Stabilization-Free Virtual Element Methods for Solid Continua
By

ALVIN CHEN
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
Applied Mathematics
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA
DAVIS

Approved:

N. Sukumar, Chair

Elbridge Gerry Puckett

Joseph Teran
Committee in Charge

2024



(© Alvin Chen, 2024. All rights reserved.



To my late grandpa, Huan Long Chen

ii



Contents

Abstract v
Acknowledgments vi
Chapter 1. Introduction 1
Chapter 2. Virtual Element Method 5
2.1. Mathematical preliminaries 5
2.2.  Governing equation and weak form of Poisson’s equation 9
2.3. Finite element method for Poisson’s equation 11
2.4. Virtual element method for Poisson’s equation 16
2.5.  Strong form and weak form for linear elasticity 33
2.6. Virtual element method for linear elasticity 35
Chapter 3. Stabilization-Free Virtual Element Method 41
3.1. Polynomial space and projection operators 41
3.2. Enlarged enhanced virtual element space 45
3.3.  Numerical implementation 49
3.4. Theoretical results 56
3.5. Numerical results for SF-VEM 74
Chapter 4. Stabilization-Free Serendipity Virtual Element Method 85
4.1. Serendipity space and projection 86
4.2.  Numerical implementation of higher order methods 91
4.3. Choice of ¢ 94
4.4. Numerical results for serendipity SF-VEM 97
Chapter 5. Stress-Hybrid Virtual Element Method on Quadrilateral Meshes 107

5.1. Hellinger—Reissner variational principle 108

iii



5.2. Virtual element discretization 108

5.3. Numerical implementation 111
5.4. Numerical results for SH-VEM on quadrilateral elements 116
Chapter 6. Stress-Hybrid Virtual Element Method on Six-Noded Triangular Meshes 138
6.1. Stress-hybrid virtual elements for triangular elements 139
6.2. Equilibrium penalty stress-hybrid method 144
6.3. Numerical results for SH-VEM on triangular elements 148
Chapter 7. Conclusions 177
Appendix A. A Stress-Hybrid Formulation Based on Cook’s Approach 182
Appendix B. Stabilized Stress-Hybrid Methods 185
Bibliography 191

iv



Abstract

The Virtual Element Method (VEM) is a recently introduced extension of the Finite Element
Method (FEM) to general polygonal and polyhedral (polytopal) meshes. By using a set of virtual
canonical basis functions, the method provides flexibility for meshing complex geometries with
convex and nonconvex polygonal elements, as well as providing a simple approach to handling
non-matching meshes and fracturing. Polynomial projection operators are introduced to provide
approximation accuracy and to preserve polynomial consistency. However, one limitation of the
VEM, is the need to devise a problem dependent stabilization term to retain coercivity. The choice
of stabilization adds complexity in formulating new problems and an incorrect choice can adversely
affect the solution accuracy. In this dissertation, we develop virtual element methods that do not
rely on a stabilization term for problems in planar linear elasticity.

We first present strain-based approaches, which use higher order polynomials to enhance the
strain polynomial approximation. In these methods, the polynomials are only chosen to preserve
the stability of the system. We give theoretical arguments for the stability, well-posedness and
prove convergence estimates for the first-order case. These approaches are numerically tested on
benchmark elasticity problems, and the results show that the methods attain optimal convergence
rates and provide a viable alternative to the standard VEM for compressible materials. However,
for thin structures or nearly-incompressible materials, we find that the strain-based approaches and
the standard VEM are overly stiff and suffer from locking phenomena.

To alleviate locking, we appeal to stress-based approaches that rely on the Hellinger—Reissner
variational formulation. These methods use selectively chosen higher order divergence-free polyno-
mials that preserve the stability as well as alleviate locking. Starting with quadrilateral elements,
we use a five-parameter expansion of the stress field to construct a method that is free of volumetric
and shear locking. For six-noded triangular elements, we find that a fifteen-term divergence-free
stress expansion resulted in a method that does not require stabilization and shows immunity to
locking. An alternative to using divergence-free polynomials is also explored. This approach uses
a penalty term to weakly enforce the equilibrium equations. Numerical results reveal that the
stress-based approaches provide optimal convergence, and robustness for compressible and nearly-

incompressible problems.
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CHAPTER 1

Introduction

For many applications in science and engineering, there is a need to solve elliptic boundary-
value problems (BVPs) that describe physical phenomena. Classically, the Finite Element Method
(FEM) is used to solve these problems. Although the FEM has been successfully applied to many
problems in computational mechanics, a long standing issue is to develop a finite element formu-
lation that is robust (does not suffer from volumetric and shear locking) [3], accurate on coarse
meshes, and can be easily meshed. Low-order, fully integrated displacement-based finite elements
are prone to volumetric locking as the Poisson’s ratio v — 0.5, and for bending-dominated prob-

lems, spurious shear strains (element tends to be overly stiff) lead to shear locking phenomenon.

Many techniques such as the B-bar and selective integration formulations [77,94], method of in-
compatible modes [113], assumed enhanced strain [102, 103], stabilized elements [17, 18], mixed
elements [121], and hybrid-stress methods [63,64,67,89,90,91] have been developed to alleviate

locking in the nearly-incompressible limit and for bending-dominated problems. However, many of
these methods are only applicable to quadrilateral and hexahedral elements. For many complex
geometries, meshes of quadrilateral and hexahedral elements must be manually constructed. This
process is time consuming since there are currently no available high-quality automatic mesh gener-
ators for quadrilateral or hexahedral elements. Triangular and tetrahedral meshes can be automat-
ically generated with well-established robust mesh generation tools; however, specialized methods
are needed to treat locking. Progress has been made to construct modified triangular elements that
are robust and accurate: the variational multiscale approach [99], hybrid-stress elements using Airy
stress functions [69,73,75,96, |, Bézier elements [68], F-bar and reduced integration [50,81] to
name a few. Another promising approach is the use of composite elements [29,57,60,72, 83, ].
In this approach, an element is split into sub-triangles (sub-tetrahedra), and then on each sub-
triangle the strain is approximated and combined to recover the strain field over the entire element.
Similar constructions are also used in [23] to construct a three-dimensional brick element for nearly
incompressible nonlinear elasticity problems and in [

,45,46,55] for triangular bending elements.
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The Virtual Element Method (VEM) [9,11,14] is a recently developed numerical method used
to solve boundary-value problems. From [30], the method can be view as a generalization of the
hourglass stabilized finite element method to polygonal (polyhedral) meshes. In the VEM, the
polygonal basis functions are not explicitly computed and are unknown (virtual) in each element.
However, the virtual functions are assigned values, called the degrees of freedom (DOF), that are
sufficient to construct polynomial projection operators. These polynomial projections are needed to
approximate the virtual functions inside an element. The polynomial functions are given in global
coordinates and do not rely on the use of an isoparametric mapping. Therefore, the projections
are well-defined for convex, nonconvex, and even degenerate polygonal shapes, which gives the
method more flexibility when meshing complicated geometries. The flexibility of VEM has attracted
many researchers to develop methods for applications in solid continua; examples include linear
elasticity [6, 11], applications in three-dimensional elasticity [58], linear elastodynamics [86, 87],
finite deformations [39,53,114], linear fracture mechanics [82], contact problems [115], mixed and
hybrid formulations [7,8,24,48, 51].

The advent of the virtual element method has also provided new routes to potentially alleviate
locking for nearly-incompressible materials. Initially, mixed variational principles, hybrid formula-
tions, node based methods, B-bar and selective reduced integration strategies that are prominent
in finite element formulations for constrained problems have been adopted in the virtual element
method [7,8,48,51,84,85]. In [24], a comparison of different virtual element methods to classical
finite element techniques for incompressible problems is presented. Although the virtual element
formulation have resolved many of the difficulties of the finite element method, one unsettled com-
plication of the VEM is the need to construct a stabilization term. Many studies have focused on
determining and testing the robustness of stabilization terms [30,52,78,97, ]. However, having
a stabilization term adds complexity in formulating nonlinear problems and an incorrect choice can
affect accuracy and conditioning.

In the past few years, there has been a growing interest in developing stabilization-free virtual
element methods. For the Poisson equation, the pioneering development is introduced in [20], a
stabilization-free mixed method is described in [25], and another approach using divergence-free
basis functions is given in [21]. The application of the stabilization-free approach to the Laplacian

eigenvalue problem is presented in [79]. There has also been progress in stabilization-free methods



for computational mechanics. Early extensions to linear elasticity are given in [36,37] and an earlier
approach explored in [54]. In [119,120] the SF-VEM is introduced for two-dimensional finite strain
and three dimensional elasticity problems. In [70,71], a Hu-Washizu variational formulation is used
to construct a stabilization-free method for static and dynamic problems on quadrilateral meshes,
and in [47] the method is analyzed for stability and convergence. In [35,38] an alternative approach
using a stress-based Hellinger—Reissner variational formulation is developed for quadrilateral and
six-noded triangular meshes.

In this thesis, we investigate the recently introduced Stabilization-Free Virtual Element Method
(SF-VEM) [20] and its applications to problems in linear elasticity. Then connecting the idea to
hybrid-stress methods found in FEM, we explore the use of a hybrid variational approach to develop
virtual element methods that have robust performance and are immune to locking.

Parts of this thesis have been published in peer-reviewed journals. Chapter 3 is based on [37],
Chapter 4 describes work established in [36], Chapter 5 appears in [38], and Chapter 6 is found
in [35].

In Chapter 2, we present the basic ideas and development of the virtual element method. We
first introduce the necessary background spaces and the weak problem. Then, we discuss the
construction of the standard virtual element element for the scalar Poisson equation, describe a
suitable discrete bilinear form with stabilization, and show convergence results. Finally, we briefly
discuss the standard virtual element method for linear elasticity problems.

In Chapter 3, we describe the extension of the first-order stabilization-free virtual element
method to compressible linear elasticity problems. We detail the construction of an enhanced virtual
element space, polynomial projection operators and the discrete weak problem. We show theoretical
well-posedness and optimal convergence results. We also detail the numerical implementation and
then present representative benchmark problems, which numerically affirm the convergence rates
and applicability of the method.

Chapter 4 continues with the development of the stabilization-free virtual element method to
arbitrary order. We apply the idea of serendipity elements to reduce the total number of degrees of
freedom. A serendipity projection operator is presented and is used to construct a high-order strain

projection. An eigenvalue analysis is then performed to determine a criterion to avoid needing a



stabilization term. The method is tested on several benchmark problems and the convergence is
compared to theoretical results.

In Chapter 5, to alleviate locking of thin structures and nearly incompressible materials, we
revisit the hybrid-stress finite element method [89,90] to develop a stress-hybrid virtual element
method for quadrilateral elements. The Hellinger—Reissner variational principle, with initially
independent stress and displacement fields, is used to derive the weak equilibrium equations and a
new projection operator for the stress. An eigenvalue analysis is then used to examine the stability
and rotational invariance of the method. A variety of nearly incompressible problems with convex
and nonconvex meshes is solved and the performance of the stress-hybrid VEM is compared to the
B-bar VEM [85].

In Chapter 6, we extend the quadrilateral SH-VEM to develop a stress-hybrid virtual element
method for six-noded triangular meshes. We investigate the performance and stability for different
choices of stress basis functions. For flexibility in the choice of stress basis functions, we also
reintroduce a penalization term that weakly enforces the equilibrium conditions on the stress basis
functions. Both of these methods are utilized to solve many benchmark problems in the nearly
incompressible regime, and their performance is compared to the B-bar VEM and composite triangle

In Chapter 7, we summarize the main results obtained in this work and close with some fi-
nal remarks on the promise of stabilization-free virtual element methods in computational solid

mechanics.



CHAPTER 2

Virtual Element Method

In this chapter, we introduce some of the main features of the standard virtual element method
for elliptic boundary-value problems. We start off by reviewing some preliminary definitions and
notation of function spaces and functional analysis. Then we discuss the Poisson problem and derive
its associated weak form. For the sake of comparison, we examine the basics of triangular finite
element methods applied to the Poisson problem and outline some convergence results. We then
investigate the same problem using the virtual element method, and review some of the stability
and convergence results of the VEM. Finally, we briefly describe the extension of the VEM for

linear elasticity problems.

2.1. Mathematical preliminaries

In this section, we introduce basic linear functional analysis concepts and variational calculus
that will be used to study the weak form of an elliptic boundary-value problem. More details of

the mathematical theory used for elliptic problems and in the finite element method can be found

in [27,28,42].

2.1.1. Hilbert spaces. Let €2 be a bounded set with piecewise smooth boundary 0f2. For
this work, we use functions that are either square integrable or its derivatives are square integrable

in . We denote the space of functions that are square-integrable on € by:

L*(Q) = {w : /QwQ dzx < oo}. (2.1)

For every u, v € L*(Q2), define the inner product

(u,v) 2 :/qudm, (2.2)
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and the induced norm

ull2 = \/m: (/Q u? dac)é . (2.3)

The space L?(£2) equipped with the inner product is a Hilbert space (complete inner product space).
For the study of partial differential equations, we are also interested in the derivative (weak
sense) of functions and the associated spaces. Let a € Z% be an element in the set of n-tuple
non-negative integers and denote the magnitude of a by || = a3 + a2 + - - - + a,, where «; is the
i-th component of a. For a sufficiently smooth function g, the a-th partial derivative is given by

olelg
dx {1 0xy? ... Oxpn’

Dg = (2.4)

However, the classical definition of the derivative is not well-defined for functions in L? or other
similar function spaces. Therefore, we introduce the concept of the weak derivative. Let g € C°(Q)
be any infinitely differentiable function with compact support, then v € L?() is said to have an

a-th weak derivative if there exists a function v € L?(Q) such that

/ﬂvgda::(—l)|a|/QuDagdsc. (2.5)

If such a function v exists, then it is called the a-th weak derivative of w (it is unique) and is
denoted v = D%u. Then define the space H*(Q) as the collection of L? functions with all of its

weak derivatives up to order k£ that are square-integrable by
HF(Q) ={ue L*(Q): D*ue L*(Q) VY |a| <k}, (2.6)
For any u, v € H*(Q), define the inner product

(u, v) () = Z /Q(Do‘u)(Dav) dx, (2.7)

la|<k

and the induced norm

=

wll gr ) = 3/ (W w) ey = Z Q(Dau)2d$ : (2.8)
<k



For convenience, we also define the seminorm | - | yx () by

1
2

ul gy = | D /Q (D%u)?dx | . (2.9)

|| =k

In this work, we are mainly concerned with H'(£); in this space, the weak derivative notation

can be simplified by writing it in terms of the gradient function:
H'(Q) = {ue L*(Q): Vue L*(Q)}, (2.10)
For any u, v € H'(f2), define the inner product
(u,v) i) = /qu dx —i—/QVu -Vovde, (2.11)
with the induced norm

1
u =/ (u,u - u2da:+/ Vu2da:)2, 2.12
llirsgey = /(@) e (/Q [ vl (2.12)

and the seminorm | - |1 (q):

1
2
lul 1) = </Q\vu|2dm> . (2.13)

For boundary-value problems, an important space is Hs(€2) C H'(2) which contains functions

that vanish along the boundary
Hy(Q) ={ve H'(Q):v=0o0n00}. (2.14)

We note that in the space H!(£2), the statement v = 0 is defined in terms of the trace operator and
is not well-defined pointwise (see [27,42]). The seminorm | - [f1(q) on the space H 1(Q) is a norm

on H}(Q), and is equivalent to the norm || - || 11 (). That is, for any v € Hg(9Q),
ol 2 @) = |vlar(e), (2.15)
and there exists constants C, Cy such that

Cilvllgr @) < vllgi@) < Callvllmia), (2.16)



where the equivalence (2.16) is shown using the Poincare—Friedrichs inequality [42].
In general, for a function space V(£2), the notation [V (2)]¢ represents a space of d-dimensional
vector-valued functions such that each component is in V(). If the dimension d of the space is

clear, then for convenience, we may use the notation V() := [V (Q)]%.

