

we use a five-parameter expansion of the stress field to construct a method that is free of volumetric

and shear locking. For six-noded triangular elements, we find that a fifteen-term divergence-free

stress expansion resulted in a method that does not require stabilization and shows immunity to

locking. An alternative to using divergence-free polynomials is also explored. This approach uses

a penalty term to weakly enforce the equilibrium equations. Numerical results reveal that the

stress-based approaches provide optimal convergence, and robustness for compressible and nearly-

incompressible problems.
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CHAPTER 1

Introduction

For many applications in science and engineering, there is a need to solve elliptic boundary-

value problems (BVPs) that describe physical phenomena. Classically, the Finite Element Method

(FEM) is used to solve these problems. Although the FEM has been successfully applied to many

problems in computational mechanics, a long standing issue is to develop a finite element formu-

lation that is robust (does not suffer from volumetric and shear locking) [3], accurate on coarse

meshes, and can be easily meshed. Low-order, fully integrated displacement-based finite elements

are prone to volumetric locking as the Poisson’s ratio ν → 0.5, and for bending-dominated prob-

lems, spurious shear strains (element tends to be overly stiff) lead to shear locking phenomenon.

Many techniques such as the B-bar and selective integration formulations [77,94], method of in-

compatible modes [113], assumed enhanced strain [102,103], stabilized elements [17,18], mixed

elements [121], and hybrid-stress methods [63,64,67,89,90,91] have been developed to alleviate

locking in the nearly-incompressible limit and for bending-dominated problems. However, many of

these methods are only applicable to quadrilateral and hexahedral elements. For many complex

geometries, meshes of quadrilateral and hexahedral elements must be manually constructed. This

process is time consuming since there are currently no available high-quality automatic mesh gener-

ators for quadrilateral or hexahedral elements. Triangular and tetrahedral meshes can be automat-

ically generated with well-established robust mesh generation tools; however, specialized methods

are needed to treat locking. Progress has been made to construct modified triangular elements that

are robust and accurate: the variational multiscale approach [99], hybrid-stress elements using Airy

stress functions [69,73,75,96,111], Bézier elements [68], F-bar and reduced integration [50,81] to

name a few. Another promising approach is the use of composite elements [29,57,60,72,83,108].

In this approach, an element is split into sub-triangles (sub-tetrahedra), and then on each sub-

triangle the strain is approximated and combined to recover the strain field over the entire element.

Similar constructions are also used in [23] to construct a three-dimensional brick element for nearly

incompressible nonlinear elasticity problems and in [44,45,46,55] for triangular bending elements.
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The Virtual Element Method (VEM) [9,11,14] is a recently developed numerical method used

to solve boundary-value problems. From [30], the method can be view as a generalization of the

hourglass stabilized finite element method to polygonal (polyhedral) meshes. In the VEM, the

polygonal basis functions are not explicitly computed and are unknown (virtual) in each element.

However, the virtual functions are assigned values, called the degrees of freedom (DOF), that are

sufficient to construct polynomial projection operators. These polynomial projections are needed to

approximate the virtual functions inside an element. The polynomial functions are given in global

coordinates and do not rely on the use of an isoparametric mapping. Therefore, the projections

are well-defined for convex, nonconvex, and even degenerate polygonal shapes, which gives the

method more flexibility when meshing complicated geometries. The flexibility of VEM has attracted

many researchers to develop methods for applications in solid continua; examples include linear

elasticity [6, 11], applications in three-dimensional elasticity [58], linear elastodynamics [86, 87],

finite deformations [39,53,114], linear fracture mechanics [82], contact problems [115], mixed and

hybrid formulations [7,8,24,48,51].

The advent of the virtual element method has also provided new routes to potentially alleviate

locking for nearly-incompressible materials. Initially, mixed variational principles, hybrid formula-

tions, node based methods, B-bar and selective reduced integration strategies that are prominent

in finite element formulations for constrained problems have been adopted in the virtual element

method [7,8,48,51,84,85]. In [24], a comparison of different virtual element methods to classical

finite element techniques for incompressible problems is presented. Although the virtual element

formulation have resolved many of the difficulties of the finite element method, one unsettled com-

plication of the VEM is the need to construct a stabilization term. Many studies have focused on

determining and testing the robustness of stabilization terms [30,52,78,97,110]. However, having

a stabilization term adds complexity in formulating nonlinear problems and an incorrect choice can

affect accuracy and conditioning.

In the past few years, there has been a growing interest in developing stabilization-free virtual

element methods. For the Poisson equation, the pioneering development is introduced in [20], a

stabilization-free mixed method is described in [25], and another approach using divergence-free

basis functions is given in [21]. The application of the stabilization-free approach to the Laplacian

eigenvalue problem is presented in [79]. There has also been progress in stabilization-free methods
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for computational mechanics. Early extensions to linear elasticity are given in [36,37] and an earlier

approach explored in [54]. In [119,120] the SF-VEM is introduced for two-dimensional finite strain

and three dimensional elasticity problems. In [70,71], a Hu–Washizu variational formulation is used

to construct a stabilization-free method for static and dynamic problems on quadrilateral meshes,

and in [47] the method is analyzed for stability and convergence. In [35,38] an alternative approach

using a stress-based Hellinger–Reissner variational formulation is developed for quadrilateral and

six-noded triangular meshes.

In this thesis, we investigate the recently introduced Stabilization-Free Virtual Element Method

(SF-VEM) [20] and its applications to problems in linear elasticity. Then connecting the idea to

hybrid-stress methods found in FEM, we explore the use of a hybrid variational approach to develop

virtual element methods that have robust performance and are immune to locking.

Parts of this thesis have been published in peer-reviewed journals. Chapter 3 is based on [37],

Chapter 4 describes work established in [36], Chapter 5 appears in [38], and Chapter 6 is found

in [35].

In Chapter 2, we present the basic ideas and development of the virtual element method. We

first introduce the necessary background spaces and the weak problem. Then, we discuss the

construction of the standard virtual element element for the scalar Poisson equation, describe a

suitable discrete bilinear form with stabilization, and show convergence results. Finally, we briefly

discuss the standard virtual element method for linear elasticity problems.

In Chapter 3, we describe the extension of the first-order stabilization-free virtual element

method to compressible linear elasticity problems. We detail the construction of an enhanced virtual

element space, polynomial projection operators and the discrete weak problem. We show theoretical

well-posedness and optimal convergence results. We also detail the numerical implementation and

then present representative benchmark problems, which numerically affirm the convergence rates

and applicability of the method.

Chapter 4 continues with the development of the stabilization-free virtual element method to

arbitrary order. We apply the idea of serendipity elements to reduce the total number of degrees of

freedom. A serendipity projection operator is presented and is used to construct a high-order strain

projection. An eigenvalue analysis is then performed to determine a criterion to avoid needing a
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stabilization term. The method is tested on several benchmark problems and the convergence is

compared to theoretical results.

In Chapter 5, to alleviate locking of thin structures and nearly incompressible materials, we

revisit the hybrid-stress finite element method [89,90] to develop a stress-hybrid virtual element

method for quadrilateral elements. The Hellinger–Reissner variational principle, with initially

independent stress and displacement fields, is used to derive the weak equilibrium equations and a

new projection operator for the stress. An eigenvalue analysis is then used to examine the stability

and rotational invariance of the method. A variety of nearly incompressible problems with convex

and nonconvex meshes is solved and the performance of the stress-hybrid VEM is compared to the

B-bar VEM [85].

In Chapter 6, we extend the quadrilateral SH-VEM to develop a stress-hybrid virtual element

method for six-noded triangular meshes. We investigate the performance and stability for different

choices of stress basis functions. For flexibility in the choice of stress basis functions, we also

reintroduce a penalization term that weakly enforces the equilibrium conditions on the stress basis

functions. Both of these methods are utilized to solve many benchmark problems in the nearly

incompressible regime, and their performance is compared to the B-bar VEM and composite triangle

FEM [60].

In Chapter 7, we summarize the main results obtained in this work and close with some fi-

nal remarks on the promise of stabilization-free virtual element methods in computational solid

mechanics.
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CHAPTER 2

Virtual Element Method

In this chapter, we introduce some of the main features of the standard virtual element method

for elliptic boundary-value problems. We start off by reviewing some preliminary definitions and

notation of function spaces and functional analysis. Then we discuss the Poisson problem and derive

its associated weak form. For the sake of comparison, we examine the basics of triangular finite

element methods applied to the Poisson problem and outline some convergence results. We then

investigate the same problem using the virtual element method, and review some of the stability

and convergence results of the VEM. Finally, we briefly describe the extension of the VEM for

linear elasticity problems.

2.1. Mathematical preliminaries

In this section, we introduce basic linear functional analysis concepts and variational calculus

that will be used to study the weak form of an elliptic boundary-value problem. More details of

the mathematical theory used for elliptic problems and in the finite element method can be found

in [27,28,42].

2.1.1. Hilbert spaces. Let Ω be a bounded set with piecewise smooth boundary ∂Ω. For

this work, we use functions that are either square integrable or its derivatives are square integrable

in Ω. We denote the space of functions that are square-integrable on Ω by:

L2(Ω) =

{
w :

∫
Ω
w2 dx <∞

}
. (2.1)

For every u, v ∈ L2(Ω), define the inner product

(u, v)L2 =

∫
Ω
uv dx, (2.2)
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and the induced norm

∥u∥L2 =
√
(u, u)L2(Ω) =

(∫
Ω
u2 dx

) 1
2

. (2.3)

The space L2(Ω) equipped with the inner product is a Hilbert space (complete inner product space).

For the study of partial differential equations, we are also interested in the derivative (weak

sense) of functions and the associated spaces. Let α ∈ Zn
≥0 be an element in the set of n-tuple

non-negative integers and denote the magnitude of α by |α| = α1 + α2 + · · ·+ αn, where αi is the

i-th component of α. For a sufficiently smooth function g, the α-th partial derivative is given by

Dαg =
∂|α|g

∂xα1
1 ∂xα2

2 . . . ∂xαn
n
. (2.4)

However, the classical definition of the derivative is not well-defined for functions in L2 or other

similar function spaces. Therefore, we introduce the concept of the weak derivative. Let g ∈ C∞
c (Ω)

be any infinitely differentiable function with compact support, then u ∈ L2(Ω) is said to have an

α-th weak derivative if there exists a function v ∈ L2(Ω) such that∫
Ω
vg dx = (−1)|α|

∫
Ω
uDαg dx. (2.5)

If such a function v exists, then it is called the α-th weak derivative of u (it is unique) and is

denoted v = Dαu. Then define the space Hk(Ω) as the collection of L2 functions with all of its

weak derivatives up to order k that are square-integrable by

Hk(Ω) =
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) ∀ |α| ≤ k

}
, (2.6)

For any u, v ∈ Hk(Ω), define the inner product

(u, v)Hk(Ω) =
∑
|α|≤k

∫
Ω
(Dαu)(Dαv) dx, (2.7)

and the induced norm

∥u∥Hk(Ω) =
√
(u, u)Hk(Ω) =

∑
|α|≤k

∫
Ω
(Dαu)2 dx

 1
2

. (2.8)
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For convenience, we also define the seminorm | · |HK(Ω) by

|u|Hk(Ω) =

∑
|α|=k

∫
Ω
(Dαu)2 dx

 1
2

. (2.9)

In this work, we are mainly concerned with H1(Ω); in this space, the weak derivative notation

can be simplified by writing it in terms of the gradient function:

H1(Ω) =
{
u ∈ L2(Ω) : ∇u ∈ L2(Ω)

}
, (2.10)

For any u, v ∈ H1(Ω), define the inner product

(u, v)H1(Ω) =

∫
Ω
uv dx+

∫
Ω
∇u · ∇v dx, (2.11)

with the induced norm

∥u∥H1(Ω) =
√
(u, u)H1(Ω) =

(∫
Ω
u2 dx+

∫
Ω
|∇u|2 dx

) 1
2

, (2.12)

and the seminorm | · |H1(Ω):

|u|H1(Ω) =

(∫
Ω
|∇u|2 dx

) 1
2

. (2.13)

For boundary-value problems, an important space is H1
0 (Ω) ⊂ H1(Ω) which contains functions

that vanish along the boundary

H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
. (2.14)

We note that in the space H1(Ω), the statement v = 0 is defined in terms of the trace operator and

is not well-defined pointwise (see [27,42]). The seminorm | · |H1(Ω) on the space H1(Ω) is a norm

on H1
0 (Ω), and is equivalent to the norm ∥ · ∥H1(Ω). That is, for any v ∈ H1

0 (Ω),

∥v∥H1
0 (Ω) = |v|H1(Ω), (2.15)

and there exists constants C1, C2 such that

C1∥v∥H1(Ω) ≤ ∥v∥H1
0 (Ω) ≤ C2∥v∥H1Ω), (2.16)
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where the equivalence (2.16) is shown using the Poincare–Friedrichs inequality [42].

In general, for a function space V (Ω), the notation [V (Ω)]d represents a space of d-dimensional

vector-valued functions such that each component is in V (Ω). If the dimension d of the space is

clear, then for convenience, we may use the notation V (Ω) := [V (Ω)]d.

2.1.2. Bilinear forms and functionals. Let V be a normed linear space and let a : V ×V →

R be a mapping that takes two elements from V and returns a scalar value. If the map a(·, ·) is

linear in each argument, then it is called a bilinear form. A bilinear form is continuous (bounded)

if there exists a constant C1 > 0 such that

|a(u, v)| ≤ C1∥u∥V ∥v∥V ∀u, v ∈ V, (2.17)

and is coercive if there exists a C2 > 0 such that

a(u, u) ≥ C2∥u∥2V ∀u ∈ V. (2.18)

A bilinear form a(·, ·) is called symmetric if it satisfies

a(u, v) = a(v, u) ∀u, v ∈ V. (2.19)

Combining (2.17) and (2.18), we have that a bounded and coercive bilinear form satisfies the

relation:

C2∥u∥2V ≤ a(u, u) ≤ C1∥u∥2V . (2.20)

If a(·, ·) is also symmetric, then it defines an inner product and induces a norm ∥u∥a =
√
a(u, u).

By (2.20) this norm is equivalent to the norm on V . That is

C2∥u∥2V ≤ ∥u∥2a ≤ C1∥u∥2V . (2.21)

Let F : V → R be a map that takes an element from V and returns a real number. If F is linear

with respect to its argument then it is called a linear functional and if it satisfies for all v ∈ V the

condition

|F (v)| ≤ C∥v∥V , (2.22)

then F is bounded (continuous).

8



Remark 2.1.1. We note if V is an inner product space with inner product (·, ·)V , then for a

fixed element f ∈ V , the map (f, ·) : V → R defines a linear functional on V . Therefore, we will

often use the notation (f, ·) to refer to a linear functional.

2.1.3. Weak form and variational principles. Suppose we have a symmetric bounded

bilinear form a(·, ·) and a bounded functional F (·) generated from a boundary-value problem.

Then a general weak problem is of the form: find u ∈ V , such that

a(u, v) = F (v) ∀v ∈ V. (2.23)

For a symmetric bilinear form, this is equivalent to finding a solution to the variational problem:

min
v∈V

Π[v] := min
v∈V

1

2
a(v, v)− F (v). (2.24)

For the weak and variational problem, the Lax–Milgram theorem guarantees the existence and

uniqueness of a solution:

Theorem 2.1.1. Let V be a Hilbert space, a(·, ·) : V ×V → R a bounded (2.17), coercive (2.18)

bilinear form, and F : V → R a bounded linear functional. Then the weak problem given in (2.23)

has a unique solution.

Both (2.23) and (2.24) are used in this work to formulate virtual element methods.

2.2. Governing equation and weak form of Poisson’s equation

For simplicity, we start with the scalar Poisson boundary-value problem with homogeneous

boundary conditions given by

−∆u = f in Ω, (2.25a)

u = 0 in ∂Ω, (2.25b)

where Ω ⊂ R2 is a bounded region and f ∈ L2(Ω). This gives the strong form of the Poisson

problem. Solutions to the strong form are twice continuously differentiable and satisfy the Poisson

equation pointwise. However, for the finite element method, the virtual element method and

other similar methods, this requirement is restrictive. Instead, we introduce the weak form of the

9



Poisson problem, which requires only weak differentiability and satisfaction of Poisson’s equation

in an integral sense.

Let v be a test function, multiply both sides of (2.25a) by v and integrate over the domain Ω:

−
∫
Ω
v∆u dx =

∫
Ω
fv dx. (2.26)

Now we recall the vector identity

∇ · (v∇u) = ∇v · ∇u+ v∆u. (2.27)

Then using (2.27), we rewrite the integral expression in (2.26) as∫
Ω
∇v · ∇u dx−

∫
Ω
∇ · (v∇u) dx =

∫
Ω
fv dx.

After applying the divergence theorem, we obtain∫
Ω
∇v · ∇u dx−

∫
∂Ω

(v∇u) · nds =
∫
Ω
fv dx.

By taking v ∈ H1
0 (Ω), we have that v vanishes along the boundary ∂Ω, so the integral over the

boundary also vanishes. Therefore, the original differential equation becomes∫
Ω
∇v · ∇u dx =

∫
Ω
fv dx. (2.28)

Then we can define the weak problem as: find the function u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (2.29a)

where the bilinear form a(u, v) and linear functional (f, v) are given by

a(u, v) =

∫
Ω
∇u · ∇v dx, (2.29b)

(f, v) =

∫
Ω
fv dx. (2.29c)

We note, the bilinear form (2.29b) associated with the Poisson problem is the square of the H1

seminorm (2.13). Since we are looking for solutions in H1
0 (Ω), the bilinear form induces the H1

0

norm:
√
a(vh, vh) = ∥vh∥H1

0 (Ω). It can be shown that this problem satisfies the Lax–Milgram

10



theorem, and thus has a unique solution. This solution is called the weak solution to the Poisson

boundary-value problem.

The weak problem seeks a solution in an infinite dimensional space of functions, which is still

very difficult for general problems. In order to get useful results, we will need to approximate the

problem on finite dimensional subspaces. The main technique of both the finite element method

and virtual element method is to first break the domain Ω into finitely many pieces, next find a

finite dimensional solution space and discrete versions of a(·, ·) that approximates the solution on

each piece, finally combine the approximations into a single system of equations and solve.

2.3. Finite element method for Poisson’s equation

As a point of reference, we first introduce the basics of classic finite element method applied to

the Poisson equation. In the finite element method, the domain Ω is discretized into finitely many

triangular or quadrilateral elements. For simplicity, we use meshes of triangular elements. Denote

T h as the decomposition of Ω into triangular elements E with vertices xi = (xi, yi) (i=1,2,3). For

each element E, denote the diameter of the element by hE and the maximum diameter of the all

the elements in the mesh by h. The goal is to construct a method that converges to the weak

solution as the maximum diameter of the elements tend toward zero (h→ 0).

2.3.1. Finite element space. For the finite element method, we seek solutions over a finite

dimensional subspace Vh ⊂ H1
0 (Ω). We start by building a local subspace over each element

E ∈ T h. In particular, one key property of the local space is that it contains all the polynomials

up to degree k (for a k-th order method). This property ensures that the finite element space will

have the desired approximation accuracy. For triangular elements, it is sufficient to define the local

space Vh(E) = Pk(E) as the set of all polynomial functions with degree less than or equal to k. In

two dimensions, to uniquely define a polynomial in Pk(E) requires information at N = (k+1)(k+2)
2

suitably chosen points. These are called the elements degrees of freedom (DOF), and are usually

chosen to be:

3 values of vh on the vertices,

(k − 1) values of vh at points along each of the 3 edges,

(k − 2)(k − 1)

2
values of vh at interior points.

(2.30)
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Denote the set of points corresponding to the degrees of freedom by {aj} (j = 1, 2, . . . , N). We

let {ϕi} denote the set of Lagrangian basis functions that span the space Pk(E) and satisfy the

Lagrangian interpolation property

ϕi(aj) = δij , (2.31)

where δij is the Kronecker delta. Then for any function vh ∈ Vh(E), we expand it in terms of the

basis functions as

vh(x) =

N∑
i=1

vh(ai)ϕi(x). (2.32)

From the local spaces Vh(E), the global space Vh of piecewise continuous polynomial functions is

constructed:

Vh =
{
vh ∈ H1

0 (Ω) : vh|E ∈ Vh(E) = Pk(E) ∀E ∈ T h
}
. (2.33)

Remark 2.3.1. For general FEM applications, it is usually more convenient to prescribe the

basis functions on a reference element. Then computations can be performed by mapping (isopara-

metric mapping) each element onto a reference element and using the same set of basis functions

instead of having to find a basis for each element separately. However, one downside of using a

mapping is the problem with badly-shaped elements. It is known that for nonconvex elements, the

mapping becomes singular and the method will fail.

2.3.2. Discrete weak problem. Now with the finite element space in hand, we construct

the discrete problem. In the FEM, the exact bilinear form and forcing functional is applied over

each element. That is, for each E let

aE(uh, vh) =

∫
E
∇uh · ∇vh dx, (f, vh)E =

∫
E
fvh dx. (2.34)

Then define the global discrete problem over Vh: find uh ∈ Vh such that

a(uh, vh) = (f, vh) ∀vh ∈ Vh, (2.35a)

where

a(uh, vh) =
∑
E

aE(uh, vh), (f, vh) =
∑
E

(f, vh)E . (2.35b)
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Since the same bilinear form and forcing function from the weak problem (2.29) is used, the discrete

problem satisfies the conditions of the Lax–Milgram theorem, and therefore has a unique solution.

2.3.3. Convergence results. With the discrete problem formed, we show that the discrete

solution converges to the exact weak solution as the maximum mesh diameter h→ 0.

Let u ∈ H1
0 (Ω) be a solution to the weak problem, uh ∈ Vh the unique k-th order solution to

the discrete problem (2.35). Then we have

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω),

a(uh, vh) = (f, vh) ∀vh ∈ Vh.

For any vh ∈ Vh, we subtract the two expressions to get

a(u, vh)− a(uh, vh) = (f, vh)− (f, vh) = 0,

that is,

a(u− uh, vh) = 0 ∀vh ∈ Vh. (2.36)

The property (2.36) is called the Galerkin orthogonality condition and it implies that the finite

element solution uh is an orthogonal projection of the exact solution onto the discrete subspace

Vh with respect to the bilinear form a(·, ·). Now, we use this orthogonality property to roughly

estimate the error in H1
0 norm. We recall for Poisson equation, the H1

0 norm is induced by the

bilinear form, that is ∥u − uh∥2H1
0 (Ω)

= a(u − uh, u − uh). Then by Galerkin orthoginality, we can

write

∥u− uh∥2H1
0 (Ω) = a(u− uh, u− uh) = a(u− uh, u)− a(u− uh, uh) = a(u− uh, u). (2.37)

Let vh ∈ Vh, then by adding and subtracting vh from the second component and applying Galerkin

orthogonality, we have

a(u− uh, u) = a(u− uh, u− vh) + a(u− uh, vh) = a(u− uh, u− vh). (2.38)
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Since a(·, ·) is bounded, we estimate

a(u− uh, u− vh) ≤ C∥u− uh∥H1
0 (Ω)∥u− vh∥H1

0 (Ω). (2.39)

Now combining and simplifying, we find:

∥u− uh∥H1
0 (Ω) ≤ C∥u− vh∥H1

0 (Ω) ≤ C min
wh∈Vh

∥u− wh∥H1
0 (Ω). (2.40)

The inequality (2.40) is a special case of Cea’s lemma, which shows that the finite element solution

uh is proportional to the best possible solution in the subspace Vh. However, Cea’s lemma does

not immediately give the convergence of the solution uh to u. To remedy this, we must find

an approximation to the value minwh∈Vh
∥u− wh∥H1

0 (Ω) which depends on the mesh parameter h.

From [27,42], it is known that there exists a unique interpolation function uI ∈ Vh which match

the value of u at every vertex and satisfy the bound (for u ∈ Hk+1(Ω)):

∥u− uI∥H1
0 (Ω) ≤ Chk|u|Hk+1(Ω). (2.41)

Since uI ∈ Vh, the error ∥u−uI∥H1
0 (Ω) must be larger than the minimum; therefore, we immediately

obtain the bound

∥u− uh∥H1
0 (Ω) ≤ C min

wh∈Vh

∥u− wh∥H1
0 (Ω) ≤ C∥u− uI∥H1

0 (Ω) ≤ Chk|u|Hk+1(Ω). (2.42)

The inequality (2.42), shows that a k-th order finite element solution will converge to the exact

solution u in the H1
0 norm as the mesh size h→ 0; and the order of convergence is of order k.

In many cases, we are also interested in the convergence in the L2 norm. Since both ∥ · ∥H1
0 (Ω)

and ∥ · ∥L2(Ω) are norms on the space H1
0 (Ω), they are equivalent by Poincare–Friedrichs inequality:

∥u− uh∥L2(Ω) ≤ C∥u− uh∥H1
0 (Ω) ≤ Chk|u|Hk+1(Ω). (2.43)

However, the L2 norm measures the error of a function, while the H1
0 norm measures the error in

its derivative; therefore, it is expected that the L2 error should be more accurate. We use a method

called the Aubin–Nitsche technique (trick) [42] to improve the estimate. The idea of the Aubin–

Nitsche trick is to relate the L2 inner product to an associated adjoint problem. In particular, since

we know the weak problem (2.29) has a unique solution for f ∈ L2, we can choose the function
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u− uh. Let ψ ∈ H1
0 ∩H2 be the solution to the following adjoint problem:

a(v, ψ) = a(ψ, v) = (u− uh, v) ∀v ∈ H1
0 (Ω), (2.44)

where for the Poisson equation, the bilinear form is symmetric so the adjoint problem is equivalent

to the original weak problem. It can be shown that for a convex polygonal domain, the elliptic

regularity property holds for ψ [42]. That is, there exists constants C1 and C2 such that

|ψ|H2(Ω) ≤ C1∥u− uh∥L2(Ω), (2.45a)

|ψ|H1(Ω) ≤ C2∥u− uh∥L2(Ω). (2.45b)

Then, we write the L2 norm as:

∥u− uh∥2L2(Ω) = (u− uh, u− uh) = a(u− uh, ψ). (2.46)

By adding and subtracting an interpolation function ψI satisfying (2.41) (k=1) from the second

component, applying linearity and Galerkin orthogonality, we get

a(u− uh, ψ) = a(u− uh, ψ − ψI) + a(u− uh, ψI) = a(u− uh, ψ − ψI).

Now, applying the boundedness property of the bilinear form:

a(u− uh, ψ − ψI) ≤ C∥u− uh∥H1
0 (Ω)∥ψ − ψI∥H1

0 (Ω)

≤ Ch∥u− uh∥H1
0 (Ω)|ψ|H2(Ω)

≤ Ch∥u− uh∥H1
0 (Ω)∥u− uh∥L2(Ω). (2.47)

Applying the bound (2.47) to (2.46) and using the estimate (2.42), we simplify to

∥u− uh∥L2(Ω) ≤ Ch∥u− uh∥H1
0 (Ω) ≤ Chk+1|u|Hk+1(Ω). (2.48)

For a problem with sufficiently regular solutions, the bound in (2.48) implies that the L2 of the

finite element solution converges at a rate that is one order higher than in the H1
0 norm.

Remark 2.3.2. In the proof of convergence, the maximum element diameter h is used; however,

when comparing different methods, it is often more useful to compare the total number of degrees
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of freedom needed. In two dimensions, the diameter is inversely proportional to the square root of

the total number of degrees of freedom NDOF. That is:

h ∼ 1√
NDOF

. (2.49)

In many of our numerical tests, we report the results with respect to the square root of the total

number of degrees of freedom
√
NDOF.

2.4. Virtual element method for Poisson’s equation

Here, we examine the same Poisson boundary-value problem using the virtual element method.

To construct a virtual element method, we first need to discretize the domain Ω into finitely many

elements. In the finite element method, these elements are usually triangles or quadrilaterals;

however, in the virtual element method, the elements are polygons that can have arbitrarily many

vertices and can be convex, nonconvex or degenerate (see Figure 2.1). Let T h be the decomposition

of the region Ω into nonoverlapping polygons with a maximum diameter of h. For each polygon

E ∈ T h, we denote its diameter by hE and its centroid by xE . Each polygon E consists of NE

vertices (nodes) with NE edges. Let EE be the set of all edges of E. We denote the coordinates

of each vertex by xi := (xi, yi). In the VEM, standard mesh assumptions are placed on T h (e.g.,

star-convexity of E) [9].

(a) (b) (c)

Figure 2.1. Examples of admissible elements in the virtual element method (a)
convex element, (b) nonconvex element and (c) degenerate element.

2.4.1. Virtual element space. On each element E, we first construct a local finite dimen-

sional subspace Vh(E) ⊂ H1(E), then by combining these spaces for every element E, we construct
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a global subspace Vh ⊂ V := H1
0 (Ω). In the k-th order finite element method for triangular ele-

ments, the local space contains all the polynomials up to degree k; therefore we require that the

local virtual element space Vh(E) also contain all the polynomials up to degree k. In addition, we

also want the space to contain additional non-polynomial functions. We start with the boundary

space Bk(∂E). For the space Vh(E) to contain polynomials, the functions restricted to the bound-

ary must be continuous and also be polynomial along each edge. That is, we define the boundary

space as

Bk(∂E) = {vh ∈ C0(∂E) : vh|e ∈ Pk(e) ∀ edges e on ∂E}. (2.50)

For the interior of the element, we note that the boundary space can be viewed as prescribing

boundary conditions to a boundary-value problem. The simplest partial differential equation we can

impose is using the Laplacian operator ∆. Since the space contains all the polynomials p ∈ Pk(E)

of degree less than or equal to k, we have ∆p ∈ Pk−2(E). Therefore a natural requirement is that

any function vh ∈ Vh(E) satisfies a Poisson condition ∆vh ∈ Pk−2(E). The Poisson condition and

the prescribed polynomial boundary uniquely defines a function vh. We define the local virtual

element space Vh(E) as

Vh(E) =
{
vh ∈ H1(E) : ∆vh ∈ Pk−2(E), vh|∂E ∈ Bk(∂E)

}
. (2.51)

For a polygonal element E with NE vertices, the space Vh(E) is a finite dimensional space that can

be described by N = kNE + k(k−1)
2 conditions (degrees of freedom). In particular, the boundary

space requires kNE degrees of freedom to fully define a k-th order polynomial on each edge, while

k(k−1)
2 conditions are needed to define an order k − 2 polynomial in the element interior. For each

of the kNE + k(k−1)
2 degrees of freedom (DOF), we prescribe conditions that the function satisfy.

The most common choice is given as [9]:

NE values of vh on the vertices,

(k − 1) values of vh at quadrature points along each of the NE edges,

k(k − 1)

2
internal moments :

1

|E|

∫
E
vhp dx ∀p ∈ Pk−2(E).

(2.52)

We note that for k = 1, the space is fully defined by the NE values at the vertices and does not

require values on the edges or internal moments. We use the notation dofi(vh) as the evaluation
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of the i-th degree of freedom of a function vh, in particular

dofi(vh) =


vh(xi) for i = 1, 2, . . . NE ,

vh(x
e
i ) for i = NE + 1, NE + 2, . . . kNE ,

1
|E|
∫
E vhp dx for i = kNE + 1, kNE + 2, . . . N.

(2.53)

Following [9], we define the basis functions {ϕi} which correspond to the degrees of freedom by the

Lagrangian property: dofj(ϕi) = δij , where δij is the Kronecker-delta operator.

With the definition of the virtual element space for each element E, we assemble the global

virtual element space:

Vh = {vh ∈ H1
0 (Ω) : vh|E ∈ Vh(E) ∀E ∈ T h}. (2.54)

In general, functions vh ∈ Vh(E) are solutions of a partial differential equation and are not computed

(virtual). The only information is from their degrees of freedom. The main technique in the

virtual element method, is to use the degrees of freedom to construct suitable polynomial projection

operators that represent functions of interest. With these projection operators, we are able to

determine a computable discrete bilinear form and define the discrete weak problem.

Remark 2.4.1. Comparing (2.52) and (2.30), we find that for k > 1, the virtual element

method requires more degrees of freedom than the corresponding finite element for a triangular

element. However, for k = 1, the two methods are identical.

2.4.2. Discrete bilinear form. Now with the construction of the virtual element space, we

also need to construct a suitable form for the discrete bilinear form ah(·, ·). To motivate the bilinear

form found in [9, 11, 13], we first let Πk : H1(E) → Pk(E) be any projection onto the space of

polynomials of degree k. Then we can expand the bilinear form as

aE(uh, vh) = aE(uh −Πkuh +Πkuh, vh −Πkvh +Πkvh)

= aE(Πkuh,Πkvh) + aE(uh −Πkuh, vh −Πkvh) + aE(uh −Πkuh,Πkvh)

+ aE(Πkuh, vh −Πkvh),
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where aE(uh, vh) is the bilinear form restricted to the element E. A natural choice for the projection

Πk for the Poisson problem is the elliptic projection Π∇
k , which satisfies the orthogonality condition:

aE(uh −Π∇
k uh, p) = 0 ∀p ∈ Pk(E). (2.55)

This allows us to simplify

aE(uh, vh) = aE(Π∇
k uh,Π

∇
k vh) + aE(uh −Π∇

k uh, vh −Π∇
k vh). (2.56)

The first term in (2.56) is the bilinear form acting on polynomials, which provide the polynomial

consistency property (reproduces polynomial solutions) and can be handled in the same way as in

standard finite elements. The second term is a stabilization term that relies on knowing information

about uh and vh. Since in VEM we do not want to explicitly construct these functions, we will

need to approximate this term as well. This leads us to the definition of the standard VEM bilinear

form

aEh (uh, vh) := aE(Π∇
k uh,Π

∇
k vh) + SE(uh −Π∇

k uh, vh −Π∇
k vh), (2.57)

where SE(uh−Π∇
k uh, vh−Π∇

k vh) is an approximation of the term aE(uh−Π∇
k uh, vh−Π∇

k vh). This

term controls the stability (coercivity) of the problem and is thus important for convergence in the

standard VEM. A necessary condition for the stabilization term is that there exists constants C1

and C2 such that [9]

C1a
E(vh, vh) ≤ SE(vh, vh) ≤ C2a

E(vh, vh) ∀vh ∈ Vh(E) with Π∇
k vh = 0. (2.58)

However, the choice of the function SE(·, ·) is not unique and in many cases is problem depen-

dent. This is undesirable so we are interested in developing a virtual element method without the

stabilization term SE(·, ·) (see Chapter 3).

Remark 2.4.2. The projections described throughout this work are defined on the element level

and should be denoted with element dependence (such as Πk,E). However, for simplicity, we omit

the dependence on E unless when needed to avoid confusion.
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Now that we have the discrete bilinear form, we also need to construct a weak loading term to

define the discrete weak problem. We define the approximate load term given by the inner product

(fh, vh)E =

∫
E
fhvh dx,

where fh is an approximation of the function f . We note that for general vh ∈ Vh(E), this integral

is not computable; however, from the degrees of freedoms in Vh(E), we can find
∫
E pvhdx for any

p ∈ Pk−2. Therefore, a natural approximation is to take fh = Π∗
k−2f as a projection of f onto the

space of polynomials degree k − 2. Then we have:

(fh, vh)E =

∫
E
(Π∗

k−2f)vh dx. (2.59)

The standard projection operator originally described in [9,11] is the L2 projection Π0
k−2, which

satisfies the L2 orthogonality condition:∫
E
(Π0

k−2vh − vh)p dx = 0 ∀p ∈ Pk−2(E). (2.60)

By using the L2 projection in (2.59), the forcing term is now written as

(fh, vh)E :=

∫
E
(Π0

k−2f)vh dx =

∫
E
fΠ0

k−2vh dx, (2.61)

where the last expression is obtained on applying L2 orthogonality.

Remark 2.4.3. For the case k = 1, we can use Π0
0f as the constant projection or equivalently

approximate vh using Π0
0vh. A more detailed implementation for k = 1 can be found in Section 3.3.3.

In Section 2.4.6, we construct an enhanced space that allows us to compute Π0
k using only the degrees

of freedom.

The local discrete weak problem is to find the function uh ∈ Vh(E) such that

aEh (uh, vh) = (fh, vh)E ∀vh ∈ Vh(E), (2.62a)
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where

aEh (uh, vh) = aE(Πkuh,Πkvh) + SE(uh −Πkuh, vh −Πkvh), (2.62b)

(fh, vh)E =

∫
E
(Π0

k−2f)vh dx. (2.62c)

The associated global discrete problem is to find uh ∈ Vh such that

ah(uh, vh) = (fh, vh) ∀vh ∈ Vh, (2.63a)

where

ah(uh, vh) =
∑
E

aEh (uh, vh), (fh, vh) =
∑
E

(fh, vh)E . (2.63b)

A solution to (2.63) is called a discrete solution.

2.4.3. Choice of stabilization term. The choice of a stabilization term is not unique; how-

ever, it must satisfy certain inequality estimates (2.58) in order to preserve the coercivity of the

bilinear form. We examine the structure of the bilinear form to motivate a choice of the stability

term. Let uh ∈ Vh(E), then we have:

aE(uh −Π∇
k uh, vh −Π∇

k vh) =

∫
E
∇(uh −Π∇

k uh) · ∇(uh −Π∇
k uh) dx.

Since uh and Π∇
k uh ∈ Vh(E), we can expand uh − Π∇

k uh in terms of the basis functions of Vh(E).

That is, uh −Π∇
k uh =

∑N
i=1 dofi(uh −Π∇

k uh)ϕi. Then we have

aE(uh −Π∇
k uh, vh −Π∇

k vh) =
N∑
i=1

N∑
j=1

dofi(uh −Π∇
k uh)

(∫
E
∇ϕi · ∇ϕj dx

)
dofj(uh −Π∇

k uh)

=

N∑
i=1

N∑
j=1

dofi(uh −Π∇
k uh)a

E(ϕi, ϕj)dofj(uh −Π∇
k uh), (2.64)

where dofi(u) is the i-th degree of freedom of a function u. The expression (2.64) suggests that

the approximate stability term SE(·, ·) should take the form:

SE(uh, vh) =

N∑
i=1

N∑
j=1

dofi(uh)S
E
ijdofj(vh), (2.65)
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where SE is any symmetric positive-definite matrix with components that scales like aE(ϕi, ϕj).

In [9], the suggested matrix is the identity matrix SE
ij = δij , there δij is the Kronecker delta. The

resulting simplified stabilization term (so-called dofi-dofi stabilization) is given by

SE(uh, vh) =
N∑
i=1

dofi(uh)dofi(vh). (2.66)

This term is sufficient to preserve the stabilization criterion (2.58). In particular, we first note for

vh ∈ Vh(E)

SE(vh, vh) =
N∑
i=1

dofi(vh)
2, (2.67)

defines a ℓ2 norm over the space RN . Now consider

aE(vh, vh) =

∫
E
∇vh · ∇vh dx =

N∑
i=1

N∑
j=1

dofi(vh)

(∫
E
∇ϕi · ∇ϕj dx

)
dofj(vh)

≤ max
i,j

{
aE(ϕi, ϕj)

} N∑
i=1

N∑
j=1

dofi(vh)dofj(vh)

≤ C1

N∑
i=1

dofi(vh)
2,

where the last inequality is from the equivalence of norms in RN . Similarily, we can bound

aE(vh, vh) ≥ min
i,j

{
aE(ϕi, ϕj)

} N∑
i=1

N∑
j=1

dofi(vh)dofj(vh)

≥ C2

N∑
i=1

dofi(vh)
2.

By rearranging the two inequalities, we obtain the desired stability inequality.

There are many other types of stabilization that are not of the form (2.65). Some examples

include boundary stabilization [15], projection based stabilization [49], energy based stabiliza-

tion [114] and the DOF based stabilization in [6].

2.4.4. Convergence of the discrete problem. In the virtual element method, there are

two important conditions that the discrete bilinear form needs to satisfy in order for the discrete

weak problem (2.63) to attain a unique solution and to converge to the exact weak solution at the
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correct rate. The first condition is polynomial consistency:

aEh (p, vh) = aE(p, vh) ∀p ∈ Pk(E) and ∀vh ∈ Vh(E). (2.68)

The condition (2.68) ensures that the discrete problem will reproduce any polynomial solution of

order k of the weak problem (2.29). It also controls the solution accuracy and convergence rates of

the method. The second condition is for aEh (·, ·) to satisfy a stability bound:

C1a
E(vh, vh) ≤ aEh (vh, vh) ≤ C2a

E(vh, vh) ∀vh ∈ Vh(E). (2.69)

The stability bound assures that the discrete problem is bounded and coercive and thus attains a

unique solution. In particular, we have by the stability of aEh (·, ·), coercivity of a(·, ·) and Cauchy–

Schwarz inequality:

aEh (uh, vh) ≤
√
aEh (uh, uh)

√
aEh (vh, vh) ≤ C2

√
aE(uh, uh)

√
aE(vh, vh) ≤ C|uh|H1(E)|vh|H1(E),

(2.70)

so aEh (·, ·) is bounded on each element E. Similarly, we have

aEh (vh, vh) ≥ C1a
E(vh, vh) ≥ C|vh|2H1(E), (2.71)

so aEh (·, ·) is coercive on E. By summing the inequalities (2.70) and (2.71) for each element, it is

realized that the global discrete form ah(·, ·) is bounded and coercive on Ω with respect to the H1
0

norm.

Now we examine the global forcing term (fh, vh). In our construction of a computable forcing

term, we chose a discrete forcing function fh = Π0
k−2f on each element E. We first show that

∥Π0
k−2f∥L2(E) is bounded by ∥f∥L2(E). By applying the definition of the L2 projection and the

Cauchy-Schwarz inequality, we have that

∥Π0
k−2f∥2L2(E) =

∫
E
(Π0

k−2f)
2 dx =

∫
E
fΠ0

k−2f dx ≤ ∥Π0
k−2f∥L2(E)∥f∥L2(E), (2.72)

which implies that

∥Π0
k−2f∥L2(E) ≤ ∥f∥L2(E). (2.73)
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Next, we show that the functional (fh, vh) remains bounded:

|(fh, vh)| =

∣∣∣∣∣∑
E

∫
E
(Π0

k−2f)vh dx

∣∣∣∣∣ ≤∑
E

∥Π0
k−2f∥L2(E)∥vh∥L2(E)

≤
∑
E

∥f∥L2(E)∥vh∥L2(E)

≤ C∥f∥L2(Ω)∥vh∥H1
0 (Ω), (2.74)

where the final inequality is from applying the Cauchy–Schwarz and Poincare–Friedrich inequalities.

Then by the Lax–Milgram theorem, since ah(·, ·) is bounded and coercive, and (fh, vh) is bounded,

the discrete problem (2.63) has a unique solution.

We know that the discrete problem attains a unique solution; however, it still needs to be

shown that this solution converges to the weak solution of (2.29) as the mesh is refined (h → 0).

To show convergence, we introduce some classical interpolation and projection estimates from finite

elements. More information on the mathematical theory and proofs of these estimates can be found

in [14,26,27,42].

Lemma 2.4.0.1. Let w ∈ Hk+1(Ω) be a sufficiently smooth function, then there exists an inter-

polation function wI ∈ Vh(E) that satisfies

dofi(w − wI) = 0, i = 1, 2, . . . N, (2.75)

and a piecewise polynomial function wπ ∈ Pk(E) that satisfies

∥w − wI∥L2(E) + hE |w − wI |H1(E) ≤ C1h
k+1
E |w|Hk+1(E), (2.76a)

∥w − wπ∥L2(E) + hE |w − wπ|H1(E) ≤ C2h
k+1
E |w|Hk+1(E). (2.76b)

for some constants C1 and C2 that are independent of h.

Lemma 2.4.0.2. Let w ∈ Hk+1(E) be a sufficiently smooth function. Then the k-th order L2

projection operator satisfies

|w −Π0
kw|H1(E) ≤ C1h

k
E |w|Hk+1(E), (2.77a)

∥w −Π0
kw∥L2(E) ≤ C2h

k+1
E |w|Hk+1(E). (2.77b)
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for some constants C1 and C2 that are independent of h.

With the introduction of an approximate forcing term, we also need to know how much error

is introduced to the global problem. In particular, we estimate the difference

(f − fh, vh) =
∑
E

(f −Π0
k−2f, vh)E

=
∑
E

(f −Π0
k−2f, vh −Π0

0vh +Π0
0vh)E

=
∑
E

(f −Π0
k−2f, vh −Π0

0vh)E

≤
∑
E

∥f −Π0
k−2f∥L2(E)∥vh −Π0

0vh∥L2(E). (2.78)

By applying (2.77b), we get the estimate

(f − fh, vh) ≤ Chk|f |Hk−1(Ω)|vh|H1(Ω). (2.79)

The inequality (2.79) implies that as the mesh is refined, the k − 2-th order approximate forcing

term will weakly converge to the exact forcing and will not hinder the convergence of the VEM.

In [2, 9], it is shown that for a k-th order VEM on sufficiently nice meshes and sufficiently

regular functions, the rates of convergence in the H1
0 norm and the L2 norm are given by:

∥u− uh∥H1
0 (Ω) ≤ C1h

k(|u|Hk+1(Ω) + |f |Hk−1(Ω)), (2.80a)

∥u− uh∥L2(Ω) ≤ C2h
k+1(|u|Hk+1(Ω) + |f |Hk(Ω)), (2.80b)

where C1, C2 are constants that depend on the geometry but independent of the maximum element

diameter h.

We first show the H1
0 estimate (2.80a). Let u be the unique weak solution, uh the discrete

solution, uI denote the interpolation function which satisfies the bound in (2.76a) and uπ the

polynomial approximation function satisfying (2.76b). Then by the triangle inequality:

∥u− uh∥H1
0 (Ω) ≤ ∥u− uI∥H1

0 (Ω) + ∥uI − uh∥H1
0 (Ω). (2.81)
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For the first term of (2.81), we estimate

∥u− uI∥2H1
0 (Ω) =

∑
E

|u− uI |2H1(E) ≤
∑
E

C(hkE)
2|u|2Hk+1(Ω) ≤ C(hk)2|u|2Hk+1(Ω). (2.82)

Therefore,

∥u− uI∥H1
0 (Ω) ≤ Chk|u|Hk+1(Ω). (2.83)

For the second term in (2.81), by applying the stability property and definition of the discrete

solution we get

C∥uI − uh∥2H1
0 (Ω) ≤ ah(uI − uh, uI − uh)

=
∑
E

(
aEh (uI − uh, uI)− aEh (uI − uh, uh)

)
=
∑
E

aEh (uI − uh, uI)− (fh, uI − uh).

Now, add and subtract uπ in the first term, apply linearity and consistency of ah(·, ·)

=
∑
E

(
aEh (uI − uh, uI − uπ) + aEh (uI − uh, uπ)

)
− (fh, uI − uh)

=
∑
E

(
aEh (uI − uh, uI − uπ) + aE(uI − uh, uπ)

)
− (fh, uI − uh). (2.84)

Add and subtract u in the second term, then we get the bound

C∥uI − uh∥2H1
0 (Ω) ≤

∑
E

(
aEh (uI − uh, uI − uπ) + aE(uI − uh, uπ − u)

)
+ a(uI − uh, u)− (fh, uI − uh)

=
∑
E

aEh (uI − uh, uI − uπ) +
∑
E

aE(uI − uh, uπ − u)

+ (f, uI − uh)− (fh, uI − uh)

=
∑
E

aEh (uI − uh, uI − uπ)︸ ︷︷ ︸
A

+
∑
E

aE(uI − uh, uπ − u)︸ ︷︷ ︸
B

+(f − fh, uI − uh)︸ ︷︷ ︸
C

.

(2.85)
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We estimate each term of (2.85) individually. For term A, we apply the boundedness of ah(·, ·),

the triangle inequality, and the estimates (2.76a) and (2.76b) to each element E to write

∑
E

aEh (uI − uh, uI − uπ) ≤ C
∑
E

|uI − uh|H1(E)|uI − uπ|H1(E)

≤ C
∑
E

(
|uI − u|H1(E) + |u− uπ|H1(E)

)
∥uI − uh∥H1

0 (Ω)

≤ C1h
k|u|Hk+1(Ω)∥uI − uh∥H1

0 (Ω). (2.86)

For term B, following a similar strategy, we get

∑
E

aE(uI − uh, uπ − u) ≤ C2h
k|u|Hk+1(Ω)∥uI − uh∥H1

0 (Ω). (2.87)

For term C, apply the inequality (2.79) to get

(f − fh, uI − uh) ≤ C3h
k|f |Hk−1(Ω)∥uI − uh∥H1

0 (Ω). (2.88)

Combining terms, we find that

C∥uI − uh∥2H1
0 (Ω) ≤ hk

(
C1|u|Hk+1(Ω) + C2|u|Hk+1(Ω) + C3|f |Hk−1(Ω))∥uI − uh∥H1

0 (Ω),

which results in the estimate

∥uI − uh∥H1
0 (Ω) ≤ Chk

(
|u|Hk+1(Ω) + |f |Hk−1(Ω)

)
. (2.89)

Finally, from (2.83) and (2.89) we have

∥u− uh∥H1
0 (Ω) ≤ Chk

(
|u|Hk+1(Ω) + |f |Hk−1(Ω)

)
. (2.90)

We now show the L2 estimate (2.80b). By Poincare–Friedrichs inequality, it is known that

the L2 error has an immediate bound of order k. However, for a sufficiently regular solution and

geometry, the bound can be increased to order k+1 using the Aubin–Nitsche trick [42]. In addition,

for the estimate to be of correct order, we also require the use of the L2 projection operator of order

k− 1 to approximate the forcing function fh. In the original virtual element space, this projection

is not computable from the degrees of freedom; however, in Section 2.4.6 an enhanced space is

introduced that allows for the computation of fh = Π0
k−1f . By using this fh in the proof of the H1
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error, we get a modified bound for sufficiently small h:

∥u− uh∥H1
0 (Ω) ≤ Chk

(
|u|Hk+1(Ω) + h|f |Hk(Ω)

)
≤ Chk|u|Hk+1(Ω). (2.91)

We consider

∥u− uh∥2L2(Ω) = (u− uh, u− uh). (2.92)

Following the idea of the Aubin–Nitsche trick used in Section 2.3.3, let ψ ∈ H1
0 (Ω)∩H2(Ω) be the

solution to the following adjoint problem

a(ψ, v) = (u− uh, v) ∀v ∈ V, (2.93)

and assume the elliptic regularity estimates hold for some constant C1 and C2:

|ψ|H2(Ω) ≤ C1∥u− uh∥L2(Ω), (2.94a)

|ψ|H1(Ω) ≤ C2∥u− uh∥L2(Ω). (2.94b)

Then we can rewrite the L2 error as

∥u− uh∥2L2(Ω) = a(ψ, u− uh). (2.95)

Let ψI be the interpolation function of ψ that satisfies the global estimate (2.76a)

∥ψ − ψI∥H1
0 (Ω) = |ψ − ψI |H1(Ω) ≤ Ch|ψ|H2(Ω), (2.96a)

∥ψ − ψI∥L2(Ω) ≤ Ch2|ψ|H2(Ω). (2.96b)

Then, by adding and subtracting ψI , and applying linearity of a(·, ·), we write

a(ψ, u− uh) = a(ψ − ψI , u− uh) + a(ψI , u− uh). (2.97)
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For the first term, we estimate

a(ψ − ψI , u− uh) ≤ C∥ψ − ψI∥H1
0 (Ω)∥u− uh∥H1

0 (Ω)

≤ Ch|ψ|H2(Ω)∥u− uh∥H1
0 (Ω)

≤ Ch∥u− uh∥L2(Ω)∥u− uh∥H1
0 (Ω)

≤ Chk+1|u|Hk+1(Ω)∥u− uh∥L2(Ω) (2.98)

Note that, for simplicity of the proof, we skip the step of applying estimates over each element and

instead directly applied the global estimates. The resulting error bounds are the same in either

case. For the second term, we have

a(ψI , u− uh) = a(ψI , u)− a(ψI , uh)

= a(ψI , u)− ah(ψI , uh) + ah(ψI , uh)− a(ψI , uh)

= (f, ψI)− (fh, ψI) + ah(ψI , uh)− a(ψI , uh)

= (f − fh, ψI)︸ ︷︷ ︸
A

+ ah(ψI , uh)− a(ψI , uh)︸ ︷︷ ︸
B

. (2.99)

For term A, we write for sufficiently small h:

(f − fh, ψI) = (f −Π0
k−1f, ψI)

= (f −Π0
k−1f, ψI − ψ) + (f −Π0

k−1f, ψ)

= (f −Π0
k−1f, ψI − ψ) + (f −Π0

k−1f, ψ −Π0
0ψ)

≤ ∥f −Π0
k−1f∥L2(Ω)∥ψ − ψI∥L2(Ω) + ∥f −Π0

k−1f∥L2(Ω)∥ψ −Π0
0ψ∥L2(Ω)

≤ C1h
k+2|f |Hk(Ω)|ψ|H2(Ω) + C2h

k+1|f |Hk(Ω)|ψ|H1(Ω)

≤ Chk+1
(
|f |Hk(Ω) + h|f |Hk(Ω)

)
∥u− uh∥L2(Ω)

≤ Chk+1|f |Hk(Ω)∥u− uh∥L2(Ω). (2.100)

Remark 2.4.4. To simplify the expressions using global estimates, we have abused the notation

∥Π0
k−2w∥L2(Ω) to indicate the norm of a projection of w over the entire domain Ω; however, the

projection operators Π0
k−2 := Π0

k−2,E are only defined locally on each element E. Therefore, the full
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expression is actually given by the contributions of the norms over each element:

∥Π0
k−2w∥L2(Ω) =

(∑
E

∥Π0
k−2,Ew∥2L2(E)

) 1
2

. (2.101)

We use this same notation for proofs in Section 3.4.2.

For term B, we add an subtract Π0
1ψ and Π0

ku to both ah(·, ·) and a(·, ·). Then by applying the

consistency property, we have

ah(ψI , uh)− a(ψI , uh) = ah(ψI −Π0
1ψ +Π0

1ψ, uh −Π0
ku+Π0

ku)

− a(ψI −Π0
1ψ +Π0

1ψ, uh −Π0
ku+Π0

ku)

= ah(ψI −Π0
1ψ, uh −Π0

ku)− a(ψI −Π0
1ψ, uh −Π0

ku). (2.102)

Now, applying the boundedness of ah(·, ·) and a(·, ·), the triangle inequality, (2.77a) and (2.94a)

ah(ψI , uh)− a(ψI ,uh) ≤ |ψI −Π0
1ψ|H1(Ω)|uh −Π0

ku|H1(Ω) + |ψI −Π0
1ψ|H1(Ω)|uh −Π0

ku|H1

≤ C
(
|ψI − ψ|H1(Ω) + |ψ −Π0

1ψ|H1(Ω)

) (
|uh − u|H1(Ω) + |u−Π0

ku|H1(Ω)

)
≤ Chk+1|u|Hk+1(Ω)|ψ|H2(Ω)

≤ Chk+1|u|Hk+1(Ω)∥u− uh∥L2(Ω). (2.103)

Combining (2.100) and (2.103), we have the estimate

a(ψI , u− uh) ≤ Chk+1
(
|u|Hk+1(Ω) + |f |Hk(Ω)

)
∥u− uh∥L2(Ω). (2.104)

Finally, combining (2.98) and (2.104), we get

∥u− uh∥2L2(Ω) ≤ Chk+1
(
|u|Hk+1(Ω) + |f |Hk(Ω)

)
∥u− uh∥L2(Ω), (2.105)

which can be simplified to the desired bound.

We note that compared to the finite element method (see Section 2.3.3), the analysis of the

virtual element method is more delicate and requires more estimates. This is because the virtual

element method uses both a discrete approximation of the bilinear form and an approximation to

the forcing term. However, the VEM converges at the same (optimal) rate as the finite element

method in both L2 and H1
0 norms.
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Remark 2.4.5. For general problems, it is usually the case (if sufficiently regular solutions and

geometry) that the optimal convergence rate in the L2 norm of uh will be one order higher than a

norm involving the derivative of uh (such as the energy seminorm or taking the L2 norm of the

stress and strain).

Remark 2.4.6. Although the theoretical estimates in (2.80) are established using the discrete

solution uh, in numerical applications this solution is unknown except at the degrees of freedom.

Therefore, suitable discrete error measures that depend on the projection operator or degrees of

freedom are used to compute the convergence rates in numerical tests. Some examples of discrete

norms are shown later in Sections 3.5 and 5.4.

2.4.5. Element stiffness matrix and element force vector. In order to solve the resulting

discrete equations in (2.63), we convert the equations into a linear system of equations Kd = f ,

where K is the global stiffness matrix and f is the global force vector. We construct the local

stiffness matrix and local forcing vectors on each element E, then the global system is assembled

with the standard finite element operations.

To build the element stiffness matrix KE , we consider the bilinear form in (2.57) using the

dofi-dofi stabilization (2.66):

aEh (uh, vh) = aE(Π∇
k uh,Π

∇
k vh) + SE(uh −Π∇

k uh, vh −Π∇
k vh)

=

∫
E
∇Π∇

k uh · ∇Π∇
k vh dx+

N∑
r=1

dofr(uh −Π∇
k uh)dofr(vh −Π∇

k vh).

Since we can use any function uh, vh ∈ Vh(E), a natural choice is to use the basis functions {ϕi}.

Letting uh = ϕi and vh = ϕj , we define the ij-th component of the element stiffness matrix by:

(KE)ij := (Kc
E)ij + (Ks

E)ij , (2.106a)

where Kc
E is the consistency matrix and Ks

E is the stability matrix with components given by

(Kc
E)ij =

∫
E
∇Π∇

k ϕi · ∇Π∇
k ϕj dx, (2.106b)

(Ks
E)ij =

N∑
r=1

dofr(ϕi −Π∇
k ϕi)dofr(ϕj −Π∇

k ϕj). (2.106c)
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Now for the local forcing vector fE , we set vh = ϕi into (2.61). Then the i-th component of

the forcing vector is

(fE)i = (fh, ϕi)E =

∫
E
fΠ0

k−2ϕi dx. (2.107)

2.4.6. Enhanced virtual element space. The approach shown in the previous sections have

been widely studied and applied; however, in the development of the methods in the remaining

chapters, we need the concept of an enhanced virtual element space as introduced in [2] and

extended in [20]. To motivate the necessity of this space, we recall that in the forcing term (2.61)

we used the L2 projection Π0
k−2 into the space Pk−2(E). However, in the proof of the optimal

convergence of the L2 norm (see Section 2.4.4), we found that the projection of at least Π0
k−1 was

needed. Since the space Vh(E) contains k-th order polynomials, it is useful to also have the L2

projection Π0
k. Following (2.60), we define Π0

k by the condition∫
E
Π0

kvhp dx =

∫
E
vhp dx ∀p ∈ Pk(E). (2.108)

For p ∈ Pk−2(E), the integral on the right hand side of (2.108) can be computed using the moment

degrees of freedom (2.52); however the remaining integrals for polynomials of degree k − 1 and

k are unknown. In [2], it is suggested that the elliptic projection Π∇
k vh can be used as a rough

approximation to compute the missing moments. That is,∫
E
vhp dx ≈

∫
E
Π∇

k vhp dx ∀p ∈ [Pk/Pk−2(E)], (2.109)

where [Pk/Pk−2(E)] is the space of polynomials in Pk(E) that is orthogonal to Pk−2(E) with respect

to the L2 inner product (or equivalently can take the quotient of the spaces). In the space Vh(E)

the condition (2.109) will only be an approximation; however, by modifying the definition of the

virtual element space, equality of the integrals can be enforced. We first define a space of functions

that satisfy (2.109) exactly:

ENE
k =

{
vh ∈ H1(E) :

∫
E
vhp dx =

∫
E
Π∇

k vhp dx ∀p ∈ [Pk/Pk−2(E)]

}
. (2.110)

Then define the enhanced virtual element space by

Wh(E) =
{
vh ∈ ENE

k : ∆vh ∈ Pk(E), vh|∂E ∈ Bk(∂E)
}
, (2.111)
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where Bk(∂E) is the boundary space given in (2.50). We note that this space requires functions

∆vh ∈ Pk(E), which makes the space richer than Vh(E); however, it is shown in [2] that the

enhancing condition in (2.110) reduces the dimension of the space to the same size as Vh(E). Since

the enhanced space has the same dimension as the standard virtual element space, we use the

degrees of freedom and basis functions given in (2.53). On this space, the L2 projection Π0
k is

now computable. In Section 3.2 we use a similar procedure to develop spaces to compute the L2

projection of the strain and in Section 5.2.2 we use this procedure to develop the space for the

stress projection.

Remark 2.4.7. We followed the approach in [14] to define the enhanced virtual element space

without making a choice of a basis for Pk. An alternative approach is to use the construction of [2],

where an explicit basis for Pk is chosen and the condition (2.110) is only enforced for the basis

functions that have exactly degree k − 1 and k.

2.5. Strong form and weak form for linear elasticity

For the remainder of this dissertation, we will focus on the solution of the boundary-value

problem for two-dimensional linear elasticity. In this section, we first introduce the governing

equations for a linear elastic material and then develop the weak form, which is used in the numerical

computations.

We consider an elastic body that occupies the region Ω ⊂ R2 with boundary ∂Ω. Assume

that the boundary ∂Ω can be written as the disjoint union of two parts Γu and Γt with prescribed

Dirichlet and Neumann conditions on Γu and Γt, respectively (see Figure 2.2).

The strong form for the elastostatic problem is:

∇ · σ + b = 0 in Ω, σ = σT in Ω, (2.112a)

ε(u) = ∇su =
1

2
(∇u+∇uT ), (2.112b)

σ(u) = C : ε(u), (2.112c)

u = u0 on Γu, (2.112d)

σ · n = t on Γt, (2.112e)
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u = u0

Γu

Ω

b

Γt

t = t

Figure 2.2. Two-dimensional solid that occupies the region Ω with body force b,
and is subjected to displacement and traction boundary conditions.

where b ∈ [L2(Ω)]2 is the body force per unit volume, σ is the Cauchy stress tensor, ε is the

small-strain tensor with ∇s(·) being the symmetric gradient operator, u is the displacement field,

u0 and t are the imposed essential boundary and traction boundary data, and n is the unit outward

normal on the boundary. Linear elastic constitutive material relation (C is the material moduli

tensor) and small-strain kinematics are assumed.

Now to convert to the weak form, we take the inner (dot) product of (2.112a) with a test function

v ∈ [H1(Ω)]2 that vanishes along the Dirichlet boundary Γu and integrate over the domain Ω:∫
Ω
∇ · σ(u) · v dx+

∫
Ω
b · v dx = 0.

Then by applying the divergence theorem and simplifying, we rewrite the expression as:∫
Ω
σ(u) : ε(v) dx =

∫
Ω
b · v dx+

∫
∂Ω

(σ(u) · n) · v ds,

where σ(u) : ε(v) is the tensor contraction operator. By assumption, the boundary is written as

the disjoint union ∂Ω = Γu ∪ Γt; therefore, we write the expression as∫
Ω
σ(u) : ε(v) dx =

∫
Ω
b · v dx+

∫
Γu

(σ(u) · n) · v ds+
∫
Γt

(σ(u) · n) · v ds.

After using the conditions that σ(u) · n = t along Γt and v = 0 along Γu, the resulting equation

is given by ∫
Ω
σ(u) : ε(v) dx =

∫
Ω
b · v dx+

∫
Γt

t · v ds.
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Then, the associated weak problem for the linear elastic boundary-value problem is to find the

displacement field u ∈ V , where V := {u : u ∈ [H1(Ω)]2, u = u0 on Γu}, such that

a(u,v) = ℓ(v) ∀v ∈ V0, (2.113a)

where V0 := {v : v ∈ [H1(Ω)]2, v = 0 on Γu} and

a(u,v) =

∫
Ω
σ(u) : ε(v) dx, (2.113b)

ℓ(v) =

∫
Ω
b · v dx+

∫
Γt

t · v ds. (2.113c)

2.6. Virtual element method for linear elasticity

Following the construction of the VEM for Poisson’s equation, let T h be the decomposition of

the region Ω into nonoverlapping polygons. For each polygon E ∈ T h, denote its diameter by hE

and its centroid by xE . Each polygon E consists of NE vertices (nodes) with NE edges. Let EE be

the set of all edges of E and denote the coordinates of each vertex by xi := (xi, yi).

2.6.1. Energy projection. In this section, we introduce the k-th order energy projection

operator for linear elasticity. Since many of the following chapters utilize this projection, we provide

a more detailed outline for its construction. To construct the necessary polynomial projection

operators, we will need a basis for the space of polynomials [Pk(E)]2. Define the k-th order scaled

monomial vectorial basis set as:

M̂k(E) =

1

0

 ,

0

1

 ,

−η

ξ

 ,

ηξ
 ,

ξ0
 ,

0

η

 , . . . ,

ηk0
 ,

 0

ηk


 , (2.114a)

where

ξ =
x− xE
hE

, η =
y − yE
hE

. (2.114b)

The α-th element of the set M̂k(E) is denoted by mα and we define the matrix Ñp that contains

the basis elements as

Ñp :=

1 0 −η η ξ 0 . . . ηk 0

0 1 ξ −ξ 0 η . . . 0 ηk

 . (2.114c)
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Based on the argument for the Poisson equation, the projection we use for the standard virtual

element method with linear elasticity is the energy projection satisfying aE(p,uh−Πε
kuh) = 0 ∀p ∈

[Pk(E)]2. Rewriting as an equivalent expression in terms of the basis functions mα, we have that

Πε
kuh is defined by the orthogonality condition:∫

E
σ(mα) : ε(Π

ε
kuh) dx =

∫
E
σ(mα) : ε(uh) dx ∀mα ∈ M̂k(E). (2.115)

We notice that for α = 1, 2, 3, the vector functions mα represent rigid-body modes. That is, they

satisfy σ(mα) = 0 (α = 1, 2, 3). So there will be three trivial equations, 0 = 0, and the projection

is only uniquely defined up to a rigid-body mode. To fully define the projection, we introduce the

additional conditions that the nodal averages of uh and its projection Πε
kuh for a rigid-body mode

must be equal:

1

NE

NE∑
j=1

(uh −Πε
kuh)(xj) ·mα(xj) = 0 (α = 1, 2, 3). (2.116)

Combining the conditions, we have the system that defines the energy projection as∫
E
σ(mα) : ε(Π

ε
kuh) dx =

∫
E
σ(mα) : ε(v) dx (α = 4, 5, . . . ), (2.117a)

1

NE

NE∑
j=1

Πε
kuh(xj) ·mα(xj) =

1

NE

NE∑
j=1

uh(xj) ·mα(xj) (α = 1, 2, 3). (2.117b)

Further details for the case k = 1 can be found in Sections 3.1.2 and 3.3.1.

Remark 2.6.1. In general, the condition (2.116) can be replaced by any computable operator

P0(·, ·) and the condition

P0(uh −Πεuh,mα) = 0 (α = 1, 2, 3).

The choice in (2.116) is to define P0(·, ·) as

P0(u,v) :=
1

NE

NE∑
j=1

u(xj) · v(xj).

Another common choice (see [15]), valid for any k ≥ 1, is to use an integral average over the

boundary

P0(u,v) :=
1

|∂E|

∫
∂E
u · v dx,
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or for k ≥ 3, we can use the element average

P0(u,v) :=
1

|E|

∫
E
u · v dx.

2.6.2. Virtual element space. We now extend the enhanced virtual element space for scalar

fields given in (2.111) to vector fields. For each element E, define the enhanced space as

[ENE
k ]

2 =

{
vh ∈ [H1(E)]2 :

∫
E
vh · p dx =

∫
E
Πε

kvh · p dx ∀p ∈ [Pk/Pk−2(E)]2
}
, (2.119)

and the virtual element space by

Vh(E) = [Vh(E)]2 =
{
vh ∈ [ENE

k ]
2 : ∆vh ∈ [Pk(E)]2, vh|∂E ∈ [Bk(∂E)]2

}
, (2.120)

where the notation [U ]2 denotes a space containing vector functions where each component lies in

the space U . In particular, each component of the vector-valued functions in Vh(E) will be functions

in a scalar virtual element space. Therefore, the dimension of this space is twice the dimension of

the scalar space and for an element E with NE vertices is given by 2N = 2kNE + k(k − 1), where

N is the number of DOF of the scalar space. Any function vh ∈ Vh(E) can be described by the

degrees of freedoms and basis functions from the scalar space. That is, let {ϕi} be the scalar basis

associated with the degrees of freedom (2.53), then we can write any vh as:

vh =

v1hv2h
 =

ϕ1 ϕ2 . . . ϕN 0 0 . . . 0

0 0 . . . 0 ϕ1 ϕ2 . . . ϕN




v11

v12
...

v2N


(2.121)

=
N∑
i=1

φidofi(v
1
h) +

N∑
i=1

φN+idofi(v
2
h) (2.122)

:=

2N∑
i=1

φidofi(vh), (2.123)

where φi = (ϕi, 0)
T and φN+i = (0, ϕi)

T are the vector basis functions, and dofi(vh) = dofi(v
1
h)

and dofN+i(vh) = dofi(v
2
h) are the scalar degrees of freedom of a vector-valued function vh (for

i = 1, 2, . . . N).
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2.6.3. Discrete problem. Following the discussion for the Poisson problem, if we use the

energy projection, then the discrete bilinear form is written as

aEh (uh,vh) := aE(Πε
kuh,Π

ε
kvh) + SE(uh −Πε

kuh,vh −Πε
kvh), (2.124)

for some stabilization term SE(·, ·). For the Poisson problem, the simplified stabilization term (2.66)

is usually sufficient (see [30]); however, in elasicity, the bilinear form scales with the material

modulii tensor, so the corresponding stabilization matrix SE in (2.65) should contain suitable

scaling parameters. There are a few common choices for the stabilization matrix SE as given

in [86], the simplest choice is to include a constant parameter that is proportional to the trace of

the material modulii tensor C (scaled dofi-dofi stabilization). That is, we let

(SE)ij =
tr(C)

3
δij . (2.125a)

Alternatively, we can scale each of the diagonal terms separately (so-called D-recipe stabilization)

(SE)ij = max

(
tr(C)

3
, aE(Πε

kφi,Π
ε
kφj)

)
δij . (2.125b)

The local forcing functional is given by

ℓEh (vh) =

∫
E
Π0

kb · vh dx+

∫
Γt∩∂E

t · vh ds

=

∫
E
b ·Π0

kvh dx+

∫
Γt∩∂E

t · vh ds, (2.126)

where the final expression is obtained by applying the orthogonality property of the L2 projection

operator.

2.6.4. Matrix-vector representation. For later computations, it is more convenient to re-

duce the tensor expressions into equivalent matrix and vector representations. We first note that

for plane elasticity we can express the components of the stress and strain tensors as symmetric

2×2 matrices. However, instead of using symmetric matrices, we adopt Voigt notation to represent

the matrices as 3 × 1 arrays. In particular, for any symmetric 2 × 2 matrix A, denote its Voigt
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representation A by:

A =

a11 a12

a12 a22

 , A =


a11

a22

a12

 . (2.127)

On using Voigt (engineering) notation, we can write the stress and strain in terms of 3× 1 arrays:

σ =


σ11

σ22

σ12

 , ε =


ε11

ε22

2ε12

 . (2.128)

Furthermore, on using these conventions we can also express the strain-displacement relation and

the constitutive law in matrix form as:

σ = Cε, ε = Su, (2.129a)

where S is a matrix differential operator that is given by

S =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

 , (2.129b)

and C is the associated matrix representation of the material tensor that is given by

C =
EY

(1− ν2)


1 ν 0

ν 1 0

0 0 1−ν
2

 (plane stress), (2.130a)

C =
EY

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2

 (plane strain), (2.130b)

where EY is the Young’s modulus and ν is the Poisson’s ratio of the material.
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2.6.5. Element stiffness matrix and element force vector for elasticity. Following (2.106a),

the element stiffness matrix for linear elasticity has the following form:

KE =Kc
E +Ks

E , (2.131a)

where Kc
E and Ks

E have components given by

(Kc
E)ij =

∫
E
σ(Πε

kφi) : ε(Π
ε
kφj) dx (2.131b)

(Ks
E)ij =

2N∑
r=1

2N∑
s=1

dofr(φi −Πε
kφi)S

E
rsdofs(φj −Πε

kφj), (2.131c)

where we have not specified a stabilization matrix SE .