2.1.2. Bilinear forms and functionals. Let V be a normed linear space andlet a : V. xV —
R be a mapping that takes two elements from V' and returns a scalar value. If the map a(-,-) is
linear in each argument, then it is called a bilinear form. A bilinear form is continuous (bounded)

if there exists a constant C7 > 0 such that

la(u,v)| < Cilullv o]y Vu,v eV, (2.17)
and is coercive if there exists a Cy > 0 such that
a(u,u) > Cyllull} YueV. (2.18)
A bilinear form a(-,-) is called symmetric if it satisfies
a(u,v) = a(v,u) Yu,veV. (2.19)

Combining (2.17) and (2.18), we have that a bounded and coercive bilinear form satisfies the
relation:

Collully < au,w) < Cuful?- (2.20)
If a(-,-) is also symmetric, then it defines an inner product and induces a norm ||ull, = v/a(u,w).
By (2.20) this norm is equivalent to the norm on V. That is

Collulli, < [lullz < Cullull¥- (2.21)

Let F: V — R be a map that takes an element from V and returns a real number. If F is linear
with respect to its argument then it is called a linear functional and if it satisfies for all v € V' the
condition

[F(v)] < Cllollv, (2.22)

then F' is bounded (continuous).



REMARK 2.1.1. We note if V is an inner product space with inner product (-,)y, then for a
fized element f € V, the map (f,) : V — R defines a linear functional on V. Therefore, we will

often use the notation (f,-) to refer to a linear functional.

2.1.3. Weak form and variational principles. Suppose we have a symmetric bounded
bilinear form a(-,-) and a bounded functional F(-) generated from a boundary-value problem.

Then a general weak problem is of the form: find w € V, such that
a(u,v) =F(v) YveV. (2.23)
For a symmetric bilinear form, this is equivalent to finding a solution to the variational problem:

1
inIT|v] := min = — F(v). 2.24
min [v] min 2(1(11, v) (v) (2.24)

For the weak and variational problem, the Lax—Milgram theorem guarantees the existence and

uniqueness of a solution:

THEOREM 2.1.1. Let V' be a Hilbert space, a(-,-) : VXV — R a bounded (2.17), coercive (2.18)
bilinear form, and F : V — R a bounded linear functional. Then the weak problem given in (2.23)

has a unique solution.

Both (2.23) and (2.24) are used in this work to formulate virtual element methods.

2.2. Governing equation and weak form of Poisson’s equation

For simplicity, we start with the scalar Poisson boundary-value problem with homogeneous

boundary conditions given by

—Au=f in §, (2.25a)

u=0 in 04, (2.25b)

where Q C R? is a bounded region and f € L?(2). This gives the strong form of the Poisson
problem. Solutions to the strong form are twice continuously differentiable and satisfy the Poisson
equation pointwise. However, for the finite element method, the virtual element method and

other similar methods, this requirement is restrictive. Instead, we introduce the weak form of the
9



Poisson problem, which requires only weak differentiability and satisfaction of Poisson’s equation
in an integral sense.

Let v be a test function, multiply both sides of (2.25a) by v and integrate over the domain Q:
—/ vAudx = / fvdex. (2.26)
Q Q
Now we recall the vector identity
V- (vVu) = Vv - Vu + vAu. (2.27)
Then using (2.27), we rewrite the integral expression in (2.26) as

/Vv-Vudm—/V~(vVu) dm:/fvdm.
Q Q Q

After applying the divergence theorem, we obtain

/V%Vuda:—/ (vVu)-nds—/fvdw.
Q o0 Q

By taking v € H}(Q), we have that v vanishes along the boundary 92, so the integral over the

boundary also vanishes. Therefore, the original differential equation becomes
/ Vv - Vudz = / fodx. (2.28)
Q Q
Then we can define the weak problem as: find the function u € H} () such that
a(u,v) = (f,v) Vv € H}(Q), (2.29a)
where the bilinear form a(u,v) and linear functional (f,v) are given by
a(u,v) = / Vu - Voude, (2.29b)
Q
(f,v) = / fvdex. (2.29¢)
Q

We note, the bilinear form (2.29b) associated with the Poisson problem is the square of the H'!
seminorm (2.13). Since we are looking for solutions in H}(€2), the bilinear form induces the H}

norm: +/a(vp,vp) = ||Uh||H01(Q)~ It can be shown that this problem satisfies the Lax—Milgram

10



theorem, and thus has a unique solution. This solution is called the weak solution to the Poisson
boundary-value problem.

The weak problem seeks a solution in an infinite dimensional space of functions, which is still
very difficult for general problems. In order to get useful results, we will need to approximate the
problem on finite dimensional subspaces. The main technique of both the finite element method
and virtual element method is to first break the domain € into finitely many pieces, next find a
finite dimensional solution space and discrete versions of a(-,-) that approximates the solution on

each piece, finally combine the approximations into a single system of equations and solve.

2.3. Finite element method for Poisson’s equation

As a point of reference, we first introduce the basics of classic finite element method applied to
the Poisson equation. In the finite element method, the domain €2 is discretized into finitely many
triangular or quadrilateral elements. For simplicity, we use meshes of triangular elements. Denote
T" as the decomposition of € into triangular elements E with vertices x; = (2;, ;) (i=1,2,3). For
each element F, denote the diameter of the element by hAp and the maximum diameter of the all
the elements in the mesh by h. The goal is to construct a method that converges to the weak

solution as the maximum diameter of the elements tend toward zero (h — 0).

2.3.1. Finite element space. For the finite element method, we seek solutions over a finite
dimensional subspace V}, C HS(Q) We start by building a local subspace over each element
E € T". In particular, one key property of the local space is that it contains all the polynomials
up to degree k (for a k-th order method). This property ensures that the finite element space will
have the desired approximation accuracy. For triangular elements, it is sufficient to define the local

space Vi, (F) = Pi(F) as the set of all polynomial functions with degree less than or equal to k. In

(k+1)(k+2)

two dimensions, to uniquely define a polynomial in Py (E) requires information at N = 5

suitably chosen points. These are called the elements degrees of freedom (DOF), and are usually

chosen to be:
3 values of vy, on the vertices,

(k — 1) values of vj, at points along each of the 3 edges, (2.30)

(k—2)(k—-1)

5 values of vy, at interior points.

11



Denote the set of points corresponding to the degrees of freedom by {a;} (j =1,2,...,N). We
let {¢;} denote the set of Lagrangian basis functions that span the space Px(FE) and satisfy the
Lagrangian interpolation property

di(a;) = 0ij, (2.31)
where §;; is the Kronecker delta. Then for any function vj, € Vj,(E), we expand it in terms of the

basis functions as N
= wn(a:)di(w). (2.32)
i=1

From the local spaces V},(E), the global space V}, of piecewise continuous polynomial functions is
constructed:

Vi, = {vh € HL(Q) : vp|p € Va(E) = Py(E) VE € Th} . (2.33)

REMARK 2.3.1. For general FEM applications, it is usually more convenient to prescribe the
basis functions on a reference element. Then computations can be performed by mapping (isopara-
metric mapping) each element onto a reference element and using the same set of basis functions
instead of having to find a basis for each element separately. However, one downside of using a
mapping is the problem with badly-shaped elements. It is known that for nonconvex elements, the

mapping becomes singular and the method will fail.

2.3.2. Discrete weak problem. Now with the finite element space in hand, we construct
the discrete problem. In the FEM, the exact bilinear form and forcing functional is applied over

each element. That is, for each E let
aE(uh,vh / Vuy - Vo de, (f,on)E / fop dx. (2.34)
Then define the global discrete problem over V;,: find up € Vj such that
a(up,vp) = (f,vn) Vop € Vi, (2.35a)
where

a(up, vp) Za (up,vn), (f,op) Z fion)E. (2.35b)
E

12



Since the same bilinear form and forcing function from the weak problem (2.29) is used, the discrete

problem satisfies the conditions of the Lax—Milgram theorem, and therefore has a unique solution.

2.3.3. Convergence results. With the discrete problem formed, we show that the discrete
solution converges to the exact weak solution as the maximum mesh diameter h — 0.
Let u € H&(Q) be a solution to the weak problem, up € V3 the unique k-th order solution to

the discrete problem (2.35). Then we have
a(u,v) = (f,v) Yo € H}(Q),
a(up,vp) = (f,vn) Yo € Vi
For any v, € V;, we subtract the two expressions to get
a(u,vn) — alun,vn) = (f,vn) = (f,vn) =0,
that is,
a(u —up,vp) =0 Vo € V. (2.36)

The property (2.36) is called the Galerkin orthogonality condition and it implies that the finite
element solution uy is an orthogonal projection of the exact solution onto the discrete subspace
V}, with respect to the bilinear form a(-,-). Now, we use this orthogonality property to roughly
estimate the error in H} norm. We recall for Poisson equation, the H& norm is induced by the
bilinear form, that is ||ju — uhH%&(Q) = a(u — up,w — up). Then by Galerkin orthoginality, we can

write
lu— uhleqé(Q) =a(u —up,u—up) = a(u —up,u) — alu — up, up) = alu — up, ). (2.37)

Let vy € Vy, then by adding and subtracting vy, from the second component and applying Galerkin

orthogonality, we have

a(u —up,u) = alu —up,u—vp) + a(u — up,vp) = a(u — up, u — vy). (2.38)
13



Since a(-, -) is bounded, we estimate
(s~ wn,u —vp) < Cllu— | gy 0~ vl g ) (239)
Now combining and simplifying, we find:
Ju = unllmyiey < Cllu =l < € i [lu = wilgye (2.40)

The inequality (2.40) is a special case of Cea’s lemma, which shows that the finite element solution
up, is proportional to the best possible solution in the subspace V3. However, Cea’s lemma does
not immediately give the convergence of the solution u; to u. To remedy this, we must find
an approximation to the value minu,ev, [[u — wh| 1 (q) Which depends on the mesh parameter h.
From [27,42], it is known that there exists a unique interpolation function u; € V;, which match

the value of u at every vertex and satisfy the bound (for u € H**1(Q)):
Hu — U]HHl < Ch |U|Hk+1 (Q)- (2.41)

Since ur € Vj, the error ||[u—uyl| Hi(e) must be larger than the minimum; therefore, we immediately

obtain the bound
lu = unllp) < C meln lu = whll ) < Cllu —wrllg1o) < Ch¥ |l e (- (2.42)

The inequality (2.42), shows that a k-th order finite element solution will converge to the exact
solution u in the H& norm as the mesh size h — 0; and the order of convergence is of order k.
In many cases, we are also interested in the convergence in the L? norm. Since both || - || HL(9)

and || - || ,2(q) are norms on the space Hg (), they are equivalent by Poincare-Friedrichs inequality:
lu = unll2() < Cllu—unll gy o) < Ch*ful e q). (2.43)

However, the L? norm measures the error of a function, while the H& norm measures the error in
its derivative; therefore, it is expected that the L? error should be more accurate. We use a method
called the Aubin—Nitsche technique (trick) [42] to improve the estimate. The idea of the Aubin—
Nitsche trick is to relate the L? inner product to an associated adjoint problem. In particular, since

we know the weak problem (2.29) has a unique solution for f € L?, we can choose the function
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u — up. Let ¢ € HE N H? be the solution to the following adjoint problem:
a(v, ) = a(,v) = (u —up,v) Yo € HYN), (2.44)

where for the Poisson equation, the bilinear form is symmetric so the adjoint problem is equivalent

to the original weak problem. It can be shown that for a convex polygonal domain, the elliptic

regularity property holds for ¢ [42]. That is, there exists constants C; and Cy such that
[Ylm20) < Cillu — unllL2@), (2.45a)
1Y) < Callu — unllp2().- (2.45b)

Then, we write the L? norm as:

lu = unll7zi) = (w = un,u— up) = alu — up, ). (2.46)

By adding and subtracting an interpolation function v; satisfying (2.41) (k=1) from the second

component, applying linearity and Galerkin orthogonality, we get

a(u - Uhﬂﬁ) = G(U—Uh,@b —¢I) +(l(u - UhﬂM) = a(“‘“hﬂﬂ - ¢1)
Now, applying the boundedness property of the bilinear form:
a(u = up, ¥ = ¥1) < Cllu —unll gy @)l = Y1lla1 o)

< Chllu = up| g2 oy V| m2(0)

< Chllu = unll ga o v — unllr20)- (2.47)
Applying the bound (2.47) to (2.46) and using the estimate (2.42), we simplify to
lu = upl[r2(0) < Chllu = up| g1 (o) < Cth’U\HHl(Q)- (2.48)

For a problem with sufficiently regular solutions, the bound in (2.48) implies that the L? of the

finite element solution converges at a rate that is one order higher than in the H} norm.

REMARK 2.3.2. In the proof of convergence, the maximum element diameter h is used; however,

when comparing different methods, it is often more useful to compare the total number of degrees
15



of freedom needed. In two dimensions, the diameter is inversely proportional to the square root of

the total number of degrees of freedom Npop. That is:

B~ (2.49)

VNpor
In many of our numerical tests, we report the results with respect to the square root of the total

number of degrees of freedom /Npor.

2.4. Virtual element method for Poisson’s equation

Here, we examine the same Poisson boundary-value problem using the virtual element method.
To construct a virtual element method, we first need to discretize the domain 2 into finitely many
elements. In the finite element method, these elements are usually triangles or quadrilaterals;
however, in the virtual element method, the elements are polygons that can have arbitrarily many
vertices and can be convex, nonconvex or degenerate (see Figure 2.1). Let 7" be the decomposition
of the region €2 into nonoverlapping polygons with a maximum diameter of h. For each polygon
E € T", we denote its diameter by hg and its centroid by xg. Each polygon E consists of Ng
vertices (nodes) with Ng edges. Let &g be the set of all edges of E. We denote the coordinates
of each vertex by x; := (2;,%;). In the VEM, standard mesh assumptions are placed on 7" (e.g.,

star-convexity of E) [9].

(a) (b) (c)

FIGURE 2.1. Examples of admissible elements in the virtual element method (a)
convex element, (b) nonconvex element and (c) degenerate element.

2.4.1. Virtual element space. On each element E, we first construct a local finite dimen-

sional subspace Vj,(E) C H'(E), then by combining these spaces for every element FE, we construct
16



a global subspace Vj, C V := H}(2). In the k-th order finite element method for triangular ele-
ments, the local space contains all the polynomials up to degree k; therefore we require that the
local virtual element space Vi (FE) also contain all the polynomials up to degree k. In addition, we
also want the space to contain additional non-polynomial functions. We start with the boundary
space B (OF). For the space V3 (F) to contain polynomials, the functions restricted to the bound-
ary must be continuous and also be polynomial along each edge. That is, we define the boundary
space as

B (OF) = {v, € C°(OE) : vp|. € Pr(e) V edges e on OE}. (2.50)

For the interior of the element, we note that the boundary space can be viewed as prescribing
boundary conditions to a boundary-value problem. The simplest partial differential equation we can
impose is using the Laplacian operator A. Since the space contains all the polynomials p € Py (FE)
of degree less than or equal to k, we have Ap € Py_o(FE). Therefore a natural requirement is that
any function vy, € Vj,(F) satisfies a Poisson condition Avy, € Py_o(E). The Poisson condition and
the prescribed polynomial boundary uniquely defines a function vy. We define the local virtual

element space V,(E) as
Vh(E) = {Uh S H1<E) Ay, € ]P’k,Q(E), Uh’&E € Bk(8E>} . (2.51)

For a polygonal element F with Ng vertices, the space V;(E) is a finite dimensional space that can

be described by N = kNg + k(k; L conditions (degrees of freedom). In particular, the boundary

space requires kNg degrees of freedom to fully define a k-th order polynomial on each edge, while
@ conditions are needed to define an order £ — 2 polynomial in the element interior. For each
of the kNg + @ degrees of freedom (DOF), we prescribe conditions that the function satisfy.

The most common choice is given as [9]:

Npg values of vy, on the vertices,
(k — 1) values of vy, at quadrature points along each of the Np edges, (2.52)

-1 1
kk—1) internal moments : |E|/ vppdx  Vp € Pr_o(E).
E

We note that for £ = 1, the space is fully defined by the Ng values at the vertices and does not

require values on the edges or internal moments. We use the notation dof;(v) as the evaluation
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of the i-th degree of freedom of a function vy, in particular

vp(z;) fori=1,2,...Ng,

dof;(vs) = S vp,(2¢) fori=Np+1,Ng+2,...kNg, (2.53)

)

o7 Jpvwpde  for i = kNp+1,kNp+2,... N.

Following [9], we define the basis functions {¢; } which correspond to the degrees of freedom by the
Lagrangian property: dof;(¢;) = d;;, where d;; is the Kronecker-delta operator.
With the definition of the virtual element space for each element E, we assemble the global

virtual element space:
Vi, = {vn € HY(Q) : vp|p € Vi(E) VE € T". (2.54)

In general, functions vy, € V},(E) are solutions of a partial differential equation and are not computed
(virtual). The only information is from their degrees of freedom. The main technique in the
virtual element method, is to use the degrees of freedom to construct suitable polynomial projection
operators that represent functions of interest. With these projection operators, we are able to

determine a computable discrete bilinear form and define the discrete weak problem.

REMARK 2.4.1. Comparing (2.52) and (2.30), we find that for k > 1, the virtual element
method requires more degrees of freedom than the corresponding finite element for a triangular

element. However, for k =1, the two methods are identical.

2.4.2. Discrete bilinear form. Now with the construction of the virtual element space, we
also need to construct a suitable form for the discrete bilinear form ay (-, -). To motivate the bilinear
form found in [9,11,13], we first let Il : H'(E) — Pr(E) be any projection onto the space of

polynomials of degree k. Then we can expand the bilinear form as

aE(uh, vp) = aE(uh — Hypup + Hyup, vy, — v + Hygop)

= o (Tyup, Wyop) + o (wy, — Mun, v, — Mvp) + a® (wy, — Mpuy, Trvy)

+ a® (Tgup, v, — o),
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where a” (uy,, vy,) is the bilinear form restricted to the element E. A natural choice for the projection

II;, for the Poisson problem is the elliptic projection IIY, which satisfies the orthogonality condition:
af (up, — Y up,p) =0 Vp € Pi(E). (2.55)

This allows us to simplify
a” (up, vn) = a” (Y up, T o) + a® (up, — T up, vp — T vp). (2.56)

The first term in (2.56) is the bilinear form acting on polynomials, which provide the polynomial
consistency property (reproduces polynomial solutions) and can be handled in the same way as in
standard finite elements. The second term is a stabilization term that relies on knowing information
about u, and vy. Since in VEM we do not want to explicitly construct these functions, we will
need to approximate this term as well. This leads us to the definition of the standard VEM bilinear

form
ay, (un, vn) = @ (IR up, Y 0) + S (up, — T wp, v — T vp), (2.57)

where S (uj, — Hkvuh, Uy — Hkvvh) is an approximation of the term a® (uy — Hkvuh, vy — Hkvvh). This
term controls the stability (coercivity) of the problem and is thus important for convergence in the
standard VEM. A necessary condition for the stabilization term is that there exists constants C

and Cy such that [9]
ClaE(vh,vh) < SE(vh, vp) < C’gaE(vh, vp) Yo € Vi (F) with Hkvvh =0. (2.58)

However, the choice of the function S (,-) is not unique and in many cases is problem depen-
dent. This is undesirable so we are interested in developing a virtual element method without the

stabilization term S¥(-,-) (see Chapter 3).

REMARK 2.4.2. The projections described throughout this work are defined on the element level
and should be denoted with element dependence (such as Iy g). However, for simplicity, we omit

the dependence on E unless when needed to avoid confusion.
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Now that we have the discrete bilinear form, we also need to construct a weak loading term to

define the discrete weak problem. We define the approximate load term given by the inner product

(fh,vh)EZ/thvhde,

where fj, is an approximation of the function f. We note that for general v;, € Vj,(E), this integral
is not computable; however, from the degrees of freedoms in V,(E), we can find |, g pupdz for any
p € Pr_o. Therefore, a natural approximation is to take f, = II; _,f as a projection of f onto the

space of polynomials degree k — 2. Then we have:

(For o) = /E (I f)on dac. (2.59)

The standard projection operator originally described in [9,11] is the L? projection H%,g, which

satisfies the L? orthogonality condition:
/E (I1)_ovp, —vp)pdx =0 Vp € Pp_o(E). (2.60)
By using the L? projection in (2.59), the forcing term is now written as
(frson)E == /E (I1)_o f)op dx = /Efﬂgzvh dx, (2.61)

where the last expression is obtained on applying L? orthogonality.

REMARK 2.4.3. For the case k = 1, we can use II3f as the constant projection or equivalently
approzimate vy, using IJvy,. A more detailed implementation for k = 1 can be found in Section 3.3.5.
In Section 2.4.6, we construct an enhanced space that allows us to compute Hg using only the degrees

of freedom.

The local discrete weak problem is to find the function wuy, € V3 (E) such that

ay, (un,vn) = (fr,vn)E Yo € Vi(E), (2.62a)
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where

af(uh, Uh) = aE(Hkuh, Hk’l)h) + SE(uh — Ipup, vy — Hk’l)h), (2.62b)
(e = [ (T af)onde. (2.620)
E

The associated global discrete problem is to find uy € V such that

an(un,vn) = (fa,vn)  Von € Vi, (2.63a)

where

an(un,on) = af (un,von),  (fason) = (fu,on)E (2.63b)
B B

A solution to (2.63) is called a discrete solution.

2.4.3. Choice of stabilization term. The choice of a stabilization term is not unique; how-
ever, it must satisfy certain inequality estimates (2.58) in order to preserve the coercivity of the
bilinear form. We examine the structure of the bilinear form to motivate a choice of the stability

term. Let up € Vi,(E), then we have:
aE(uh — Hkvuh, vy, — Hkvvh) = / V(up, — Hkvuh) - V(up — Hkvuh) dx.
E

Since uy, and Hkvuh € Vi(E), we can expand uj, — Hkvuh in terms of the basis functions of V;(E).

That is, up, — Hk,vuh = Zf\;1 dof;(up — Hkvuh)qﬁi. Then we have

aE(uh — Hk Up, Vp, — Hk vp) Z Zdof up, — Hk up) (/ Vi - Vo, dac) dof i (up, — Hk up)

=1 j=1
= Z Z dof; (up, — Y up)a® (¢, pj)dot; (up — ITY up), (2.64)
i=1 j=1
where dof;(u) is the i-th degree of freedom of a function u. The expression (2.64) suggests that
the approximate stability term S¥(-,-) should take the form:

N N

SE (up, vp,) = ZZdof uh)S ‘dof j(vp), (2.65)

=1 j=1
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where S is any symmetric positive-definite matrix with components that scales like a® (¢, bj)-
In [9], the suggested matrix is the identity matrix 5’5 = 0,5, there 0;; is the Kronecker delta. The
resulting simplified stabilization term (so-called dofi-dofi stabilization) is given by

N

SF (up,vp) = dof;(up)dot;(vp). (2.66)
=1

This term is sufficient to preserve the stabilization criterion (2.58). In particular, we first note for

Vp € Vh(E)

N
S (v, vn) = dofi(vp)?, (2.67)
=1

defines a ¢? norm over the space RY. Now consider

N N
aE(vh,vh) = / Vo, - Vo de = Z Zdofi(vh) (/ Vi - Vo, dw) dof ;(vp,)
E E

i=1 j=1

N N
< HZ;?X {aE(gbi, gbj)} Z Z dof;(vp)dof j(vy)

=1 j—1
N
< Z dof;(vp)?,
i1

where the last inequality is from the equivalence of norms in R . Similarily, we can bound

N N
af (vp,, vp) > nZl,1]n {aE(qSi, o)} Z Z dof;(vp)dof j(vy)

i=1 j=1
N
> Cy Y dof(vy)”.
i=1
By rearranging the two inequalities, we obtain the desired stability inequality.
There are many other types of stabilization that are not of the form (2.65). Some examples
include boundary stabilization [15], projection based stabilization [49], energy based stabiliza-

tion [114] and the DOF based stabilization in [6].

2.4.4. Convergence of the discrete problem. In the virtual element method, there are
two important conditions that the discrete bilinear form needs to satisfy in order for the discrete

weak problem (2.63) to attain a unique solution and to converge to the exact weak solution at the
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correct rate. The first condition is polynomial consistency:
af(p,vp) = a¥(p,vn) Vp € Pp(E) and Yoy, € Vj(E). (2.68)

The condition (2.68) ensures that the discrete problem will reproduce any polynomial solution of
order k of the weak problem (2.29). It also controls the solution accuracy and convergence rates of

the method. The second condition is for a’(-,-) to satisfy a stability bound:
ClaE(vh,vh) < af(vh,vh) < CgaE(Uh,Uh) Yup, € Vh(E) (2.69)

The stability bound assures that the discrete problem is bounded and coercive and thus attains a
unique solution. In particular, we have by the stability of af (+,-), coercivity of a(-,-) and Cauchy—

Schwarz inequality:

af, (up, vp) < \/af(umuh)\/af(vh,vh) < CQ\/U«E(uhauh)\/aE(vhavh) < Clun| gy |vnl g1 (B>
(2.70)

so af(-,-) is bounded on each element E. Similarly, we have
af (vp, vp) > Cra (vp, vp) > C\Uhﬁql(E), (2.71)

so af(-,-) is coercive on E. By summing the inequalities (2.70) and (2.71) for each element, it is
realized that the global discrete form ay (-, -) is bounded and coercive on  with respect to the H
norm.

Now we examine the global forcing term (fz,vp,). In our construction of a computable forcing
term, we chose a discrete forcing function f, = Hg_Q f on each element FE. We first show that
||H272f||L2(E) is bounded by | f|z2(z)- By applying the definition of the L? projection and the

Cauchy-Schwarz inequality, we have that

IR o f 1122y = /E I _,f)* dx = /E S o f de < TR _o fll 2wyl f 1| L2 (). (2.72)

which implies that

|’H2—2f||L2(E) < [[fllz2(m)- (2.73)
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Next, we show that the functional (5, v;,) remains bounded:

Z /E (T _o f o, de
E

< Z 1 fll2 ) lvnll L2 e)
E

|(fn,on)| =

< Z TR o fll 2wy 1ol 22 ()
E

< Cllfll2@llvall g @) (2.74)

where the final inequality is from applying the Cauchy—Schwarz and Poincare—Friedrich inequalities.
Then by the Lax—Milgram theorem, since ay(,-) is bounded and coercive, and ( fj, vp,) is bounded,
the discrete problem (2.63) has a unique solution.