For each element E, the element force vector is given by

(fE)i =

∫
E
b ·Π0

kφi dx+

∫
Γt∩∂E

t ·φi ds, (2.132)

where Π0
k is the L2 projection operator into the space of vector-valued polynomials of degree less

than or equal to k. For the standard virtual element method, we only outline the construction of

the element stiffness and forcing terms. A more detailed implementation can be found in [13,80].

40



CHAPTER 3

Stabilization-Free Virtual Element Method

In this chapter, we first construct a low order virtual element method that does not require

a stabilization term. In the standard virtual element method, a stability term is usually required

to preserve the coercivity of the discrete bilinear operator; however the choice of the stabilization

term in the VEM is non-unique and is problem dependent. An incorrect choice of stabilization can

result in overly stiff and inaccurate results. Therefore it is of interest to construct a method that is

independent of a stabilization term. The main idea of the stabilization-free approach, as described

for the Poisson problem in [20], is to modify the virtual element space to allow for the construction

of a higher order L2 projection of the strain (gradient). This process requires additional internal

degrees of freedom; however, these can be removed by utilizing a secondary projection operator of

the displacement field as originally shown in [2]. A similar approach is given in [54]; however, they

used static condensation instead of a secondary projection to remove the excess degrees of freedom.

We start by defining the necessary polynomial spaces, and projection operators for the dis-

placement and the strain fields. With the projection operators on hand, we construct an enhanced

virtual element space and define an alternate weak bilinear form that does not require a stabiliza-

tion term. Next, we detail the numerical implementation of the method, show that the problem is

well defined, and give convergence error estimates. We conclude the chapter by presenting numer-

ical results of the SF-VEM on a series of benchmark problems in linear elasticity: the patch test,

bending of a cantilever beam, infinite plate with a circular hole under uniaxial tension, and hollow

cylinder under internal pressure. The numerical convergence rates are found to be in agreement

with the theoretical results.

This chapter is based on the work published in [37].

3.1. Polynomial space and projection operators

We present the derivation of the two projections that are used in the stabilization-free VEM:

energy projection of the displacement field and L2 projection of the strain field.
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3.1.1. Polynomial basis. For the initial stabilization-free virtual element method, we only

consider a first-order method; therefore, we use a first-order polynomial projection to approximate

the displacement field inside an element. Over each element E, we define [P1(E)]2 as the space of

of two-dimensional vector-valued polynomials of degree less than or equal to 1. On each E, we will

also need to choose a basis. In particular, we choose the basis as:

M̂(E) =

1

0

 ,

0

1

 ,

−η

ξ

 ,

ηξ
 ,

ξ0
 ,

0

η


 , (3.1)

where ξ and η given in (2.114b). The α-th element of the set M̂(E) is denoted by mα. We note

that this basis is equivalent to the first six basis functions given in (2.114a).

In the stabilization-free approach, we directly approximate the strain tensor (matrix) inside an

element with a high-order matrix polynomial. Therefore, we also define the space Pℓ(E)2×2
sym that

represents 2×2 symmetric matrix polynomials of degree less than or equal to ℓ. Since the matrices

are symmetric we can represent them in terms of 3× 1 vectors using Voigt notation in (2.127). On

each element E, we choose the basis

M̂2×2(E) =



1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


ξ

0

0

 ,


0

ξ

0

 ,


0

0

ξ

 , . . .


ηℓ

0

0

 ,


0

ηℓ

0

 ,


0

0

ηℓ


 . (3.2a)

We denote the α-th vector in this set as m̂α and define the matrix Np that contains these basis

elements as

Np :=


1 0 0 ξ 0 0 . . . ηℓ 0 0

0 1 0 0 ξ 0 . . . 0 ηℓ 0

0 0 1 0 0 ξ . . . 0 0 ηℓ

 . (3.2b)

3.1.2. Energy projection of the displacement field. For completeness and since we rely

on the first-order energy projection in the remainder of this work, we detail the construction of

the first-order projection denoted by Πε. Let E be any generic element with H1(E) := [H1(E)]2.

We now define the energy projection operator Πε :H1(E) → [P1(E)]2 by the unique function that
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satisfies the orthogonality relation:

aE(mα,v −Πεv) = 0 ∀mα ∈ M̂(E), (3.3)

where M̂(E) given in (3.1). Note that for α = 1, 2, 3, which corresponds to the rigid-body modes,

we obtain σ(mα) = 0. So we obtain three trivial equations, 0 = 0. To fully define the projection,

we need to choose a suitable projection operator P0 : H1(E) ×H1(E) → R. In particular, we

select it as a discrete L2 inner product on E:

P0(u,v) :=
1

NE

NE∑
j=1

u(xj) · v(xj), (3.4)

and require the condition

P0(mα,v −Πεv) =
1

NE

NE∑
j=1

(v −Πεv)(xj) ·mα(xj) = 0 (α = 1, 2, 3). (3.5)

On writing out the expressions, we have the equivalent system∫
E
σ(mα) : ε(Π

εv) dx =

∫
E
σ(mα) : ε(v) dx (α = 4, 5, 6), (3.6a)

1

NE

NE∑
j=1

Πεv(xj) ·mα(xj) =
1

NE

NE∑
j=1

v(xj) ·mα(xj) (α = 1, 2, 3). (3.6b)

We can also rewrite this using the matrix-vector representation. For the right-hand side of (3.6a),

we use (2.128) to write

σ(mα) : ε(v) = ε(v) · σ(mα) =
(
ε(v)

)T
σ(mα)

= (Sv)T (CSmα) .

Similarly, the left-hand side can be written as

σ(mα) : ε(Π
εv) :=

(
ε(Πεv)

)T
(CSmα) = (SΠεv)T (CSmα) .

Therefore, we can express (3.6a) in matrix-vector form as:∫
E
(SΠεv)T (CSmα) dx =

∫
E
(Sv)T (CSmα) dx. (3.7)
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3.1.3. L2 projection of the strain field. We define the associated L2 projection operator

Π0
ℓε(.) :H

1(E) → Pℓ(E)2×2
sym of the strain tensor by the unique operator that satisfies

(εp, ε(v)−Π0
ℓε(v))E = 0 ∀εp ∈ Pℓ(E)2×2

sym, (3.8a)

where we use the standard L2 inner product:

(εp, ε)E =

∫
E
εp : ε dx. (3.8b)

Writing out the expression in (3.8a), we have∫
E
εp : Π0

ℓε(v) dx =

∫
E
εp : ε(v) dx. (3.9)

On expanding the right-hand side of (3.9), and on applying integration by parts and the divergence

theorem, we obtain ∫
E
εp : ε(v)dx =

∫
E
∇ · (v · εp) dx−

∫
E
v · (∇ · εp) dx

=

∫
∂E
n · (v · εp) ds−

∫
E
v · (∇ · εp) dx.

Then, (3.9) becomes∫
E
εp : Π0

ℓε(v) dx =

∫
∂E
v · (εp · n) ds−

∫
E
v · (∇ · εp) dx. (3.10)

On using the matrix-vector representation in (2.128), the first term on the right-hand side of (3.10)

becomes

v · (εp · n) = vT
εp11 εp12

εp12 εp22

n1n2
 = vT

n1 0 n2

0 n2 n1



εp11

εp22

εp12

 := vTN∂E
∗ εp, (3.11a)

where N∂E
∗ is the matrix of element normal components, which is defined as

N∂E
∗ :=

n1 0 n2

0 n2 n1

 . (3.11b)
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For the second term on the right-hand side of (3.10), we have

v · (∇ · εp) = vT


∂εp11
∂x +

∂εp12
∂y

∂εp12
∂x +

∂εp22
∂y

 = vT

 ∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x



εp11

εp22

εp12

 := vT∂εp, (3.12a)

where ∂ is a matrix operator that is defined as

∂ :=

 ∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

 . (3.12b)

Now we can express (3.10) as∫
E
εp : Π0

ℓε(v) dx =

∫
∂E
vTN∂E

∗ εp ds+

∫
E
vT∂εp dx. (3.13)

Since Π0
ℓε(v) is the projection of the strain tensor onto symmetric matrix polynomials, we

use (2.128) to represent it in terms of a vector. In particular, we set

Π0
ℓε(v) =


(Π0

ℓε(v))11

(Π0
ℓε(v))22

2(Π0
ℓε(v))12

 .

Now, we can also write

εp : Π0
ℓε(v) = Π0

ℓε(v) · εp =
(
Π0

ℓε(v)
)T
εp.

On using the above relations in (3.13), we seek the L2 projection that satisfies∫
E

(
Π0

ℓε(v)
)T
εp dx =

∫
∂E
vTN∂E

∗ εp ds+

∫
E
vT∂εp dx ∀εp ∈ Pℓ(E)2×2

sym. (3.14)

3.2. Enlarged enhanced virtual element space

With the preliminary results in place, we now construct the discrete space for the stabilization-

free virtual element method. Let E be any polygonal element from T h, then following [20], we
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select the smallest value ℓ = ℓ(E) that satisfies1

3

2
(ℓ+ 1)(ℓ+ 2)− dim(Pker

ℓ (E)) ≥ 2NE − 3, (3.15)

where NE is the number of vertices (nodes) of element E and Pker
ℓ (E) is the space defined by

Pker
ℓ (E) :=

{
εp ∈ Pℓ(E)2×2

sym :

∫
∂E

(v − Pr(v))|∂E · (εp · n) ds = 0 ∀v
}
,

where Pr(v) is a projection of v onto rigid-body modes with ε(Pr(v)) = 0. It can be shown that

the dimension of the space Pker
ℓ (E) is bounded from above, and we include this result as a lemma.

Lemma 3.2.0.1. Let E be any polygonal element and ℓ ∈ N. Then

dim(Pker
ℓ (E)) ≤ ℓ

2
(3ℓ+ 1). (3.16)

Proof. Following [20], we define for each element E, the subspace of polynomials

H̃ℓ+1(E) = {p ∈ [Pℓ+1(E)]2 : ∇ · σ(p) = 0}.

For a given ℓ, this space is shown to have dimension 4ℓ + 6 in [31]. We then consider the space

σ(H̃ℓ+1(E)), and it can be shown that this space has dimension 4ℓ+3. Both Pker
ℓ (E) and σ(H̃ℓ+1(E))

are subspaces of Pℓ(E)2×2
sym, so the sum Pker

ℓ (E) +σ(H̃ℓ+1(E)) is also a subspace and the dimension

is bounded by:

dim(Pℓ(E)2×2
sym) ≥ dim(Pker

ℓ (E) + σ(H̃ℓ+1(E)))

= dim(Pker
ℓ (E)) + dim(σ(H̃ℓ+1(E))− dim(Pker

ℓ (E) ∩ σ(H̃ℓ+1(E))).

Now we show that Pker
ℓ (E) ∩ σ(H̃ℓ+1(E)) = {0}. To this end, let p ∈ H̃ℓ+1(E), and assume that

σ(p) ∈ Pker
ℓ (E). Then we have for any v ∈H1(E),∫

E
∇ · σ(p) · (v − Pr(v)) dx = 0.

1In [54], the following inequality for ℓ = ℓ(E) is proposed: 3
2
(ℓ+ 1)(ℓ+ 2) ≥ m− 3, where m is the total number of

degrees of freedom, which includes an additional ℓ(ℓ+ 1) degrees of freedom due to extending the vector polynomial
approximation space. However, a counterexample on regular polygons (A. Russo, personal communication, April
2022) shows that this condition is not sufficient.
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On applying the divergence theorem and using the definition of Pker
ℓ (E), we can write∫

∂E
(v − Pr(v))|∂E · (σ(p) · n) ds−

∫
E
ε(v − Pr(v)) : σ(p) dx = −

∫
E
ε(v) : σ(p) = 0.

This is true for all v, which implies that σ(p) = 0. Otherwise, suppose this is not true, then

following a similar argument from [20], there exists an open set ω ⊂ E such that σ(p) ̸= 0 and in

particular p ̸= 0 over ω . Now define a (smooth) bump function by:
−∇ · σ(bω) = p in ω,

bω = 0 on E \ ω.

Then, we consider

0 = (σ(p), ε(bω))E = (σ(p), ε(bω))ω = (ε(p),σ(bω))ω

On applying the divergence theorem, we obtain

0 = (ε(p),σ(bω))ω =

∫
ω
ε(p) : σ(bω) dx =

∫
∂ω

(σ(bω) · n) · p ds−
∫
ω
p · (∇ · σ(bω)) dx

=

∫
ω
p · p dx > 0,

which leads to a contradiction, and therefore σ(p) = 0 holds on E. This implies that Pker
ℓ (E) ∩

σ(H̃ℓ+1(E)) = {0}. Now it follows that

dim(Pker
ℓ (E)) ≤ dim(Pℓ(E)2×2

sym)− dim(σ(H̃ℓ+1(E))) + dim(Pker
ℓ (E) ∩ σ(H̃ℓ+1(E)))

=
3

2
(ℓ+ 1)(ℓ+ 2)− (4ℓ+ 3)

=
ℓ

2
(3ℓ+ 1). □

Combining (3.16) and (3.15), we get a sufficient bound on the number of vertices required for

any ℓ. In particular, we have a more restrictive bound:

NE ≤ 2ℓ+ 3. (3.17)

On using this value of ℓ, we define the set of all functions v ∈H1(E) that satisfy the property

that the inner product of the function and any vector polynomial in [Pℓ−1(E)]2 is equal to that of
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the inner product with the energy projection. That is, we define the set ENE
1,ℓ as

ENE
1,ℓ =

{
v :

∫
E
v · p dx =

∫
E
Πεv · p dx ∀p ∈ [Pℓ−1(E)]2

}
. (3.18)

We define the local enlarged virtual element space as:

V E
1,ℓ :=

{
vh ∈ ENE

1,ℓ : ∆vh ∈ [Pℓ−1(E)]2, γe(vh) ∈ [P1(e)]
2 ∀e ∈ EE , vh ∈ [C0(∂E)]2

}
, (3.19)

where γei(·) is the trace of a function (its argument) on an edge ei. In the above space we require

functions to be linear on the edges, in which case we can take the degrees of freedom to be the

values of the function at the vertices of the polygon E. There will be a total of 2NE degrees of

freedom on each element E.

With the local space so defined, we define the global enlarged virtual element space as

V1,ℓ := {vh ∈ [H1(Ω)]2 : vh|E ∈ V E
1,ℓ for ℓ = ℓ(E)}. (3.20)

For each E, we assign a suitable basis to the local virtual element space V E
1,ℓ. Let {ϕi} be the set of

generalized barycentric coordinates (canonical basis functions) [61] that satisfy ϕi(xj) = δij . We

express the components of any vh ∈ V E
1,ℓ as the sum of these basis functions:

vh =

v1hv2h
 =

ϕ1 ϕ2 . . . ϕNE
0 0 . . . 0

0 0 . . . 0 ϕ1 ϕ2 . . . ϕNE




v11

v12
...

v2NE


:=N vṽh, (3.21a)

where we define N v as the matrix of vectorial basis functions:

N v =

ϕ1 ϕ2 . . . ϕNE
0 0 . . . 0

0 0 . . . 0 ϕ1 ϕ2 . . . ϕNE

 :=
[
φ1 . . . φNE

. . . φ2NE

]
. (3.21b)

We now define the weak form of the virtual element method on this space. On defining a

discrete bilinear operator aEh : V E
1,ℓ × V E

1,ℓ → R and a discrete linear functional ℓEh : V E
1,ℓ → R, we

seek the solution to the problem: find uh ∈ V E
1,ℓ such that

aEh (uh,vh) = ℓEh (vh) ∀vh ∈ V E
1,ℓ. (3.22)
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Following [20], we introduce the local discrete bilinear form in matrix-vector form:

aEh (uh,vh) :=

∫
E

(
Π0

ℓε(vh)
)T
C Π0

ℓε(uh) dx, (3.23)

with the associated global operator defined as

ah(uh,vh) :=
∑
E

aEh (uh,vh). (3.24)

We also define a local linear functional by

ℓEh (vh) =

∫
E
vTh bh dx+

∫
Γt∩∂E

vTh t ds, (3.25)

with the associated global functional

ℓh(vh) =
∑
E

ℓEh (vh), (3.26)

where bh is some approximation to b. For first-order methods it is sufficient to consider the L2

projection onto constants, namely bh = Π0
0b.

Remark 3.2.1. We note that the discrete bilinear form aEh (·, ·) given in this section differs

from the standard VEM (2.124). The first difference is that (3.23) contains only the polynomial

approximation term and does not have a stabilization term SE(·, ·). Another major difference is

that the strain operator is directly approximated by a projection operator Π0
ℓε(·) instead of as the

strain operator acting on a polynomial ε(Πε(·)). For linear polynomials, these two approaches are

equivalent; however, it is shown in [14] that for high order methods, the standard VEM bilinear

form can lead to suboptimal results in certain problems.

3.3. Numerical implementation

With the definitions of the discrete spaces and projections on hand, we now detail the im-

plementation of the method. We present the derivation of the equations to compute the energy

projection, the L2 projection, and the element stiffness matrix.
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3.3.1. Implementation of energy projector. We start with the energy projection. From

(3.7), we have for α = 4, 5, 6, the equation∫
E
(SΠεvh)

T (CSmα) dx =

∫
E
(Svh)

T (CSmα) dx.

In particular, we are interested in the case when vh = φi, the basis functions in V E
1,ℓ. By definition

of the energy projection, Πεφi is a vector polynomial of degree one. Therefore, we can expand it

in terms of its basis functions:

Πεφi =

6∑
β=1

siβmβ. (3.27)

We can express the left-hand side as∫
E
(SΠεφi)

T (CSmα) dx =
6∑

β=1

siβ

∫
E
(Smβ)

T (CSmα) dx. (3.28)

Define the matrix G̃ for β = 1, 2, . . . , 6, and α = 4, 5, 6 by

G̃αβ =

∫
E
(Smβ)

T (CSmα) dx. (3.29)

Similarly, the matrix B̃ representing the right-hand side of (3.7) becomes

B̃αi =

∫
E
(Sφi)

T (CSmα) dx. (3.30)

To fully define these matrices for all α, we consider the additional projection equation (3.6b).

When v = φi, we obtain

1

NE

NE∑
j=1

Πεφi(xj) ·mα(xj) =
1

NE

NE∑
j=1

φi(xj) ·mα(xj).

As we have done previously, on expanding Πεφi with (3.27) leads to

6∑
β=1

siβ
1

NE

NE∑
j=1

mβ(xj) ·mα(xj) =
1

NE

NE∑
j=1

φi(xj) ·mα(xj). (3.31)
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Now we can define the remaining α = 1, 2, 3 terms of the matrices G̃ and B̃ as

G̃αβ =
1

NE

NE∑
j=1

mβ(xj) ·mα(xj), B̃αi =
1

NE

NE∑
j=1

φi(xj) ·mα(xj). (3.32)

Combining the results, we obtain G̃ for all β = 1, 2, . . . , 6:

G̃αβ =


1

NE

∑NE
j=1mβ(xj) ·mα(xj) (α = 1, 2, 3)∫

E (Smβ)
T (CSmα)dx (α = 4, 5, 6),

(3.33a)

and for all i = 1, 2 . . . , 2NE , we have

B̃αi =


1

NE

∑NE
j=1φi(xj) ·mα(xj) (α = 1, 2, 3)∫

E (Sφi)
T (CSmα) dx (α = 4, 5, 6).

(3.33b)

After combining these equations, we can determine the coefficients for the projection as the solution

of the system:

G̃Πε
∗ = B̃, (3.34)

where (Πε
∗)βi = siβ. We start by considering the matrix G̃. For α = 1, 2, 3, G̃ is the sum of

polynomials evaluated at the vertex points, which can be directly computed. For α = 4, 5, 6, since

the basis functions mα are linear, the matrix differential operator acting on mα will result in a

constant vector. For a constant material matrix C, the expression (Smβ)
T (CSmα) is a constant

matrix. Therefore, we can write:

G̃αβ = (Smβ)
T (CSmα)|E| (α = 4, 5, 6).

On using (3.33b) and simplifying, we can write B̃ for α = 1, 2, 3 as

B̃αi =



1
NE

∑NE
j=1

ϕi(xj)

0

 ·mα(xj) =
1

NE
m1

α(xi) (i = 1, 2, . . . , NE)

1
NE

∑NE
j=1

 0

ϕi(xj)

 ·mα(xj) =
1

NE
m2

α(xi) (i = NE + 1, NE + 2, . . . , 2NE),
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where mk
α is the k-th component of mα. For α = 4, 5, 6, we can apply the definition of the matrix

differential operator and use the divergence theorem to write

B̃αi =

∫
E
(Sφi)

T (CSmα) dx =

(∫
E
(Sφi)

T dx

)
CSmα =

NE∑
j=1

(∫
ej

φi
TN∂E

∗ ds

)
CSmα,

where ej is the j-th edge of the element E and N∂E
∗ is the matrix of normal components given

in (3.11b). On simplification, we obtain for α = 4, 5, 6,

B̃αi =



(∫
ei−1

(
ϕin

(i−1)
1 0 ϕin

(i−1)
2

)
ds

+
∫
ei

(
ϕin

(i)
1 0 ϕin

(i)
2

)
ds
)
CSmα (i = 1, 2, . . . , NE)(∫

ei−1

(
0 ϕin

(i−1)
2 ϕin

(i−1)
1

)
ds

+
∫
ei

(
0 ϕin

(i)
2 ϕin

(i)
1

)
ds
)
CSmα (i = NE + 1, NE + 2, . . . , 2NE).

These are integrals of a linear function over a line segment, which are exactly computed using a

two-point Gauss-Lobatto quadrature scheme.

3.3.2. Implementation of L2 projector. Now that we have a computable form of the energy

projection, we can construct the L2 projection. From (3.14), we have∫
E

(
Π0

ℓε(vh)
)T
εp dx =

∫
∂E
vThN

∂E
∗ εp ds+

∫
E
vTh ∂ε

p dx. (3.35)

On expanding vh in terms of its basis in V E
1,ℓ, we obtain vh = N vṽh. We can also expand the

symmetric function εp in terms of the polynomial basis in Pℓ(E)2×2
sym with εp =Npε̃p. Following [6],

we also define a matrix Πm such that we can write the projected strain in terms of the polynomial

basis in Pℓ(E)2×2
sym. In particular, we write

Π0
ℓε(vh) =N

pΠmṽh,

Substituting these into (3.35), we obtain∫
E
(NpΠmṽh)

T Npε̃p dx =

∫
∂E

(N vṽh)
T N∂E

∗ Npε̃p ds+

∫
E
(N vṽh)

T ∂Npε̃p dx,
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which on simplifying becomes∫
E
ṽTh (ΠmNp)T Npε̃p dx =

∫
∂E
ṽTh (N

v)TN∂E
∗ Npε̃p ds+

∫
E
ṽTh (N

v)T∂Npε̃p dx.

Since this is true for all ṽh and ε̃p, we can rewrite the equation as:

(ε̃p)T
(∫

E
(Np)T Npdx

)
Πmṽh = (ε̃p)T

(∫
∂E

(
N∂E

∗ Np
)T
N vds−

∫
E
(∂Np)T N vdx

)
ṽh.

So now we can solve for the projection matrix Πm via

Πm = G−1B, (3.36a)

where G and B are defined as

G :=

∫
E
(Np)T Np dx, (3.36b)

B :=

∫
∂E

(
N∂E

∗ Np
)T
N v ds−

∫
E
(∂Np)T N v dx. (3.36c)

We can explicitly construct the forms for G and B. From (3.36b), we expand the integrand

(Np)TNp, where Np is given by (3.2b). If we let I be the 3× 3 identity matrix, we can write Np

as

Np :=
[
I ξI ηI . . . ηℓI

]
and the product (Np)TNp can be written in compact form as:

(Np)TNp =



I ξI ηI . . . ηlI

ξI ξ2I ξηI . . . ξηℓI

ηI ξηI
. . .

...
...

... . . .

ηℓI ξηℓI ηℓ+1I . . . η2ℓI


.

Integrating each term of the matrix, we find that we only need to determine integrals of the form∫
E
ξrηk dx for 0 ≤ r + k ≤ 2ℓ,

which can be computed either by partitioning E into triangles and then adopting a Gauss quadra-

ture rule on triangles or by using the schemes developed in [40,41].
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The construction of the B matrix reveals the major difference between the stabilization-free

method and a standard VEM for plane elasticity. For the first term in (3.36c), we expand the

integral over ∂E as the sum of integrals over edge ei:∫
∂E

(
N∂E

∗ Np
)T
N v ds =

∑
i=1

∫
ei

(
N∂E

∗ Np
)T
N v|ei ds.

Now we examine N v|ei ,

N v|ei =

ϕ1 ϕ2 . . . ϕNE
0 . . . 0

0 0 . . . 0 ϕ1 ϕ2 . . . ϕNE

∣∣∣∣
ei

.

By definition of the Lagrange property, each ϕi is only nonzero when evaluated at the i-th degree

of freedom, therefore the only contributions along the edge ei are from ϕi|ei and ϕi+1|ei . As a

consequence, N v|ei has only four nonzero elements, namely

N v|ei =

0 0 . . . ϕi|ei ϕi+1|ei . . . 0 0 . . . 0

0 0 . . . 0 0 . . . ϕi|ei ϕi+1|ei . . . 0

 . (3.37)

We note from (3.19) that ϕi and ϕi+1 are linear functions along the edges so they can be represented

exactly via a parametrization of ei. We also note that the product N∂E
∗ Np is at most polynomials

of degree ℓ, so that the terms of the form (N∂E
∗ Np)TN v|ei are at most a polynomial of degree

ℓ + 1. This suggests that if we parametrize ei by t ∈ [−1, 1], we can use a one-dimensional Gauss

quadrature rule to compute these integrals. In particular, let ri(t) : [−1, 1] → ei be a parametriza-

tion of the i-th edge and let {ω1, · · · , ωr}, {t1, · · · , tr} be the associated Gauss quadrature weights

and nodes. Then, after simplifications we have∫
ei

(
N∂E

∗ Np
)T
N v|ei ds =

|ei|
2

∫ 1

−1

(
N∂E

∗ Np
)T
N v(ri(t)) dt =

|ei|
2

r∑
j=1

ωj

(
N∂E

∗ Np
)T
N v(ri(tj)).

On examining the second term in (3.36c), we note that ∂ is a matrix operator of first-order deriva-

tives, and Np is a matrix of polynomials of degree less than or equal to ℓ. This implies that the

product ∂Np is a matrix polynomial of degree at most ℓ− 1. Then the product (∂Np)TN v con-

tains terms of the form
∫
E pℓ−1 ·φj . On applying the enhancing property of the space (3.19), we
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can replace these integrals with the integrals of the elliptic projection, that is∫
E
pℓ−1 ·φj dx =

∫
E
pℓ−1 ·Πεφj dx,

which in matrix form can be written as∫
E
(∂Np)TN v dx =

∫
E
(∂Np)TΠεN v dx, (3.38a)

where we have the natural definition

ΠεN v :=
[
Πεφ1 Πεφ2 . . . Πεφ2NE

]
. (3.38b)

The integral in (3.38a) is computed using a cubature scheme. With these matrices, we can compute

the L2 projection Π0
ℓε(vh) using (3.36).

3.3.3. Element stiffness matrix and force vector. To construct the element stiffness, we

first rewrite the bilinear form aEh in terms of the matrices that we have constructed:

aEh (uh,vh) :=

∫
E

(
Π0

ℓε(vh)
)T
C Π0

ℓε(uh) dx

=

∫
E
(NpΠmṽh)

T C (NpΠmũh) dx

= ṽTh (Πm)T
(∫

E
(Np)TCNp dx

)
Πmũh.

Then, define the element stiffness matrix KE by

KE := (Πm)T
(∫

E
(Np)TCNp dx

)
Πm, (3.39)

where Πm is given in (3.36).

We construct the forcing term given in (3.25) as

ℓEh (vh) =

∫
E
vTh bh dx+

∫
Γt∩∂E

vTh t ds,

which is rewritten in the form

ℓEh (vh) = (ṽh)
T

(∫
E
(N v)Tbh dx+

∫
Γt∩∂E

(N v)T t ds

)
.
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The element force vector is then defined as

fE :=

∫
E
(N v)Tbh dx+

∫
Γt∩∂E

(N v)T t ds. (3.40)

Since we are using a low-order scheme, we use the approximation∫
E
(N v)Tbh dx ≈ (N v)T

∫
E
bh dx ≈ |E|(N v)Tb(xE),

where (N v)T is the matrix of average values of ϕ. Specifically, denoting the j-th vertex by xj , we

define the average value as

ϕ =
1

NE

NE∑
j=1

ϕ(xj),

and let

N v =

ϕ1 ϕ2 . . . ϕNE
0 0 . . . 0

0 0 . . . 0 ϕ1 ϕ2 . . . ϕNE

 =

 1
NE

1
NE

. . . 1
NE

0 0 . . . 0

0 0 . . . 0 1
NE

1
NE

. . . 1
NE

 .
For constant tractions, we obtain a closed-form solution for the traction integral:

(∫
Γt∩∂E

(N v)T ds

)
t =

 ∑
ej∈∂E

∫
ej

(N v)T |ej ds

 t.
Now applying a similar argument as in (3.37), we can simplify this integral as

∫
ej

(N v)T |ej ds = |ej |

0 0 . . . 1
2

1
2 . . . 0 0 . . . 0

0 0 . . . 0 0 . . . 1
2

1
2 . . . 0

 .
3.4. Theoretical results

We examine the well-posedness of the discrete problem (3.22) and derive error estimates in the

L2 norm and energy seminorm. To simplify the analysis we resort to the study of the boundary-

value problem with homogeneous Dirichlet boundary data. We expect the results can be extended

to the inhomogeneous case.

3.4.1. Well-posedness of discrete problem. The approach follows ideas from [19], and

we start by showing that the energy seminorm is equivalent with the chosen norm for the space

V1,ℓ, and use this norm to show that the bilinear form in (3.24) satisfies the properties of the

Lax–Milgram theorem. We begin by first defining a candidate discrete norm operator:

56



Definition 3.4.1. Let ah be the bilinear form defined in (3.24), then define an operator ∥.∥ℓ :

V1,ℓ → R by

∥u∥ℓ := (ah(u,u))
1
2 =

(∑
E

aEh (u,u)

) 1
2

. (3.41)

For specific ℓ values, this operator is a norm and is equivalent to the natural norm in the space

[H1
0 (Ω)]

2. The main difficulty is showing that the operator is positive definite, i.e., ∥u∥ℓ = 0 =⇒

u = 0. To this end, we introduce a theorem given in [19]:

Theorem 3.4.2. Let E be any element in the space, and u ∈ V E
1,ℓ. Choose ℓ ∈ N satisfying

3

2
(ℓ+ 1)(ℓ+ 2)− dim(Pker

ℓ (E)) ≥ 2NE − 3,

or in general choose ℓ ∈ N satisfying

NE ≤ 2ℓ+ 3,

then we have

Π0
ℓε(u) = 0 =⇒ ε(u) = 0. (3.42)

To prove this theorem, we introduce the following lemma:

Lemma 3.4.2.1. Let u ∈ V E
1,ℓ, with ℓ ≥ 1, then the following implication holds

Π0
ℓε(u) = 0 =⇒ ε(Πεu) = 0. (3.43)

Proof. Assume that Π0
ℓε(u) = 0, then by definition of the L2 projection, we have

(ε(u), εp)E = 0 ∀εp ∈ Pℓ(E)2×2
sym.

In particular, if we let p ∈ [P1(E)]2 , then σ(p) ∈ P0(E)2×2
sym ⊆ Pℓ(E)2×2

sym. So we have

(ε(u),σ(p))E = 0 ∀p ∈ [P1(E)]2.
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Applying the definition of the energy projection Πεu, we get

(ε(Πεu),σ(p))E = 0.

Since this is true for any p ∈ [P1(E)]2, this results in

ε(Πεu) = 0. □

In order to show that the defined operator is a norm we use an inf-sup type argument. To

establish the results, we construct some additional spaces and operators. To motivate the construc-

tions, we assume that the condition Π0
ℓε(u) = 0 holds. This implies that the following equality

holds: ∫
E
Π0

ℓε(u) : ε
p dx = 0 ∀εp ∈ Pℓ(E)2×2

sym.

Applying the definition of the L2 projection in (3.8), we also obtain∫
E
ε(u) : εp dx = 0.

Using the divergence theorem, we can rewrite this equality as∫
E
ε(u) : εp dx =

∫
∂E
u · (εp · n) ds−

∫
E
u · (∇ · εp) dx = 0.

We note that ∇ · εp ∈ [Pl−1]
2 ⊆ [Pl+1]

2, and using the definition of the space V E
1,ℓ , Lemma 3.4.2.1

and applying the divergence theorem, the second term becomes∫
E
u · (∇ · εp) dx =

∫
E
Πεu · (∇ · εp) dx =

∫
∂E

Πεu · (εp · n) ds.

This gives us the equality

0 =

∫
E
ε(u) : εp dx =

∫
∂E
u · (εp · n) ds−

∫
∂E

Πεu · (εp · n) ds

=

∫
∂E

(u−Πεu)|∂E · (εp · n) ds, (3.44)

where we use the notation (u−Πεu)|∂E to explicitly indicate that the function is evaluated on the

boundary. This suggests that we study the operator of the form
∫
∂E v · (Q · n) ds.
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Definition 3.4.3. Define the bilinear operator b : RQ(E)× [V ]2 → R by [19]

b(v,Q) =

∫
∂E
v · (Q · n) ds, (3.45)

where v is defined over the boundary ∂E. The spaces RQ(E) and [V ]2 are chosen later.

In particular, we study the special case when v = (u−Πεu)|∂E . Since we are interested in

all such functions u ∈ V E
1,ℓ, we study the space of all linear combination of the basis functions

(φi −Πεφi)|∂E . This motivates the next definition:

Definition 3.4.4. Define the space Q(∂E) by

Q(∂E) := span{(φi −Πεφi)|∂E : i = 1, 2 . . . , 2NE}. (3.46)

Now given a function on Q(∂E), we need to extend it to a function defined on the entire element

E. One way to achieve this is to first triangulate the polygon E. Let τ ⊆ E be any triangular

subelement. Denote τi as the triangle with vertices xi,xi+1,xc, for each i = 1, 2, . . . , NE , where

xc is the centroid of E. We denote the edge connecting the vertices xi and xc by ei, and the unit

outward normal as nei . With this triangulation, we extend v to be a function v on E by requiring

that v agrees with v|e over each edge e and v|τ ∈ [P1(τ)]
2 over every triangular element τ . To

obtain a unique vector-valued function, we require that v(xc) = 0. We use this to define the space

RQ(E) of extended functions over the entire element E.

Definition 3.4.5. Define the space RQ(E) by

RQ(E) := {v : v|τ ∈ [P1(τ)]
2 ∀τ ⊆ E, v|∂E ∈ Q(∂E), v(xc) = 0}. (3.47)

Using (3.45), we express (3.44) as

b(u−Πεu, εp) = 0. (3.48)

But the extended function u−Πεu is equal to u−Πεu over the boundary, so applying the expres-

sion to the extended function, we get

b(u−Πεu, εp) = 0 ∀εp ∈ Pℓ(E)2×2
sym.
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To show that ε(u) = 0, it is sufficient to establish that u = Πεu is a rigid-body mode. This is

equivalent to showing that

∥u−Πεu∥ = 0

in some norm. From [19], it is sufficient to show an inf-sup condition:

sup
εp∈Pℓ(E)2×2

sym

b(u−Πεu, εp)

∥εp∥
≥ β∥u−Πεu∥. (3.49)

To formalize this, we first construct a suitable space with a suitable norm.

Definition 3.4.6. For every element E, let H1
τ (E) be the broken Sobolev space that is defined

by

H1
τ (E) :=

⋃
τ

H1(τ), (3.50)

where H1(τ) = [H1(τ)]2 is the standard Sobolev space defined on a triangular subelement. On this

space, equip the seminorm and norm:

|u|2H1
τ (E) :=

∑
τ

∥∇u∥2L2(τ) +

NE∑
i=1

∥[[u]]ei∥2L2(ei)
, (3.51a)

∥u∥2H1
τ (E) := |u|2H1

τ (E) +
∑
τ

∥u∥2L2(τ). (3.51b)

Again, let γei(.) be the trace of its argument on edge ei. We then define [[.]]ei :H
1
τ → L2(ei) as the

jump across the i-th edge of the triangulation, which is given by

[[u]]ei := γei(u|τi)− γei(u|τi−1).

We now define a space of functions with finite jumps across edges in the triangulation.

Definition 3.4.7. Define the space V = V (E) ⊆
⋃

τ H(div, τ) by

V (E) :=

{
v ∈

⋃
τ

H(div, τ) : ∥[[v]]ei∥L∞(ei) <∞ ∀ei

}
, (3.52)
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whereH(div, τ) is the space of functions that have finite divergence in the L2 norm over a triangular

subelement. On this space, define the seminorm and norm as

|v|2V :=
∑
τ

∥∇ · v∥2L2(τ) + h2E∥[[v]]IE∥
2
L∞(IE), (3.53a)

∥v∥2V := |v|2V +
∑
τ

∥v∥2L2(τ), (3.53b)

where

∥[[v]]IE∥
2
L∞(IE) = max

i
∥[[v]]ei∥2L∞(ei)

(3.53c)

is the maximum of the jumps over all edges in the triangulation.

Now we show that the bilinear operator defined in (3.45) is continuous on the newly defined

spaces RQ(E)× [V ]2.

Lemma 3.4.7.1. Let b be the bilinear form defined in (3.45), then there exists a constant C > 0,

such that

|b(v,Q)| ≤ C∥v∥H1
τ (E)∥Q∥[V ]2 ∀v ∈ RQ(E) and ∀Q ∈ [V ]2. (3.54)

Proof. By definition, we have

b(v,Q) =

∫
∂E
v · (Q · n) ds.

We partition each element E into a union of triangles {τi}, and again letting {ei} denote the edge

connecting the i-th vertex to the center, we rewrite the integral as

b(v,Q) =
∑
i

[∫
∂τi

v · (Q · n) ds−
∫
ei

γei(v|τi) · (Qei
τi · n

τi
ei) ds

−
∫
ei

γei(v|τi−1) · (Qei
τi−1

· nτi−1
ei ) ds

]
.

We first note that by assumption v ∈ RQ(E), which implies that v along the i-th edge is the same

from either triangle. So we now have

γei(v|τi) = γei(v|τi−1).

61



In addition, since nτi
ei = −nτi−1

ei , we can rewrite b(v,Q) as

b(v,Q) =
∑
i

∫
∂τi

v · (Q · n) ds−
∫
ei

γei(v|τi) · (Qei
τi −Q

ei
τi−1

) · nτi
ei ds

=
∑
i

∫
∂τi

v · (Q · n) ds−
∫
ei

γei(v|τi) · ([[Q]]ei · nτi
ei) ds. (3.55)

For the first term in (3.55), we apply the divergence theorem to obtain∫
∂τi

v · (Q · n) ds =
∫
τi

∇ · (v ·Q) dx =

∫
τi

[∇v : Q+ v · (∇ ·Q)] dx.

We now have

b(v,Q) =
∑
i

∫
τi

[∇v : Q+ v · (∇ ·Q)] dx−
∫
ei

γei(v|τi) · ([[Q]]ei · nτi
ei) ds,

and can bound |b(v,Q| in (3.55) as

|b(v,Q)| ≤ |
∑
i

∫
τi

[∇v : Q+ v · (∇ ·Q)] dx︸ ︷︷ ︸
A

|+ |
∑
i

∫
ei

γei(v|τi) · ([[Q]]ei · nτi
ei) ds|︸ ︷︷ ︸

B

. (3.56)

We estimate each term in (3.56) separately. For term A in (3.56), we have

|
∑
i

∫
τi

[∇v : Q+ v · (∇ ·Q)] dx| ≤
∑
i

[
∥∇v∥L2(τi)∥Q∥L2(τi) + ∥v∥L2(τi)∥∇ ·Q∥L2(τi)

]
≤
∑
i

[
∥∇v∥L2(τi)

(
∥Q∥L2(τi) + ∥∇ ·Q∥L2(τi)

)
+ ∥v∥L2(τi)

(
∥Q∥L2(τi) + ∥∇ ·Q∥L2(τi)

)]
≤ C

∑
i

(
∥v∥L2(τi) + ∥∇v∥L2(τi)

)(
∥Q∥L2(τi) + ∥∇ ·Q∥L2(τi)

)
≤ C∥v∥H1

τ

∑
i

(
∥Q∥L2(τi) + ∥∇ ·Q∥L2(τi)

)
. (3.57)

Now for term B in (3.56), we estimate

∑
i

|
∫
ei

γei(v|τi) · ([[Q]]ei · nτi
ei) ds| ≤

∑
i

∥γei(v|τi)∥L2(ei)∥[[Q]]ei∥L2(ei).

Since v ∈ RQ(E), it is linear on each of the edges ei. It can be shown using a three-point Gauss-

Lobatto quadrature scheme and equivalent norms, that

∥γei(v|τi)∥L2(ei) =

√
|ei|
3

|v(xi)|.
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We can also estimate that

∥[[Q]]ei∥L2(ei) ≤
√
|ei|∥[[Q]]ei∥L∞(ei)

≤
√
|ei|∥[[Q]]IE∥L∞(IE).

Combining the two terms and using equivalent norms, we get

∑
i

|
∫
ei

γei(v|τi) · ([[Q]]ei · nτi
ei) ds| ≤

∑
i

|ei|√
3
|v(xi)|∥[[Q]]IE∥L∞(IE)

≤ ChE∥[[Q]]IE∥L∞(IE)∥v∥H1
τ (E). (3.58)

Combining these two terms in (3.57) and (3.58), we find that

|b(v,Q)| ≤ C1∥v∥H1
τ

∑
i

(∥Q∥L2(τi) + ∥∇ ·Q∥L2(τi)) + C2hE∥v∥H1
τ (E)∥[[Q]]IE∥L∞(IE)

≤ C∥v∥H1
τ (E)∥Q∥[V ]2 . □

Using this bilinear form b and the specific norms, we formalize the inf-sup condition that is

stated in (3.49).

Proposition 3.4.1. Let u ∈ V E
1,ℓ and b as defined in (3.45). If there exists a constant β > 0,

independent of hE, such that

∀v ∈ RQ(E), sup
Q∈Pℓ(E)2×2

sym

b(v,Q)

∥Q∥[V ]2
≥ β∥v∥H1

τ (E), (3.59)

then

Π0
ℓε(u) = 0 =⇒ ε(u) = 0.

Proof. Assume that Π0
ℓε(u) = 0, then by (3.48), we have

b(u−Πεu, εp) = 0.

Then by assumption

β∥u−Πεu∥H1
τ (E) = 0,
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which implies that

u−Πεu = 0.

Then we also have on the boundary,

u−Πεu|∂E = 0.

But for u ∈ V E
1,ℓ, this implies that u = Πεu. Then by Lemma (3.4.2.1), we get ε(u) = 0. □

In order for the previous proposition to hold for any constant, we include a stronger result as

proven in [19] for scalar equations. The proof of these results relies on the construction of a Fortin

operator ΠE , as shown for general cases in [28].

Proposition 3.4.2. Assume there exists an operator ΠE : [V ]2 → [Pl(E)]2×2 satisfying [28]

b(v,ΠEQ−Q) = 0 ∀v ∈ RQ(E) (3.60)

and assume there is some constant CΠ > 0, independent of hE, such that

∥ΠEQ∥[V ]2 ≤ CΠ∥Q∥[V ]2 ∀Q ∈ [V ]2. (3.61)

Assume further that there exists a η > 0, independent of hE, such that

inf
v∈RQ(E)

sup
Q∈[V ]2

b(v,Q)

∥v∥H1
τ (E)∥Q∥[V ]2

≥ η. (3.62)

Then the discrete inf-sup condition given in (3.59) is satisfied.

Proposition 3.4.3. Let b be defined by (3.45), then the inf-sup condition given in (3.62) holds.

For the proof of these propositions we refer the reader to Propositions 2 and 3 in [19], and

for the explicit construction of the operator ΠE , we also point to Proposition 4 in [19]. The

construction methods appear to generalize directly to the vectorial case. We now show that the

operator given in (3.41) satisfies the positive-definite property and is thus a norm.

Proposition 3.4.4. For any u ∈ V1,ℓ, with ℓ(E) ∈ N satisfying (3.15) for all elements E,

∥u∥ℓ = 0 =⇒ u = 0, (3.63)
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where the norm ∥.∥ℓ is defined in (3.41).

Proof. Let u ∈ V1,ℓ and assume ∥u∥2ℓ = 0. This implies that

∑
E

∫
E
Π0

ℓε(u) : C : Π0
ℓε(u) dx = 0.

Assuming C is a positive-definite material tensor, we must have

Π0
ℓε(u) = 0.

Since ℓ satisfies (3.15), we know by Theorem 3.4.2 that ε(u) = 0 for each E. This implies that u

is a rigid-body mode. But due to homogeneous boundary conditions, no nonzero rigid-body modes

are present, and therefore u = 0. □

We also have that under the condition (3.15), that the norm (3.41) is equivalent to the standard

norm in H1
0 .

Lemma 3.4.7.2. For all u ∈ V1,ℓ, there exists a C1 > 0 such that

∥u∥ℓ ≤ C1∥u∥H1
0 (Ω), (3.64a)

and if for every element E, ℓ(E) satisfies (3.15), there also exists a constant C2 > 0 such that

∥u∥ℓ ≥ C2∥u∥H1
0 (Ω). (3.64b)

Proof. We first estimate

∥u∥2ℓ =
∑
E

∫
E
Π0

ℓε(u) : C : Π0
ℓε(u) dx

=
∑
E

∫
E
ε(u) : C : Π0

ℓε(u) dx

≤
∑
E

∥ε(u)∥L2(E)∥C : Π0
ℓε(u)∥L2(E)

≤ C∥ε(u)∥L2(Ω)∥ε(u)∥L2(Ω)

≤ C1∥u∥H1
0 (Ω)∥u∥H1

0 (Ω)

≤ C1∥u∥2H1
0 (Ω).

65



Now if we have ℓ that satisfies (3.15) for all E , then ∥.∥ℓ is also a norm. Since both ∥.∥ℓ and ∥.∥H1
0

are norms in the finite-dimensional subspace V1,ℓ, they are equivalent. In particular, there exists a

constant C2 > 0 such that

∥u∥ℓ ≥ C2∥u∥H1
0 (Ω). □

We now show that the discrete bilinear form ah is continuous and coercive, which by the Lax–

Milgram theorem implies that a unique solution exists.

Theorem 3.4.8. If ℓ(E) satisfies (3.15) for each E, then there exist constants C1, C2 > 0 such

that the bilinear form defined in (3.24) satisfies the inequalities

|ah(u,v)| ≤ C1∥u∥H1
0 (Ω)∥v∥H1

0 (Ω) (3.65a)

and

ah(v,v) ≥ C2∥v∥2H1
0 (Ω). (3.65b)

Proof. We estimate the first inequality:

|ah(u,v)| =
∑
E

∫
E
Π0

ℓε(u) : C : Π0
ℓε(v) dx

≤ C
∑
E

∥Π0
ℓε(u)∥L2(E)∥Π0

ℓε(v)∥L2(E)

≤ C∥u∥H1
0 (Ω)∥v∥H1

0 (Ω).

For the second inequality, on using the definition of the bilinear form ah and Lemma 3.4.7.2, we

have

ah(v,v) = ∥v∥2ℓ ≥ C∥v∥2H1
0 (Ω). □

3.4.2. Error estimates. Now that we have well-posedness of the discrete problem, we study

the errors of the approximation. In particular, we consider the errors in the L2 and H1
0 norms.

Many of the techniques and estimates are detailed in [26,27,28,42]. We introduce lemmas adapted

from [19] that we expect can be extended to our specific case. We first define an interpolation
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function uI :H2(Ω) → V1,ℓ by

uI =
∑
i

dofi(u)ξi, (3.66)

where dofi(u) is the i-th degree of freedom of u and ξi is a global basis function satisfying dofj(ξi) =

δij .

Lemma 3.4.8.1. Let w be any sufficiently smooth function, and let wI ∈ V1,ℓ be the associated

interpolation function (3.66). Then the following inequality holds for some constant C > 0 and all

h > 0:

∥w −wI∥L2(Ω) + h∥w −wI∥H1
0 (Ω) ≤ Ch2|w|H2(Ω). (3.67)

Lemma 3.4.8.2. For any sufficiently smooth function w, there exist constants C1, C2 > 0 such

that

∥Π0
ℓε(w)− ε(w)∥L2(Ω) ≤ C1h|w|H2(Ω), (3.68a)

∥Π0
0w −w∥L2(Ω) ≤ C2h∥w∥H1

0 (Ω), (3.68b)

where we denote Π0
0w as the L2 projection of w onto the space of constants.

Now we consider the error in H1
0 .

Proposition 3.4.5. Let u be the exact solution to the strong problem in (2.112), and b the

associated body force. For h sufficiently small, there exists a constant C > 0 such that the error of

the solution uh to the discrete weak problem is bounded in the H1
0 norm by

∥u− uh∥H1
0 (Ω) ≤ Ch

(
|u|H2(Ω) + ∥b∥L2(Ω)

)
. (3.69)

Proof. Let uh be the unique solution to the discrete problem (3.22), u the exact solution

to (2.112) and uI the associated interpolation function (3.66). We can then estimate the error as:

∥u− uh∥H1
0 (Ω) ≤ ∥u− uI∥H1

0 (Ω) + ∥uI − uh∥H1
0 (Ω). (3.70)
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For the first term, we apply (3.67) to get the bound

∥u− uI∥H1
0 (Ω) ≤ Ch|u|H2(Ω). (3.71)

For the second term, we have the estimate

C∥uI − uh∥2H1
0 (Ω) ≤ ∥uI − uh∥2ℓ = ah(uI − uh,uI − uh)

≤ −ah(uh,uI − uh) + ah(uI ,uI − uh)

≤ −(bh,uI − uh) + ah(uI ,uI − uh)

≤ −(bh,uI − uh) + ah(uI − u+ u,uI − uh)

≤ (−bh,uI − uh)︸ ︷︷ ︸
A

+ ah(uI − u,uI − uh)︸ ︷︷ ︸
B

+ ah(u,uI − uh)︸ ︷︷ ︸
C

. (3.72)

We estimate each of the three terms. For term B in (3.72), we use Cauchy–Schwarz and (3.67) to

estimate

ah(uI − u,uI − uh) =
∑
E

∫
E
Π0

ℓε(uI − u) : C : Π0
ℓε(uI − uh) dx

≤ C
∑
E

∥Π0
ℓε(uI − u)∥L2(E)∥Π0

ℓε(uI − uh)∥L2(E)

≤ C∥Π0
ℓε(uI − u)∥L2(Ω)∥Π0

ℓε(uI − uh)∥L2(Ω)

≤ C∥uI − u∥H1
0 (Ω)∥uI − uh∥H1

0 (Ω)

≤ Ch|u|H2(Ω)∥uI − uh∥H1
0 (Ω)
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For term C in (3.72), we write

ah(u,uI − uh) =
∑
E

∫
E
Π0

ℓε(u) : C : Π0
ℓε(uI − uh) dx

=
∑
E

∫
E
Π0

ℓε(u) : C : ε(uI − uh) dx

=
∑
E

∫
E
[(Π0

ℓε(u)− ε(u) + ε(u)) : C : ε(uI − uh)] dx

=
∑
E

∫
E
(Π0

ℓε(u)− ε(u)) : C : ε(uI − uh) dx

+
∑
E

∫
E
ε(u) : C : ε(uI − uh) dx.

Then applying the definition of the bilinear form (2.113) and using Cauchy–Schwarz inequality, we

write

ah(u,uI − uh) =
∑
E

[ ∫
E
(Π0

ℓε(u)− ε(u)) : C : ε(uI − uh) dx
]
+ a(u,uI − uh)

=
∑
E

[ ∫
E
(Π0

ℓε(u)− ε(u)) : C : ε(uI − uh) dx
]
+ (b,uI − uh)

≤ Ch|u|H2(Ω)∥uI − uh∥H1
0 (Ω) + (b,uI − uh).

Combining the three terms, we have

C∥uI − uh∥2H1
0 (Ω) ≤ (b− bh,uI − uh) + C1h|u|H2(Ω)∥uI − uh∥H1

0 (Ω).
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To estimate the term (b− bh,uI − uh), it is sufficient to take bh = Π0
0b as the L2 projection onto

constants.

(b− bh,uI − uh) = (b−Π0
0b,uI − uh)

=
∑
E

∫
E
(b−Π0

0b) · (uI − uh) dx

=
∑
E

[ ∫
E
b · (uI − uh) dx−

∫
E
Π0

0b · (uI − uh) dx
]

=
∑
E

[ ∫
E
b · (uI − uh) dx−

∫
E
b ·Π0

0(uI − uh) dx
]

=
∑
E

∫
E
b ·
[
(uI − uh)−Π0

0(uI − uh)
]
dx

≤
∑
E

∥b∥L2(E)∥(uI − uh)−Π0
0(uI − uh))∥L2(E)

≤ C1h∥b∥L2(Ω)∥uI − uh∥H1
0 (Ω).

On combining the terms, we obtain

C∥uI − uh∥2H1
0 (Ω) ≤ C1h(∥b∥L2(Ω) + |u|H2(Ω))∥uI − uh∥H1

0 (Ω).

Now we have the estimate of the H1
0 error as

∥u− uh∥H1
0 (Ω) ≤ C1h|u|H2(Ω) + C2h(∥b∥L2(Ω) + |u|H2(Ω))

≤ Ch(∥b∥L2(Ω) + |u|H2(Ω)). □

With the error in H1
0 , we can also find an error estimate for the L2 norm.

Proposition 3.4.6. Let u be the exact solution to the strong problem (2.112), and b the asso-

ciated body force. For h sufficiently small, there exists a constant C > 0 such that the error of the

solution uh to the discrete weak problem is bounded in the L2 norm by

∥u− uh∥L2(Ω) ≤ Ch2
(
|u|H2(Ω) + ∥b∥H1(Ω)

)
. (3.73)
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Proof. First, let ψ be a solution to the auxiliary problem: find ψ ∈H2 ∩H1
0 such that

a(ψ,v) = (u− uh,v) ∀v ∈H1
0 . (3.74)

Then ψ can be shown to satisfy the following inequalities [11]:

|ψ|H2(Ω) ≤ C1∥u− uh∥L2(Ω), (3.75a)

∥ψ∥H1
0 (Ω) ≤ C2∥u− uh∥L2(Ω). (3.75b)

We estimate

∥u− uh∥2L2 = (u− uh,u− uh)

= a(ψ,u− uh)

= a(ψ −ψI +ψI ,u− uh)

= a(ψ −ψI ,u− uh) + a(ψI ,u− uh),

where ψI is the interpolation of ψ. We now estimate each of the terms separately. For the second

term, we write

a(ψI ,u− uh) = a(ψI ,u)− a(ψI ,uh)

= a(ψI ,u)− ah(ψI ,uh) + ah(ψI ,uh)− a(ψI ,uh)

= (b,ψI)− (bh,ψI) + ah(ψI ,uh)− a(ψI ,uh)

= (b− bh,ψI) +
(
ah(ψI ,uh)− a(ψI ,uh)

)
.

Then we have

∥u− uh∥2L2 = a(ψ −ψI ,u− uh)︸ ︷︷ ︸
A

+(b− bh,ψI)︸ ︷︷ ︸
B

+
(
ah(ψI ,uh)− a(ψI ,uh)

)︸ ︷︷ ︸
C

. (3.76)
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We estimate each of the terms separately using Cauchy–Schwarz, (3.67), (3.68b), and (3.69). For

term A in (3.76), we estimate

a(ψ −ψI ,u− uh) ≤ ∥ψ −ψI∥H1
0 (Ω)∥u− uh∥H1

0 (Ω)

≤ Ch∥u− uh∥H1
0 (Ω)|ψ|H2(Ω)

≤ Ch∥u− uh∥H1
0 (Ω)∥u− uh∥L2(Ω)

≤ Ch2∥u− uh∥L2(Ω)(|u|H2(Ω) + ∥b∥L2(Ω)). (3.77)

For term B in (3.76), we compute

(b− bh,ψI) = (b−Π0
0b,ψI)

= (b−Π0
0b,ψI −ψ +ψ)

= (b−Π0
0b,ψI −ψ) + (b−Π0

0b,ψ)

= (b−Π0
0b,ψI −ψ) + (b−Π0

0b,ψ −Π0
0ψ) + (b−Π0

0b,Π
0
0ψ).

But by definition of Π0
0b, we have (b−Π0

0b,Π
0
0ψ) = 0, and hence

(b− bh,ψI) = (b−Π0
0b,ψI −ψ) + (b−Π0

0b,ψ −Π0
0ψ)

≤ ∥b−Π0
0b∥L2(Ω)∥ψI −ψ∥L2(Ω) + ∥b−Π0

0b∥L2(Ω)∥ψ −Π0
0ψ∥L2(Ω)

≤ ∥b−Π0
0b∥L2(Ω)(∥ψI −ψ∥L2(Ω) + ∥ψ −Π0

0ψ∥L2(Ω))

≤ C1h∥b∥H1
0 (Ω)(C2h

2|ψ|H2(Ω) + C3h∥ψ∥H1
0 (Ω))

≤ Ch2∥b∥H1
0 (Ω)∥u− uh∥L2(Ω). (3.78)

For term C in (3.76), we first apply the definition of the L2 projection to rewrite it as:

ah(ψI ,uh)− a(ψI ,uh) =
∑
E

∫
E

[
Π0

ℓε(ψI) : C : Π0
ℓε(uh)− ε(ψI) : C : ε(uh)

]
dx

=
∑
E

∫
E

[
ε(ψI) : C : Π0

ℓε(uh)− ε(ψI) : C : ε(uh)
]
dx

=
∑
E

∫
E
ε(ψI) : C : (Π0

ℓε(uh)− ε(uh)) dx.
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Now, add and subtract Π0
ℓε(ψI) and apply the definition of Π0

ℓε(uh) to simplify:

ah(ψI ,uh)− a(ψI ,uh) =
∑
E

[∫
E
(ε(ψI)−Π0

ℓε(ψI)) : C : (Π0
ℓε(uh)− ε(uh)) dx

+

∫
E
Π0

ℓε(ψI) : C : (Π0
ℓε(uh)− ε(uh)) dx

]
=
∑
E

∫
E
(ε(ψI)−Π0

ℓε(ψI)) : C : (Π0
ℓε(uh)− ε(uh)) dx.

Adding and subtracting terms Π0
ℓε(u) and ε(u), we obtain

∑
E

∫
E
(ε(ψI)−Π0

ℓε(ψI)) : C : (Π0
ℓε(uh)− ε(uh)) dx

=
∑
E

[∫
E
(ε(ψI)−Π0

ℓε(ψI)) : C : (Π0
ℓε(uh)−Π0

ℓε(u)) dx︸ ︷︷ ︸
D

+

∫
E
(ε(ψI)−Π0

ℓε(ψI)) : C : (Π0
ℓε(u)− ε(u)) dx︸ ︷︷ ︸

E

+

∫
E
(ε(ψI)−Π0

ℓε(ψI)) : C : (ε(u)− ε(uh)) dx︸ ︷︷ ︸
F

]
.

We estimate the three terms separately. For term D, we apply the Cauchy–Schwarz inequality

and a standard estimate of the L2 projection to write∑
E

∫
E
(ε(ψI)−Π0

ℓε(ψI)) : C : (Π0
ℓε(uh)−Π0

ℓε(u)) dx

≤ C1∥ε(ψI)−Π0
ℓε(ψI)∥L2(Ω)∥u− uh∥H1

0 (Ω).

(3.79)

For term E, we again apply Cauchy–Schwarz and (3.68a) to write∑
E

∫
E
(ε(ψI)−Π0

ℓε(ψI)) : C : (Π0
ℓε(u)− ε(u)) dx

≤ C2h∥ε(ψI)−Π0
ℓε(ψI)∥L2(Ω)|u|H2(Ω).

(3.80)
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Similarly for term F , we estimate∑
E

∫
E
(ε(ψI)−Π0

ℓε(ψI)) : C : (ε(u)− ε(uh)) dx

≤ C3∥ε(ψI)−Π0
ℓε(ψI)∥L2(Ω)∥u− uh∥H1

0 (Ω).

(3.81)

Now combining (3.79), (3.80), (3.81) and using (3.68a) and (3.75a), we obtain the estimate

ah(ψI ,uh)− a(ψI ,uh) ≤ Ch2∥u− uh∥L2(Ω)(|u|H2(Ω) + ∥b∥L2(Ω)). (3.82)

Combining all the necessary terms from (3.77), (3.78), (3.82), the estimate becomes

∥u− uh∥L2(Ω) ≤ Ch2(|u|H2(Ω) + ∥b∥L2(Ω) + ∥b∥H1
0 (Ω))

≤ Ch2(|u|H2(Ω) + ∥b∥H1(Ω)). □

3.5. Numerical results for SF-VEM

We present a series of numerical examples showing the application of the method to well-known

benchmark problems in plane elasticity. We examine the errors using the L∞ and L2 norms, as

well as the energy seminorm, and compare the convergence rates of the method with the theoretical

estimates. In particular, we use the following discrete measures:

∥u− uh∥L∞(Ω) = max
xi∈Ω

|u(xi)− uh(xi)|, (3.83a)

∥u− uh∥L2(Ω) =

√∑
E

∫
E
|u−Πεuh|2 dx, (3.83b)

∥u− uh∥a =

√∑
E

∫
E
(ε−Π0

ℓε(uh))TC(ε−Π0
ℓε(uh)) dx. (3.83c)

In order to compute the integrals in (3.83), we adopt the scaled boundary cubature scheme [41]. In

the SBC method, an integral over a general polygonal element E is written as the sum of integrals

over triangles that are mapped onto the unit square. Let f be any scalar function and ci(t) be the

parametric representation of the edge ei. Define ℓi to be the signed distance from a fixed point x0

to the line containing ei and |ei| denote the length of the i-th edge. On using the scaled-boundary
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parametrization, x = φi(ξ, t) = x0+ξ(ci(t)−x0), the integral of f over E can be expressed as [41]:

∫
E
f dx =

NE∑
i=1

ℓi|ei|
∫ 1

0

∫ 1

0
ξf
(
φi(ξ, t)

)
dξdt, (3.84)

where in the computations we set x0 to be a vertex of the polygon. To compute the integral over

the unit square in (3.84), we use a tensor-product Gauss quadrature rule.

3.5.1. Patch test. The displacement patch test is widely used to test the polynomial consis-

tency of a finite element method. In this test, an exact polynomial displacement field is imposed

along the boundary of the domain Ω. If a method is consistent, it will exactly reproduce the exact

solution up to machine precision (and small numerical rounding). For the first-order stabilization-

free VEM, the displacement field is approximated by the energy projection onto linear (affine)

polynomials; therefore, it should reproduce any affine displacement field.

Let Ω = (0, 1)2, and we impose an affine displacement field on the boundary:

u(x) = x and v(x) = x+ y on ∂Ω.

The exact solution is the extension of the boundary conditions onto the entire domain Ω. We assess

the accuracy of the numerical solution for three different types of meshes with 16 elements in each

case. The first is a uniform square mesh, the second is a random Voronoi mesh, and the third is a

Voronoi mesh that is obtained after applying three Lloyd iterations (see Figure 3.1). The results

are listed in Table 3.1, which show that near machine-precision accuracy is realized. This indicates

that the method passes the linear displacement patch test.

Mesh type L∞ error L2 error Energy error

Uniform 3× 10−16 2× 10−16 1× 10−15

Random 2× 10−13 5× 10−14 9× 10−13

Lloyd iterated 3× 10−14 8× 10−15 2× 10−13

Table 3.1. Errors in the patch test on different types of meshes.

3.5.2. Eigenvalue analysis. Consider the closed domain (unit square), Ω = [0, 1]2, which

is discretized using nine quadrilateral elements. We are interested in the validity of the bounds

in (3.15). To this end, we solve the element-eigenvalue problem, KEdE = λdE , to assess the

physical and nonphysical (spurious) modes of the element. Each element has three rigid-body
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(a) Uniform mesh (b) Random mesh (c) Lloyd iterated

Figure 3.1. Sample meshes used for the patch test.

(zero-energy) modes that each correspond to a vanishing eigenvalue (λ = 0). For a stable element,

all other eigenvalues must be positive and bounded away from zero. We choose ℓ = 0, 1, 2, 3

and measure the maximum number of spurious eigenvalues of the element stiffness matrix as we

artificially increase the number of nodes of the central element. For a well-posed discrete problem,

the number of spurious eigenvalues should remain at zero. We show a few sample meshes in

Figure 3.2. In Figure 3.3, the resulting number of spurious eigenvalues as a function of the number

of nodes of an element are plotted for ℓ = 0, 1, 2, 3.

We find that for ℓ = 0, any polygon that is not a triangle (NE ≥ 4) has spurious modes, whereas

for ℓ = 1, an element with NE ≥ 6 has spurious modes. For ℓ = 2 and ℓ = 3, spurious eigenvalues

appear for NE ≥ 9 and NE ≥ 11 in the central quadrilateral element, respectively. This shows

that (3.17) is sufficient but not strictly required to ensure that the element stiffness matrix has the

correct rank and is devoid of nonphysical zero-energy modes.

To further test the bound in (3.17), we examine the eigenvalues of the element stiffness matrix

over a series of regular polygons (A. Russo, personal communication, April 2022). A few sample

regular polygons are shown in Figure 3.4. In Figure 3.5, we plot the number of spurious eigenvalues

as a function of the number of nodes of a regular polygon. We again find that ℓ = 0 has spurious

modes for all regular polygons NE ≥ 4, and for ℓ = 1, regular polygons with NE ≥ 5 have spurious

modes. For ℓ = 2 and ℓ = 3, there are additional eigenvalues that appear for NE ≥ 7 and NE ≥ 9,

respectively. This shows that the inequality in (3.17) is strict for regular polygons.
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(a) (b) (c)

Figure 3.2. Sample meshes used in the element-eigenvalue analysis for ℓ = 0, 1, 2, 3.
The central quadrilateral element has (a) 4 nodes, (b) 7 nodes, and (c) 12 nodes.

3.5.3. Cantilever beam. We now consider the problem of a cantilever beam, subjected to a

shear end load [109]. In particular we consider the problem with material properties EY = 2× 105

psi and ν = 0.3, with plane stress assumptions. The beam has length L = 8 inch, height D = 1

inch and unit thickness. We apply a constant load P = −1000 psi on the right boundary. We test

this problem on Lloyd iterated Voronoi meshes [107]. In Figure 3.6, we show a few representative

meshes. For this problem, we compare the results of the stabilization-free VEM to a standard VEM

method with a stabilization term [9]. In Figure 3.7, we plot the L2 and energy errors of both the

stabilization-free VEM and the standard VEM. We find that for the L2 norm and energy seminorm,

both methods produce second-order and first-order convergence rates, respectively. This agrees

with the theoretical error estimates and demonstrates that the stabilization-free method compares

favorably with the standard stabilized virtual element method.

This problem is also tested on nonconvex meshes. We start with a uniform quadrilateral mesh

and split each element into two nonconvex heptagonal elements. In the convergence study, a

sequence of successively refined meshes are used; three meshes from this sequence are presented in

Figure 3.8. In Figure 3.9, we plot the L2 and energy errors of both the stabilization-free VEM and

the standard VEM. The errors are comparable to the results in Figure 3.7 and reveals that the

stabilization-free method also performs equally well on nonconvex meshes.

3.5.4. Infinite plate with a circular hole. We next consider the problem of an infinite

plate with a circular hole under uniaxial tension. The hole is subject to traction-free condition,

77



4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

(a)

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

5

10

15

20

25

(b)

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

5

10

15

(c)

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

6

(d)

Figure 3.3. Results of the element-eigenvalue analysis for (a) ℓ = 0 , (b) ℓ = 1, (c)
ℓ = 2, and (d) ℓ = 3.

while a far field uniaxial tension σ0 = 1 psi, is applied to the plate in the x-direction. We use the

material properties EY = 2× 107 psi and ν = 0.3, with a hole radius a = 1 inch. Due to symmetry,

we model a quarter of the finite plate (L = 5 inch), with exact boundary tractions prescribed as

data. Plane strain conditions are assumed. A Lloyd iterated Voronoi meshing is used [107]. In

Figure 3.10, we show a few illustrative meshes. We also plot the convergence curves for the three

associated errors in Figure 3.11. From this plot, we observe that the L2 norm converges with order

2, and the energy is decaying at order 1, which agree with the theoretical predictions.
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(a) (b) (c)

Figure 3.4. Sample regular polygons used in the element-eigenvalue analysis for
ℓ = 0, 1, 2, 3.

3.5.5. Hollow cylinder under internal pressure. Finally, we consider the problem of a

hollow cylinder that is subject to internal pressure [109]. The inner and outer radii of the cylinder

are chosen as a = 1 inch and b = 5 inch, respectively. We apply a uniform constant pressure of

p = 105 psi on the inner radius, while the outer radius is traction-free. In Figure 3.12, we present a

few sample meshes that are generated using [107]. In Figure 3.13, we plot the errors in the three

norms and compare it with the maximum diameter on the mesh. We find that the convergence

rates in both the L2 norm and the energy seminorm are in agreement with the theoretical rates.
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Figure 3.5. Results of the regular polygon element-eigenvalue analysis for (a) ℓ = 0
, (b) ℓ = 1, (c) ℓ = 2, and (d) ℓ = 3.
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(a)

(b)

(c)

Figure 3.6. Polygonal meshes used for the cantilever beam problem. (a) 150 ele-
ments, (b) 1000 elements and (c) 3500 elements.
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Figure 3.7. Comparison of the convergence of the stabilization-free VEM (SF) and
a standard VEM with a stabilization term for the cantilever beam problem. (a) L2

error and (b) energy error.
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(a)

(b)

(c)

Figure 3.8. Nonconvex polygonal meshes for the cantilever beam problem. (a) 64
elements, (b) 256 elements and (c) 1024 elements.
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Figure 3.9. Comparison of the convergence of the stabilization-free VEM (SF)
and a standard VEM with a stabilization term for the cantilever beam problem on
nonconvex meshes. (a) L2 error and (b) energy error.
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(a) (b) (c)

Figure 3.10. Polygonal meshes used for the plate with a circular hole problem.
(a) 250 elements, (b) 1500 elements, and (c) 6000 elements.
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Figure 3.11. Convergence curves for the plate with a hole problem.
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(a) (b) (c)

Figure 3.12. Polygonal meshes used for the pressurized cylinder problem. (a) 250
elements , (b) 1500 elements, and (c) 6000 elements.
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Figure 3.13. Convergence curves for the hollow cylinder under internal pressure
problem.
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CHAPTER 4

Stabilization-Free Serendipity Virtual Element Method

For some problems with nonlinear materials, acoustics and other wave propagation problems,

highly accurate numerical methods are needed to fully resolve the underlying physical phenomena.