We know that the discrete problem attains a unique solution; however, it still needs to be
shown that this solution converges to the weak solution of (2.29) as the mesh is refined (h — 0).
To show convergence, we introduce some classical interpolation and projection estimates from finite

elements. More information on the mathematical theory and proofs of these estimates can be found

in [14,26,27,42].

LEMMA 2.4.0.1. Let w € H*1(Q) be a sufficiently smooth function, then there exists an inter-

polation function wy € Vi,(E) that satisfies
dofj(w —wr) =0, i=1,2,...N, (2.75)
and a piecewise polynomial function w, € Px(E) that satisfies

lw = will g2y + helw — wilg g < CLiE W] gra gy, (2.76a)

Hw - w7rHL2(E) + hE”LU - wﬂ—’Hl(E) < Cgh%+1|'w‘Hk+1(E). (276b)

for some constants C1 and Co that are independent of h.

LEMMA 2.4.0.2. Let w € H*Y(E) be a sufficiently smooth function. Then the k-th order L?

projection operator satisfies

|w — H2w|H1(E) < C’lh%|w|Hk+1(E), (2.77&)
||w — ngHLQ(E) < Cgh%+1|w|Hk+1(E). (277b)
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for some constants C1 and Co that are independent of h.

With the introduction of an approximate forcing term, we also need to know how much error
is introduced to the global problem. In particular, we estimate the difference

(f = farvn) =D (f =T _of,on)m

E

> (f TR _of, v — v, + Mvp) &
B

D (f =T _of,vn —TMgon) g
E
< O F =T o fllr2(myllvn — THvall L2y (2.78)
E
By applying (2.77b), we get the estimate

(f = farvn) < CRF[f] sy lon| i (- (2.79)

The inequality (2.79) implies that as the mesh is refined, the k& — 2-th order approximate forcing
term will weakly converge to the exact forcing and will not hinder the convergence of the VEM.
In [2,9], it is shown that for a k-th order VEM on sufficiently nice meshes and sufficiently

regular functions, the rates of convergence in the H& norm and the L? norm are given by:

lu = wnll g3y < Crh®™(Jul s ) + |fls-1@); (2.80a)

lu = unllr2(@) < Coh™H(Jul grss ) + |F 1), (2.80b)

where C, Cs are constants that depend on the geometry but independent of the maximum element
diameter h.

We first show the H} estimate (2.80a). Let u be the unique weak solution, uy, the discrete
solution, u; denote the interpolation function which satisfies the bound in (2.76a) and u, the

polynomial approximation function satisfying (2.76b). Then by the triangle inequality:

lu = unllmg o) < Nl = willmy o) + llur = unllmyg)- (2.81)
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For the first term of (2.81), we estimate
lu — UIH?{&(Q) = Z u— uI’%ﬂ(E) < Zc(h%)z‘u’%ﬂf-‘-l“}) < C(hk)z‘uﬁqkﬂ(g)- (2.82)
E E

Therefore,
lu = wrll gy < CRul g () (2.83)
For the second term in (2.81), by applying the stability property and definition of the discrete
solution we get
Cllur — uhHiIOl(Q) < ap(ur — up,ur — up)

= Z (af(ul — Up,Us) — a{f(ul — uh,uh))
E

af (ur —up,ur) — (fa,ur —up).

I
=]

Now, add and subtract u, in the first term, apply linearity and consistency of ap(-,-)
_ E E
= (af (ur — un,up — ux) + ay (ug — up, tr)) = (fa ur — up)
E
— Z (af(u; —up,ur — ur) + a” (up — up, Ur)) = (frour — up). (2.84)
E

Add and subtract u in the second term, then we get the bound
CHUI — uhH%{&(Q) < Z(af(ul — Up, U] — uﬂ—) + aE(uI — Up, Uxr — U))
E

+ a(U[ - Uh,u) - (fh?uf - Uh)

= ZCLE(U} — Up,UT] — uﬂ) + ZCLE(UI — Up, Ug — u)
E E

+ (fyur —up) — (fa,ur — up)
:Zaf(ul—uh,uf—uﬂ)—i-ZaE(u]—uh,uﬂ—u)—i—(f—fh,u]—uh).
E

E - - C
A B

(2.85)
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We estimate each term of (2.85) individually. For term A, we apply the boundedness of ap(-, ),

the triangle inequality, and the estimates (2.76a) and (2.76b) to each element E to write
> ak (ur — up,up —ux) < C Y Jur — wpl gy lur — el )
E E
<CY (Jur — ulm ) + v — i1 () llur — wnll gy 0
E
< CLh*[ul v oy lur = wnll 3 o) (2.86)
For term B, following a similar strategy, we get
ZQE(U] — Up, Ug —u) < Cghk]u\HkH(Q)HuI — unll 3 (0)- (2.87)
E
For term C, apply the inequality (2.79) to get
(f = frour = up) < C3h®| f| sy llur — unll gy 0)- (2.88)
Combining terms, we find that
Cllur — Uh”fgol(g) < B (Crlul i ) + Colul e ) + Cal fl -1 () llur — unl @)
which results in the estimate
lur = unll gz () < CP* (lulgrerqy + | Flae-1())- (2.89)
Finally, from (2.83) and (2.89) we have
lw = unll i) < CH*(Jul s ) + |flm-10) - (2.90)

We now show the L? estimate (2.80b). By Poincare-Friedrichs inequality, it is known that
the L? error has an immediate bound of order k. However, for a sufficiently regular solution and
geometry, the bound can be increased to order k+1 using the Aubin—Nitsche trick [42]. In addition,
for the estimate to be of correct order, we also require the use of the L? projection operator of order
k — 1 to approximate the forcing function fj. In the original virtual element space, this projection
is not computable from the degrees of freedom; however, in Section 2.4.6 an enhanced space is

introduced that allows for the computation of f, = Hgflf. By using this fj, in the proof of the H*
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error, we get a modified bound for sufficiently small h:
lu = wnll g3y < CH*(Jul i) + PIf i) < Ch*|ulgreg)-

We consider

lu = unllF2(q) = (u = un,u —up).
®

(2.91)

(2.92)

Following the idea of the Aubin—Nitsche trick used in Section 2.3.3, let ¢ € HJ () N H?(£2) be the

solution to the following adjoint problem
a(,v) = (u—up,v) Yv eV,
and assume the elliptic regularity estimates hold for some constant C; and Co:

V] 20y < Crllu — up|lr2(0),

[Vl < Collu — upll2(q)-
Then we can rewrite the L? error as
lu = unllF2(q) = alv,u — up).

Let 1 be the interpolation function of ¢ that satisfies the global estimate (2.76a)

1Y = Yillgi ) = ¥ — Yilme) < ChlY|m2q),

19 — Y1l 2 < CR Y] g2(q)-

Then, by adding and subtracting ¢, and applying linearity of a(-,-), we write

a(th,u —up) = a( —Yr,u —up) + a(Yr, u — up).
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For the first term, we estimate

a() =, u—up) < Ol =il gyl — unll g o)
< ChlY|g2(o)llu — unll i)
< Chllu — upl 2@ llv = unll g1 (o)
< CHM* Ml gy lw — unll 220 (2.98)
Note that, for simplicity of the proof, we skip the step of applying estimates over each element and

instead directly applied the global estimates. The resulting error bounds are the same in either

case. For the second term, we have

a(r, u—up) = a(ypr, u) — a(yr, up)
= a(r, u) = an(Yr, un) + an(Yr, un) — a(¢r, up)
= (f,%r) = (fn, ¥1) + an(¥r,un) — a(yr, up)
=(f- {h, Ur) + an($r,un) — a(¥r, up) - (2.99)

A B

For term A, we write for sufficiently small h:

(f = frotor) = (f =Ty f, 1)
=(f—I0_ fbr =) + (f =T, f, )
= (F = Weafor =) + (F = i1 f, ¢ = )
< If =R fllz2lle — Yillrzo) + I1f = T fll 2o ll¥ — o9 2o
< CLRF P2 f oy ¥ [ mr2(e) + Coh* T f ey 1Y 1 o)
< CHE (| F Loy + Il y) = unllz2(q)
< CHE M f| gy 1w = unll r2 (- (2.100)
REMARK 2.4.4. To simplify the expressions using global estimates, we have abused the notation

”H2_2w”L2(Q) to indicate the norm of a projection of w over the entire domain ; however, the

projection operators Hg_Q = Hg_z g are only defined locally on each element E. Therefore, the full
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expression is actually given by the contributions of the norms over each element:

1
2

T} _pw]| 20y = (Z IIHQ_Q,EwH%Q(E)> : (2.101)
E

We use this same notation for proofs in Section 3.4.2.

For term B, we add an subtract 11{¢ and I1% to both ap(-,-) and a(-,-). Then by applying the

consistency property, we have
an (b, un) — a(r, up) = ap(br — MY + T, up, — Mo + Thu)
— a(y; — T + 19, wp, — My + M)

= ap (v — 7%, up, — ) — a(r — T, up, — Tlju). (2.102)
Now, applying the boundedness of ay(-,-) and a(-,-), the triangle inequality, (2.77a) and (2.94a)

an (Y1, un) — a(@rup) < (5 — I oy lun — IRul g1 (q) + [vr — 00| g ) lun — ul
< C ([r = Pl + 1 = Pl aq)) (Jun — ulgo) + v — Tul o))
< CR* Ml s (o |¥ 20

< CRF Ml s o lu — up | 2(0)- (2.103)
Combining (2.100) and (2.103), we have the estimate

a(yr,u—up) < CHF (Jul g ) + [ flaeo)) e — unllz20)- (2.104)

Finally, combining (2.98) and (2.104), we get

lw = unllZ2 () < CR* ! (lul iy + 1 f Lre)) 1w = unll 2 @), (2.105)

which can be simplified to the desired bound.

We note that compared to the finite element method (see Section 2.3.3), the analysis of the
virtual element method is more delicate and requires more estimates. This is because the virtual
element method uses both a discrete approximation of the bilinear form and an approximation to
the forcing term. However, the VEM converges at the same (optimal) rate as the finite element

method in both L2 and H& norms.
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REMARK 2.4.5. For general problems, it is usually the case (if sufficiently regular solutions and
geometry) that the optimal convergence rate in the L? norm of uj, will be one order higher than a
norm involving the derivative of uy (such as the energy seminorm or taking the L? norm of the

stress and strain).

REMARK 2.4.6. Although the theoretical estimates in (2.80) are established using the discrete
solution uy, in numerical applications this solution is unknown except at the degrees of freedom.
Therefore, suitable discrete error measures that depend on the projection operator or degrees of
freedom are used to compute the convergence rates in numerical tests. Some examples of discrete

norms are shown later in Sections 3.5 and 5.4.

2.4.5. Element stiffness matrix and element force vector. In order to solve the resulting
discrete equations in (2.63), we convert the equations into a linear system of equations Kd = f,
where K is the global stiffness matrix and f is the global force vector. We construct the local
stiffness matrix and local forcing vectors on each element E, then the global system is assembled
with the standard finite element operations.

To build the element stiffness matrix Kp, we consider the bilinear form in (2.57) using the

dofi-dofi stabilization (2.66):

af (up, vp) = a® (I up, I vy) + S (wp, — IR wp,, vy — 1LY vp,)

N
= / VHkvuh . Vﬂkvvh dx + Z dof,(up — Hkvuh)dofr(vh — Hkvvh).
E

r=1
Since we can use any function uy, vy € Vi (E), a natural choice is to use the basis functions {¢;}.

Letting uj, = ¢; and vy, = ¢;, we define the ¢j-th component of the element stiffness matrix by:
(Kg)ij == (Kg)ij + (KE)ij (2.106a)

where K¢, is the consistency matrix and K7, is the stability matrix with components given by

(K= [ VI¥or VIITo, da. (2.106b)
E
N

(K})ij = Y dof,(¢; — Y ¢;)dot,.(¢; — TIY ¢;). (2.106¢)
r=1
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Now for the local forcing vector fg, we set v, = ¢; into (2.61). Then the i-th component of

the forcing vector is

(F5)i = (s d) = /E T y0: da. (2.107)

2.4.6. Enhanced virtual element space. The approach shown in the previous sections have
been widely studied and applied; however, in the development of the methods in the remaining
chapters, we need the concept of an enhanced virtual element space as introduced in [2] and
extended in [20]. To motivate the necessity of this space, we recall that in the forcing term (2.61)
we used the L? projection II9 , into the space Px_o(E). However, in the proof of the optimal
convergence of the L? norm (see Section 2.4.4), we found that the projection of at least ng was
needed. Since the space Vj,(E) contains k-th order polynomials, it is useful to also have the L?
projection I19. Following (2.60), we define II{ by the condition

/Hgfuhpdw:/vhpd:c Vp € Pr(E). (2.108)
E E

For p € Py_o(E), the integral on the right hand side of (2.108) can be computed using the moment
degrees of freedom (2.52); however the remaining integrals for polynomials of degree k — 1 and
k are unknown. In [2], it is suggested that the elliptic projection Hkvvh can be used as a rough

approximation to compute the missing moments. That is,

/vhpda:%/ﬂkvvhpdm Vp € [P /Pr_2(E)], (2.109)
E E

where [P, /Pr_o(E)] is the space of polynomials in P (E) that is orthogonal to Px_o(E) with respect
to the L? inner product (or equivalently can take the quotient of the spaces). In the space V},(E)
the condition (2.109) will only be an approximation; however, by modifying the definition of the
virtual element space, equality of the integrals can be enforced. We first define a space of functions

that satisfy (2.109) exactly:
ENE = {vh c HY(E) : / vppdx = / Y vppdax Vp € []P)k/Pk_Q(E)]}. (2.110)
E E
Then define the enhanced virtual element space by

Wh(E) = {’Uh S 8NkE :Avy, € Pk(E), 'Uh|8E S Ek(aE)}, (2.111)
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where By (OF) is the boundary space given in (2.50). We note that this space requires functions
Awvp, € P(FE), which makes the space richer than V,(E); however, it is shown in [2] that the
enhancing condition in (2.110) reduces the dimension of the space to the same size as V;(FE). Since
the enhanced space has the same dimension as the standard virtual element space, we use the
degrees of freedom and basis functions given in (2.53). On this space, the L? projection Hg is
now computable. In Section 3.2 we use a similar procedure to develop spaces to compute the L2
projection of the strain and in Section 5.2.2 we use this procedure to develop the space for the

stress projection.