For these problems, the stabilization term may not be easily constructed or may interfere with the

accuracy of the solution. Therefore it is desirable to construct an arbitrary order virtual element

method without a stabilization term. From Section 2.4, to construct a standard k-th order VEM

would require the use of k(k−1)
2 additional internal moment degrees of freedom. This increases the

cost to solve the system or requires applying static condensation. From serendipity FEM [4], it

was shown that by modifying the basis functions, the number of degrees of freedom can be greatly

reduced. A similar idea was pursued in [10,12] to develop the serendipity virtual element method

for scalar problems and in [53] for nonlinear elasticity problems. Serendipity VEM was found to

be robust for general polygonal meshes; however, it still requires a suitable stabilization term.

In this chapter, we combine the serendipity VEM approach [12] with the stabilization-free

VEM [37] in the previous chapter to construct arbitrary order stabilization-free virtual element

methods, which in many cases will not have any internal degrees of freedom.

We first introduce the serendipity space and the corresponding serendipity projection operator.

Then following the previous chapters use construct an virtual element space enhanced with the

serendipity projection. We show the numerical implementation of the higher-order VEM and

perform an eigenvalue analysis to determine a sufficient stability condition. We close the chapter

by applying a second- and third-order method to the patch test, two manufactured problems with

exact solutions, a beam subjected to sinusoidal load, and the infinite plate with a circular hole

problem.

This chapter is based on the work published in [36].
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4.1. Serendipity space and projection

We first introduce some properties of the serendipity space and define the serendipity projection

of the displacement field as proposed in [12]. We then present the derivation of two L2 projection

operators, the L2 projection of the displacement and the L2 projection of the strain.

4.1.1. Properties of serendipity virtual elements. We recall some results on serendipity

virtual element methods for scalar problems from [12]. Let E be a polygon with NE edges and

let ηE be the minimum number of unique lines to cover ∂E. For a k-th order method there are a

total of kNE boundary degrees of freedom and k(k−1)
2 internal degrees of freedom (see Section 2.4).

The idea of serendipity VEM is that we are able to fully define a computable projection operator

by only retaining a subset of all the degrees of freedom. In particular, it is desirable to keep all of

the degrees of freedom on the boundary to preserve continuity of the solution and to reduce the

number of internal moments for computational efficiency. To do this, we introduce two propositions

as proven in [12].

Proposition 4.1.1. For k < ηE, if the set of S degrees of freedom {δ1, δ2, . . . δS} contains all

of the kNE boundary degrees of freedom, then the following property holds true:

δ1(pk) = δ2(pk) = · · · = δS(pk) = 0 =⇒ pk ≡ 0 ∀pk ∈ Pk(E), (4.1)

where δi(·) is the i-th degree of freedom of its argument.

Proposition 4.1.2. For k ≥ ηE, if the set of S degrees of freedom {δ1, δ2, . . . , δS} contains all

kNE boundary degrees of freedom and contain all internal moments of order ≤ k− ηE, then the set

satisfies

δ1(pk) = δ2(pk) = · · · = δS(pk) = 0 =⇒ pk ≡ 0 ∀pk ∈ Pk(E). (4.2)

Once these degrees of freedom are chosen, we can construct a serendipity projection operator

ΠS
k such that it satisfies the properties:

ΠS
k can be fully computed using δ1, δ2, . . . , δS , (4.3a)
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and

ΠS
k pk = pk ∀pk ∈ Pk(E). (4.3b)

This operator is used to define a serendipity virtual element space for a vector field and to construct

two L2 operators.

Remark 4.1.1. In [12], the notation δi(·) is used to denote the i-th degree of freedom. For

consistency, we use the same notation in this chapter instead of the one introduced in (2.53).

Remark 4.1.2. For k = 2, on any polygonal element E it is sufficient to take {δ1, δ2, . . . , δS}

to be the vertex and edge degrees of freedom. For k = 3, if E is at least a quadrilateral with four

distinct sides then it is also sufficient to take {δ1, δ2, . . . , δS} as the vertex and edge degrees of

freedom.

4.1.2. Serendipity projection. For any element E, denoteH1(E) := [H1(E)]2 andC0(E) :=

[C0(E)]2. Let S be the number of sufficient degrees of freedom for a scalar function as defined in

Proposition 4.1.1 and 4.1.2, and then define the operator D :H1(E) ∩C0(E) → R2S by

D(v) =
(
δ1(v), δ2(v), . . . , δ2S(v)

)
, (4.4)

where δi(v) is the i-th degree of freedom of the vector field v. We define the serendipity projection

operator ΠS
k : H1(E) ∩ C0(E) → [Pk(E)]2 as the unique function that satisfies the orthogonality

condition:

(
D(ΠS

kv − v), D(mα)
)
R2S = 0 ∀mα ∈ [Pk(E)]2. (4.5a)

On writing out the expressions, we get the equivalent system:

2S∑
j=1

δj(Π
S
kv)δj(mα) =

2S∑
j=1

δj(v)δj(mα) ∀mα ∈ [Pk(E)]2. (4.5b)

4.1.3. L2 projection of the displacement field. We define the L2 projection operator

Π0
k :H1(E) → [Pk(E)]2 of the displacement field by the function that satisfies the L2 orthogonality
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relation:

(p,v −Π0
kv)E = 0 ∀p ∈ [Pk(E)]2, (4.6a)

where we use the standard L2 inner product for vector fields:

(p,v)E =

∫
E
p · v dx. (4.6b)

Expanding (4.6a) and rewriting in matrix-vector operations, we have∫
E
pTΠ0

kv dx =

∫
E
pTv dx ∀p ∈ [Pk(E)]2. (4.6c)

4.1.4. L2 projection of the strain field. Similar to the L2 projection of the strain given

in Section 3.1.3 for the first-order method, we define the associated L2 projection operator Π0
ℓε(.) :

H1(E) → Pℓ(E)2×2
sym of the strain tensor by the unique operator that satisfies

(εp, ε(v)−Π0
ℓε(v))E = 0 ∀εp ∈ Pℓ(E)2×2

sym, (4.7a)

where we use the L2 inner product (double contraction) for rank-2 tensor fields:

(εp, ε)E =

∫
E
εp : ε dx. (4.7b)

After using Voigt notation and simplifying, we obtain the system for the L2 strain projection as∫
E

(
Π0

ℓε(v)
)T
εp dx =

∫
∂E
vTN∂E

∗ εp ds+

∫
E
vT∂εp dx ∀εp ∈ Pℓ(E)2×2

sym, (4.8a)

where

N∂E
∗ :=

n1 0 n2

0 n2 n1

 , (4.8b)

∂ :=

 ∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

 , (4.8c)

and εp, Π0
ℓε(v) are the Voigt representations of εp and Π0

ℓε(v), respectively.

Remark 4.1.3. For the implementation of the projection operators, we use the monomial basis

given in (2.114) and (3.2).
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4.1.5. Enlarged Enhanced Serendipity Virtual Element Space. The integral defined on

the right-hand side of (4.6c) and the last integral on the right-hand side of (4.8a) are not computable

from the degrees of freedom of a standard k-th order virtual element space. We follow a similar

process from Section 3.2 to construct an enhanced virtual element space where it is possible to

compute these integrals.

For any element E, fix a ℓ = ℓ(E) and define the set ENE
k,ℓ as

ENE
k,ℓ :=

{
v ∈H1(E) ∩C0(E) :

∫
E
v · p dx =

∫
E
ΠS

kv · p dx

∀p ∈ [Pℓ−1(E)]2/[Pk−ηE (E)]2
}
,

(4.9)

where [Pℓ−1(E)]2/[Pk−ηE (E)]2 denotes the set of vector polynomials in [Pℓ−1(E)]2 that are orthog-

onal to [Pk−ηE (E)]2 with respect to the L2 inner product on E. We then define the local enlarged

virtual element space as:

V E
k,ℓ :=

{
vh ∈ ENE

k,ℓ : ∆vh ∈ [Pℓ−1(E)]2, γe(vh) ∈ [Pk(e)]
2 ∀e ∈ EE , vh ∈ [C0(∂E)]2

}
, (4.10)

where γei(·) is the trace of a function (its argument) on an edge ei. In the above space we require

functions to be k-th order vector polynomials on the edges, and by the serendipity condition we

take the degrees of freedom to be the values of the function at the vertices and edges of the polygon

E and possibly all the internal moments up to order k − ηE . In general, there are a total of

2S = max {2kNE , 2kNE + (k − ηE + 1)(k − ηE + 2)}

degrees of freedom. With the local space defined, we define the global enhanced virtual element

space as

Vk,ℓ := {vh ∈ [H1(Ω)]2 : vh|E ∈ V E
k,ℓ for ℓ = ℓ(E)}. (4.11)

For each E, we assign a suitable basis to the local virtual element space V E
k,ℓ. Let {ϕi} be the

set of canonical basis functions [9,13] that satisfy δj(ϕi) = δij , where δij is the Kronecker-delta.
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We express the components of any vh ∈ V E
k,ℓ as the sum of these basis functions:

vh =

v1hv2h
 =

ϕ1 ϕ2 . . . ϕS 0 0 . . . 0

0 0 . . . 0 ϕ1 ϕ2 . . . ϕS




v11

v12
...

v2S


:=N vṽh, (4.12a)

where we define N v as the matrix of vectorial basis functions:

N v =

ϕ1 ϕ2 . . . ϕS 0 0 . . . 0

0 0 . . . 0 ϕ1 ϕ2 . . . ϕS

 :=
[
φ1 . . . φS . . . φ2S

]
. (4.12b)

We now define the weak form of the virtual element method on this space. On defining a

discrete bilinear operator aEh : V E
k,ℓ × V E

k,ℓ → R and a discrete linear functional ℓEh : V E
k,ℓ → R, we

seek the solution to the problem: find uh ∈ V E
k,ℓ such that

aEh (uh,vh) = ℓEh (vh) ∀vh ∈ V E
k,ℓ. (4.13)

Following [19], we introduce the local discrete bilinear form in matrix-vector form:

aEh (uh,vh) :=

∫
E

(
Π0

ℓε(vh)
)T
C Π0

ℓε(uh) dx, (4.14)

with the associated global operator defined as

ah(uh,vh) :=
∑
E

aEh (uh,vh). (4.15)

We also define a local linear functional by

ℓEh (vh) =

∫
E
vTh bh dx+

∫
Γt∩∂E

vTh t ds, (4.16)

with the associated global functional

ℓh(vh) =
∑
E

ℓEh (vh), (4.17)

where bh is some approximation to b. For a k-th order method we use bh = Π0
kb, but from [6], it

is sufficient to take bh = Π0
k−2b.
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4.2. Numerical implementation of higher order methods

For simplicity of implementation, we only consider the case k < ηE (meshes do not contain tri-

angles for k = 3). This removes the need for internal moment degrees of freedom in the construction

of the serendipity projection and simplifies the space ENE
k,ℓ.

4.2.1. Implementation of serendipity projector. We start with the implementation of

the serendipity projector. From (4.5b), we have for α = 1, 2, . . . , Nk, where Nk = dim([Pk(E)]2) =

(k + 1)(k + 2), the condition

2S∑
j=1

δj(Π
S
kvh)δj(mα) =

2S∑
j=1

δj(vh)δj(mα).

We choose vh = φi, the basis functions in V E
k,ℓ, and expand ΠS

kφi in terms of the scaled monomial

basis functions:

ΠS
kφi =

Nk∑
β=1

siβmβ, (4.18)

where mα is an element of M̂k(E) in (2.114). Expanding the left-hand side of (4.5b), we have

2S∑
j=1

δj(Π
S
kvh)δj(mα) =

Nk∑
β=1

siβ

2S∑
j=1

δj(mβ)δj(mα). (4.19)

Define the matrix Ĝ (α, β = 1, 2, . . . , Nk) by

Ĝαβ =
2S∑
j=1

δj(mβ)δj(mα). (4.20a)

Similarly, we define the matrix B̂ representing the right-hand side of (4.5b) by

B̂αi =
2S∑
j=1

δj(φi)δj(mα). (4.20b)

Now combining these linear equations we can determine the coefficients {siβ} for the serendipity

projection by solving the linear system:

ΠS = Ĝ−1B̂, (4.20c)
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where (ΠS)βi = siβ is the matrix representation of the serendipity projection operator in the scaled

monomial vectorial basis set.

Remark 4.2.1. To compute the matrix Ĝ, it is convenient to use

Ĝ =DTD,

where D is the 2S ×Nk matrix that is defined by

Djα := δj(mα) (j = 1, 2, . . . 2S, α = 1, 2, . . . Nk).

.

4.2.2. Implementation of the L2 displacement projector. With the serendipity projec-

tion matrix on hand, we now construct the remaining projection matrices. We start with the

construction of the L2 projection operator of the displacement field. From (4.6c), we have the

relation ∫
E
pTΠ0

kvh dx =

∫
E
pTvh dx. (4.21)

Expanding vh in terms of the basis in V E
k,ℓ, we have vh =N vṽh. Similarly we expand p and Π0

kvh in

terms of the polynomial basis in [Pk(E)]2. In particular we obtain p = Ñpp̃ and Π0
kvh = ÑpΠ̃0ṽh,

where Ñp is given in (2.114) and Π̃0 is the matrix of coefficients of the L2 projection . On

substituting into (4.6c) and simplifying, we obtain

p̃T
(∫

E
(Ñp)T Ñp dx

)
Π̃0ṽh = p̃T

(∫
E
(Ñp)TN v dx

)
ṽh. (4.22)

Define the matrix

G̃ :=

∫
E
(Ñp)T Ñp dx. (4.23a)

The integral on the right-hand side of (4.22) is not computable directly; however by applying the

enhancing property of the space (4.9), we can realize an equivalent computable matrix:

B̃ :=

∫
E
(Ñp)TΠS

kN
v dx. (4.23b)
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Then, we solve for the projection matrix Π̃0 in terms of the matrices G̃ and B̃:

Π̃0 = G̃−1B̃.

This projection matrix is used to compute the element force integral which appears in (4.26b).

4.2.3. Implementation of the L2 strain projector. To compute the L2 projection of

the strain we follow the construction in Section 3.3.2. Expand vh = N vṽh , εp = Npε̃p and

Π0
ℓε(vh) =N

pΠṽh. Substituting into (4.8a) and simplifying, we get the expression:

(ε̃p)T
(∫

E
(Np)T Npdx

)
Πṽh = (ε̃p)T

(∫
∂E

(
N∂E

∗ Np
)T
N vds−

∫
E
(∂Np)T N vdx

)
ṽh.

Define the matrix

G :=

∫
E
(Np)T Np dx. (4.24a)

Similar to (4.23b), the last integral in (4.8a) is not computable, so we again use the enhancing

property in (4.9) to construct an equivalent computable matrix:

B :=

∫
∂E

(
N∂E

∗ Np
)T
N v ds−

∫
E
(∂Np)T ΠS

kN
v dx. (4.24b)

We now solve for the strain projection matrix Π in terms of G and B by

Π = G−1B. (4.24c)

4.2.4. Implementation of element stiffness matrix and force vector. To construct the

element stiffness, we first rewrite (4.14) in terms of the matrices that have been constructed:

aEh (uh,vh) :=

∫
E

(
Π0

ℓε(vh)
)T
C Π0

ℓε(uh) dx

=

∫
E
(NpΠṽh)

T C (NpΠũh) dx

= ṽTh (Π)T
(∫

E
(Np)TCNp dx

)
Πũh.

Then, define the element stiffness matrix KE by

KE := (Π)T
(∫

E
(Np)TCNp dx

)
Π, (4.25)
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where Π is given in (4.24c).

We now construct the element forcing term given in (4.16) as

ℓEh (vh) =

∫
E
vTh bh dx+

∫
Γt∩∂E

vTh t ds.

After making the approximations bh = Π0
kb and simplifying, we can rewrite the expression in the

form

ℓEh (vh) =

∫
E
vThΠ

0
kb dx+

∫
Γt∩∂E

vTh t ds

=

∫
E

(
Π0

kvh
)T
b dx+

∫
Γt∩∂E

(N vṽh)
T t ds

= ṽTh

[∫
E

(
ÑpΠ̃0

)T
b dx+

∫
Γt∩∂E

(N v)T t ds

]
. (4.26a)

Then, define the element force vector by

fE :=

[∫
E

(
ÑpΠ̃0

)T
b dx+

∫
Γt∩∂E

(N v)T t ds

]
. (4.26b)

All integrals that are required to form the element stiffness matrix in (4.25) and the element force

vector in (4.26b) are computed with the scaled boundary cubature (SBC) scheme [41].

4.3. Choice of ℓ

In the previous sections, we have left the choice of ℓ = ℓ(E) open. However, for a choice of ℓ

that is too small, the resulting system will be unstable and contain nonphysical zero-energy modes.

For a choice of ℓ that is too large, the number of basis functions will be overly large and the system

will be expensive to solve. We now numerically establish a choice of ℓ that results in a well-posed,

stable discrete problem by performing an eigenvalue analysis. We examine specifically the case of

second- and third-order methods.

4.3.1. Eigenanalysis for regular polygons. We first study the stability on regular polygons

by considering the element eigenvalue problem KEdE = λdE . For plane elasticity, the element

stiffness should have three zero eigenvalues that correspond to the three rigid-body modes, with

any additional zero eigenvalue being a non-physical (spurious) mode. We measure the number of

spurious eigenvalues of the local stiffness matrix over the set of regular n-gons. We fix ℓ = 3, 4, 5 and

measure the number of spurious eigenvalues on a given regular polygon. In Figure 4.1 a few sample
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polygons are shown, and in Figures 4.2 and 4.3 we plot the number of spurious eigenvalues as a

function of the vertices of the corresponding polygon. The analyses over regular polygons reveals

that the element stiffness matrix is stable with the correct rank if the inequalities NE ≤ 2ℓ+1 and

NE ≤ 2ℓ − 1 hold for k = 2, 3 respectively. In [37], it was shown that for k = 1 the inequality is

given by NE ≤ 2ℓ+3 for regular polygons. We conjecture that this pattern holds, and for a general

k-th order method, a sufficient inequality is given by NE ≤ 2ℓ− 2k + 5.

(a) (b) (c)

Figure 4.1. Regular polygons that are used in the eigenanalysis.
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Figure 4.2. Eigenvalue analysis on regular polygons with the second-order method.
(a) ℓ = 3, (b) ℓ = 4 and (c) ℓ = 5.

We are also interested in robustness of the inequality when the vertices of an element are

perturbed. In particular, for k = 2, 3 we first fix ℓ = 3, 4, 5, then take the respective regular hexagon,

octagon, decagon and perturb one component of a vertex by δ. We measure the number of spurious

modes as a function of δ. For k = 2 the three elements will satisfy the inequality NE ≤ 2ℓ + 1,

so we expect no spurious eigenvalues to appear, but for k = 3 the inequality NE ≤ 2ℓ − 1 is not

satisfied so we expect to see some additional spurious eigenvalues. From Figure 4.4, we observe
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Figure 4.3. Eigenvalue analysis on regular polygons with the third-order method.
(a) ℓ = 3, (b) ℓ = 4 and (c) ℓ = 5.
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Figure 4.4. Eigenvalue analysis on the perturbed regular polygons with the
second-order method. (a) ℓ = 3 on hexagon, (b) ℓ = 4 on octagon and (c) ℓ = 5 on
decagon.
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Figure 4.5. Eigenvalue analysis on the perturbed regular polygons with the third-
order method. (a) ℓ = 3 on hexagon, (b) ℓ = 4 on octagon and (c) ℓ = 5 on decagon.

that for small perturbations of the hexagon, octagon, and decagon that no spurious eigenvalues

arise. In Figure 4.5, we see that by perturbing the octagon and decagon, we are able to reduce the

number of spurious eigenvalues to zero when using ℓ = 4, 5 respectively.
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4.3.2. Eigenanalysis for general polygons. We now consider a more general polygonal

mesh. Consider the unit square, Ω = (0, 1)2, which is discretized using nine quadrilateral elements.

We again solve the element-eigenvalue problem, KEdE = λdE . We choose ℓ = 3, 4, 5 and measure

the maximum number of spurious eigenvalues of the element stiffness matrix as we artificially

increase the number of nodes of the central element. We show a few sample meshes in Figure 4.6.

In Figure 4.7, the resulting number of spurious eigenvalues as a function of the number of nodes

of an element from the second-order method are plotted for ℓ = 3, 4, 5 and similarly the results of

the third-order method is plotted in Figure 4.8. We see that for k = 2, the spurious modes seem

to appear later than in the regular polygons, while for k = 3 the results are closer to the regular

polygonal case. This suggests that the inequalities NE ≤ 2ℓ+1 and NE ≤ 2ℓ− 1 provide an upper

bound for the choice of ℓ for k = 2, 3, respectively.

(a) (b) (c)

Figure 4.6. Sample meshes used in the element-eigenvalue analysis for ℓ = 3, 4, 5.
The central quadrilateral element has (a) 4 nodes, (b) 7 nodes, and (c) 12 nodes.

4.4. Numerical results for serendipity SF-VEM

We present a series of numerical examples in plane elasticity for second- and third-order

serendipity methods. For these tests we use the inequalities NE ≤ 2ℓ + 1 and NE ≤ 2ℓ − 1

for k = 2 and k = 3, respectively. We examine the errors using the L∞ and L2 norms, as well

as the energy seminorm, and compare the convergence rates of the method with the theoretical
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Figure 4.7. Eigenvalue analysis on the meshes shown in Figure 4.6 with the second-
order method. (a) ℓ = 3, (b) ℓ = 4 and (c) ℓ = 5.
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Figure 4.8. Eigenvalue analysis on the meshes shown in Figure 4.6 with the third-
order method. (a) ℓ = 3, (b) ℓ = 4 and (c) ℓ = 5.

estimates of standard VEM. We use the following discrete measures:

∥u− uh∥L∞(Ω) = max
xi∈Ω

|u(xi)− uh(xi)|, (4.27a)

∥u− uh∥L2(Ω) =

√∑
E

∫
E
|u−ΠS

kuh|2 dx, (4.27b)

∥u− uh∥a =

√∑
E

∫
E
(ε−Π0

ℓε(uh))TC(ε−Π0
ℓε(uh)) dx. (4.27c)

4.4.1. Patch test. To test the consistency of the second- and third-order methods, we first

consider the quadratic and cubic displacement patch test. Let Ω = (0, 1)2, EY = 1 psi and ν = 0.3

be the material properties. For the quadratic patch test, we impose a quadratic displacement field
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on the boundary and an associated load vector:

u(x) = x2 + 3xy + 7y2 + 5x+ 2y + 8,

v(x) = 6x2 + 3xy + y2 + 4x+ 9y + 1 on ∂Ω,

b(x) =


−E
1−ν2

(
2 + 3ν + 17

2 (1− ν)
)

−E
1−ν2

(
2 + 3ν + 15

2 (1− ν)
)
 .

For the cubic patch test we impose a cubic displacement field and load vector:

u(x) = 3x3 + 6x2y + 7xy2 + 8y3 + x2 + 3xy + y2 + 5x+ 2y + 4,

v(x) = 4x3 + 7x2y + 8xy2 + 11y3 + 2x2 + xy + 4y2 + 8x+ 9y + 11 on ∂Ω,

b(x) =


−E
1−ν2

(
18x+ 12y + 2 + ν(14x+ 16y + 1) + 1−ν

2 (36x+ 28y + 7)
)

−E
1−ν2

(
1−ν
2 (36x+ 28y + 7) + ν(14y + 3 + 12x) + 16x+ 66y + 8

)
 .

The exact solutions is the extension of the boundary data onto the entire domain Ω. We test

the numerical solution for the two methods for four different meshes with 16 elements in each case.

First we have a uniform square mesh, second we use a random Voronoi mesh, next we use a Voronoi

mesh after applying three Lloyd iterations and finally we use a non-convex mesh. The results for

the quadratic test are listed in Table 4.1, and the cubic test in Table 4.2. They show that the

errors are near machine precision, which indicate that the second- and third-order method passes

the quadratic and cubic patch tests respectively.

(a) Uniform (b) Random (c) Lloyd iterated (d) Nonconvex elements

Figure 4.9. Sample meshes used for the displacement patch test.

For most problems in mechanics, Neumann (traction) boundary conditions are applied on the

boundary; therefore, we are also interested in the patch test when Neumann boundary conditions

are imposed. Let Ω = (0, 8)× (−0.5, 0.5) be a long slender bar with material properties EY = 1 psi
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Mesh type L∞ error L2 error Energy error

Uniform 1× 10−15 1× 10−15 8× 10−14

Random 6× 10−15 1× 10−15 1× 10−14

Lloyd iterated 7× 10−15 1× 10−15 2× 10−14

Nonconvex 4× 10−15 3× 10−15 3× 10−14

Table 4.1. Errors for the quadratic displacement patch test on different types of
meshes.

Mesh type L∞ error L2 error Energy error

Uniform 7× 10−15 2× 10−15 2× 10−14

Random 6× 10−14 4× 10−14 3× 10−13

Lloyd iterated 1× 10−15 6× 10−15 4× 10−14

Nonconvex 3× 10−15 2× 10−15 2× 10−14

Table 4.2. Errors for the cubic displacement patch test on different types of
meshes.

and ν = 0.3. For k = 2, we construct the following exact solution:

u(x) = xy and v(x) = x in Ω,

b(x) =


0

− E

2(1− ν)

 ,

where the Dirichlet boundary is imposed along x = 0, and the remaining boundary conditions on

other edges are set to the exact tractions. For k = 3, we use the cantilever beam under shear end

load [109]. We obtain the numerical solutions over a set of three meshes with 16 elements in each.

The results for the quadratic and cubic cases are listed in Tables 4.3 and 4.4, respectively. The

results show that both the second- and third-order method pass this patch test with errors at worst

of O(10−11).

Mesh type L∞ error L2 error Energy error

Uniform 2× 10−11 1× 10−13 1× 10−13

Random 3× 10−13 3× 10−13 4× 10−14

Lloyd iterated 2× 10−12 2× 10−12 4× 10−14

Table 4.3. Errors for the quadratic equilibrium patch test on different types of
meshes.

4.4.2. Manufactured solution. We consider two manufactured problem as given in [54]

with known exact polynomial and nonpolynomial solutions over the unit square under plane stress
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Mesh type L∞ error L2 error Energy error

Uniform 2× 10−11 2× 10−11 1× 10−11

Random 6× 10−12 6× 10−12 6× 10−12

Lloyd iterated 7× 10−13 8× 10−13 2× 10−12

Table 4.4. Errors for the cubic equilibrium patch test on different types of meshes.

conditions. The material properties are: EY = 2.5 psi and ν = 0.25. The exact solution and the

associated loading for the first problem are:

u(x) = −x
6

80
+
x4y2

2
− 13

16
x2y4 +

3

40
y6 and v(x) =

xy5

2
− 5

12
x3y3,

b(x) =

0

0

 ,

and for the second problem are:

u(x) = x sin(πx) sin(πy) and v(x) = y sin(πx) sin(πy),

b(x) =


11
3 π

2x sin(πx) sin(πy)− 5
3π

2y cos(πx) cos(πy)− 7π cos(πx) sin(πy)

11
3 π

2y sin(πx) sin(πy)− 5
3π

2x cos(πx) cos(πy)− 7π cos(πy) sin(πx)

 .

We include the results for both these tests in Figures 4.10 and 4.11. In both figures, we plot the

discrete errors as a function of the square root of the number of degrees of freedom. From the

plots, we observe that the convergence rates for k = 2, 3 in the L2 and energy seminorm are in

agreement with the theoretical rates. This shows that the stabilization-free virtual element method

can reproduce the results from [54].

4.4.3. Beam subjected to transverse sinusoidal loading. Next, we consider the problem

of a simply-supported beam subjected to a transversely sinusoidal load [98]. The material properties

are chosen as: EY = 2 × 105 psi and ν = 0.3, and plane stress conditions are assumed. The

beam has length L = 8 inch, height D = 1 inch and unit thickness. We apply a sinusoidal load

P = −100 sin(πxL ) lb along the top edge, and along the two side edges we prescribe shear stresses

to keep the beam in equilibrium. This problem does not have a closed-form solution; however, it

can be shown that a generalized solution (one that satisfies some of the boundary conditions in an

average sense) can be found with a Fourier series Airy stress function. In [98], the solution for this
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Figure 4.10. Convergence curves for first manufactured solution on convex polyg-
onal meshes with (a) k = 2 and (b) k = 3.
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Figure 4.11. Convergence curves for second manufactured solution on convex
polygonal meshes with (a) k = 2 and (b) k = 3.

simply-supported beam is given as:

u(x) =− β

E
cos(βx) {A(1 + ν) sinh(βy) +B(1 + ν) cosh(βy)

+ C [(1 + ν)βy sinh(βy) + 2 cosh(βy)]

+D [(1 + ν)βy cosh(βy) + 2 sinh(βy)] }+ u0,

v(x) =− β

E
sin(βx) {A(1 + ν) cosh(βy) +B(1 + ν) sinh(βy)
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+ C [(1 + ν)βy cosh(βy)− (1− ν) sinh(βy)]

+D [(1 + ν)βy sinh(βy)− (1− ν) cosh(βy)] } ,

where the constants A,B,C,D, β, u0 are detailed in [98]. In Figure 4.12, we show a few sample

meshes for the beam, and in Figure 4.13 we show the convergence results. From these figures, we

observe that optimal convergence rates in Sobolev norms are achieved for both k = 2 and k = 3.

(a)

(b)

(c)

Figure 4.12. Polygonal meshes for the loaded beam problem. (a) 150 elements,
(b) 1000 elements and (c) 3500 elements.

We also test this problem with nonconvex meshes. We start with a uniform rectangular mesh,

then we split each element into a convex quadrilateral and a non-convex hexagonal element. We

show a few sample meshes in Figure 4.14. In Figure 4.15, the results show that the errors on

nonconvex meshes still retains the optimal convergence rate.

4.4.4. Infinite plate with a circular hole. Finally, we revist the infinite plate with a circu-

lar hole problem used earlier to test the first-order stabilization-free VEM in the previous chapter

(see Section 3.5.4). For the first-order case, it was shown that the SF-VEM was able to produce
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Figure 4.13. Convergence curves of serenedipity VEM on convex meshes for sinu-
soidal loaded beam problem. (a) k = 2 and (b) k = 3.

(a)

(b)

(c)

Figure 4.14. Nonconvex polygonal meshes for the loaded beam problem. (a) 32
elements, (b) 256 elements and (c) 1024 elements.

results that matched theoretical convergence results. However, it is known from [5,16], that stan-

dard VEM methods with order k ≥ 2 will suffer from loss of convergence rates when approximating
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Figure 4.15. Convergence curves of serendipity VEM on nonconvex meshes for
sinusoidal loaded beam problem. (a) k = 2 and (b) k = 3.

domains with curved edges. We see this result in Figure 4.17, where both the second- and third-

order methods failed to attain the optimal convergence rates. With this result, it is natural to look

into the extension of stabilization free methods onto elements with curved edges.

(a) (b) (c)

Figure 4.16. Polygonal meshes for the plate with a circular hole problem. (a) 250
elements, (b) 1500 elements, and (c) 6000 elements.
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Figure 4.17. Convergence curves of serendipity VEM for plate with a circular hole
problem. (a) k = 2 and (b) k = 3.
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CHAPTER 5

Stress-Hybrid Virtual Element Method on Quadrilateral Meshes

In computational mechanics, it is known that many standard displacement-based finite or vir-

tual element methods will suffer from volumetric locking as the material approaches the incom-

pressible limit and from shear locking in bending-dominated problems. One technique to reduce

this locking is by using a stress-based hybrid formulation first introduced in [89]. Starting with

the Hellinger–Reissner two-field functional, the stress and displacement fields can be independently

varied and chosen to retain stability and have optimal bending properties. The stress field is then

condensed on each element so that the method is purely displacement based. By following the

developments in [43, 89, 90], we introduce a stress-hybrid approach with a five-parameter stress

field to construct a stabilization-free virtual element method for quadrilateral elements. Although

the virtual element method is applicable to very general polygonal and polyhedral meshes, the ma-

jority of current industrial applications still rely on standard finite element meshes (triangles and

quadrilaterals in two dimensions). Therefore, in this chapter we focus on formulating the stress-

hybrid VEM on general quadrilateral meshes and in the next chapter we extend this approach to

six-noded triangular meshes.

In this chapter, we first present the Hellinger–Reissner variational principle, then apply it to

construct the weak formulation and a stress projection operator. Following the procedure in Sec-

tion 3.2, we define an enhanced virutal element space. Next, we discuss the choice of stress basis

functions and describe the numerical implementation of the method. Finally, numerical results

comparing the SH-VEM to the B-bar VEM [85] are presented on a series of benchmark problems

with ν → 0.5 (nearly-incompressible): bending of a thin cantilever bean, Cook’s membrane under

shear load, infinite plate with a hole, pressurized cylinder and the flat punch.

This chapter is based on the work published in [38].
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5.1. Hellinger–Reissner variational principle

In the previous chapters, we constructed the weak form directly from the governing boundary-

value problem; however, for more general applications, it is useful to start from a variational

principle. In the next two chapters, we utilize the Hellinger–Reissner variational formulation for

linear elasticity. The Hellinger–Reissner formulation assumes that the displacement field and the

stress field are independent and that the stress field does not satisfy the constitutive relation

pointwise. This gives more flexibility in choosing an approximation for the displacement and

stress spaces to avoid locking. The weak form is recovered by finding the stationary values of the

Hellinger–Reissner functional given by:

ΠHR[u,σ] = −1

2

∫
Ω
σ : C−1 : σ dx+

∫
Ω
σ : ∇su dx−

∫
Ω
b · u dx−

∫
Γt

t · u ds. (5.1)

After taking the first variation and requiring it to be stationary, we obtain the expression

δΠHR[u,σ; δu, δσ] =

∫
Ω
δσ :

(
∇su− C−1 : σ

)
dx+

∫
Ω
σ : ∇s(δu) dx−

∫
Ω
b · δu dx

−
∫
Γt

t · δu ds = 0 ∀δu ∈ Vu, δσ ∈ Vσ,

(5.2)

where Vu contains vector-valued functions in the Hilbert space [H1(Ω)]2 that also vanish on Γu,

whereas Vσ contains functions in (L2)2×2
sym. This gives us the weak statement of the equilibrium

equations and strain-displacement relations:∫
Ω
σ : ∇s(δu) dx−

∫
Ω
b · δu dx−

∫
Γt

t · δu ds = 0 ∀δu ∈ Vu, (5.3a)∫
Ω
δσ :

(
∇su− C−1 : σ

)
dx = 0 ∀δσ ∈ Vσ. (5.3b)

5.2. Virtual element discretization

Let T h be a decomposition of Ω into nonoverlapping quadrilaterals (see Figure 5.1). For each

quadrilateral E ∈ T h, let hE denote its diameter, xE its centroid, and xi = (xi, yi) the coordinate

of the i-th vertex.
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(a) (b) (c)

Figure 5.1. Examples of admissible elements in the stress-hybrid virtual element
method (a) convex quadrilateral, (b) nonconvex quadrilateral and (c) degenerate
quadrilateral.

5.2.1. Stress-hybrid projection operator. We now define the projection operator for the

stress-hybrid formulation. On choosing δσ = P ∈ [Pℓ(E)]2×2
sym and σ ∈ [Pℓ(E)]2×2

sym in (5.3b), we have∫
E
P :
(
∇su− C−1 : σ

)
dx = 0.

This condition is true for all P ∈ [Pℓ(E)]2×2
sym, so we can view C−1 : σ as a projection of ∇su with

respect to the space [Pℓ(E)]2×2
sym. Now, let the assumed stress field be taken as σ := Πβσ, where Πβ

is the stress projection operator. Then, the orthogonality condition becomes∫
E
P :
(
∇su− C−1 : Πβσ

)
dx = 0 ∀P ∈ [Pℓ(E)]2×2

sym, (5.4a)

or equivalently ∫
E
P : C−1 : Πβσ dx =

∫
E
P : ∇su dx ∀P ∈ [Pℓ(E)]2×2

sym. (5.4b)

After applying the divergence theorem and simplifying, we obtain∫
E
P : C−1 : Πβσ dx =

∫
∂E

(P · n) · u ds−
∫
E
(∇ · P) · u dx, (5.5)

where n = (nx, ny)
T is the outward unit normal along ∂E. For later implementation, we convert

this expression into the associated matrix-vector form. Let P, Πβσ be the Voigt representation of

P and Πβσ, respectively. Then, (5.5) can be written as

∫
E
PT
C−1Πβσ dx =

∫
∂E

PT
N∂Eu ds−

∫
E

(
∂P
)T
u dx ∀P ∈ [Pℓ(E)]2×2

sym, (5.6a)
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where N∂E is the representation of the outward normals and ∂ is the matrix divergence operator

that are given by

N∂E :=


nx 0

0 ny

ny nx

 , ∂ :=

 ∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

 . (5.6b)

5.2.2. Virtual element space. Following Section 3.2 with ℓ = 1, we define the first-order

vector-valued virtual element space on an element E as [2,9]:

Vh(E) =

{
vh ∈ [H1(E)]2 : ∆vh ∈ [P1(E)]2, vh|e ∈ [P1(e)]

2 ∀e ∈ ∂E, vh|∂E ∈ [C0(∂E)]2,

∫
E
vh · p dx =

∫
E
Πεvh · p dx ∀p ∈ [P0(E)]2

}
,

(5.7)

where ∆ is the vector Laplacian operator and Πε is the energy projection operator defined in (3.6).

On this space, the vector-valued functions are continuous on the boundary and affine along each

edge e, so we can choose the degrees of freedom (DOFs) to be the function values at the vertices of

E. Each element has a total of eight displacement DOFs. For each element E we also assign a basis

for the local space Vh(E). Let {ϕi} be the standard scalar basis functions in standard VEM [9]

that satisfy the property ϕi(xj) = δij . Using the scalar basis, we define the matrix of vector-valued

basis functions by

φ =

ϕ1 ϕ2 ϕ3 ϕ4 0 0 0 0

0 0 0 0 ϕ1 ϕ2 ϕ3 ϕ4

 :=
[
φ1 φ2 . . .φ8

]
, (5.8a)

then any function vh ∈ Vh(E) can be represented as:

vh(x) =
8∑

i=1

φi(x)vi = φd, (5.8b)

where vi is the i-th degree of freedom of vh.

Remark 5.2.1. In the current and the next chapters, we use a different notation to represent

the matrix of basis functions. The matrix N v given in (3.21b) is defined for elements with arbitrary

many vertices, while in this chapter and the next, the number of vertices is fixed to NE = 4 and
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NE = 6, respectively. Therefore, to differentiate between the two cases, we use the notation φ to

denote the matrix with either 8 or 12 basis functions.

5.3. Numerical implementation

5.3.1. Matrix representation of the stress-hybrid projection. We present the matrix

representation of the SH-VEM projection, which relies on the rotated coordinates introduced by

Cook [43] (see Figure 5.2). In the SH-VEM, an assumed stress ansatz is first defined on E′ (rotated

element) and then transformed to E using the stress transformation equations. The computation

of the element stiffness matrix is carried out on E.

5.3.1.1. Rotated coordinates. It is known that using global Cartesian coordinates to construct

a 5-term expansion of the stress field leads to an incomplete stress approximation and the resulting

element stiffness matrix is not rotationally invariant [43,90,93]. We follow the modification pro-

posed by Cook [43] to construct a local coordinate system for each element E. Let xP ,xQ,xR,xS

be the midpoints of the edges of element E (see Figure 5.2). Define L1 and L2 as the length of the

line segments PQ and RS, respectively. Then, we compute the angles

θ1 = arctan

(
yQ − yP
xQ − xP

)
, θ2 = arctan

(
xR − xS
yS − yR

)
, θ =

L1θ1 + L2θ2
L1 + L2

. (5.9)

P

R

Q
S

θ1

θ2

θ

θ

y

x

x′

y′

Figure 5.2. Construction of the local coordinate system for a distorted quadrilat-
eral.
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On using the angle θ, we define the rotated coordinates (x′, y′) via the transformation

x′ :=

x′y′
 =

 c s

−s c

xy
 := Qx, c = cos θ, s = sin θ. (5.10)

5.3.1.2. Stress-hybrid virtual element formulation. We now present the stress-hybrid approach,

which constructs the stress basis functions and stiffness matrix over the distorted element E. For

a quadrilateral element, using the complete linear stress basis given in (3.2) (ℓ = 1) results in an

overly stiff element; therefore, we only use a five-dimensional subset of this basis. On a square, the

selection of the stress basis in the stress-hybrid finite element method as [90]

M5β =



1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


y

0

0

 ,


0

x

0




ensures that uniform stress states as well as pure bending can be exactly represented. To tailor

this approach to VEM, we use this 5β stress expansion in a local coordinate system (E is rotated)

and then apply the stress transformation equations to obtain the stress ansatz on E.

Let E′ be the rotated element with vertices (x′i, y
′
i), centroid x

′
E′ and diameter h′E′ . In a rotated

element E′, we assume the stress expansion Πβσ′ = P ′β′, where P ′ is given by

P ′ =


1 0 0 η′ 0

0 1 0 0 ξ′

0 0 1 0 0

 =
[
P ′
1 P ′

2 P ′
3 P ′

4 P ′
5

]
, (5.11a)

and the rotated scaled monomials are

ξ′ =
x′ − x′E′

h′E′
, η′ =

y′ − y′E′

h′E′
. (5.11b)

On viewing each column P ′
i of the matrix P ′ as an equivalent tensor P ′

i, we apply the rotation

matrix Q given in (5.10) to obtain a transformed tensor P i:

P i = Q
TP ′

iQ. (5.12)
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After computing each tensor P i and rewriting them in terms of 3 × 1 vectors Pi, we define the

matrix P ∗ by [43]

P ∗ =
[
P1 P2 P3 P4 P5

]
=


c2 s2 −2cs c2(cη − sξ) s2(cξ + sη)

s2 c2 2cs s2(cη − sξ) c2(cξ + sη)

cs −cs c2 − s2 cs(cη − sξ) −cs(cξ + sη)

 , (5.13)

where c and s are given in (5.10). Without loss of generality, we choose an orthogonal basis for

terms representing constant stresses, which results in the matrix

P =


1 0 0 c2(cη − sξ) s2(cξ + sη)

0 1 0 s2(cη − sξ) c2(cξ + sη)

0 0 1 cs(cη − sξ) −cs(cξ + sη)

 . (5.14)

We now construct the stress-hybrid projection operator on the space Vh(E) over the original element

E with respect to the basis P . From (5.6a), we have the relation:∫
E
PT
C−1Πβσ dx =

∫
∂E

PT
N∂Euh ds−

∫
E

(
∂P
)T
uh dx.

Expanding uh in terms of the basis in Vh(E), we have uh = φd, where d is the displacement

vector. We also expand Πβσ in terms of P : Πβσ = Pβ, and since P is arbitrary we take P =

Pi (i = 1, 2, . . . , 5). After substituting in (5.6a) for each i = 1, 2, . . . , 5 and simplifying, we obtain

the system: (∫
E
P TC−1P dx

)
β =

(∫
∂E
P TN∂Eφ ds−

∫
E
(∂P )T φ dx

)
d. (5.15)

For this choice of P , we have ∂P = 0 (divergence-free), so we obtain(∫
E
P TC−1P dx

)
β =

(∫
∂E
P TN∂Eφ ds

)
d. (5.16)

Now define the corresponding matrices H and L by

H =

∫
E
P TC−1P dx, L =

∫
∂E
P TN∂Eφ ds, (5.17a)

and then the stress coefficients are given by

β =H−1Ld := Πβd, (5.17b)
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where Πβ is the matrix representation of the stress-hybrid projection operator with respect to the

symmetric tensor polynomial basis P .

5.3.2. Element stiffness matrix and element force vector. Following the structure of (5.3a),

we define the discrete system using the projection operator Πβσ by:

aEh (uh, δuh) = ℓEh (δuh),

where

aEh (uh, δuh) :=

∫
E
Πβσ(δuh)

T
C−1Πβσ(uh) dx,

ℓEh (δuh) :=

∫
E
(δuh)

Tb dx+

∫
Γt∩∂E

(δuh)
T t ds.

Expanding Πβσ in terms of β and applying (5.17b), we obtain

aEh (uh, δuh) = (δd)T (Πβ)
T

(∫
E
P TC−1P dx

)
Πβd := (δd)tKEd, (5.19)

where we identify the element stiffness matrix for SH-VEM as

KE = (Πβ)
T

(∫
E
P TC−1P dx

)
Πβ = ΠT

βHΠβ. (5.20)

In Appendix A, we give an alternate stress-hybrid virtual element formulation based on Cook’s

approach [43], and show that it is identical to the stress-hybrid element stiffness matrix that is

obtained using P ∗ in (5.13).

Now for every element E, the element force vector is given by

fE :=

∫
E
φTb dx+

∫
Γt∩∂E

φT t ds. (5.21)

For a low-order method, the first term in (5.21) is approximated by taking the nodal average of

the basis functions φ and then using a single-point quadrature to compute the integral [37]. The

second term is computed using Gauss quadrature over the element edges.

5.3.3. B-bar VEM. The B-bar finite element method [94] is a well-established technique to

alleviate volumetric locking for nearly incompressible materials. Recently, a B-bar virtual element
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formulation has been proposed in [85]. The method was shown to be robust for nearly incom-

pressible problems and delivered more accurate results than the B-bar finite element method. For

later numerical tests, we compare the results of the SH-VEM to a B-bar VEM. Following Park et

at. [85], we first decompose the material moduli matrix C in terms of its eigenvectors:

C =

3∑
i=1

λipip
T
i , (5.22)

where (λi,pi) is the i-th eigenpair of C. It is known for plane elasticity that p1 =
1√
2
[1, 1, 0]T and

λ1 = 2κ+ 2µ
3 , where κ is the bulk modulus and µ is the shear modulus. We express (5.22) as

C = λ1p1p
T
1 +

3∑
i=2

λipip
T
i := Cdil +Cdev. (5.23)

The element stiffness matrix in the B-bar formulation is the sum of a consistency matrix and a

stabilization matrix. For the consistency matrix Kc, we have after simplification:

Kc = (Πε
∗)

T

(∫
E
(SM)TC(SM) dx

)
Πε

∗

= (Πε
∗)

T

(∫
E
(SM)TCdil(SM) dx

)
Πε

∗ + (Πε
∗)

T

(∫
E
(SM)TCdev(SM) dx

)
Πε

∗

:=Kc
dil +K

c
dev, (5.24)

where S is defined in (2.129b), Πε
∗ is given in (3.34) and M is:

M =

1 0 −η η ξ 0

0 1 ξ ξ 0 η

 .
The expression for the stabilization matrix is:

Ks = (I −Πε)TΛ(I −Πε), (5.25a)
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whereΠε is the representation of the energy projection with respect to the basis functions φ defined

by Πε =DΠε
∗, with

D =


m1(x1) m2(x1) . . . m6(x1)

m1(x2) m2(x2) . . . m6(x2)

. . . . . . . . . . . .

m1(x4) m2(x4) . . . m6(x4)


, (5.25b)

and Λ is a diagonal matrix with components

Λii = max
(
(Kc

dev)ii,
µ

2

)
. (5.25c)

5.4. Numerical results for SH-VEM on quadrilateral elements

We present a collection of two-dimensional numerical examples for linear elasticity under plane

strain conditions. We examine the errors of the displacements in the L2 norm and energy seminorm,

and the L2 error of the hydrostatic stress. The exact hydrostatic stress (denoted by p̃) and its

numerical approximation are computed as:

p̃ =
trace (σ)

3
, p̃h =

1 + ν

3

((
Πβσ

)
1
+
(
Πβσ

)
2

)
, (5.26)

where
(
Πβσ

)
i
is the i-th component of Πβσ. The convergence rates are computed using the

following discrete error measures:

∥u− uh∥L2(Ω) =

√∑
E

∫
E
|u−Πεuh|2 dx, (5.27a)

∥p̃− p̃h∥L2(Ω) =

√∑
E

∫
E
|p̃− p̃h|2 dx, (5.27b)

∥u− uh∥a =

√∑
E

∫
E
(σ −Πβσ)T C−1(σ −Πβσ) dx. (5.27c)

5.4.1. Eigenvalue analysis. We first examine the stability of the SH-VEM for rotated ele-

ments through an eigenanalysis. From Cook [43], it is known that for a noninvariant method, a

rectangular element rotated by π
4 will contain spurious zero-energy modes. For this test, we take a

unit square and rotate it by angle γ = 0, π6 ,
π
4 ,

π
3 , and then compute the eigenvalues of the element

stiffness matrix. The material has Young’s modulus EY = 1 psi and Poisson’s ratio ν = 0.4999999.
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Three formulations are considered: an unrotated 5β, rotated 5β and an unrotated 7β. In the

unrotated formulations, the projection matrix is computed on the original element E without ap-

plying the rotated coordinate transformation given in (5.10), and for the 7β formulation a 7-term

expansion is used forP :

P =


1 0 0 η 0 0 ξ

0 1 0 0 ξ η 0

0 0 1 0 0 −ξ −η

 .
Every method has three physical zero eigenvalues that correspond to the zero-energy modes. For a

method to be stable the next lowest eigenvalue must be positive and not close to zero. In Table 5.1,

we indicate the fourth smallest eigenvalue of the element stiffness matrix for the three formulations.

The table shows that both the rotated 5β and the unrotated 7β have their eigenvalues unaffected

for any angle γ. However, as γ is increased to γ = π
4 , the next lowest eigenvalue of the unrotated 5β

formulation becomes zero. This shows that the 5β SH-VEM in global coordinates is not rotationally

invariant. Numerical tests also reveal that the 7β formulation ameliorates volumetric locking but

is much stiffer for pure bending problems, and therefore both unrotated 5β and 7β formulations

are not considered in the remainder of this paper.

Method γ = 0 γ = π
6 γ = π

4 γ = π
3

Unrotated 5β 0.444 0.111 0.000 0.111
Rotated 5β 0.444 0.444 0.444 0.444
Unrotated 7β 0.444 0.444 0.444 0.444

Table 5.1. Comparison of the fourth-lowest eigenvalue on a square that is rotated
by angle γ for three stress-hybrid VEMs.

To further test the stability of the SH-VEM on different convex and nonconvex element types,

we consider two additional tests. For the second test, we study the effects of perturbing a vertex of

a unit square. We construct quadrilaterals with coordinates {(0, 0), (1, 0), (γ1, γ2), (0, 1)}, where

γ1, γ2 ∈ (0.05, 10). For every combination of γ1 and γ2 we compute the element stiffness matrix on

this quadrilateral and then determine its fourth smallest eigenvalue. A few representative elements

and a contour plot of the eigenvalues are shown in Figure 5.3. The contour plot reveals that

deviations from the unit square decreases the value of the fourth smallest eigenvalue; however, the
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eigenvalue remains positive and away from zero (greater than 0.003) in all cases. This test shows

that no spurious zero eigenvalues appear even for large perturbations of the unit square.

(a) (b)

(c) (d)

0.05 1 2 3 4 5 6 7 8 9 10
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.
2
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0.05

0.1

0.15

0.2

0.25
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0.35

0.4

(e)

Figure 5.3. (a)–(d) First sequence of distorted quadrilaterals, where the fourth
vertex is located at (γ1, γ2), and (e) contour plot of the fourth-lowest eigenvalue as
a function of γ1 and γ2.

In the third test, we examine the effects of varying the angles of a unit square by con-

structing quadrilaterals with coordinates {(0, 0), (cos γ1,− sin γ1), (1, 1), (− sin γ2, cos γ2)}, where

γ1, γ2 ∈
[
−π

4 ,
π
2

]
. We again compute the eigenvalues of the element stiffness matrix for different

combinations of γ1 and γ2. Figure 5.4 shows a few representative elements and a contour plot of the

fourth smallest eigenvalue. The contour plot shows that the smallest nonzero eigenvalue remains

positive and away from zero (greater than 0.004) for any combination of γ1, γ2 ∈
[
−π

4 ,
π
2

]
, and

hence demonstrates that distorting a quadrilateral by varying its angle does not affect the stability

of SH-VEM.
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(a) (b)

(c) (d)

(e)

Figure 5.4. (a)–(d) Second sequence of distorted quadrilaterals, where the two
vertices that are varied are located at (cos γ1,−sin γ1) and (−sin γ2, cos γ2), and (e)
contour plot of the fourth-lowest eigenvalue as a function of γ1 and γ2.

5.4.2. Manufactured problem. We examine the effects of increasing the Poisson ratio to

the incompressible limit (ν → 0.5) on a manufactured problem with a known solution [3]. The

problem domain is the unit square and the Young’s modulus EY = 1 psi and the Poisson’s ratio

ν ∈ {0.3, 0.4, 0.4999, 0.4999999}. The exact solution with associated loading is given by:

u(x) = − cos(πx) sin(πy) and v(x) = sin(πx) cos(πy), b(x) =
π2

1 + ν

 cos(πx) sin(πy)

− sin(πx) cos(πy)

 .

In Figure 5.5, we show a few sample meshes for the unit square, and in Figure 5.6 we show the

convergence rates in L2 error of displacement and the energy seminorm as ν is varied. We assess

five formulations: standard VEM [11], SF-VEM [37], second-order stabilization-free serendipity

VEM (SFS-VEM) [36], B-bar VEM [85], and SH-VEM. From these plots, we observe that as ν is

increased, the standard VEM and SF-VEM fail to converge, while both B-bar VEM and SH-VEM

converge with rates that are in agreement with theory. For the SFS-VEM, the rates of convergence

in the compressible regime is one order higher in the L2 error of displacement and energy seminorm

than the first-order methods, as expected. However, we find that as ν increases, the rates of
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convergence become suboptimal and the accuracy of the solution deteriorates. This shows that the

SFS-VEM also suffers from volumetric locking.

(a) (b) (c)

Figure 5.5. Quadrilateral meshes for the manufactured problem. (a) 150 elements,
(b) 1500 elements and (c) 6000 elements.
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Figure 5.6. Comparison of the convergence of standard VEM, stabilization-free
VEM, stabilization-free serendipity VEM, B-bar VEM and SH-VEM for the manu-
factured problem on unstructured meshes (see Figure 5.5). Each column represents
a different value of ν. (a) ν = 0.3, (b) ν = 0.4, (c) ν = 0.4999 and (d) ν = 0.4999999.

We also test this problem on noncovex meshes. We begin with a uniform rectangular mesh

and then split each element into a convex and a nonconvex quadrilateral. A few sample meshes

are shown in Figure 5.7. Numerical results are presented in Figure 5.8, which reveal that even

on nonconvex meshes B-bar VEM and SH-VEM retain optimal rates of convergence, while the

SFS-VEM still converges suboptimally in the incompressible limit.
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(a) (b) (c)

Figure 5.7. Nonconvex quadrilateral meshes for the manufactured problem. (a)
32 elements, (b) 512 elements and (c) 2048 elements.
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Figure 5.8. Comparison of the convergence of standard VEM, stabilization-free
VEM, stabilization-free serendipity VEM, B-bar VEM and SH-VEM for the manu-
factured problem on nonconvex meshes (see Figure 5.7). Each column represents a
different value of ν. (a) ν = 0.3, (b) ν = 0.4, (c) ν = 0.4999 and (d) ν = 0.4999999.

Lastly, we examine the conditioning of the global stiffness matrix to ensure that increasing the

Poisson’s ratio and varying the element shapes and refinement does not lead to ill-conditioning. In

Figure 5.9, we show the condition number of the five methods as ν → 0.5 on both unstructured

and nonconvex meshes. From the plot, we observe that the condition number of SH-VEM is

comparable to the other four methods for compressible materials. As the material becomes nearly

incompressible, the condition number increases for all methods on the coarsest mesh. However, we

observe that the growth of the condition number with refinement for B-bar VEM and SH-VEM is
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similar to the case when ν = 0.3, which is in agreement with the O(h−2) increase of the stiffness

matrix condition number in the finite element method.
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Figure 5.9. Comparison of the conditioning of the global stiffness matrix of the
standard VEM, stabilization-free VEM, stabilization-free serendipity VEM, B-bar
VEM and SH-VEM for the manufactured problem. The first row is for the unstruc-
tured quadrilateral mesh (see Figure 5.5), the second row is for the nonconvex mesh
(see Figure 5.7). Each column represents a different value of ν. (a) ν = 0.3, (b)
ν = 0.4, (c) ν = 0.4999 and (d) ν = 0.4999999.

5.4.3. Thin cantilever beam. We consider the benchmark problem of a thin cantilever beam

under a shear end load [109]. The material has Young’s modulus EY = 1×105 psi and ν = 0.49995.

The beam has length L = 32 inch, height D = 1 inch and unit thickness. The left boundary is

fixed and a shear end load of P = −100 lbf is applied on the right boundary. We use a regular

rectangular mesh with N ∈ {1, 2, 4, 8, 16} elements along the height and 10N elements along the

length. In Figure 5.10, we show a few representative meshes and in Figure 5.11 we compare the

rates of convergence of B-bar VEM to SH-VEM in the three error norms. In Figure 5.12, we plot

the end displacement of the three methods and contours of the hydrostatic stress for SH-VEM.

From these results, we observe that the accuracy of SH-VEM is far superior to B-bar VEM and

the displacements in the SH-VEM display superconvergence (close to the exact solution) on coarse

rectangular meshes.
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(a)

(b)

(c)

Figure 5.10. Rectangular meshes for the cantilever beam problem. (a) 10 ele-
ments, (b) 40 elements and (c) 160 elements.
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Figure 5.11. Comparison of B-bar VEM and SH-VEM for the thin cantilever
beam problem on structured meshes (see Figure 5.10). (a) L2 error of displacement,
(b) energy error and (c) L2 error of hydrostatic stress, where N is the number of
elements along the height of the beam.

We consider another test for the cantilever beam problem using a mesh with either one or two

elements along the height andM elements along the length. We choose the number of elementsM ∈

{2, 4, 8, 16}. The meshes are depicted in Figure 5.13 and the convergence of the tip displacement

for the two cases is presented in Figure 5.14. The plots reveal that SH-VEM is accurate even

for high aspect ratio elements and is free of shear locking. However, for one element along the

height and with refinement along the length, we observe that B-bar VEM converges to a value

below the exact value (see Figure 5.14a) and for the case of two elements along the height, the end

displacement is not accurate (see Figure 5.14b).
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Figure 5.12. (a) Convergence of the end displacement for the cantilever beam
problem. The mesh consists of 10N × N rectangular elements, where N is the
number of elements along the height of the beam (see Figure 5.10), (b) contour plot
of hydrostatic stress for SH-VEM.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.13. Rectangular meshes for the cantilever beam problem with fixed
length to height ratio for each element. (a), (b), (c), (d) 16:1, 8:1, 4:1 and 2:1;
and (e), (f), (g), (h) 32:1, 16:1, 8:1 and 4:1.

It is known that distortions of a rectangular mesh can lead to shear locking in the thin beam

problem [76]. We study this issue on perturbed trapezoidal meshes that are shown in Figure 5.15.

In Figure 5.16, we present the convergence of the end displacement. The plot shows that on such

meshes SH-VEM is convergent but with reduced accuracy; however, note that the B-bar formulation

fails to converge to the exact end displacement for the case N = 1 (see Figure 5.16a).
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Figure 5.14. Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists ofM×N quadrilaterals, whereM is the number of elements
along the length of the beam (see Figure 5.13). (a) N = 1 and (b) N = 2.
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Figure 5.15. Trapezoidal meshes for the cantilever beam problem. Mesh is refined
along the length with (a) 1 element along the height and (b) 2 elements along the
height.

We also solve the cantilever beam problem on nearly degenerate quadrilateral meshes. We start

with a regular rectangular mesh, and then split each element into four quadrilaterals with two of the

elements have collapsing edges. A few sample meshes are shown in Figure 5.17. In Figure 5.18, we

compare the convergence rates of B-bar VEM and SH-VEM in the three norms, and in Figure 5.19

we present the convergence of the tip displacement as well as the contour plot of the hydrostatic

stress using SH-VEM. The plots reveal that B-bar VEM and SH-VEM retain optimal convergence

rates. Furthermore, the convergence of SH-VEM is monotonic; however its accuracy is worse when

compared to the uniform mesh case. This decrease in accuracy can be attributed to the poor shape

(near-degeneracy) quality of the elements.
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Figure 5.16. Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of M ×N trapezoids, where M is the number of elements
along the length of the beam (see Figure 5.15). (a) N = 1 and N = 2.

(a)

(b)

(c)

(d)

Figure 5.17. Nearly degenerate meshes used for the cantilever beam problem. (a)
40 elements, (b) 160 elements (c) 360 elements, and (d) magnification of a single
element split into four quadrilaterals.

5.4.4. Cook’s membrane. Here we consider the Cook’s membrane problem under shear

load [43] (see Figure 5.20). This problem is commonly used to test a combination of bending

and shear for nearly-incompressible materials. The material has Young’s modulus EY = 250 psi

and Poisson’s ratio ν = 0.4999999. The left edge of the membrane is fixed and the right edge has an

applied shear load of F = 6.25 lbf per unit length. This problem does not have an exact solution;

a reference solution for the vertical displacement at the tip of the membrane is v = 7.769 inch [85].

We first test this problem on an unstructured quadrilateral mesh. A few sample meshes are shown

in Figure 5.20. In Figure 5.21, the convergence of the tip displacement and that of the hydrostatic
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Figure 5.18. Comparison of B-bar VEM and SH-VEM for the thin cantilever beam
problem on nearly degenerate meshes (see Figure 5.17). (a) L2 error of displacement,
(b) energy error and (c) L2 error of hydrostatic stress, where N is the number of
elements along the height of the beam.
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Figure 5.19. (a) Convergence of the end displacement for the cantilever beam
problem. The mesh consists of 10N × N nearly degenerate quadrilaterals, where
N is the number of elements along the height of the beam (see Figure 5.17), (b)
contour plot of hydrostatic stress for SH-VEM.

stress are presented. The plot shows that the B-bar VEM and SH-VEM have comparable accuracy

and convergence for the tip displacement. In addition, SH-VEM is able to produce a relatively

smooth hydrostatic stress field on an unstructured mesh.

Next, the SH-VEM is now assessed for the Cook’s membrane problem on nonconvex meshes.

We begin with an unstructured quadrilateral mesh, and then each element is split into a convex

and a nonconvex quadrilateral. A few representative meshes are shown in Figure 5.22. The plots

of the convergence of tip displacement and the contour of the hydrostatic stress are presented in

Figure 5.23. The plots show that even on nonconvex meshes, the convergence of the tip displacement
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Figure 5.20. (a) Cook’s membrane problem. (b), (c), (d) Unstructured quadrilat-
eral meshes with 100 elements, 300 elements and 1000 elements, respectively.
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Figure 5.21. (a) Convergence of the tip displacement for Cook’s membrane prob-
lem. The mesh consists of unstructured quadrilaterals (see Figure 5.20). (b) Contour
plot of the hydrostatic stress for SH-VEM.

of B-bar VEM and SH-VEM are proximal, and the contours of the hydrostatic stress for SH-VEM

remains relatively smooth.

5.4.5. Plate with a circular hole. We revisit the infinite plate with a circular hole problem

used in the previous two chapters (see Section 3.5.4) but now in the incompressible limit. The

material has Young’s modulus EY = 2 × 107 psi and Poisson’s ratio ν = 0.4999999. We first
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(a) (b) (c)

Figure 5.22. Nonconvex quadrilateral meshes for the Cook’s membrane problem.
(a) 100 elements, (b) 250 elements and (c) 1000 elements.
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Figure 5.23. (a) Convergence of the tip displacement for Cook’s membrane. The
mesh consists of nonconvex quadrilaterals (see Figure 5.22). (b) Contour plot of the
hydrostatic stress for SH-VEM.

test this problem on structured quadrilateral meshes; a few representative meshes are shown in

Figure 5.24. In Figure 5.25, we compare the convergence results of the B-bar formulation and the

SH-VEM, and find that both methods deliver optimal convergence rates. In Figure 5.26, we also

compare the contours of the hydrostatic stress by the two methods and find that they both are

smooth and have comparable accuracy.
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(a) (b) (c)

Figure 5.24. Structured quadrilateral meshes for the plate with a hole problem.
(a) 256 elements, (b) 1024 elements and (c) 4096 elements.
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Figure 5.25. Comparison of SH-VEM and B-bar VEM for the plate with a circular
hole problem on structured meshes (see Figure 5.24). (a) L2 error of displacement,
(b) energy error and (c) L2 error of the hydrostatic stress.

(a) (b) (c)

Figure 5.26. Contour plots of the hydrostatic stress on structured meshes (see Fig-
ure 5.24) for the plate with a circular hole problem. (a) exact solution, (b) B-bar
VEM, (c) SH-VEM.
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We now consider the plate with a circular hole problem on a perturbed mesh. We start with

a structured mesh, then for each internal node we perturb its location. Representative meshes are

shown in Figure 5.27. In Figure 5.28, we show the convergence rates of the two methods and find

that both methods retain optimal convergence on the perturbed mesh. In Figure 5.29, the exact

hydrostatic stress and contour plots of the error, p̃ − p̃h, are shown. The plots reveal that both

methods produce relatively smooth error distributions of the hydrostatic stress field, with the B-bar

VEM having smaller pointwise error than SH-VEM.

(a) (b) (c)

Figure 5.27. Perturbed quadrilateral meshes for the plate with a hole problem.
(a) 256 elements, (b) 1024 elements and (c) 4096 elements.
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Figure 5.28. Comparison of SH-VEM and B-bar VEM for the plate with a circular
hole problem on perturbed meshes (see Figure 5.27). (a) L2 error of displacement,
(b) energy error and (c) L2 error of hydrostatic stress.

5.4.6. Hollow cylinder under internal pressure. We again consider the problem of a hol-

low cylinder with inner radius a = 1 inch and outer radius b = 5 inch under internal pressure [109].
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(a) (b) (c)

Figure 5.29. Contour plots of the hydrostatic stress for the plate with a circular
hole problem on perturbed meshes (see Figure 5.27). (a) exact solution, and error
in the hydrostatic stress field, p̃− p̃h for (b) B-bar VEM and (c) SH-VEM.

However, due to symmetry, we model this problem as a quarter cylinder. A uniform pressure of

p = 105 psi is applied on the inner radius, while the outer radius is kept traction-free. The material

has Young’s modulus EY = 2 × 105 psi and Poisson’s ratio ν = 0.4999999. For this example, the

hydrostatic stress field is constant; therefore, we use an element averaged approximation to compute

the hydrostatic stress p̃h. We first examine this problem on structured quadrilateral meshes; a few

representative meshes are presented in Figure 5.30. In Figure 5.31, the convergence rates of B-bar

VEM and SH-VEM are shown. For both methods, convergence in L2 norm and energy seminorm

is optimal. The contour plots in Figure 5.32 show that both methods are able to reproduce the

constant exact hydrostatic stress field on a uniform mesh.

(a) (b) (c)

Figure 5.30. Uniform quadrilateral meshes for the hollow cylinder problem. (a)
256 elements, (b) 1024 elements and (c) 4096 elements.
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Figure 5.31. Comparison of B-bar VEM and SH-VEM for the hollow cylinder
problem on structured meshes (see Figure 5.30). (a) L2 error of displacement, (b)
energy error and (c) L2 error of hydrostatic stress.

(a) (b)

Figure 5.32. Contour plots of the hydrostatic stress field on structured meshes
(see Figure 5.30) for the hollow pressurized cylinder problem. The exact hydrostatic
stress is 4166.6666 psi. (a) B-bar VEM and (b) SH-VEM.

Now we solve the pressurized cylinder problem on a sequence of nonconvex meshes; a few

representation meshes are shown in Figure 5.33. Figure 5.34 shows that both the B-bar VEM

and the SH-VEM deliver optimal convergence rates; however unlike the uniform mesh case, the

hydrostatic stress field is not exactly reproduced by either method. In Figure 5.35, we compare the

contour plots of the error in the hydrostatic stress field for the two methods. We observe that both

methods are very accurate away from the inner circular boundary but produce much larger errors

in its vicinity (see Figures 5.35b and 5.35d). The maximum error of the SH-VEM is 30 percent,

whereas that of B-bar VEM is markedly worse at 55 percent. Compared to Figure 5.33c, if the

nonconvex quadrilateral is distorted even more, we find from our simulations that the maximum
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error in the hydrostatic stress for SH-VEM increases to 35 percent, whereas the maximum error

using B-bar VEM has a 10-fold increase.

(a) (b) (c)

Figure 5.33. Nonconvex quadrilateral meshes for the hollow cylinder problem. (a)
512 elements, (b) 2048 elements and (c) magnification of a single element split into
convex and nonconvex partitions.
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Figure 5.34. Comparison of B-bar VEM and SH-VEM for the hollow cylinder
problem on nonconvex meshes (see Figure 5.33). (a) L2 error of displacement, (b)
energy error and (c) L2 error of hydrostatic stress.

5.4.7. Flat punch. Finally, we consider the problem of a flat punch as described in Park et

al. [85] and shown in Figure 5.36. The domain is the unit square and we choose EY = 250 psi

and ν = 0.4999999. The left, right and bottom edges are constrained in the direction normal to

the edges, and the top has a constant vertical displacement of v = − 0.03 applied on the middle

third of the edge. A sequence of unstructured quadrilateral (see Figure 5.5) is used to solve this

problem. The hydrostatic stress field from both methods are presented in Figure 5.37. The plots

show that both methods produce relatively smooth hydrostatic stress fields of comparable accuracy.

134



(a) (b)

(c) (d)

Figure 5.35. Contour plots of the relative error in the hydrostatic stress on non-
convex meshes (see Figure 5.33) for the hollow pressurized cylinder problem. The
exact hydrostatic stress is 4166.6666 psi. (a) B-bar VEM, (b) B-bar VEM (color
scale for error is between 0 and 10 percent), (c) SH-VEM and (d) SH-VEM (color
scale for error is between 0 and 10 percent.

In Figure 5.38, plots of the trace of the strain field are shown for B-bar VEM and SH-VEM, and we

find that consistent with the exact solution the numerically computed strain field is nearly traceless.
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Figure 5.36. Flat punch problem.

(a) (b)

Figure 5.37. Contour plots of the hydrostatic stress on unstructured meshes
(see Figure 5.5) for the flat punch problem. (a) B-bar VEM and (b) SH-VEM.
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(a) (b)

Figure 5.38. Contour plots of the trace of the strain field on unstructured meshes
(see Figure 5.5) for the flat punch problem. (a) B-bar VEM and (b) SH-VEM.
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CHAPTER 6

Stress-Hybrid Virtual Element Method on Six-Noded Triangular

Meshes

In many applications with complex geometries, the standard quadrilateral and hexahedral ele-

ments used in FEM are not easily generated. Triangular and tetrahedral meshes can be automati-

cally generated for very general geometries using robust and well-established meshing algorithms.