REMARK 2.4.7. We followed the approach in [1/] to define the enhanced virtual element space
without making a choice of a basis for Py. An alternative approach is to use the construction of [2],
where an explicit basis for Py is chosen and the condition (2.110) is only enforced for the basis

functions that have exactly degree k — 1 and k.

2.5. Strong form and weak form for linear elasticity

For the remainder of this dissertation, we will focus on the solution of the boundary-value
problem for two-dimensional linear elasticity. In this section, we first introduce the governing
equations for a linear elastic material and then develop the weak form, which is used in the numerical
computations.

We consider an elastic body that occupies the region Q@ C R? with boundary 0. Assume
that the boundary 02 can be written as the disjoint union of two parts I, and I'; with prescribed
Dirichlet and Neumann conditions on I',, and T', respectively (see Figure 2.2).

The strong form for the elastostatic problem is:

V-o+b=0inQ o=0c! inQ, (2.112a)
e(u) =Vu= %(Vu + VauTl), (2.112D)
o(u) =C:e(u), (2.112¢)
u=wug on Iy, (2.112d)
oc-n=t only (2.112e)



FIGURE 2.2. Two-dimensional solid that occupies the region €2 with body force b,
and is subjected to displacement and traction boundary conditions.

where b € [L?(£2)])? is the body force per unit volume, o is the Cauchy stress tensor, € is the
small-strain tensor with V(-) being the symmetric gradient operator, u is the displacement field,
ug and t are the imposed essential boundary and traction boundary data, and m is the unit outward
normal on the boundary. Linear elastic constitutive material relation (C is the material moduli
tensor) and small-strain kinematics are assumed.

Now to convert to the weak form, we take the inner (dot) product of (2.112a) with a test function

v € [H!(2)]? that vanishes along the Dirichlet boundary I, and integrate over the domain :

/V-U(u)-'vdw—i—/b-'vdwzo.
Q Q

Then by applying the divergence theorem and simplifying, we rewrite the expression as:

/Qa(u):s(v)dm:/Qbmd:c—l—/m(a(u)-n)-vds,

where o(u) : €(v) is the tensor contraction operator. By assumption, the boundary is written as

the disjoint union 92 = I';, U I'y; therefore, we write the expression as

/Qa(u):a(v)dm:/gb~vdm+/u(a(u)~n)~vds+/rt(a(u)~n)~vds.

After using the conditions that o(u)-n =t along I'y and v = 0 along Ty, the resulting equation

is given by

/a(u):a(v)dm:/b~vdm+/ t-vds.
Q Q Iy
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Then, the associated weak problem for the linear elastic boundary-value problem is to find the

displacement field u € V', where V := {u : u € [H(Q2)]?, u = ug on ', }, such that
a(u,v) =4(v) Yv eV, (2.113a)
where Vg := {v:v € [H'(Q)]?2, v=0o0nT,} and

a(u,v) = / o(u):e(v)de, (2.113b)
Q
l(v) = / b-vdw+/ t-vds. (2.113c)
Q
2.6. Virtual element method for linear elasticity

Following the construction of the VEM for Poisson’s equation, let 7" be the decomposition of
the region § into nonoverlapping polygons. For each polygon E € T", denote its diameter by hg
and its centroid by . Each polygon E consists of Ng vertices (nodes) with Ng edges. Let Eg be

the set of all edges of E' and denote the coordinates of each vertex by @; := (x4, y;).

2.6.1. Energy projection. In this section, we introduce the k-th order energy projection
operator for linear elasticity. Since many of the following chapters utilize this projection, we provide
a more detailed outline for its construction. To construct the necessary polynomial projection
operators, we will need a basis for the space of polynomials [Py (E)]?. Define the k-th order scaled

monomial vectorial basis set as:

_ 1 0 — 0 k 0
M (E) = ; Lot : : Ly : (2.114a)
0 1 £ 3 0 n 0 n*
where
r—ITE Y —YE
— — _ 2.114b

The a-th element of the set Mk(E) is denoted by m, and we define the matrix N? that contains

the basis elements as

. 1 0 — 0 ... ¢ 0
NP .= nono& g ) (2.114c)

01 & —¢£0mn ... 0 nf
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Based on the argument for the Poisson equation, the projection we use for the standard virtual
element method with linear elasticity is the energy projection satisfying a” (p, up—Ilfu,) =0 Vp e
[Pr(E)]?. Rewriting as an equivalent expression in terms of the basis functions m,,, we have that
II7uyp, is defined by the orthogonality condition:

/ o(my) : e(llfuy) de = / o(m,):e(up)dr Ym, € ﬂk(E) (2.115)
E E

We notice that for o = 1,2, 3, the vector functions m,, represent rigid-body modes. That is, they
satisfy o(m,) =0 (a=1,2,3). So there will be three trivial equations, 0 = 0, and the projection
is only uniquely defined up to a rigid-body mode. To fully define the projection, we introduce the
additional conditions that the nodal averages of uj, and its projection II{uy, for a rigid-body mode
must be equal:
Ng
1 €
o > (up — M) (x)) - ma(z;) =0 (o =1,2,3). (2.116)
j=1

Combining the conditions, we have the system that defines the energy projection as

/ o(m,) : e(llfuy) de = / o(my) e(v)de (a=4,5,...), (2.117a)
E E

L

NE anuh x;) - ma(x;) Zuh x;) -ma(xz;) (a=1,2,3). (2.117b)

Further details for the case k = 1 can be found in Sections 3.1.2 and 3.3.1.

REMARK 2.6.1. In general, the condition (2.116) can be replaced by any computable operator
Py(+,-) and the condition
Po(Uh*HE’th,ma) =0 (a: 17273)

The choice in (2.116) is to define Py(-,-) as
L

PO('U,, ’U) = NiE
J=1

u(z;) - v(z;).

Another common choice (see [15]), valid for any k > 1, is to use an integral average over the

boundary

1
|OE| Jog
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or for k > 3, we can use the element average

1
Py(u,v) := / u-vdr.
|El /B
2.6.2. Virtual element space. We now extend the enhanced virtual element space for scalar
fields given in (2.111) to vector fields. For each element E, define the enhanced space as

o -pde = [ Moy piz vpe [Pk/m_2<E>P}, (2.119)
E E

et ={on cle) s [
and the virtual element space by
Vi(E) = [Vi(B))? = {v, € [ENE?: Avy, € [PL(E)]?, vhlor € Br(9F))*}, (2.120)

where the notation [U]? denotes a space containing vector functions where each component lies in
the space U. In particular, each component of the vector-valued functions in V},(E) will be functions
in a scalar virtual element space. Therefore, the dimension of this space is twice the dimension of
the scalar space and for an element F with Ng vertices is given by 2N = 2kNg + k(k — 1), where
N is the number of DOF of the scalar space. Any function v, € V,,(F) can be described by the
degrees of freedoms and basis functions from the scalar space. That is, let {¢;} be the scalar basis

associated with the degrees of freedom (2.53), then we can write any vy, as:

vi
v} 0 0 ... 0 vl
LA P11 b2 N .2 (2.121)
1)]21 0 0 0 (bl ¢2 ¢N .
vk
N N
= pidofi(v}) + > n4idof;(vy) (2.122)
=1 =1
2N
=) pidof;(vp), (2.123)
=1

where ; = (¢;,0)7 and ¢n4; = (0,¢;)7 are the vector basis functions, and dof;(v,) = dof;(v})
and dof n;(v,) = dof;(v}) are the scalar degrees of freedom of a vector-valued function vy, (for

i=1,2,...N).
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2.6.3. Discrete problem. Following the discussion for the Poisson problem, if we use the

energy projection, then the discrete bilinear form is written as
r = o (IT5 ¢ SE (uy, — 11 — 115 2.124
ay (wn,vn) = a” (Mjup, Tjop) + 57 (up — jup, vp — o), (2.124)

for some stabilization term S¥(-,-). For the Poisson problem, the simplified stabilization term (2.66)
is usually sufficient (see [30]); however, in elasicity, the bilinear form scales with the material
modulii tensor, so the corresponding stabilization matrix S¥ in (2.65) should contain suitable
scaling parameters. There are a few common choices for the stabilization matrix S as given
in [86], the simplest choice is to include a constant parameter that is proportional to the trace of

the material modulii tensor C (scaled dofi-dofi stabilization). That is, we let
(8%)ij = 045 (2.125)

Alternatively, we can scale each of the diagonal terms separately (so-called D-recipe stabilization)

tr(C
(55 = max (15 P (T M) ) (2.1250)

The local forcing functional is given by

Ef(’uh):/ﬂgb"vhdm%—/ t-vpds
E I'tNOE
:/ b- vy, da:+/ t - vy, ds, (2.126)
E T'yNOFE

where the final expression is obtained by applying the orthogonality property of the L? projection

operator.

2.6.4. Matrix-vector representation. For later computations, it is more convenient to re-
duce the tensor expressions into equivalent matrix and vector representations. We first note that
for plane elasticity we can express the components of the stress and strain tensors as symmetric
2 x 2 matrices. However, instead of using symmetric matrices, we adopt Voigt notation to represent

the matrices as 3 x 1 arrays. In particular, for any symmetric 2 x 2 matrix A, denote its Voigt
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representation A by:

aiy
ap; a2 —
A= , A=< a9 - (2.127)
a2 a2
a2

On using Voigt (engineering) notation, we can write the stress and strain in terms of 3 x 1 arrays:

011 €11
T=1<00¢, E=1 €99 (- (2.128)
012 2e12

Furthermore, on using these conventions we can also express the strain-displacement relation and

the constitutive law in matrix form as:
o=Cs = Su, (2.129a)

where S is a matrix differential operator that is given by
K
ox
S=|0 2|, (2.129b)
0
dy

and C is the associated matrix representation of the material tensor that is given by

1 v 0
Ey
C = a0 | 1 0 (plane stress), (2.130a)
1—v
00 ==
1—v v 0
Ey .
C = v 1—v 0 (plane strain), (2.130b)

1-2v
0 0 =

where Ey is the Young’s modulus and v is the Poisson’s ratio of the material.
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2.6.5. Element stiffness matrix and element force vector for elasticity. Following (2.106a),

the element stiffness matrix for linear elasticity has the following form:
Kg =K+ K3, (2.131a)

where K7, and K73, have components given by

(K%)ij:/EU(HiCPi)is(HiCPj)dw (2.131b)
2N 2N

(K3)ij =Y dof,(p; — i) Sfidot(p; — ;) (2.131c)
r=1 s=1

where we have not specified a stabilization matrix S¥.
For each element F, the element force vector is given by
(fE)z = / b- Hggol- dx + / t- w; ds, (2.132)
E I'yNoE

where Hg is the L? projection operator into the space of vector-valued polynomials of degree less

than or equal to k. For the standard virtual element method, we only outline the construction of

i }'

the element stiffness and forcing terms. A more detailed implementation can be found in |
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CHAPTER 3

Stabilization-Free Virtual Element Method

In this chapter, we first construct a low order virtual element method that does not require
a stabilization term. In the standard virtual element method, a stability term is usually required
to preserve the coercivity of the discrete bilinear operator; however the choice of the stabilization
term in the VEM is non-unique and is problem dependent. An incorrect choice of stabilization can
result in overly stiff and inaccurate results. Therefore it is of interest to construct a method that is
independent of a stabilization term. The main idea of the stabilization-free approach, as described
for the Poisson problem in [20], is to modify the virtual element space to allow for the construction
of a higher order L? projection of the strain (gradient). This process requires additional internal
degrees of freedom; however, these can be removed by utilizing a secondary projection operator of
the displacement field as originally shown in [2]. A similar approach is given in [54]; however, they
used static condensation instead of a secondary projection to remove the excess degrees of freedom.

We start by defining the necessary polynomial spaces, and projection operators for the dis-
placement and the strain fields. With the projection operators on hand, we construct an enhanced
virtual element space and define an alternate weak bilinear form that does not require a stabiliza-
tion term. Next, we detail the numerical implementation of the method, show that the problem is
well defined, and give convergence error estimates. We conclude the chapter by presenting numer-
ical results of the SF-VEM on a series of benchmark problems in linear elasticity: the patch test,
bending of a cantilever beam, infinite plate with a circular hole under uniaxial tension, and hollow
cylinder under internal pressure. The numerical convergence rates are found to be in agreement
with the theoretical results.

This chapter is based on the work published in [37].

3.1. Polynomial space and projection operators

We present the derivation of the two projections that are used in the stabilization-free VEM:

energy projection of the displacement field and L? projection of the strain field.
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3.1.1. Polynomial basis. For the initial stabilization-free virtual element method, we only
consider a first-order method; therefore, we use a first-order polynomial projection to approximate
the displacement field inside an element. Over each element E, we define [P;(E)]? as the space of
of two-dimensional vector-valued polynomials of degree less than or equal to 1. On each E, we will

also need to choose a basis. In particular, we choose the basis as:

— 1 0 — 0
M(E) = ) ) K ) K ) f ) ’ (31)

0 1 13 13 0 U]
where & and 7 given in (2.114b). The a-th element of the set M (E) is denoted by m,. We note
that this basis is equivalent to the first six basis functions given in (2.114a).
In the stabilization-free approach, we directly approximate the strain tensor (matrix) inside an
element with a high-order matrix polynomial. Therefore, we also define the space IP’g(E)b?;Iﬁ that
represents 2 X 2 symmetric matrix polynomials of degree less than or equal to £. Since the matrices

are symmetric we can represent them in terms of 3 x 1 vectors using Voigt notation in (2.127). On

each element F, we choose the basis

1 0 0 13 0 0 n* 0 0
‘Z/\E2X2(E) = 0 ) 1 ) 0 ) 0 ) 5 ) 0 PRI 0 5 T]Z 5 0 . (32&)
0 0 1 0 0 3 0 0 n*

We denote the a-th vector in this set as T, and define the matrix IN? that contains these basis

elements as

1 00&00 ...7° 0 0
NP:=10100 €0 ... 0 n° 0f- (3.2b)
00100¢E...0 0 7

3.1.2. Energy projection of the displacement field. For completeness and since we rely
on the first-order energy projection in the remainder of this work, we detail the construction of
the first-order projection denoted by II°. Let E be any generic element with H(E) := [H*(E)]%.