However, the majority of triangular and tetrahedral elements are overly stiff in bending problems

and suffer from volumetric locking in the incompressible limit. Many of the techniques developed

in finite elements to alleviate locking are applicable to only quadrilateral elements, although there

has been progress in constructing robust and accurate triangular elements. Using the foundation

of the virtual element method, we seek a method that is locking-free on triangular meshes. Fol-

lowing the approach of Chapter 5, we examine a stress-hybrid formulation for six-noded elements

using equilibrated stress fields, and by applying the ideas of [116, 117], we introduce a penalty

stress-hybrid approach.

In this chapter, we revisit the Hellinger–Reissner variational formulation and use it to con-

struct the stress-hybrid projection operator. We then examine the different choices of stress basis

functions and show the aspects of numerical implementation. Next, we introduce an alternative

method using an equilibrium penalty term. This approach is refered to as the Penalty Stress-Hybrid

Virtual Element Method (PSH-VEM). To conclude the chapter, we present results comparing the

Composite triangle FEM (CT FEM) [60], B-bar VEM [85], SH-VEM, and the PSH-VEM. The

four methods are used to solve a series of benchmark problems in the nearly-incompressible limit:

bending of a thin cantilever beam, Cook’s membrane, infinite plate with a circular hole, pressurized

cylinder, a manufactured problem with a sinusoidal solution, and the punch problem.

This chapter is based on the work published in [35].
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6.1. Stress-hybrid virtual elements for triangular elements

Let T h be a decomposition of Ω into six-noded elements (see Figure 6.1). For each element E,

denote its diameter by hE , its centroid by xE and the coordinate of the i-th vertex by xi = (xi, yi).

(a) (b) (c)

Figure 6.1. Examples of admissible six-noded elements (a) nonconvex element,
(b) hexagonal element and (c) six-noded triangular element.

6.1.1. Variational formulation. Following (5.1), we write the Hellinger–Reissner functional

for linear elasticity:

ΠHR[u,σ] = −1

2

∫
Ω
σ : C−1 : σ dx+

∫
Ω
σ : ∇su dx−

∫
Ω
b · u dx−

∫
Γt

t · u ds.

After taking the first variation of ΠHR(·, ·) and requiring it to be stationary, we obtain the weak

statement of the equilibrium equations and strain-displacement relations:∫
Ω
σ : ∇s(δu) dx−

∫
Ω
b · δu dx−

∫
Γt

t · δu ds = 0 ∀δu ∈ Vu, (6.1a)∫
Ω
δσ :

(
∇su− C−1 : σ

)
dx = 0 ∀δσ ∈ Vσ, (6.1b)

where Vu ⊂ [H1(Ω)]2 contains vector-valued functions that vanish on Γu and Vσ contains symmetric

tensor-valued functions in [L2(Ω)]2×2
sym.

6.1.2. Stress-hybrid projection. Let ℓ ∈ N be the largest degree of the polynomials used

for the stress approximation on an element. Then following (5.4), define the projection operator

Πβσ for the stress-hybrid formulation by the condition∫
E
P :
(
∇suh − C−1 : Πβσ

)
dx = 0 ∀P ∈ [Pℓ(E)]2×2

sym,
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which is rewritten as∫
E
P : C−1 : Πβσ dx =

∫
E
P : ∇suh dx ∀P ∈ [Pℓ(E)]2×2

sym.

Now applying the divergence theorem and simplifying, we obtain∫
E
P : C−1 : Πβσ dx =

∫
∂E

(P · n) · uh ds−
∫
E
(∇ · P) · uh dx, (6.3)

Let P, Πβσ be the Voigt representation of P and Πβσ, respectively. Then, (6.3) can be written as

∫
E
PT
C−1Πβσ dx =

∫
∂E

PT
N∂Euh ds−

∫
E

(
∂P
)T
uh dx ∀P ∈ [Pℓ(E)]2×2

sym, (6.4a)

where N∂E is the matrix representation of the outward normals along the boundary of E, and ∂

is the matrix divergence operator that are given by

N∂E :=


nx 0

0 ny

ny nx

 , ∂ :=

 ∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

 . (6.4b)

6.1.3. Choice of stress basis for a hybrid formulation. Now that we have a projection

operator for the stress, we need to choose a suitable polynomial basis for the stress field. Using too

few basis functions will result in an unstable element; while using too many will lead to overstiff

elements. It is known that for a stress-based method, using a stress approximation that satisfies

the element equilibrium condition results in more accurate stress distributions for homogeneous

problems [62,104,105,116]. For plane isotropic elasticity, a convenient set of suitable stresses that

satisfy the equilibrium equations with zero body force are derived from the Airy stress functions [34,

59,96]. A collection of fifteen potential stress fields is given in Voigt representation by [34]:

P =

[
1 0 0 η 0 ξ 0 0 2ξη −η2 ξ2−η2 ξ(ξ2−6η2) ξ3 3ξ2η η(3ξ2−2η2)

0 1 0 0 ξ 0 η 2ξη 0 ξ2 η2−ξ2 3ξη2 −ξ(2ξ2−3η2) −η(6ξ2−η2) η3

0 0 1 0 0 −η −ξ −ξ2 −η2 0 −2ξη −η(3ξ2−2η2) −3ξ2η ξ(2ξ2−3η2) −3ξη2

]
. (6.5)

For a six-noded element, there are twelve displacement degrees of freedom and three rigid-body

modes, so a minimum of nine terms are needed for the stress approximation [92]. However, it is

also known that using an incomplete stress approximation will result in a stiffness matrix that is

not rotationally invariant [43,90], or result in elements with inaccurate stress distributions [116].
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Therefore, we only consider the complete bases with the first eleven terms of (6.5) and all fifteen

terms. We denote any stress basis with k independent terms by kβ.

Remark 6.1.1. The set of stress basis in (6.5) is an extension of the 5β hybrid-stress basis

introduced in [89] and the 15β basis introduced in [105]. In [54], a similar collection of divergence-

free polynomials is used as a basis for the enhanced strain VEM.

We also examine a basis similar to the hybrid basis given in [54], which uses a mix of nine

uncoupled constant and linear polynomials and four divergence-free quadratic polynomials:

P ∗ =


1 0 0 ξ 0 0 η 0 0 0 2ξη −η2 ξ2 − η2

0 1 0 0 ξ 0 0 η 0 2ξη 0 ξ2 η2 − ξ2

0 0 1 0 0 ξ 0 0 η −ξ2 −η2 0 −2ξη

 . (6.6)

6.1.4. Virtual element space. Similar to the previous chapters, the standard virtual element

space is not sufficient to compute the projection Πβσ for arbitrary ℓ without adding additional

degrees of freedom; therefore, we reuse the enhanced virtual element space given in (3.19) for each

element E:

Vh(E) =

{
vh ∈ [H1(E)]2 : ∆vh ∈ [Pℓ−1(E)]2, vh|e ∈ [P1(e)]

2 ∀e ∈ ∂E,

vh|∂E ∈ [C0(∂E)]2,

∫
E
vh · p dx =

∫
E
Πεvh · p dx ∀p ∈ [Pℓ−1(E)]2

}
,

(6.7)

where ∆ is the vector Laplacian operator and e is an edge of the element. We note that for a stress

basis that uses degree ℓ polynomials, the space requires the enhancing property
∫
E vh · p dx =∫

E Πεvh · p dx to hold for all vectorial polynomials up to degree ℓ − 1. For each element E we

also assign a basis for the local space Vh(E). Let {ϕi} be the scalar polygonal basis functions in

standard VEM [9] that satisfy the Kronecker-delta property ϕi(xj) = δij . Using the scalar basis,

we define the matrix of vector-valued basis functions by

φ =

ϕ1 ϕ2 ϕ3 · · · ϕ6 0 0 0 · · · 0

0 0 0 · · · 0 ϕ1 ϕ2 ϕ3 · · · ϕ6

 :=
[
φ1 φ2 . . . φ12

]
, (6.8a)
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then any function vh ∈ Vh(E) can be represented as:

vh(x) =

12∑
i=1

φi(x)vi = φd, (6.8b)

where vi is the i-th degree of freedom of vh and d is the displacement vector with components vi.

6.1.5. Implementation of the stress-hybrid projection. From (6.4a) we have the weak

discrete relation given by:∫
E
PT
C−1Πβσ dx =

∫
∂E

PT
N∂Euh ds−

∫
E

(
∂P
)T
uh dx. (6.9a)

The last term in (6.9a) is not computable for general P; however since the elements of ∂P are

polynomials of degree at most ℓ − 1, we apply the definition of the virtual element space (6.7) to

rewrite as ∫
E
PT
C−1Πβσ dx =

∫
∂E

PT
N∂Euh ds−

∫
E

(
∂P
)T

Πεuh dx. (6.9b)

Expanding uh in terms of the basis in Vh(E), we have uh = φd, where d is the displacement vector.

We also expand Πβσ in terms of P : Πβσ = Pβ, and since P is arbitrary we take P = Pi (i =

1, 2, . . . , 15). After substituting in (6.9b) for each i = 1, 2, . . . , 15 and simplifying, we obtain the

system: (∫
E
P TC−1P dx

)
β =

(∫
∂E
P TN∂Eφ ds−

∫
E
(∂P )T Πεφ dx

)
d. (6.10)

For any choice of P in (6.5), we have the divergence-free condition ∂P = 0, so we obtain(∫
E
P TC−1P dx

)
β =

(∫
∂E
P TN∂Eφ ds

)
d. (6.11)

Now define the corresponding matrices H and L by

H =

∫
E
P TC−1P dx, L =

∫
∂E
P TN∂Eφ ds. (6.12a)

Since P has linearly independent columns and C−1 is symmetric positive-definite, the matrix H

is invertible. Then the stress coefficients are given by

β =H−1Ld := Πβd, (6.12b)
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where Πβ is the matrix representation of the stress-hybrid projection operator with respect to the

symmetric tensor polynomial basis P .

Remark 6.1.2. For a nondivergence-free basis, the use of (6.9b) can lead to an overly stiff

element. An alternate approach used in [54,70], is to introduce additional internal moment degrees

of freedom to compute the last integral in (6.9a). These additional DOFs result in better performing

elements but require an additional static condensation on the element stiffness matrix. Another

approach is to follow the idea of using composite elements [60] to compute the stress projection

operator. For each element, we construct a sub-triangulation and assume the displacement field

(displacement projection) is affine on each subtriangle. This piecewise displacement field can then be

used to compute the integral in (6.9a). We tested a virtual element formulation based on composite

elements and found that the resulting elements were more flexible but still suffered from volumetric

locking.

6.1.6. Element stiffness and forcing. Following the procedure of Section 5.3.2, we define

the discrete system:

aEh (uh, δuh) = ℓEh (δuh),

where

aEh (uh, δuh) :=

∫
E
Πβσ(δuh)

T
C−1Πβσ(uh) dx,

ℓEh (δuh) :=

∫
E
(δuh)

Tb dx+

∫
Γt∩∂E

(δuh)
T t ds.

After expanding Πβσ and simplifying, we construct the element stiffness matrix

KE = (Πβ)
T

(∫
E
P TC−1P dx

)
Πβ = ΠT

βHΠβ. (6.14)

Similarly, for every element E, the element force vector is given by

fE :=

∫
E
φTb dx+

∫
Γt∩∂E

φT t ds. (6.15)
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6.2. Equilibrium penalty stress-hybrid method

In the original stress-hybrid approach, we used a set of stress basis functions that satisfy the

equilibrium equations without body force. In general, this is difficult or not possible for nonlin-

ear, anisotropic and three-dimensional problems. It was also found in our numerical tests that

many higher order polynomial terms were needed in order to preserve the stability without us-

ing a stabilization term. This requirement increases the cost of integration and results in stiffer

solutions. An alternative method is to adapt the approach by [116]. It was found that for dis-

torted elements, the original Pian-Sumihara element does not satisfy elementwise equilibrium; this

resulted in shear locking and large errors in pure bending problems on distorted meshes. The

remedy suggested in [116,117] is to add an additional term which penalizes the functional when

the stress basis functions are not in equilibrium. In the limit as the penalty term approaches in-

finity, the equilibrium conditions are exactly satisfied. This formulation was shown to mitigate

shear locking in the Pian-Sumihara element and to improve performance in axisymmetric prob-

lems [116, 117]. A similar method was developed in [106], which uses carefully selected scaling

parameters to eliminate excess shear stresses rather than enforce equilibrium. Later, the penalty

equilibrium formulation was applied to fracture mechanics [118] and extended to the Hu–Washizu

variational principle [32,33]. The addition of an equilibrium penalty term is also used in [22,112]

to construct superconvergent stress recovery methods. In this section, we utilize the penalty ap-

proach to weakly enforce equilibrium conditions on a set of non-equilibrated stress basis functions.

We first introduce a Hellinger–Reissner functional with an additional penalty term, then define a

penalized stress-hybrid projection operator from the associated weak strain-displacement relation.

Finally we construct the element stiffness matrix, forcing vector and discuss a choice for the penalty

parameter and basis functions.

We start with a modified Hellinger–Reissner functional with an equilibrium penalty term:

ΠHR*[u,σ] = −1

2

∫
Ω
σ : C−1 : σ dx+

∫
Ω
σ : ∇su dx−

∫
Ω
b · u dx−

∫
Γt

t · u ds

−α
2

∫
Ω
(∇ · σ + b) · (∇ · σ + b) dx,

(6.16)
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where α > 0 is a penalty parameter. After taking the first variation, the stationary condition

results in the weak equilibrium equations and modified strain-displacement relations:∫
Ω
σ : ∇s(δu) dx−

∫
Ω
b · δu dx−

∫
Γt

t · δu ds = 0 ∀δu ∈ Vu, (6.17a)∫
Ω
δσ :

(
∇su− C−1 : σ

)
dx− α

∫
Ω
(∇ · δσ) · (∇ · σ + b) dx = 0 ∀δσ ∈ Vσ. (6.17b)

6.2.1. Penalty stress-hybrid projection and implementation. We first construct the

penalized stress-hybrid projection operator on an element E from the modified strain-displacement

relation. By modifying (6.17b), we define the projection by the condition:∫
E
P :
(
∇suh − C−1 : Πβσ

)
dx− α

∫
E
(∇ · P) · (∇ ·Πβσ + b) dx = 0,

which can be rewritten as∫
E
P : C−1 : Πβσ dx+ α

∫
E
(∇ · P) · (∇ ·Πβσ) dx =

∫
E
P : ∇suh dx− α

∫
E
(∇ · P) · b dx.

After applying the divergence theorem, we get∫
E
P : C−1 : Πβσ dx + α

∫
E
(∇ · P) · (∇ ·Πβσ) dx

=

∫
∂E

(P · n) · uh ds−
∫
E
(∇ · P) · uh dx− α

∫
E
(∇ · P) · b dx.

(6.19)

Using Voigt notation, we rewrite (6.19) in terms of matrix-vector operations∫
E
PT
C−1Πβσ dx+ α

∫
E
(∂P)T∂Πβσ dx =

∫
∂E

PT
N∂Euh ds−

∫
E
(∂P)Tuh dx

− α

∫
E
(∂P)Tb dx.

(6.20a)

The second term on the right-hand side is not computable from the element DOF’s; however, by

applying the definition of the virtual element space (6.7), we rewrite the relation in a computable

form∫
E
PT
C−1Πβσ dx+ α

∫
E
(∂P)T∂Πβσ dx =

∫
∂E

PT
N∂Euh ds−

∫
E
(∂P)TΠεuh dx

− α

∫
E
(∂P)Tb dx.

(6.20b)
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Letting P = P ,Πβσ = Pβ and uh = φd, we obtain the system of equations:(∫
E
P TC−1P dx+ α

∫
E
(∂P )T∂P dx

)
β

=

(∫
∂E
P TN∂Eφ ds−

∫
E
(∂P )TΠεφ dx

)
d− α

∫
E
(∂P )Tb dx.

(6.21)

Define the corresponding matrices by

H =

∫
E
P TC−1P dx, Hp =

∫
E
(∂P )T∂P dx, (6.22a)

L =

∫
∂E
P TN∂Eφ ds−

∫
E
(∂P )TΠεφ dx, Lp =

∫
E
(∂P )Tb dx. (6.22b)

Then the stress coefficients are given as

β = (H + αHp)
−1(Ld− αLp). (6.22c)

6.2.2. Element stiffness and forcing. The element stiffness matrix can be constructed by

using the the discrete equilibrium equations based on (6.17a)∫
E
Πβσ(uh)

T∇s(δuh) dx =

∫
E
bT δuh dx+

∫
Γt

t
T
δuh ds.

On applying (6.17b) and simplifying, we rewrite the first integral as∫
E
Πβσ(uh)

T∇s(δuh) dx =

∫
E
Πβσ(uh)

T
C−1Πβσ(δuh) dx

+ α

∫
E
(∂Πβσ(uh))

T (∂Πβσ(δuh) + b) dx.

(6.23)

Now we have the equation∫
E
Πβσ(uh)

T
C−1Πβσ(δuh) dx + α

∫
E
(∂Πβσ(uh))

T (∂Πβσ(δuh) + b) dx

=

∫
E
bT δuh dx+

∫
Γt∩∂E

t
T
δuh ds.

(6.24)

After expanding Πβσ = Pβ and simplifying, we construct the element stiffness matrix

KE = LT
(
H + αHp

)−1
L, (6.25a)
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and the element force vector is given by

fE =

∫
E
φTb dx+

∫
Γt∩∂E

φT t ds+ αLT
(
H + αHp

)−1
Lp, (6.25b)

where H,Hp,L,Lp are given in (6.22).

6.2.3. Choice of penalty parameter. Similar to the stabilized virtual element method, one

drawback of the penalty equilibrium method is the need for a properly designed penalty parameter

α. In [116], α = κ
EY

, where EY is the Young’s modulus and κ > 103 is a large dimensionless

number, is suggested. However, we found that this can result in the loss of stability for problems

with highly distorted meshes. It is suggested in [32], that the penalty term should be scaled by a

term that depends on the geometry in order to attain consistent units. In particular, α is chosen

to be of the form α =
κℓ20
EY

, where ℓ0 is a characteristic length that is dependent on the element

geometry. In our tests, we let ℓ0 be the minimum length from the element centroid to the nodes

and κ = 104. From our numerical experiments on benchmark problems, we found that using the

penalty parameter α =
κℓ20
EY

resulted in higher accuracy and superconvergence on sufficiently refined

uniform meshes. However, in the case when EY is small (α too large), low energy modes appear in

the element stiffness matrix. From [74], it is suggested that a reasonable value of κ
EY

is between

10 and 100; therefore, we fix an arbitrary upper bound of 10 in our tests. That is, we use

α = min
{
10,

κ

EY

}
ℓ20. (6.26)

For the penalty equilibrium stress-hybrid method, we do not require the equilibrated stress

basis functions given in (6.5). Instead, we seek the smallest number of stress basis functions that

still retains stability and is not overly stiff in bending. For a six-noded element, a minimum of nine

terms are needed; but it was found in [37] that the 9β complete linear basis is not sufficient for

stability. We choose the 12β expansion with complete bilinear polynomials given by

P =


1 0 0 ξ 0 0 η 0 0 ξη 0 0

0 1 0 0 ξ 0 0 η 0 0 ξη 0

0 0 1 0 0 ξ 0 0 η 0 0 ξη

 . (6.27)
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6.3. Numerical results for SH-VEM on triangular elements

We present a series of numerical examples in linear elasticity under plane strain conditions on a

variety of meshes. The unstructured triangular meshes used in these examples are generated using

DistMesh [88]. We compute the errors of the displacement in the L2 norm and energy seminorm,

and the L2 error of the hydrostatic stress (denoted by p̃). The convergence rates of CT FEM, B-bar

VEM, SH-VEM, and PSH-VEM are computed using the discrete error measures given in (5.27).

Similar to the previous sections, we use the scaled boundary cubature (SBC) method [41] to

compute the matrices H in (6.12a), Hp, L and Lp in (6.22), and the integrals appearing in (5.27).

The matrices H, Hp and L are integrals of polynomial functions and are exactly computed by the

SBC method. The integrals in (5.27) are in general not integrals of polynomials but they can be

computed to arbitrary accuracy with the SBC method.

6.3.1. Eigenvalue analysis. We examine the eigenvalues of the SH-VEM for general triangu-

lar elements to determine the stability of the method. The material has Young’s modulus EY = 1

psi and Poisson’s ratio ν = 0.49995. We assess the eigenvalues of the standard VEM [11], B-bar

VEM [85], composite triangle FEM [60] and the three formulations: a 11β and 15β that is based on

the Airy stress function basis given in (6.5), and a 13β hybrid formulation given in (6.6). For a sta-

ble method, the element stiffness matrix should have three zero eigenvalues that correspond to the

zero-energy modes and the next smallest eigenvalue should be positive and bounded away from zero.

For this test, we construct six-noded triangular elements with vertices at {(−1, 0), (1, 0), (γ1, γ2)},

where γ1 ∈ [−10, 10], γ2 ∈ [.05, 10], and then nodes are placed at the midpoints of each edge

(see Figure 6.2). For each combination of γ1 and γ2, we compute the first non-rigid body eigen-

value, which corresponds to the fourth smallest eigenvalue of the element stiffness matrix. The

contour plots of the first non-rigid body eigenvalue are given in Figure 6.3. The plots show that

the 11β formulation will develop spurious modes as the elements become highly distorted. The 15β

SH-VEM and B-bar VEM produced similar ranges for their eigenvalues and both do not produce

any spurious zero-energy modes. The eigenvalue in the 13β formulation had a similar range to the

standard VEM and further numerical tests show that the 13β formulation locks in the incompress-

ible limit. Therefore both the 11β Airy stress and 13β hybrid formulations are not considered in

the remaining examples. The 15β SH-VEM will be denoted as SH-VEM in the later examples.
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(a) (b) (c)

Figure 6.2. (a)-(c) Sequence of six-noded triangular elements with vertices at
{(−1, 0), (1, 0), (α, β)} and nodes placed at the midpoint of each edge.

6.3.2. Eigenvalue analysis of the penalty formulation. We test the stability of the PSH-

VEM with different values of the penalty parameter α. The material has Young’s modulus EY = 1

psi and Poisson’s ratio ν = 0.49995. We choose four penalty parameters α ∈
{ ℓ20
10 , ℓ

2
0, 10ℓ

2
0, 100ℓ

2
0

}
and examine the first non-rigid body eigenvalue of the element stiffness matrix of the penalty

stress-hybrid formulation. For each α, we repeat the eigenvalue analysis presented in the previous

section. In Figure 6.4, the countour plots of the the first non-rigid body eigenvalue as a function

of (γ1, γ2) are shown. The plots reveal that as α increases, the maximum value of the eigenvalue

decreases. This implies as α → ∞, the element stiffness matrix will be rank-deficient and lose

stability. However, for the tested values of α, no spurious eigenvalues appear even for highly

distorted elements.

6.3.3. Eigenvalue analysis for near incompressibility. It is known that in the incom-

pressible limit (ν → 0.5) that the element stiffness matrix should only have one eigenvalue that

tends to infinity [101]. Elements with more than one infinite eigenvalue will experience volumetric

locking. We examine the eigenvalues of the element stiffness matrix for the standard VEM, CT

FEM, B-bar VEM, 15β SH-VEM, and 12β PSH-VEM on a single element. The material has Youngs

modulus EY = 1 psi and Poisson’s ratio ν = 0.4999999. In Table 6.1, the five largest eigenvalues of

each method is presented for a regular six-noded triangular element (see Figure 6.1c) and Table 6.2

shows the eigenvalues for a six-noded nonconvex element (see Figure 6.1a). The tables show that

the standard virtual element approach has all five largest eigenvalues tending to infinity, which

leads to severe volumetric locking. The composite element has three diverging eigenvalues, which
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3. Contour plots of the fourth-lowest eigenvalue as a function of (γ1, γ2)
for (a) standard VEM, (b) B-bar VEM, (c) CT FEM, (d) 11β SH-VEM, (e) 13β
SH-VEM, and (f) 15β SH-VEM.
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(a) (b)

(c) (d)

Figure 6.4. Contour plots of the fourth smallest eigenvalue as a function of (γ1, γ2)

using the penalty parameters (a) α =
ℓ20
10 , (b) α = ℓ20, (c) α = 10ℓ20, and (d) α =

100ℓ20.

can result in the mild locking behavior. The B-bar VEM, SH-VEM, and PSH-VEM have only a

single large eigenvalue for both the regular and the nonconvex element.

VEM CT FEM B-bar VEM 15β SH-VEM 12β PSH-VEM
1.1× 106 8.1× 10−1 2.1× 10−1 6.3× 10−1 4.3× 10−1

1.2× 106 1.2× 100 2.2× 10−1 8.8× 10−1 8.2× 10−1

1.7× 106 3.7× 105 7.5× 10−1 1.9× 100 8.4× 10−1

1.8× 106 4.2× 105 9.6× 10−1 4.5× 101 2.8× 100

5.0× 106 4.6× 105 4.2× 106 4.2× 106 4.2× 106

Table 6.1. Comparison of the five largest eigenvalues of the element stiffness matrix
on a six-noded triangular element.
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VEM CT FEM B-bar VEM 15β SH-VEM 12β PSH-VEM
1.2× 106 5.8× 10−1 2.9× 10−1 5.3× 10−1 3.6× 10−1

1.3× 106 1.9× 100 3.9× 10−1 1.5× 100 1.3× 100

5.8× 106 4.8× 105 2.1× 100 6.6× 100 2.0× 100

5.9× 106 5.6× 105 2.2× 100 1.8× 101 5.1× 100

1.2× 107 6.8× 106 6.7× 106 6.7× 106 6.7× 106

Table 6.2. Comparison of the five largest eigenvalues of the element stiffness matrix
on a six-noded nonconvex element.

6.3.4. Thin cantilever beam. We revisit the problem of a nearly incompressible thin can-

tilever beam subjected to a shear end load as described in Section 5.4.3. The material properties

are given by EY = 1 × 105 psi and ν = 0.49995. We first use a set of unstructured triangular

meshes. In Figure 6.5, we show examples of the unstructred meshes and in Figure 6.6 we show the

convergence of the four methods in the displacement L2 norm, energy seminorm, and L2 norm of

hydrostatic stress. Figure 6.7 shows the convergence of the end displacement and the contour plot of

hydrostatic stress for the SH-VEM. For methods that experience volumetric locking, non-physical

oscillations will appear in the hydrostatic stress field. The plots reveal that the two stress-hybrid

approaches yield better results, with the PSH-VEM having superior convergence and accuracy in

the displacement, energy, and hydrostatic stress.

(a)

(b)

(c)

Figure 6.5. Unstructured triangular meshes for the cantilever beam problem. (a)
600 elements, (b) 1600 elements, and (c) 3000 elements.

In the following tests, we examine the four methods on meshes with N = 1 and N = 2 elements

along the height of the beam. For many formulations, these meshes will lead to overly stiff displace-

ments and shear locking. The first set of meshes is constructed by taking a uniform quadrilateral

mesh and splitting each element into two right triangles (see Figure 6.8). The convergence of the

end displacement of the four methods is presented in Figure 6.9. For N = 1, the two stress-hybrid

methods are converging to the exact solution, while CT FEM experiences shear locking and B-bar
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Figure 6.6. Comparison of CT FEM, B-bar VEM, SH-VEM and PSH-VEM for the
thin cantilever beam problem on unstructured meshes. (a) L2 error of displacement,
(b) energy error, and (c) L2 error of hydrostatic stress.
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Figure 6.7. (a) Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of unstructured triangles. (b) Contour plot of the hydro-
static stress for PSH-VEM.

VEM diverges from the exact solution (see Figure 6.9a) and for N = 2, B-bar VEM is still overly

flexible (see Figure 6.9b). In both cases, the PSH-VEM shows far superior accuracy in displacement

even on coarse meshes.

The second set of meshes is constructed by taking a uniform quadrilateral mesh and splitting

each element along the two diagonals to form four triangles. The meshes are shown in Figure 6.10

and the convergence of the end displacement is depicted in Figure 6.11. The plots show that

SH-VEM and PSH-VEM converge to the exact solution for both N = 1 and N = 2; however,

the SH-VEM is much stiffer and less accurate than the penalty approach. CT FEM suffers from

locking, while B-bar fails to converge for the case of a single element along the height.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6.8. Structured meshes for the cantilever beam problem. Mesh is refined
along the length with (a)-(d) 1 element along the height and (e)-(h) 2 elements along
the height.
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(b)

Figure 6.9. Convergence of the end displacement for the cantilever beam problem.
The mesh consists of M × N right triangles, where M is the number of elements
along the length of the beam. (a) N = 1 and (b) N = 2.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6.10. Structured meshes for the cantilever beam problem. Mesh is refined
along the length with (a)-(d) 1 element along the height and (e)-(h) 2 elements along
the height.

The third set of meshes is constructed by taking the previous mesh and collapsing one of the

triangles to a nearly degenerate triangle (see Figure 6.12). The plots showing the convergence of the
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Figure 6.11. Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of M × N triangles, where M is the number of elements
along the length of the beam. (a) N = 1 and (b) N = 2.

end displacement is given in Figure 6.13. The plots reveal that for these meshes, the stress-hybrid

methods are converging to the exact solution, while CT FEM and B-bar VEM do not converge in

the case of a single element along the height. When using two elements along the height, the B-bar

formulation is tending to the exact solution but is not accurate, while CT FEM still suffers from

locking and does not converge. The PSH-VEM again attains a much more accurate solution than

the other methods; however, it appears to be stiff for the coarsest mesh when N = 2.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
(i)

Figure 6.12. Structured nearly degenerate meshes for the cantilever beam prob-
lem. Mesh is refined along the length with (a)-(d) 1 element along the height and
(e)-(h) 2 elements along the height. (i) Magnification of a single element split into
four six-noded triangles.

One benefit of the virtual element formulation is that it allows for very general element shapes.

In particular, for the final set of meshes we use a mixture of distorted nonconvex hexagons and

convex hexagons. A few representative meshes are shown in Figure 6.14. In Figure 6.15, we present
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Figure 6.13. Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of M ×N triangles with some nearly degenerate, where M
is the number of elements along the length of the beam. (a) N = 1 and (b) N = 2.

the convergence of the end displacement for the four methods. In both cases N = 1 and N = 2,

SH-VEM and PSH-VEM are convergent, but CT FEM is overly stiff.

Remark 6.3.1. The solutions produced by 15β SH-VEM are much stiffer than those found using

the 5β formulation on quadrilaterals in [38]. In particular, for uniform rectangular meshes with

N = 1, the 5β SH-VEM converges to nearly the exact solution with just M = 8 elements along the

length of the beam. However, the PSH-VEM offers coarse mesh accuracy that is similar to the 5β

SH-VEM.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6.14. Meshes with nonconvex elements for the cantilever beam problem.
Mesh is refined along the length with (a)-(d) 1 element along the height and (e)-(h)
2 elements along the height.

156



0 20 40 60 80 100
M

-200

-150

-100

-50

0
E
n
d

d
is
p
la

ce
m

en
t

CT FEM
B-bar VEM
15- SH-VEM
12- PSH-VEM
Exact

(a)

0 20 40 60 80 100
M

-100

-80

-60

-40

-20

0

E
n
d

d
is
p
la

ce
m

en
t

CT FEM
B-bar VEM
15- SH-VEM
12- PSH-VEM
Exact

(b)

Figure 6.15. Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of M ×N convex and nonconvex elements, where M is the
number of elements along the length of the beam. (a) N = 1 and (b) N = 2.

The penalty stress-hybrid approach provides the best accuracy for the cantilever beam problem;

however, it relies on the choice of a suitable penalty parameter α. Therefore, we examine the

sensitivity of the bending solution of PSH-VEM to the penalty parameter. For this test, we use

the same material properties EY = 1 × 105 psi and ν = 0.49995. The problem is solved on a

mesh consisting of M × 1 right triangles (see Figure 6.8). The default penalty parameter is given

by α =
104ℓ20
EY

= 10−1ℓ20. To test the sensitivity of the parameter, we vary the penalty parameter

three orders of magnitude on each side. That is, α is varied from 10−4ℓ20 to 102ℓ20. In Figure 6.16,

the convergence of the end displacements for different values of α is presented. The plot shows

that increasing α above the value 10−1ℓ20 does not greatly affect the solution; however, decreasing α

makes the solution stiffer. If we decrease the value of α by three orders of magnitude to α = 10−4ℓ20,

the solution becomes overly stiff and produces much larger errors than the other values of α.

6.3.5. Cook’s membrane. Next, we consider the problem of the Cook’s membrane under

shear load as described in Section 5.4.4. The material has Youngs modulus EY = 250 psi and

Poisson’s ratio ν = 0.49995. The first set of meshes comprise of structured triangular meshes; a few

sample meshes are shown in Figure 6.17. Figure 6.18 presents the convergence of the tip displace-

ment of the four methods and the hydrostatic stress of the PSH-VEM. The plot in Figure 6.18a
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Figure 6.16. Comparison of the convergence of end displacement for PSH-VEM
when using different choices of penalty parameter α. The mesh consists of M × 1
right triangles, where M is the number of elements along the length of the beam.

shows that, unlike in the cantilever beam problem, the CT FEM, SH-VEM, and PSH-VEM all per-

form worse than the B-bar formulation. Figure 6.18b shows that the PSH-VEM is able to produce

a relatively smooth hydrostatic stress field with no visible signs of volumetric locking.

(a) (b) (c)

Figure 6.17. Structured triangular meshes for the Cook’s membrane problem. (a)
100 elements, (b) 1000 elements, and (c) 2500 elements.

The second set of meshes that we test consists of unstructured triangles. In Figure 6.19, sample

meshes are shown. The convergence of tip displacement and the contour plot of PSH-VEM is given
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Figure 6.18. (a) Convergence of the tip displacement for Cook’s membrane prob-
lem. The mesh consists of structured triangles. (b) Contour plot of the hydrostatic
stress for PSH-VEM.

in Figure 6.20. The plots show that for the unstructured mesh, SH-VEM and PSH-VEM have

the fastest convergence, while B-Bar VEM becomes very flexible and converges from above. The

hydrostatic stress contours of PSH-VEM remain smooth and agree with the contours found on

structured meshes.

(a) (b) (c)

Figure 6.19. Unstructured triangular meshes for the Cook’s membrane problem.
(a) 100 elements, (b) 700 elements, and (c) 2000 elements.
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Figure 6.20. (a) Convergence of the tip displacement for Cook’s membrane prob-
lem. The mesh consists of unstructured triangles. (b) Contour plot of the hydro-
static stress for PSH-VEM.

6.3.6. Plate with a circular hole. We consider the problem of an infinite plate with a

circular hole of radius a = 1 inch under uniform tension as given in Section 5.4.5. The material

has Young’s modulus EY = 2 × 107 psi and Poisson’s ratio ν = 0.49995. The first test of this

problem is on unstructured triangular meshes with representative meshes shown in Figure 6.21.

In Figure 6.22, we show the convergence results of the four methods that are tested and find that the

three methods CT FEM, B-bar VEM, and SH-VEM all have optimal convergence rates. However,

the penalty stress-hybrid method has third order superconvergence in the energy seminorm and

L2 norm of hydrostatic stress. In Figure 6.23, we plot the contours of the pointwise error p̃ − p̃h

of the hydrostatic stress. The plots reveal that the penalty stress-hybrid method has the smallest

pointwise error and the remaining three methods produce similar error distributions.

We now solve the problem on perturbed meshes. In [3], it is shown that small perturbations

of a regular triangular mesh can lead to locking and a reduction in the rate of convergence in the

hydrostatic stress error. For this test, we start with a regular quadrilateral mesh and then cut along

both diagonals to create four triangles. The point of intersection of the two diagonals are perturbed

for each quadrilateral. Representative meshes are shown in Figure 6.24. In Figure 6.25, we plot the

convergence of the four methods and find that CT FEM, B-bar VEM, and SH-VEM all still retain

optimal rates of convergence. The penalty formulation exhibits second order superconvergence in

the energy seminorm and L2 norm of the hydrostatic stress. The contour plots in Figure 6.26 show
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(a) (b) (c)

Figure 6.21. Unstructured triangular meshes for the plate with a hole problem.
(a) 500 elements, (b) 1000 elements, and (c) 3000 elements.
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Figure 6.22. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the plate with a hole problem on unstructured meshes. (a) L2 error of displacement,
(b) energy error, and (c) L2 error of hydrostatic stress.

that the four methods all have relatively smooth error distributions of the hydrostatic stress and

display no signs of volumetric locking.

6.3.7. Hollow cylinder under internal pressure. Next, we consider a hollow cylinder

subject to internal pressure. The description of the problem and boundary conditions are given

in Section 5.4.6. The material properties are EY = 2× 105 psi and ν = 0.49995. For this problem,

the hydrostatic stress field is constant and we found that using nonconstant stress functions in

the SH-VEM resulted in larger errors around the element corners. Therefore, we use an element

averaged hydrostatic stress approximation for SH-VEM. We first solve the problem on structured

triangular meshes; a few representative meshes are shown in Figure 6.27. In Figure 6.28, we show

the rates of convergence in three error norms. The three methods CT FEM, B-bar VEM, and
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(a) (b)

(c) (d)

Figure 6.23. Contour plots of the error p̃−p̃h in hydrostatic stress on unstructured
meshes for the plate with a circular hole problem. (a) CT FEM, (b) B-bar VEM,
(c) SH-VEM, and (d) PSH-VEM.

SH-VEM produce optimal convergence in the displacement L2 norm, L2 norm of hydrostatic stress

as well as in the energy seminorm; while the PSH-VEM has second order superconvergence in the

energy seminorm and third order in the L2 norm of the hydrostatic stress. In Figure 6.29, we plot

the contours of the relative error in the hydrostatic stress field for the four methods. The plots

show that the maximum errors concentrate along the inner radius and improves when away from

the boundary. The SH-VEM and PSH-VEM produce the smallest relative errors, with a maximum

of around 8 and 1.2 percent, respectively.

We now test the hollow cylinder problem on an unstuctured triangular mesh; a few represen-

tative meshes are presented in Figure 6.30. In Figure 6.31, the convergence results are given and
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(a) (b) (c)

Figure 6.24. Perturbed triangular meshes for the plate with a hole problem. (a)
250 elements, (b) 500 elements, and (c) 2500 elements.
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Figure 6.25. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the plate with a hole problem on perturbed meshes. (a) L2 error of displacement,
(b) energy error, and (c) L2 error of hydrostatic stress.

again show that CT FEM, B-bar VEM, and SH-VEM deliver optimal rates. The penalty approach

attains third and fourth order superconvergence in the energy seminorm and hydrostatic stress L2

norm, respectively. The contour plots in Figure 6.32 show that for CT FEM, B-bar VEM, and

SH-VEM, the errors are concentrated near the inner radius. The largest error from SH-VEM is 9

percent, while both CT FEM and B-bar VEM produce much larger errors of 70 and 60 percent,

respectively. For PSH-VEM, the errors are much smaller, with a maximum relative error of 0.4

percent.

Next, we examine the effects of the penalty parameter on the convergence rates of the pressurized

cylinder problem. For simplicity, the material properties are set to be EY = 1 × 104 psi and

ν = 0.49995. The problem is solved on structured triangular meshes (see Figure 6.27). The initial
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(a) (b)

(c) (d)

Figure 6.26. Contour plots of the error p̃− p̃h in hydrostatic stress on perturbed
meshes for the plate with a circular hole problem. (a) CT FEM, (b) B-bar VEM,
(c) SH-VEM, and (d) PSH-VEM.

penalty parameter is α =
104ℓ20
EY

= ℓ20, so we test α in the range of 10−3ℓ20 to 103ℓ20. In Figure 6.33, we

show the rates of convergence in the three error norms for different values of the penalty parameter

α. The plots show that varying α did not affect the convergence of the displacement errors; however,

the convergence of the energy seminorm is slightly affected and the rate of convergence in the L2

norm of the hydrostatic stress is significantly reduced as α is decreased.

6.3.8. Manufactured problem. The basis functions derived from the Airy stress functions

only satisfy the equilibrium conditions without a body force. Therefore, we test the convergence

on a problem with a nonzero body force. We consider a manufactured problem given in [100] with
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(a) (b) (c)

Figure 6.27. Structured triangular meshes for the hollow cylinder problem. (a)
128 elements, (b) 512 elements, and (c) 2048 elements.
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Figure 6.28. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the pressurized cylinder problem on structured meshes. (a) L2 error of displacement,
(b) energy error, and (c) L2 error of hydrostatic stress.

the exact solution and loading given by:

u(x) = sin 2πy(cos 2πx− 1) +
1

1 + λ
sinπx sinπy,

v(x) = sin 2πx(1− cos 2πy) +
1

1 + λ
sinπx sinπy,

b(x) = −π2

(
λ+µ
λ+1

)
cosπ(x+ y)− µ(8 cos 2πx sin 2πy − 4 sin 2πy + 2

λ+1 sinπx sinπy)(
λ+µ
λ+1

)
cosπ(x+ y)− µ(−8 cos 2πy sin 2πx+ 4 sin 2πx+ 2

λ+1 sinπx sinπy)

 ,

where λ and µ are the first and second Lamé parameters given by

λ =
EY ν

(1 + ν)(1− 2ν)
, µ =

EY

2(1 + ν)
.
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(a) (b)

(c) (d)

Figure 6.29. Contour plots of the relative error in the hydrostatic stress on struc-
tured meshes for the pressurized cylinder problem. The exact hydrostatic stress is
4166.528 psi. (a) CT FEM, (b) B-bar VEM, (c) SH-VEM, and (d) PSH-VEM.

For this problem, the material properties are set to EY = 1 psi and ν = 0.49995. The first

set of meshes we use is a perturbed unstructured triangular mesh. A few sample meshes are

shown in Figure 6.34. The plots in Figure 6.35 show that the four methods converge optimally

in displacement L2 norm, energy seminorm, and hydrostatic stress L2 norm. The PSH-VEM

has smaller errors in both the energy and hydrostatic stress, but does not reach second order

superconvergence. The contour plots in Figure 6.36 reveal that large errors in CT FEM appear

along the boundary, while the other three methods have smooth hydrostatic stress fields.

Now, we solve the manufactured problem on a series of structured meshes. The meshes are

generated by taking a uniform quadrilateral mesh, then splitting each element along the diagonal
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(a) (b) (c)

Figure 6.30. Unstructured triangular meshes for the hollow cylinder problem. (a)
500 elements, (b) 1000 elements, and (c) 2500 elements.
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Figure 6.31. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the pressurized cylinder problem on unstructured meshes. (a) L2 error of displace-
ment, (b) energy error, and (c) L2 error of hydrostatic stress.

into two triangles. Then each triangular element is split into three pieces; a few representative

meshes are shown in Figure 6.37. As was the case with the perturbed meshes, Figure 6.38 shows

that all four methods deliver optimal convergence rates. The PSH-VEM again has the smallest

errors in energy and hydrostatic stress, while the SH-VEM has the largest errors in hydrostatic

stress. The contour plots in Figure 6.39 are relatively smooth and do not show large errors along

the boundary.

Remark 6.3.2. From the sensitivity analysis of the beam and hollow cylinder, we know that if

α is three orders of magnitude smaller than
104ℓ20
EY

, then the convergence rates in energy seminorm

and L2 norm of the hydrostatic stress are affected. For this manufactured problem, when using a

Young’s modulus EY = 1 psi and α given in (6.26), the penalty parameter is set to the minimum

167



(a) (b)

(c) (d)

Figure 6.32. Contour plots of the relative error in the hydrostatic stress on un-
structured meshes for the pressurized cylinder problem. The exact hydrostatic stress
is 4166.528 psi. (a) CT FEM, (b) B-bar VEM, (c) SH-VEM, and (d) PSH-VEM.

value α = 10ℓ20. This value is three orders of magnitude less than
104ℓ20
EY

; therefore, the errors

of energy and hydrostatic stress are not expected to have higher order convergence rates even for

uniform meshes. However, from our numerical tests, having a larger EY or increasing the upper

bound on the penalty parameter α results in superconvergent solutions on sufficiently regular meshes.

6.3.9. Punch problem. Next, we adapt the problem of a punch being driven into a solid as

described in [114] for nearly incompressible hyperelastic materials. This problem is used in [114]

to test the robustness of mixed virtual element methods for large deformations and to compare

to standard mixed finite element formulations. In our tests, we assume a linearly elastic material

and solve the problem on a unit square domain using EY = 250 psi and ν = 0.4999999. The
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Figure 6.33. Comparison of the convergence of PSH-VEM for different choices of
the penalty parameter α for the pressurized cylinder problem on structured meshes.
(a) L2 error of displacement, (b) energy error, and (c) L2 error of hydrostatic stress.

(a) (b) (c)

Figure 6.34. Perturbed triangular meshes for the manufactured problem. (a) 200
elements, (b) 1000 elements, and (c) 3600 elements.
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Figure 6.35. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the manufactured problem on perturbed meshes. (a) L2 error of displacement, (b)
energy error, and (c) L2 error of hydrostatic stress.
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(a) (b)

(c) (d)

Figure 6.36. Contour plots of the hydrostatic stress on perturbed meshes for the
manufactured problem. (a) CT FEM, (b) B-bar VEM, (c) SH-VEM, and (d) PSH-
VEM.

left and top edges are horizontally constrained, while the bottom edge is vertically constrained.

Along half of the top edge, a uniform load of F = −250 lbf per unit length is applied. For this

problem, we examine the three methods B-bar VEM, SH-VEM, and PSH-VEM. We first use an

unstructured triangular mesh (see Figure 6.40a) and plot the resulting contours of the hydrostatic

stress in Figure 6.40. The contours are plotted on the deformed configuration. From the plots, we

find that the three methods produced relatively smooth hydrostatic stress fields, with B-bar and

PSH-VEM having a similar range. In Figure 6.41, plots of the trace of the strain field are shown

on the undeformed configuration. The three methods yielded nearly traceless strain fields, which

is consistent for a nearly incompressible material.
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(a) (b) (c)

Figure 6.37. Structured triangular meshes for the manufactured problem. (a) 150
elements, (b) 600 elements, and (c) 2400 elements.
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Figure 6.38. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the manufactured problem on structured meshes. (a) L2 error of displacement, (b)
energy error, and (c) L2 error of hydrostatic stress.

Next, we use a mesh with convex and nonconvex elements with an example mesh shown in Fig-

ure 6.42a. The contour plots of the hydrostatic stress are given in Figure 6.42. The plots show that

even for nonconvex elements, the three methods retain relatively smooth hydrostatic stress fields.

In Figure 6.43, the contours of the trace of the strain field is presented. Similar to the unstructured

case, the strain field of the three methods are nearly traceless.

6.3.10. Stabilized stress-hybrid methods. We also examined a stabilized formulation of

9β and 11β SH-VEM (both are rank deficient) using a 9-term and 11-term divergence-free basis,

respectively. We found that the two stabilized stress-hybrid formulations did not show signs of
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(a) (b)

(c) (d)

Figure 6.39. Contour plots of the hydrostatic stress on structured meshes for the
manufactured problem. (a) CT FEM, (b) B-bar VEM, (c) SH-VEM, and (d) PSH-
VEM.

volumetric locking, did not have spurious eigenvalues and attained higher accuracy than 15β SH-

VEM. However, both stabilized methods were less accurate than the PSH method and they did not

exhibit superconvergence in the hydrostatic stress. Further details can be found in Appendix B.
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(a) (b)

(c) (d)

Figure 6.40. (a) Representative unstructured mesh for the punch problem. Con-
tour plots of the hydrostatic stress for the punch problem plotted on the deformed
configuration using unstructured meshes. (b) B-bar VEM, (c) SH-VEM, and (d)
PSH-VEM.
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(a) (b)

(c)

Figure 6.41. Contour plots of the trace of the strain field for the punch problem
plotted on the undeformed configuration using structured meshes. (a) B-bar VEM,
(b) SH-VEM, and (c) PSH-VEM.
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(a) (b)

(c) (d)

Figure 6.42. (a) Representative nonconvex mesh for the punch problem. Contour
plots of the hydrostatic stress of PSH-VEM for the punch problem plotted on the
deformed configuration using nonconvex meshes. (b) B-bar VEM, (c) SH-VEM, and
(d) PSH-VEM.
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(a) (b)

(c)

Figure 6.43. Contour plots of the trace of the strain field for the punch problem
plotted on the undeformed configuration using nonconvex meshes. (a) B-bar VEM,
(b) SH-VEM, and (c) PSH-VEM.
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CHAPTER 7

Conclusions

In this thesis, we studied extensions of the Virtual Element Method (VEM) without a stabiliza-

tion term to planar linear elasticity problems. In the standard VEM, a discrete space is constructed

such that on an element, the space contains all polynomials up to degree k and also non-polynomial

functions that satisfy a Poisson problem. On each element, function values along the boundary and

internal integral moments are used as the degrees of freedom, which uniquely defines functions in

the discrete space. The basis functions are chosen to satisfy a Lagrange property; however, these

basis functions are not computed and are unknown (virtual). Since the basis functions do not need

to be computed, it allows for the use of very general polygonal meshes when compared to the finite

element method. Different projection operators are used to give polynomial approximations to the

functions and their derivatives. Then the weak bilinear form of an elliptic problem is approximated

by a polynomial term using the projection operator, which preserves consistency of solution (passes

the patch test), and a stabilization term that preserves the coercivity. The stabilization term is not

unique and depends on the underlying problem. However, for the Poisson problem, a simple choice

of the dofi-dofi or a diagonal stabilization provides accurate results. It is shown that standard k-th

order virtual element converges at the same theoretical rate as the corresponding finite element

method.

We studied an extension of the stabilization-free virtual element method [19] to planar elasticity

problems. To establish a stabilization-free method for solid continua, we constructed an enlarged

virtual element space that included higher order polynomial approximations of the strain field. On

each polygonal element we chose the degree ℓ of vector polynomials, and theoretically established

that the discrete problem without a stabilization term was bounded and coercive. Error estimates

of the displacement field in the L2 norm and energy seminorm were derived. We set up the

construction of the necessary projections and stiffness matrices, and then solved several problems

from plane elasticity. For the patch test, we recovered the displacement and stress fields to near

machine-precision. From an element-eigenvalue analysis, we numerically confirmed that the choice
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of ℓ was sufficient to ensure that the element stiffness matrix had no spurious zero-energy modes,

and hence the element was stable. For problems such as cantilever beam under shear end load,

infinite plate with a circular hole under uniaxial tension, and pressurized hollow cylinder under

internal pressure, we found that the convergence rates of the stabilization-free VEM in the L2

norm and energy seminorm were in agreement with the theoretical results.

For some problems, it is important to have higher accuracy to resolve nonlinear phenomena;

therefore, we studied a higher order (serendipity) extension of the stabilization-free virtual element

method [19,37] for plane elasticity. To establish a high order stabilization-free method for solid

continua, we constructed an enlarged virtual element space that included higher order polynomial

approximations of the strain field. To eliminate additional degrees of freedom we incorporated the

serendipity approach into the virtual element space [12]. On each polygonal element we chose the

degree ℓ of vector polynomials such that the element stiffness is of correct rank. We set up the

construction of the necessary projections and stiffness matrices, and then solved several problems

from plane elasticity using a second- and third-order method. For the patch test, we recovered

the displacement and stress fields to near machine-precision. From an element-eigenvalue analysis,

we numerically examined a suitable choice of ℓ that was sufficient to ensure that the element

stiffness matrix had no spurious zero-energy modes, and hence the element was stable. For a few

manufactured problems and the cantilever beam problem under sinusoidal top load, we found that

the convergence rates of the second- and third-order stabilization-free VEM in the L2 norm and

energy seminorm were in agreement with standard VEM theoretical results. However, consistent

with expectations, we have verified that the serendipity virtual element method on affine edges has

reduced convergence rates for domains with curved edges [16].

To treat nearly-incompressible materials in linear elasticity, we departed from the commonly

used assumed-strain approaches in finite element methods that rely on the Hu–Washizu three-

field variational principle [102, 103]. Instead, we revisited the assumed stress (or stress-hybrid)

formulation that use the two-field Hellinger–Reissner variational principle [90]. In so doing, we

proposed a stress-hybrid formulation [90] of the virtual element method on quadrilateral meshes

for problems in plane linear elasticity. In this approach, the Hellinger–Reissner functional is used to

define weak imposition of equilibrium equations and the strain-displacement relations to determine

a suitable projection operator for the stress. On each quadrilateral element, we constructed a local
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coordinate system [43,44] and used a 5-term divergence-free symmetric tensor polynomial basis in

the local coordinate system. The rotation matrix was then used to transform the stress ansatz to

the global Cartesian coordinates so that element stiffness matrix computations could be conducted

directly on the physical (distorted) element. On applying the divergence theorem on each element

and using the divergence-free basis, we were able to compute the matrix representation of the

stress projection solely from the displacements on the boundary. This resulted in a displacement-

based method that was computable using the virtual element formulation. In Appendix A, we

showed that the proposed approach was equivalent to a stress-hybrid virtual element formulation

that follows the recipe of Cook [43] to transform the element stiffness matrix from local to global

Cartesian coordinates. The SH-formulation was tested for stability, volumetric and shear locking,

and convergence on several benchmark problems. From an element-eigenvalue analysis, we found

that the proposed method was rotationally invariant and remained stable for a large class of convex

and nonconvex elements without needing a stabilization term. For a manufactured test problem

in the incompressible limit (ν → 0.5), we showed that the SH-VEM did not suffer from volumetric

locking. From the bending of a thin beam and the bending in the Cook’s membrane problem, we

found that the method was not susceptible to shear locking. For a plate with a circular hole, the

methods produced optimal convergence rates and smooth hydrostatic stress fields for both convex

and nonconvex meshes. For the pressurized cylinder, optimal convergence rates in the L2 norm

and energy seminorm of the displacement field were realized, and both the B-bar VEM and the

SH-VEM reproduced close to the exact hydrostatic stress on uniform meshes. However, it was

observed that the hydrostatic stress field using the B-bar VEM and the SH-VEM on distorted

nonconvex meshes produced larger errors, with the latter being more accurate. In the problem of a

flat punch, the B-bar VEM and the SH-VEM produced relatively smooth hydrostatic stress fields

that were comparable and the strain field was pointwise nearly traceless.

For complex geometries, it is difficult to automatically generate high-quality quadrilateral

meshes. There are robust and well-established automatic meshers for triangular elements. However,

triangular elements are known to suffer from shear locking for thin structures and also volumetric

locking in the incompressible limit. We examine an extension of the stress-hybrid virtual element

method [38] to first-order six-noded triangular virtual elements for linear elastic problems. This

work is a first attempt to study two-dimensional virtual element formulations for incompressible
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elasticity on general triangular meshes (including Delaunay meshes). In this approach, we used the

Hellinger–Reissner variational principle to construct a weak equilibrium and strain-displacement

conditions. The weak strain-displacement condition is used along with the virtual element formula-

tion to define a computable projection operator for the stress field. In the initial approach, we used

a divergence-free polynomial tensor basis and by combining it with the divergence theorem, we were

able to compute the stress projection with only the displacements along the boundary. When using

a nondivergence-free basis, we relied on the modification of the virtual element space introduced

in [20] and a secondary energy projection to recover the stress projection. However, we found that

this requirement is rather restrictive and leads to elements being overly stiff. Therefore, we relaxed

the condition by introducing a penalty term to weakly satisfy the element equilibrium condition and

alleviate locking. The SH and PSH-formulations were then tested for stability using an eigenvalue

analysis. For the divergence-free basis, a 15-term expansion was used to ensure no zero-energy

modes appeared for highly distorted elements, while a complete bilinear 12-term expansion was

used for the penalty element. For the thin cantilever beam and Cook’s membrane problems we

found both SH-VEM and PSH-VEM were not sensitive to shear locking. The PSH-VEM was able

to reproduce nearly exact bending solutions even on coarse meshes. For the plate with a circular

hole and pressurized cylinder the stress-hybrid method produced optimal convergence rates in the

L2 norm of the displacement, energy seminorm, and L2 norm of the hydrostatic stress; while the

penalty formulation produced superconvergent rates in energy seminorm and L2 norm of the hy-

drostatic stress. The plate with a hole had relatively smooth hydrostatic stress fields, while for the

pressurized cylinder it was observed that large errors concentrated around the interior boundary

but the stress-hybrid methods were more accurate. In the manufactured problem, SH-VEM and

PSH-VEM showed no signs of locking and had relatively smooth contours of hydrostatic stress.

The PSH-VEM showed better accuracy for the manufactured problem; however, for our choice of

penalty parameter, the PSH-VEM did not achieve superconvergent rates for the energy seminorm

or L2 norm of the hydrostatic stress. For the punch problem, both SH-VEM and PSH-VEM did

not show instabilities in the hydrostatic stress field and produced nearly traceless strain fields.

In Appendix B, we examined a stabilized version of the 9β SH-VEM and 11β SH-VEM. The 9β

and 11β SH-VEM uses a 9-term and 11-term divergence-free basis, respectively. The stress-hybrid

methods were then tested on additional benchmark problems. An eigenvalue analysis was used to
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test stability and volumetric locking of the two stress-hybrid methods. The thick cantilever beam

problem showed that the stabilized methods with fewer basis functions were less stiff in bending.

The plate with a hole problem showed that the stress-hybrid approaches converged optimally in all

cases. The two stabilized methods attained better accuracy than 15β SH-VEM, with 9β SH-VEM

having performance that is more comparable to the penalized approach. From these tests, we found

that the two stabilized stress-hybrid formulations did not show signs of volumetric locking and did

not have spurious eigenvalues.

In this work, we developed two different formulations of the stabilization-free virtual element

method for solid continua. The first, strain-based, approach was shown to give comparable results

to the standard VEM without needing to design a stabilization term. This approach has already

been extended to three-dimensional problems and also to finite strain elasticity [119,120]; however,

there are still questions about its computational efficiency and applicability to large-scale problems.

The second approach, based on the hybrid-stress formulation, showed robust performance for thin

beams and for nearly incompressible problems. The next step is to extend the stress-based approach

to three dimensional elasticity. An ongoing effort is attempting to develop a ten-noded tetrahedral

element that is stable, robust in the incompressible limit and is highly accurate for thin structures.

A known problem with a stress-based approach is that it is more difficult to solve nonlinear problems

since it involves inverting a nonlinear stress-strain law. However, by applying strategies developed

in [1,65,66,67] it could be feasible to develop the SH-VEM for nonlinear problems. An alternative

approach using the Hu–Washizu three field variational formulation [70,71], seems to strike a balance

between the SF-VEM and SH-VEM. It uses a strain-based approach so it is easily applicable to

nonlinear problems and shows promising performance for nearly incompressible problems. However,

further investigations are needed to compare the differences in efficiency, accuracy and robustness

of the stress and strain-based approaches.

181



APPENDIX A

A Stress-Hybrid Formulation Based on Cook’s Approach

In this Appendix, we present an alternate formulation of the stress-hybrid virtual element

method based on defining the element stiffness matrix on a rotated element as introduced by

Cook [43]. Let E′ be a rotated element, and following (5.17), define the corresponding matrices

H ′ and L′ by

H ′ =

∫
E′

(P ′)TC−1P ′ dx′, L′ =

∫
∂E′

(P ′)TN∂E′
φ′ ds′, (A.1a)

where P ′ is given in (5.11a) and φ′ are the virtual element basis functions on E′. We then solve

for the stress coefficients β′ in terms of the rotated displacements using

β′ = (H ′)−1L′d′ := Π′
βd

′. (A.1b)

The element stiffness matrix on the rotated element E′ is given as

K ′
E′ = (Π′

β)
T

(∫
E′

(P ′)TC−1P ′ dx′
)
Π′

β = (Π′
β)

TH ′Π′
β, (A.2)

and define the rotation matrix R as

R =


Q 0 0 0

0 Q 0 0

0 0 Q 0

0 0 0 Q


, (A.3)

where Q is given in (5.10), and 0 is the 2 × 2 zero matrix. Then the element stiffness matrix in

Cook’s formulation on the original element E is recovered by:

KC
E = RTK ′

E′R. (A.4)
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Now, on applying (A.1b) and simplifying, we write the element stiffness matrix as

KC
E = RT

(
(H ′)−1L′)TH ′(H ′)−1L′R = (L′R)T (H ′)−1(L′R).

We now show that the SH-VEM using the basis P ∗ in (5.13) is identical to Cook’s formulation,

i.e., K∗
E =KC

E .

Proof. On expanding the element stiffness matrix of the SH-VEM given in (5.20) and simpli-

fying, we get

K∗
E = ΠT

βH
∗Πβ =

(
(H∗)−1L∗)TH∗(H−1L∗) = (L∗)T (H∗)−1L∗.

We first examine the matrix H∗. From (5.17a), we have

H∗ =

∫
E
(P ∗)TC−1P ∗ dx,

and after multiplying out the matrices and using an equivalent tensor representation, we write the

components of H∗ as

H∗
ij =

∫
E
P∗

i : C−1 : P∗
j dx,

where P∗
i is the tensor representation of the i-th column of P ∗. Using (5.12), we rewrite this

integral in terms of the rotated basis P ′
i, that is

H∗
ij =

∫
E′
QTP ′

iQ : C−1 : QTP ′
jQ dx′.

It can be shown that for an isotropic material modulli tensor C, that

QTP ′
iQ : C−1 : QTP ′

jQ = P ′
i : Q

TQTC−1QQ : P ′
j = P ′

i : C−1 : P ′
j .

Therefore, we now have for all i, j = 1, 2, . . . 5:

H∗
ij =

∫
E′

P ′
i : C−1 : P ′

j dx
′ =H ′

ij . (A.6)

Next, we examine the matrix L∗. From (5.17a), we have

L∗ =

∫
∂E

(P ∗)TN∂Eφ ds,
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After converting to an equivalent tensor representation, we write the components of L∗ as:

L∗
ij =

∫
∂E

(P∗
i · n) ·φj ds.

Since φj and φ′
j are both piecewise affine functions on ∂E and ∂E′, respectively, it can be shown

that the integration of φj along the boundary of an element E is equivalent to integrating φ′
j along

the boundary of the rotated element E′. That is, for any vector field f , we have∫
∂E
f(x) ·φj ds =

∫
∂E′

f(x(x′)) ·φ′
j ds

′.

With this, we rewrite L∗
ij in the rotated coordinates as

L∗
ij =

∫
∂E

(P∗
i · n) ·φj ds =

∫
∂E′

(QTP ′
iQ ·QTn′) ·φ′

j ds
′ =

∫
∂E′

(QTP ′
i · n′) ·φ′

j ds
′.

If we take the basis functions in the standard order φ′
2j−1 = (ϕ′j , 0)

T and φ′
2j = (0, ϕ′j)

T , then we

can simplify L∗
ij as:

L∗
i2j−1 = c

∫
∂E′

((P ′
i)11n

′
1 + (P ′

i)12n
′
2)ϕ

′
j ds

′ − s

∫
∂E′

((P ′
i)12n

′
1 + (P ′

i)22n
′
2)ϕ

′
j ds

′ = cL′
i2j−1 − sL′

i2j

L∗
i2j = s

∫
∂E′

((P ′
i)11n

′
1 + (P ′

i)12n
′
2)ϕ

′
j ds

′ + c

∫
∂E′

((P ′
i)12n

′
1 + (P ′

i)22n
′
2)ϕ

′
j ds

′ = sL′
i2j−1 + cL′

i2j ,

where c and s given in (5.10). On multiplying out the matrix L′R, it can be shown that

(L′R)i2j−1 = cL′
i2j−1 − sL′

i2j

(L′R)i2j = sL′
i2j−1 + cL′

i2j ,

and therefore for all i = 1, 2, . . . 5 and j = 1, 2, . . . 4, we have

L∗
i2j−1 = cL′

i2j−1 − sL′
i2j = (L′R)i2j−1 (A.7a)

L∗
i2j = sL′

i2j−1 + cL′
i2j = (L′R)i2j . (A.7b)

From (A.6) and (A.7), we obtain H∗ = H ′ and L∗ = L′R. On substituting these in (A.5) and

using (A.4) leads us to the desired result:

K∗
E = (L∗)T (H∗)−1L∗ = (L′R)T (H ′)−1(L′R) =KC

E . □

184



APPENDIX B

Stabilized Stress-Hybrid Methods

In the standard virtual element method, a stabilization term is necessary to ensure that the

element stiffness matrix has correct rank. For completeness, we examine effects of a stabilization

term on the two methods 9β SH-VEM and 11β SH-VEM, which were shown earlier to have zero-

energy modes. The 9β SH-VEM is constructed from the first 9 terms of the basis given in (6.5),

while the 11β SH-VEM uses the first 11 terms. For the stability term, we follow the construction

given in [6]:

KS = τ
[
I −D(DTD)−1DT

]
, (B.1a)

where τ is a scaling factor, I is the identity matrix and D ∈ R12×6 is the matrix containing the

degrees of freedom of the polynomials mα ∈ M̂(E) given by

D =


m1(x1) m2(x1) . . . m6(x1)

m1(x2) m2(x2) . . . m6(x2)

. . . . . . . . . . . .

m1(x6) m2(x6) . . . m6(x6)


. (B.1b)

It is common to choose the scaling factor to be proportional to the trace of the element stiffness

matrix KE ; however, this choice of scaling will lead to an overly stiff solution for nearly incom-

pressible materials [85,95]. For simplicity, we set τ = 1
2 in the following examples. The stabilized

element stiffness matrix is then given by

K =KE +KS . (B.2)

B.0.1. Eigenvalue analysis. We first repeat the eigenvalue analysis presented in Section 6.3.1.

Contour plots for the fourth smallest eigenvalue are presented in Figure B.1. The plots reveal that

the stabilization term has eliminated the spurious eigenvalue for both 9β SH-VEM and 11β SH-

VEM.
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(a) (b)

Figure B.1. Contour plots of the fourth smallest eigenvalue of (a) stabilized 9β
SH-VEM and (b) stabilized 11β SH-VEM.

Next, we repeat the eigenvalue analysis in Section 6.3.3 to test for locking in the near-incompressible

limit. The five largest eigenvalues of the element stiffness matrix for 9β and 11β SH-VEM are given

in Table B.1 for a regular six-noded triangular element and in Table B.2 for a nonconvex element.

The tables show that both methods only have a single eigenvalue that tends toward infinity. This

suggests that the two stabilized elements are not prone to volumetric locking.

Eigenvalue 9β SH-VEM 11β SH-VEM
1 7.8× 10−1 9.0× 10−1

2 1.2× 100 1.3× 100

3 1.3× 100 1.5× 100

4 4.6× 100 4.6× 100

5 4.2× 106 4.2× 106

Table B.1. Comparison of the five largest eigenvalues of the element stiffness ma-
trix on a six-noded triangular element.

Eigenvalue 9β SH-VEM 11β SH-VEM
1 5.9× 10−1 7.9× 10−1

2 1.8× 100 1.8× 100

3 2.1× 100 4.9× 100

4 9.9× 100 9.9× 100

5 6.7× 106 6.7× 106

Table B.2. Comparison of the five largest eigenvalues of the element stiffness ma-
trix on a six-noded nonconvex element.

B.0.2. Bending of a thick cantilever. We consider the bending of a cantilever beam under

plane stress conditions with a shear end load as shown in [55,56] for different triangular elements.
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The material has a Young’s modulus EY = 30000 psi and Poisson’s ratio ν = 0.25. The beam has

a length of L = 48 inch, a height of D = 12 inch, and unit thickness. A shear load of P = 40 lbf

is applied on the right boundary, while the left boundary is fixed. For this problem, we compare

the tip displacement of the stress-hybrid methods: 15β SH-VEM, 12β PSH-VEM, 9β SH-VEM,

11β SH-VEM, and the 5β SH-VEM for quadrilaterals given in [38]. The mesh for the 5β SH-VEM

consists of N ×N (N = 1, 2, 4, 8, 16) structured quadrilateral elements with an aspect ratio of 4 : 1,

while the corresponding triangular mesh is constructed by splitting each quadrilateral element along

a diagonal (see Figure B.2). In Table B.3, the normalized tip displacement for the different methods

on each mesh is shown. The table shows that all the SH-VEM and PSH-VEM methods converge

with mesh refinement, but the 15β SH-VEM, which uses higher order terms, is slightly stiffer. The

other three methods on six-noded triangles have comparable performance to the 5β SH-VEM on

quadrilaterals.

(a)

(b)

(c)

(d)

(e)

(f)

Figure B.2. Structured meshes for the thick cantilever beam problem. Meshes in
(a)-(c) consists of quadrilaterals with an aspect ratio of 4 : 1 and (d)-(f) consist of
triangular meshes where each corresponding quadrilateral element is cut along the
diagonal.

B.0.3. Plate with a circular hole. Finally, we revisit the plate with a circular hole problem

that is presented in Section 5.4.5. For this problem, we compare the convergence of the stress-

hybrid methods: 15β SH-VEM, 12β PSH-VEM, 9β SH-VEM, 11β SH-VEM, and the 5β SH-VEM,

in the error norms given in (5.27). We first test this problem on structured quadrilateral and

triangular meshes with the same number of global degrees of freedom; a few sample meshes are

shown in Figure B.3. In Figure B.4, the convergence results are given for the stress-hybrid methods
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5β SH-VEM 15β SH-VEM 12β PSH-VEM 9β SH-VEM 11β SH-VEM
1× 1 0.7637 0.4536 1.6185 0.4798 0.4778
2× 2 0.9413 0.8236 1.0665 0.8668 0.8612
4× 4 0.9856 0.9610 1.0133 0.9787 0.9770
8× 8 0.9965 0.9917 1.0030 0.9971 0.9966

16× 16 0.9992 0.9982 1.0007 0.9997 0.9996

Table B.3. Comparison of the normalized tip displacements for the cantilever
beam problem on structured meshes. The meshes are constructed from N × N
(N = 1, 2, 4, 8, 16) quadrilaterals with aspect ratio of 4 : 1.

and show that all the methods converge optimally in the displacement L2 norm, energy seminorm

and L2 norm of the hydrostatic stress (the penalty approach attains superconvergence in energy

and hydrostatic stress). The 5β SH-VEM has the smallest error in displacement, but the triangular

SH-VEM have better accuracy in energy and hydrostatic stress, with the 12β PSH-VEM and 9β

SH-VEM having the smallest errors.

(a) (b)

Figure B.3. (a) A structured quadrilateral mesh and (b) a structured triangular
mesh with the same number of degrees of freedom for the plate with a hole problem.

We now test the plate with a circular hole problem on unstructured meshes. The quadrilateral

meshes for 5β SH-VEM are constructed by taking unstructured triangular meshes and splitting

each triangle into three elements. Representative meshes with similar global degrees of freedom

are shown in Figure B.5. In Figure B.6, we present the convergence rates of the five stress-hybrid
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Figure B.4. Comparison of 5β SH-VEM, 15β SH-VEM, 12β PSH-VEM, 9β SH-
VEM, and 11β SH-VEM for the plate with a hole problem on structured meshes
(see Figure B.3). (a) L2 error of displacement, (b) energy error, and (c) L2 error of
hydrostatic stress.

methods. Like the case of structured meshes, all five methods deliver optimal convergence rates on

unstructured meshes, with 12β PSH-VEM followed by 9β SH-VEM delivering the lowest errors in

the energy seminorm and L2 norm of hydrostatic stress.

(a) (b)

Figure B.5. (a) An unstructured quadrilateral mesh and (b) an unstructured tri-
angular mesh with a similar number of degrees of freedom for the plate with a hole
problem.
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Figure B.6. Comparison of 5β SH-VEM, 15β SH-VEM, 12β PSH-VEM, 9β SH-
VEM, and 11β SH-VEM for the plate with a hole problem on unstructured meshes
(see Figure B.5). (a) L2 error of displacement, (b) energy error, and (c) L2 error of
hydrostatic stress.
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