We now define the energy projection operator 11 : H!(E) — [P1(E)]? by the unique function that
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satisfies the orthogonality relation:
af(my, v —1IFv) =0 VYm, € ]/\Z(E), (3.3)

where ﬁ(E) given in (3.1). Note that for a = 1,2, 3, which corresponds to the rigid-body modes,
we obtain o (m,) = 0. So we obtain three trivial equations, 0 = 0. To fully define the projection,
we need to choose a suitable projection operator Py : H(E) x H'(E) — R. In particular, we

select it as a discrete L? inner product on E:

Py(u —Z u(x;) - v(x;), (3.4)

and require the condition

Ng
Py(mgy,v —1I°v) = ]\}E Z (v —II*v)(x;) - ma(x;) =0 (a=1,2,3). (3.5)

On writing out the expressions, we have the equivalent system

/a(ma);s(n%)dm:/ o(ma) : e(w)dz (o =4,5,6), (3.6a)

E E

1 Ng Ng

— ZH€ v(xj) - ma(x;)) Z -mq(zj) (a=1,2,3). (3.6b)
] 1 Jj=1

We can also rewrite this using the matrix-vector representation. For the right-hand side of (3.6a),

we use (2.128) to write

o (me) : £(v) = £(0) - o (mmg) = (s@))TU(ma)

= (Sv)T (CSm,).
Similarly, the left-hand side can be written as
___\T T
o(ma) : e(IFv) = (s(H%)) (CSm,) = (STEv)” (CSma) .
Therefore, we can express (3.6a) in matrix-vector form as:

/ (SIF0)T (CSmy) da = / (Sv)T (CSm,) da. (3.7)
E E
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3.1.3. L2 projection of the strain field. We define the associated L? projection operator
() : HY(E) — IP’g(E)gyme of the strain tensor by the unique operator that satisfies
(e, e(v) — e(v))p =0 Vel € Pg(E)gerg, (3.8a)

where we use the standard L? inner product:

(eP.e)p = / el . ede. (3.8b)
E

Writing out the expression in (3.8a), we have

/Eep e (v) da :/ el e(v)dx. (3.9)

E

On expanding the right-hand side of (3.9), and on applying integration by parts and the divergence

/sp:s(v)d:c—/V v-eP)d
E E
:/ n-(v-ef)d
oF

theorem, we obtain

m\m\

Then, (3.9) becomes

/Eep:H?s(’u)dm:/aEv~(sp-n)ds—/Ev-(V-sp)dm. (3.10)

On using the matrix-vector representation in (2.128), the first term on the right-hand side of (3.10)

becomes
P
» » 0 €11
€11 €12 ni ny ng _
v-(e!-n)=vT o =l by ¢ 1= vI N9Fep, (3.11a)
€12 €992 n9 0 no Ny »
€12

where N9F is the matrix of element normal components, which is defined as

ng 0 n
NOE — | 1. (3.11b)

0 no N1
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For the second term on the right-hand side of (3.10), we have

851171 + 081172 Kl 0 9 11
v (V-e?) =0l { O L =T | 9" Wl b=l 9ep, (3.12a)
o<l Oeb, 0 9 9 22
or T oy ay ozl |
€12
where 8 is a matrix operator that is defined as
9 0 2
9= | Wl (3.12b)
0o 92 2
dy Oz
Now we can express (3.10) as
el : e (v) dx = vINOepds + | vTOeP da. 3.13
14 *
E OF E

Since H?s(’u) is the projection of the strain tensor onto symmetric matrix polynomials, we

use (2.128) to represent it in terms of a vector. In particular, we set

(TP (v))11
Me(v) = 4 (Me(v))as

2(I1Pe(v))12

Now, we can also write

—__\T
el : Me(v) = e (v) - eP = (H?E(U)) ePp.
On using the above relations in (3.13), we seek the L? projection that satisfies

— \T
/ (Hgs(v)> & dx = / v NOPeP ds + / v P dx VP € Py(E)2L. (3.14)
E OFE E

3.2. Enlarged enhanced virtual element space

With the preliminary results in place, we now construct the discrete space for the stabilization-

free virtual element method. Let E be any polygonal element from 7", then following [20], we
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select the smallest value ¢ = £(E) that satisfies’

g(e +1)(£ +2) — dim(P5™(E)) > 2Ng — 3, (3.15)

where N is the number of vertices (nodes) of element F and P§"(E) is the space defined by
Py (E) = {sp € Py(E)35E / (v—Pr(v))|og - (e’ m) ds =0 V'v} :
oF

where P,(v) is a projection of v onto rigid-body modes with e(P,(v)) = 0. It can be shown that

the dimension of the space IP’llfer(E) is bounded from above, and we include this result as a lemma.

LEMMA 3.2.0.1. Let E be any polygonal element and £ € N. Then

dim(P5"(E)) < =(3¢+1). (3.16)

N~

Proor. Following [20], we define for each element E, the subspace of polynomials
He1(E) = {p € [Pey1(B))?: V- o(p) = 0}.

For a given ¢, this space is shown to have dimension 4¢ 4+ 6 in [31]. We then consider the space
o(Hy11(E)), and it can be shown that this space has dimension 4/+3. Both Pker(E) and o(Hy 1 (E))

2%2 o the sum PKe*

Sy ke (E) + o (.1 (E)) is also a subspace and the dimension

are subspaces of Py(FE)

is bounded by:

dim(Py(E)253) > dim(Py™(E) + o (Hei1(E)))

sym

— dim(BY(E)) + dim(o(Hy (B)) — dim(PE (B) 0 o (. (E))).

Now we show that P5(E) N o (Heyi(E)) = {0}. To this end, let p € Hyy1(E), and assume that
o(p) € P5(E). Then we have for any v € HY(E),

/ V-o(p): (v— P (v)) de=0.
E

n [54], the following inequality for £ = ¢(E) is proposed: 3(041)(¢+2) > m — 3, where m is the total number of
degrees of freedom, which includes an additional £(¢ + 1) degrees of freedom due to extending the vector polynomial
approximation space. However, a counterexample on regular polygons (A. Russo, personal communication, April
2022) shows that this condition is not sufficient.
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On applying the divergence theorem and using the definition of Pifer (E), we can write

L)E (W = P(0))|os - (0(p) - 1) ds—/ E(U—PT(U)):a'(p)d:v——/Es(v):a(p)—O.

E

This is true for all v, which implies that o(p) = 0. Otherwise, suppose this is not true, then
following a similar argument from [20], there exists an open set w C E such that o(p) # 0 and in

particular p # 0 over w . Now define a (smooth) bump function by:

—V.o(b,)=p inuw,
b, =0 on F\ w.
Then, we consider

0= (U(p)a‘g(bw))E = (U(p),&'(bw))w = (E(p),o‘(bw))w

On applying the divergence theorem, we obtain

0 = (e(p), o (b)) = / e(p)  o(b) d

w

ow

[

which leads to a contradiction, and therefore o(p) = 0 holds on E. This implies that P (E) N

| @) pds— [p(v-0w.) da
dx

>0,

o(Hy i (E)) = {0}. Now it follows that
dim(PE(E)) < dim(Po(E)22) — dim (o (He41 (B))) + dim(PE () 0 o (g1 (E)))
_ %(H 1)(€+2) — (40 + 3)
= g(se +1). ]

Combining (3.16) and (3.15), we get a sufficient bound on the number of vertices required for

any £. In particular, we have a more restrictive bound:
Ng <20+ 3. (3.17)

On using this value of £, we define the set of all functions v € H'(FE) that satisfy the property

that the inner product of the function and any vector polynomial in [P,_;(E)]? is equal to that of
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the inner product with the energy projection. That is, we define the set EN- ‘19 ; as

5/\/55 = {’U : /E'v -pdx = /Eﬂav -pdx Vp e [IP’g_l(E)P} . (3.18)
We define the local enlarged virtual element space as:
‘G,EE = {’Uh S 5./\/1E’£ : Avy, € [Pg,l(E)P, fye(vh) S []P’l(e)]2 Ve € SE, v € [CO(BE)]Q}, (3.19)

where 7€ (+) is the trace of a function (its argument) on an edge e;. In the above space we require
functions to be linear on the edges, in which case we can take the degrees of freedom to be the
values of the function at the vertices of the polygon E. There will be a total of 2N degrees of
freedom on each element FE.

With the local space so defined, we define the global enlarged virtual element space as
‘/173 = {’Uh € [Hl(Q)]Q : Uh|E S ‘/1{52 for £ = E(E)} (3.20)

For each E, we assign a suitable basis to the local virtual element space VlEt; Let {¢;} be the set of
generalized barycentric coordinates (canonical basis functions) [61] that satisfy ¢;(x;) = d;;. We

express the components of any v, € Vf% as the sum of these basis functions:

\
vl
v} 0 0 ... 0 va
S 2 G LR PN 2L e, (3.21a)
v? 0 0 ... 0 ¢1 ¢2 ... én, :
2
\UNE
where we define INV as the matrix of vectorial basis functions:
o1 P2 ... ON O 0 ... o0
N'U — B = ©1 ... LPNE .. QOQNE] . (321b)
0 0 ... 0 ¢1 ¢2 ... &N,

We now define the weak form of the virtual element method on this space. On defining a
discrete bilinear operator af : VlEé X Vl}% — R and a discrete linear functional Kf : VlEg — R, we

seek the solution to the problem: find u; € Vlbz such that

af(uh, ’Uh) = Ef('vh) Yoy, € ‘/11:‘% (3.22)
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Following [20], we introduce the local discrete bilinear form in matrix-vector form:

oF (wp, vp) = /E (W0e(on)) € ey d (3.23)

with the associated global operator defined as
an(un, vp) =Y _ af (up, vp). (3.24)
E

We also define a local linear functional by

0E (vy,) :/ vgbhdw—i—/ vitds, (3.25)
E T.NIE

with the associated global functional
Cn(vn) =05 (vn), (3.26)
E

where by, is some approximation to b. For first-order methods it is sufficient to consider the L?

projection onto constants, namely b, = H8b.

REMARK 3.2.1. We note that the discrete bilinear form af(', -) given in this section differs
from the standard VEM (2.124). The first difference is that (3.23) contains only the polynomial
approzimation term and does not have a stabilization term ST (-,-). Another major difference is
that the strain operator is directly approximated by a projection operator H?E(-) instead of as the
strain operator acting on a polynomial €(II°(+)). For linear polynomials, these two approaches are
equivalent; however, it is shown in [1/] that for high order methods, the standard VEM bilinear

form can lead to suboptimal results in certain problems.

3.3. Numerical implementation

With the definitions of the discrete spaces and projections on hand, we now detail the im-
plementation of the method. We present the derivation of the equations to compute the energy

projection, the L? projection, and the element stiffness matrix.
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3.3.1. Implementation of energy projector. We start with the energy projection. From

(3.7), we have for a = 4,5, 6, the equation

/ (SI°vp) T (CSmy) da = / (Svp)T (CSmy,) da.
E E

In particular, we are interested in the case when v, = ¢;, the basis functions in VI‘% By definition

of the energy projection, II°¢; is a vector polynomial of degree one. Therefore, we can expand it

in terms of its basis functions:

6

Fp; = Z S%mg.
B=1

We can express the left-hand side as

/E(Sne()oz) (Csma dw— ZSB/ Smﬁ (CS’ma) dx.

B=1

Define the matrix G for § =1,2,...,6, and a = 4,5,6 by
Gop = / (Smp)" (CSm,) de.
E

Similarly, the matrix B representing the right-hand side of (3.7) becomes

B — /E (S (CSmy) da.

(3.27)

(3.28)

(3.29)

(3.30)

To fully define these matrices for all a, we consider the additional projection equation (3.6b).

When v = ¢;, we obtain

1 & 1 &
7ZH pi(x;) - ma(z;) = Z‘Pz ;) - ma(T;).
Jj=1 ] 1

As we have done previously, on expanding II¢p; with (3.27) leads to

Ng
1
ZSBNE E mg(x;) - my(x;) = Z:goZ () - ma(xj).
p=1 Ej=1
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Now we can define the remaining o = 1,2, 3 terms of the matrices G and B as
. 1 & ) 1
af = FEj_l mg(xz;) - ma(z;), Bai = FEj

Ng

Combining the results, we obtain G for all 8 =1,2,...,6:

L W X me(s) ma(z)) (a=1,23)

Gop =
[z (Smg)" (CSmy)dz  (a = 4,5,6),

and for all i = 1,2...,2Ng, we have

N
= ]\}E Ej:El pi(xj) -ma(z;) (@=1,2,3)
B

[ (Sen)" (CSmy)dz (o =4,5,6).

pi(m;) - ma(z)).
=1

(3.32)

(3.33a)

(3.33b)

After combining these equations, we can determine the coefficients for the projection as the solution

of the system:

GII = B,

(3.34)

where (IIS)g; = sfé. We start by considering the matrix G. For a = 1,2,3, G is the sum of

polynomials evaluated at the vertex points, which can be directly computed. For o« = 4,5, 6, since

the basis functions m, are linear, the matrix differential operator acting on m, will result in a

constant vector. For a constant material matrix C, the expression (Smgs)’ (CSm,,) is a constant

matrix. Therefore, we can write:
G.s = (Smp)T (CSm,)|E| (a=4,5,6).

On using (3.33b) and simplifying, we can write B for v = 1,2,3 as

;

bi(x5)
N, .
NLE > cme () = N%gmé(a:l) (t=1,2,...,Ng)
_ 0
Bon =
0
=3 ‘ma(x;) = gomi(xi) (i=Ng+1,Ng+2,...
i(x;)

\

o1

,2NEg),



where m¥ is the k-th component of m,. For a = 4,5,6, we can apply the definition of the matrix

differential operator and use the divergence theorem to write

Bui = [ (S (CSm,) do - ( [ se0” d“’) osm. 3. (

=1

/ ;' NOF ds> CSm,,

€j

where e; is the j-th edge of the element F and N9% is the matrix of normal components given

in (3.11b). On simplification, we obtain for a = 4,5, 6,

(fei_l <¢m§i1) 0 ¢m§i1)> ds
+ /.. (qugi) 0 qﬁmé“) ds)CSma (i=1,2,...,Ng)
(fei_l <0 pnl=V ¢mg¢1)> ds

+ /., (o pinb qﬁmg")) ds) CSmq (i=Ng+1,Ng+2,...,2Ng).

These are integrals of a linear function over a line segment, which are exactly computed using a

two-point Gauss-Lobatto quadrature scheme.

3.3.2. Implementation of L2 projector. Now that we have a computable form of the energy

projection, we can construct the L? projection. From (3.14), we have

— \T
/ (Hgs(uh)) el dx = / vE NOEeb ds + / vl 9eP de. (3.35)
E OFE E

On expanding vy, in terms of its basis in Vl}%, we obtain v, = IN'0,. We can also expand the

symmetric function €P in terms of the polynomial basis in Py(F )g;n% with eP = NPeP. Following [6],

we also define a matrix IT" such that we can write the projected strain in terms of the polynomial

basis in IP’g(E)gerﬁ. In particular, we write

H?E(’Uh) = Npl_.[m’f)h,
Substituting these into (3.35), we obtain

/ (NPII™%),)" NP&P da = /
E

(NVop)" NOFNPeP ds + / (NVop)" ONPEP da,
OF

E
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which on simplifying becomes

/ of (™ NP)T NPeP da = /
E

oF (NY)T NIE NPeP ds + / oF (NV)TONPEP de.
(o))

E

Since this is true for all v;, and P, we can rewrite the equation as:
T
God ( / (N?)T di:n) ™3, = (67)7 ( / (N;?ENP) Nvds — / (ONP)T N”dm) B
E OE E

So now we can solve for the projection matrix II" via

n" =G 'B, (3.36a)
where G and B are defined as
G ::/ (NP)T NP de, (3.36b)
E
OF nrp) L T
B = (N* NP) N"ds —/ (ONP)" NV da. (3.36¢)
OF E

We can explicitly construct the forms for G and B. From (3.36b), we expand the integrand
(NP)T NP, where NP is given by (3.2b). If we let I be the 3 x 3 identity matrix, we can write NP
as

NP =1 ¢I nI...n'I

and the product (IN?)T NP can be written in compact form as:

I &I nI ... n'I

&I 1 eI ... &I
(NP)Y'N? = | n1  enI

_7761' gnéI né—l—lI 7]221'

Integrating each term of the matrix, we find that we only need to determine integrals of the form
/ Enfde for 0<r+k<20,
E

which can be computed either by partitioning F into triangles and then adopting a Gauss quadra-

,41].

ture rule on triangles or by using the schemes developed in |
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The construction of the B matrix reveals the major difference between the stabilization-free
method and a standard VEM for plane elasticity. For the first term in (3.36¢), we expand the

integral over OF as the sum of integrals over edge e;:

T T
/ (NfENp) Nvds=Y" / (NfENp) N, ds.
OF i=1 7€

Now we examine NV|,,

N, = ¢1 ¢2 ... ong O ... O

€

By definition of the Lagrange property, each ¢; is only nonzero when evaluated at the i-th degree
of freedom, therefore the only contributions along the edge e; are from ¢;|e, and ¢iyile,;. As a

consequence, N[, has only four nonzero elements, namely

00 ... ¢ilee digile, ... 0 0 ... 0
N", = Hles Fi21l : (3.37)

00 ... 0 0 ..o Gile, divtle, ... O

We note from (3.19) that ¢; and ¢;41 are linear functions along the edges so they can be represented
exactly via a parametrization of e;. We also note that the product N2 NP is at most polynomials
of degree ¢, so that the terms of the form (NP NP)TN?|.. are at most a polynomial of degree
¢+ 1. This suggests that if we parametrize e; by ¢ € [—1, 1], we can use a one-dimensional Gauss
quadrature rule to compute these integrals. In particular, let r;(¢) : [-1,1] — e; be a parametriza-
tion of the i-th edge and let {wy,--- ,w;}, {t1, -, } be the associated Gauss quadrature weights
and nodes. Then, after simplifications we have

[ (orne) N as =180 ] C(veENY N de = S (NPT NG ),

-1

2 2 &

On examining the second term in (3.36¢), we note that 8 is a matrix operator of first-order deriva-
tives, and INP is a matrix of polynomials of degree less than or equal to £. This implies that the
product NP is a matrix polynomial of degree at most £ — 1. Then the product (ONP)T NV con-

tains terms of the form [ g Pe—1- ;. On applying the enhancing property of the space (3.19), we
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can replace these integrals with the integrals of the elliptic projection, that is

/pél'CPj dx = / po-1 - ;) dx,
E E

which in matrix form can be written as

/ (ONP)T NV dx = / (ONP)TTIE NV dax, (3.38a)
E E

where we have the natural definition
IEN" = [[Fp Fgy ... Moy, (3.38b)

The integral in (3.38a) is computed using a cubature scheme. With these matrices, we can compute

the L? projection I1)e(vy,) using (3.36).

3.3.3. Element stiffness matrix and force vector. To construct the element stiffness, we

first rewrite the bilinear form af in terms of the matrices that we have constructed:

af (up, vp) = /E (Hgs(vh)>Tcﬂgs(uh)dcc
_ [E (NPIT3,)" C (NPI™aay) dax
— &7 ()" ( /E (N?YTCNP da:) ™,
Then, define the element stiffness matrix Kg by
Kp = (II™)7 < /E (N?YTC NP d:p) ", (3.39)

where IT™ is given in (3.36).

We construct the forcing term given in (3.25) as

CE (vy) :/vgbhdaﬂ—/ vitds,
E I\NOE

which is rewritten in the form

(E(w) = (5n)" ( [ @vyede+ [

(N")Tt ds> .
I':NOFE
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The element force vector is then defined as

fe :_/E(N”)Tbhdm—i—/rmaE (N")Ttds. (3.40)

Since we are using a low-order scheme, we use the approximation

/ (N°)L'by, dx ~ (NU)T/ by dx ~ |E|(N")Tb(xg),
E E

where (INV)T is the matrix of average values of ¢. Specifically, denoting the j-th vertex by x;, we

define the average value as

L
¢:N7EZ¢(CC]‘),
7j=1
and let
- = - 1 1 1
0 0 ... 0 ¢1 ¢2 ... bny 0 0 ... 0 5 w - w=

For constant tractions, we obtain a closed-form solution for the traction integral:

(/rmE(NU>TdS>t: > / (N)T),, ds | %

ej€8E J

Now applying a similar argument as in (3.37), we can simplify this integral as

1 1
= = 0 0 0

/ (N*YT)., ds = |e;| 2 3
ej 0O O % % 0

3.4. Theoretical results

We examine the well-posedness of the discrete problem (3.22) and derive error estimates in the
L? norm and energy seminorm. To simplify the analysis we resort to the study of the boundary-
value problem with homogeneous Dirichlet boundary data. We expect the results can be extended

to the inhomogeneous case.

3.4.1. Well-posedness of discrete problem. The approach follows ideas from [19], and
we start by showing that the energy seminorm is equivalent with the chosen norm for the space
Vi, and use this norm to show that the bilinear form in (3.24) satisfies the properties of the

Lax—Milgram theorem. We begin by first defining a candidate discrete norm operator:
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DEFINITION 3.4.1. Let ay, be the bilinear form defined in (3.24), then define an operator ||.||¢ :

‘/173 — R by

[V

[ulle := (an(u, w))

= (Z aE(u,u)) . (3.41)

For specific £ values, this operator is a norm and is equivalent to the natural norm in the space
HL()]?. The main difficulty is showing that the operator is positive definite, i.e., [|[ule =0 =
0 y

u = 0. To this end, we introduce a theorem given in [19]:

THEOREM 3.4.2. Let E be any element in the space, and u € VlEé Choose ¢ € N satisfying
%(z +1)(0 +2) — dim(P}"(E)) > 2N — 3,
or in general choose ¢ € N satisfying
Ng <2043,
then we have
Me(u) =0 = e(u) = 0. (3.42)

To prove this theorem, we introduce the following lemma:

LEMMA 3.4.2.1. Let u € Vﬁ, with £ > 1, then the following implication holds
Me(u) =0 = e(Il°u) = 0. (3.43)
PROOF. Assume that I19e(u) = 0, then by definition of the L? projection, we have

(e(u),eP)p =0 VeP € Py(E)2%:

sym*

In particular, if we let p € [P1(E)]? , then o(p) € Po(E)2%2 C Py(E)%%2. So we have

sym sym-*

(e(uw),o(p))p =0 Vp e [Pi(E)
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Applying the definition of the energy projection II°u, we get
(e(ITfu),o(p))r = 0.
Since this is true for any p € [P1(E)]?, this results in
e(Ilfu) = 0. O

In order to show that the defined operator is a norm we use an inf-sup type argument. To
establish the results, we construct some additional spaces and operators. To motivate the construc-
tions, we assume that the condition Hgs(u) = 0 holds. This implies that the following equality

holds:

sym"*

/ e(u) : ePdx =0 VeP € Py(E)22
E
Applying the definition of the L? projection in (3.8), we also obtain

/Ee(u) :ePdx = 0.

Using the divergence theorem, we can rewrite this equality as

/Es(u):e”da}—/aEu-(sp-n) ds—/Eu-(V-sp) dx = 0.

We note that V - e? € [P;_1]? C [P;41]?, and using the definition of the space VlEg , Lemma 3.4.2.1

and applying the divergence theorem, the second term becomes

/Eu~(V-sp) dw:/Eﬂau- (V- &?) da::/aEH":u-(sp-n) ds.

This gives us the equality

O:/Ee(u):spdw:/aEu-(sp-n) ds—/ IIFu- (e - m) ds

OF

= / (u —ITu)|sg - (€ - n) ds, (3.44)
oF

where we use the notation (u — II°u)|sg to explicitly indicate that the function is evaluated on the

boundary. This suggests that we study the operator of the form [, v-(Q -n)ds.
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DEFINITION 3.4.3. Define the bilinear operator b: Rg(E) x [V]? = R by [19]

b(v, Q) = /8Ev (@) ds, (3.45)

where v is defined over the boundary OE. The spaces Rq(E) and [V']? are chosen later.

In particular, we study the special case when v = (u — II°u)|gp. Since we are interested in
all such functions u € VlEg7 we study the space of all linear combination of the basis functions

(pi — If¢p;)|oE. This motivates the next definition:

DEFINITION 3.4.4. Define the space Q(OFE) by
Q(OF) := span{(p; —I°¢@;)|pp : i = 1,2...,2Ng}. (3.46)

Now given a function on Q(JF), we need to extend it to a function defined on the entire element
E. One way to achieve this is to first triangulate the polygon E. Let 7 C F be any triangular
subelement. Denote 7; as the triangle with vertices x;, x;11, @, for each i = 1,2,..., N, where
x. is the centroid of E. We denote the edge connecting the vertices x; and x. by e;, and the unit
outward normal as n®. With this triangulation, we extend v to be a function © on E by requiring
that ¥ agrees with v|. over each edge e and o|, € [P1(7)]? over every triangular element 7. To
obtain a unique vector-valued function, we require that v(x.) = 0. We use this to define the space

Rg(FE) of extended functions over the entire element FE.

DEFINITION 3.4.5. Define the space Rg(E) by
Ro(E) = {v:9|, € [P1(7)] V7 C E, Dlor € QIE), v(zc) = 0}. (3.47)
Using (3.45), we express (3.44) as
b(u — IT°u, eP) = 0. (3.48)

But the extended function u — IIu is equal to w — II°u over the boundary, so applying the expres-

sion to the extended function, we get

b(u — IFu,eP) =0 Vel € Py(E)2X2

sym-*
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To show that e(u) = 0, it is sufficient to establish that w = IIu is a rigid-body mode. This is
equivalent to showing that

lw = Fu = 0
in some norm. From [19], it is sufficient to show an inf-sup condition:

b(u — ITfu, €P)
sup @——

> Bllu — T, (3.49)
erePy(EB)252 [E=xa

To formalize this, we first construct a suitable space with a suitable norm.

DEFINITION 3.4.6. For every element E, let H}(E) be the broken Sobolev space that is defined
by
HY(E):=|JH'(r), (3.50)
T

where H (1) = [H'(7)]? is the standard Sobolev space defined on a triangular subelement. On this

space, equip the seminorm and norm:

Ng

[wlta ey = D IVulem) + D Iudellze) (3.51a)
T i=1

HUH%{}(E) = |U|%{;(E) + Z Hu”%z(ﬂ- (3.51b)

Again, let ¥%(.) be the trace of its argument on edge e;. We then define []e, : HX — L*(e;) as the

jump across the i-th edge of the triangulation, which is given by

H:u]]ei = 76i(u|7'i) — (’u"Ti—l)'

We now define a space of functions with finite jumps across edges in the triangulation.

DEFINITION 3.4.7. Define the space V.=V (E) C |J, H(div,T) by

V(E) := {v e |JH(div,7) : |[v]e,| pooges) < 0 ve,} : (3.52)
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where H (div, T) is the space of functions that have finite divergence in the L* norm over a triangular

subelement. On this space, define the seminorm and norm as

o} = STV vl + Bl [ - (3.53)
lo[l5 = [0l + D llvllZ2g). (3.53D)

where
015 1) = m?XH[[,U]]eiH%OO(ei) (3.53c)

1s the maximum of the jumps over all edges in the triangulation.

Now we show that the bilinear operator defined in (3.45) is continuous on the newly defined

spaces Ro(E) x [V]2.

LEMMA 3.4.7.1. Let b be the bilinear form defined in (3.45), then there exists a constant C' > 0,

such that
b(v, Q)| < Cllv]| 1) Qlljv12 Yo € Rg(E) and ¥Q € [V, (3.54)
PROOF. By definition, we have

Ho.@) = [ v (Q mds

oFE

We partition each element E into a union of triangles {7;}, and again letting {e;} denote the edge
connecting the i-th vertex to the center, we rewrite the integral as

Mu@=§jé

%

v«QWMw/Www»<%w@w

Ti €;

—/wwm»<z,@ﬂw]

We first note that by assumption v € Rg(FE), which implies that v along the i-th edge is the same

from either triangle. So we now have

’Vei (v‘n) = 76i (v|7'i71)'
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In addition, since n]i = —n¢ "', we can rewrite b(v, Q) as
b(v,Q) = Z/aT‘ v-(Q-n)ds— /e Y (vln) - (QF — Q5 ) -ngids
=3 [ v @ mds— [ 5wl (1L n s (359
For the first term in (3.55), we apply the divergence theorem to obtain

/{hfv-(Q-n)ds:/Tiv.(v.Q)dac:/}[V'v:Q+v.(v.Q)]d$_

i

We now have

Ho.Q) =Y [ (Fo: Qv (V- Qe — [ 1(vln) - (1QL..-nT)ds,

€i

and can bound |b(v, Q] in (3.55) as

. @I <13 [ (Vo: Qo (V-@lde|+]3 [ 1%(0l) - (1QL - nZ)dsl.  (350)

A B

We estimate each term in (3.56) separately. For term A in (3.56), we have
|Z/T, Vo: Qv (V- Q)da| < 3 IVollpar Q1 L2y + 1022 IV - Qllzee |
<3 1920z (1@ 22wy + 1V - Qllzeey) + ol (1QN 22y + 1V - Qg )|
<O (Il + 192l ) (191 26y + 1V - Qllz(r )

< Clollay Y- (I1Rlza¢r + IV - Qllze(e, )- (3.57)

7

Now for term B in (3.56), we estimate
Z\/ Vi ln) - ([Qles - nZ) ds| < Y IV (@l 2o Qs b2 ey
i €i i
Since v € Rg(F), it is linear on each of the edges e;. It can be shown using a three-point Gauss-

Lobatto quadrature scheme and equivalent norms, that

_ /el
3
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We can also estimate that

QeI z2(e) < VIeill[Qe, | Lo (er)
< V1eilllQI1s | zos (1)

Combining the two terms and using equivalent norms, we get

31 [ 7 (@ mids] < 30 letell@lrs v
< ChellQlisll Lo llvl (k) (3.58)

Combining these two terms in (3.57) and (3.58), we find that

b, Q) < Cillollm Y (1QlL2(r) + IV - QllL2(ry) + Cohpllvll () QD rsl| L= 1)

< Clv|lgrm)Rlvi- a

Using this bilinear form b and the specific norms, we formalize the inf-sup condition that is

stated in (3.49).

PROPOSITION 3.4.1. Let u € V[ 7 and b as defined in (3.45). If there exists a constant 3 > 0,

independent of hg, such that

wERG(E), s 2©.Q) 5 o, (3.59)
et QI =

5 ym

then
Me(u) =0 = e(u) = 0.
PROOF. Assume that I19e(u) = 0, then by (3.48), we have
b(ﬁ, e?l) = 0.
Then by assumption

Bllu — || g1 () = 0,
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which implies that
u—1Fu = 0.
Then we also have on the boundary,
u — [Ifulpp = 0.

But for w € Vif}, this implies that u = II°u. Then by Lemma (3.4.2.1), we get e(u) = 0. O

In order for the previous proposition to hold for any constant, we include a stronger result as
proven in [19] for scalar equations. The proof of these results relies on the construction of a Fortin

operator Ilg, as shown for general cases in [28].
PROPOSITION 3.4.2. Assume there exists an operator I : [V]? — [P((E))**? satisfying [28]
b(v,IIgQ — Q) =0 Yv e Ry(E) (3.60)
and assume there is some constant Crp > 0, independent of hg, such that

IMEQlvy: < CullQllvie VQ € [VI2. (3.61)

Assume further that there exists a n > 0, independent of hg, such that

- bv.Q)

sup >
veRo(E) gevz 1Vl e (m)l| Rl v

(3.62)

Then the discrete inf-sup condition given in (3.59) is satisfied.
PROPOSITION 3.4.3. Let b be defined by (3.45), then the inf-sup condition given in (3.62) holds.

For the proof of these propositions we refer the reader to Propositions 2 and 3 in [19], and
for the explicit construction of the operator Ilg, we also point to Proposition 4 in [19]. The
construction methods appear to generalize directly to the vectorial case. We now show that the

operator given in (3.41) satisfies the positive-definite property and is thus a norm.

PROPOSITION 3.4.4. For any u € Vi ¢, with ((E) € N satisfying (3.15) for all elements E,

Julle=0 = u=0, (3.63)
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where the norm ||.||¢ is defined in (3.41).
PROOF. Let u € V] 4 and assume |[ul|? = 0. This implies that
Z/ Me(u) : C: Me(u) dx = 0.
= JE
Assuming C is a positive-definite material tensor, we must have
Me(u) = 0.

Since ¢ satisfies (3.15), we know by Theorem 3.4.2 that e(u) = 0 for each E. This implies that w
is a rigid-body mode. But due to homogeneous boundary conditions, no nonzero rigid-body modes

are present, and therefore u = 0. O

We also have that under the condition (3.15), that the norm (3.41) is equivalent to the standard

norm in H&.
LEMMA 3.4.7.2. For all w € Vi 4, there exists a C1 > 0 such that
lulle < Gl 30y, (3.64)
and if for every element E, ((E) satisfies (3.15), there also exists a constant Co > 0 such that
lulle = Collwl| g o)- (3.64b)
PROOF. We first estimate
|2 = Z/ e(u) : C: Me(u) dz
7 JE
= Z/ e(u) : C: e(u)dx
o JE
<D lle(@)llz2 ey IC : MPe(w) | 2
E

< Clle(w)l|L2@)lle(w) L2 (o)
< Cillul| gy o) lull g2 (o)
< ClHuH%{é(Q)'
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Now if we have ¢ that satisfies (3.15) for all E', then ||.||¢ is also a norm. Since both |[.[|¢ and |. || g
are norms in the finite-dimensional subspace Vj ¢, they are equivalent. In particular, there exists a

constant Cy > 0 such that
lulle > Collull gy o)- O

We now show that the discrete bilinear form ay is continuous and coercive, which by the Lax—

Milgram theorem implies that a unique solution exists.

THEOREM 3.4.8. If ¢{(E) satisfies (3.15) for each E, then there exist constants Ci,Ca > 0 such
that the bilinear form defined in (3.24) satisfies the inequalities

|an(u, v)| < Cillul gy o) vl (0 (3.65a)
and
ap(v,v) > CQH'UH%I&(Q)' (3.65b)
Proor. We estimate the first inequality:
lap(u,v)| = Z/Eﬂgs(u) . C: e (v) dx
E
<O IMPe(w)] L2 () 1Pe(v)l| L2 ()
E

< Cllull gy @)llvll @ o)-

For the second inequality, on using the definition of the bilinear form aj; and Lemma 3.4.7.2, we

have
an(v,v) = |[vllz = Cllv] 3 - =

3.4.2. Error estimates. Now that we have well-posedness of the discrete problem, we study
the errors of the approximation. In particular, we consider the errors in the L? and H& norms.
Many of the techniques and estimates are detailed in [26,27,28,42]. We introduce lemmas adapted

from [19] that we expect can be extended to our specific case. We first define an interpolation
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function uy : H*(Q) — Vi by
uy = Zdof )Ei, (3.66)

where dof;(u) is the i-th degree of freedom of u and §; is a global basis function satisfying dof;(&;) =
dij.

LEMMA 3.4.8.1. Let w be any sufficiently smooth function, and let w; € Vi ¢ be the associated
interpolation function (3.66). Then the following inequality holds for some constant C > 0 and all
h > 0:

Jw — wi 20y + hllw — will g3y < CH w20 (3.67)

LEMMA 3.4.8.2. For any sufficiently smooth function w, there exist constants Cy, Co > 0 such

that

TPe(w) — e(w Nz < Crhlw|mg2(g), (3.68a)

T8 — wlr2(0) < C2hl|wl| gy (q) (3.68b)

where we denote TJw as the L? projection of w onto the space of constants.

Now we consider the error in H&.

PROPOSITION 3.4.5. Let w be the exact solution to the strong problem in (2.112), and b the
associated body force. For h sufficiently small, there exists a constant C > 0 such that the error of

the solution wy, to the discrete weak problem is bounded in the H} norm by
lu = unll gy ) < Ch ([ulaz@) + [1bllL2@) - (3.69)

PROOF. Let u;, be the unique solution to the discrete problem (3.22), w the exact solution

0 (2.112) and u; the associated interpolation function (3.66). We can then estimate the error as:

lw = wnll o) < llw—wrllgro) + lur — wsl g o) (3.70)
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For the first term, we apply (3.67) to get the bound
lw = wrll gy ) < Chlulp2()- (3.71)
For the second term, we have the estimate

Cllwr — unllzg @) < lur — unlf = an(ur — wn, ur — up)
< —ap(up, ur —up) + ap(ur, ur — up)
< —(bp,ur —up) + ap(ur, ur — up)

< —(bp,ur —up) +ap(ur —u+uw,ur — up)

IN

(=bp,ur — up) +ap(ur — w,ur — up) +ap(u, ur —up) . (3.72)

A B C
We estimate each of the three terms. For term B in (3.72), we use Cauchy—Schwarz and (3.67) to

estimate
ap(ur —uw,ur —up) = Z/ We(ur —u) : C: e(u; — up) de
o JE
<O IMfe(ur — )| L2gm e (wr — un) | L2()
E

< O|ge(ur — )| g2 () Mpe(ur — up)| 20
< Cllur — ull gy ) llwr — wnl gy o)

< Ch"u|H2(Q)H'UJ - uh”H&(Q)

68



For term C in (3.72), we write
ap(u,ur — up) Z/ Me(u) : C: 1e(u; — uy) de
E

— Z/Eﬂgs(u) :Cre(ur —uy)de

E

Z/E [(M0e(u) — e(u) +e(u)) : C: e(ur —up)] de

(H@s( )—€e(u)): C:e(ur —up) de

Z/ :C:e(ur —up) de.

Then applying the definition of the bilinear form (2.113) and using Cauchy—Schwarz inequality, we

I
SNl
e

write

ap(u,ur —up) = Z [/ —e(uw)):C:e(ur —up) dw} + a(u,ur —up)

E

> [/ (M0 (w) — e(w)) : C: e(us —up) dm} + (bus — up)
E

< Chlulg2(o)llur — wnl o) + (b, ur — up).

Combining the three terms, we have

Cllur — wnllzg ) < (b= ba,ur —up) + Crhlulo)lur — wnl gy o)

69



To estimate the term (b — by, u; — uy), it is sufficient to take by, = H8b as the L? projection onto

constants.

(b — bh,u1 — uh) = (b — Hgb, ur — uh)

b HO uI—uh)d

A
[/ wr— dx_/Engb.mI_uh)dm}
A
/

(ur — uyp, dm—/b-Hg(uI—uh)dm}
E

I
M NM =] =[] MM

(ur —up) Hg('u[—uh)] dx
18]l L2y | (wr — wn) — T (wr — wn)) || L2
E
< C1h||bl L2 )llwr — wall gy ()
On combining the terms, we obtain
Cllur —unligy ) < Cr(IBll ey + o a2 leer — il gz o
Now we have the estimate of the H& error as

lw = unll gy o) < Crblulpz(o) + C2h([[bllL2(0) + [ulm2(0)

< Ch(||bll2() + |ulm2(@)- O

With the error in H&, we can also find an error estimate for the L? norm.

PROPOSITION 3.4.6. Let u be the exact solution to the strong problem (2.112), and b the asso-
ciated body force. For h sufficiently small, there exists a constant C' > 0 such that the error of the

solution wy, to the discrete weak problem is bounded in the L? norm by

lw — unl 20 <Ch2(yu\H2 )+ 16l 272 () - (3.73)
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PROOF. First, let 1 be a solution to the auxiliary problem: find v € H? N H} such that

a(yp,v) = (u—up,v) Yve H}. (3.74)

Then v can be shown to satisfy the following inequalities [11]:
1Yl m20) < Cillu — unllL2(0)s (3.75a)
1]l 2 0) < Collu — unllL2(0)- (3.75b)

We estimate
I — uplZ2 = (u — un, u — up)
= a’(/lzba u— Uh)

=a(y —Pr +Pr,u — uy)

= CL(’I,Z) —’(/J[,’U,*Uh) +CL(’l,b],’Uf* 'u'h)a

where 15 is the interpolation of 1. We now estimate each of the terms separately. For the second

term, we write

a(tpr,w —up) = a(thr,u) — a(Pr, up)
= a(¥r,u) — ap(r, un) + an(Pr, un) — a(thr, up)
= (b,%1) — (b, 1) + an(thr, wn) — a(thr, up)
= (b= b, 1) + (an(r, un) — altpr, up))-

Then we have

lw — wp||32 = a( — b1, u — up) + (b — by, ¥r) + (an(br, un) — a(r, up)) - (3.76)
" ] )
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We estimate each of the terms separately using Cauchy—Schwarz, (3.67), (3.68b), and (3.69). For

term A in (3.76), we estimate

a(p — 1, u —up) < [ — 1l gy o)lle — wnl g o
< Chllu — upll gy )Y 2 (0)
< Chllu — up|| gy @)llw — wnl 20

< Ch?||lu — upl|p2(q) (Julg2@) + [1bllL2@)- (3.77)
For term B in (3.76), we compute

(b_bhvll;bf) = (b_H8b7¢1)
= (b—1Igb,9; — ¥ + 1)
= (b—TIgb, o1 — ) + (b — g, )
= (b—TI9b, 31 — ) + (b — 119b, v — 1Jeh) + (b — 119b, TIjep).
But by definition of II}b, we have (b — II)b, II31p) = 0, and hence
(b —bn, 1) = (b—TIgb, s — ) + (b — b, ¢ — I1Jeh)
< ||b — Hpb|| 2y l|9or — ¥l 2() + [1b — 5| 2y llY — el 120
< ||b — 1gb| 2y (191 — ¥l 2 () + 1% — 0|l £2(0)

< C1h||bll gz ) (C2P? [ | 2 @) + C3hll9 ]| ra o)

< Ch?|1bl| g ey [l — | L2 (3.78)

For term C' in (3.76), we first apply the definition of the L? projection to rewrite it as:

ap(Yr,up) — a(Pr,up) = Z/ e(vpr) : C: Mle(uy) —e(apr) : C e(uy)] de
E

E
- ZE:/E 1 C: e(up) —e(¥r) : C: e(up)] da
- EE:/ES C: (e(up) — e(up)) de.
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Now, add and subtract II9e(vp;) and apply the definition of I19e(uy,) to simplify:

an(r,w) — alwr,un) = 3 [ ] (etwn) () : C: (Meun) - e(un)) do

E

+ / 0e(vp;) : C: (I0e(up) — e(uy)) dz
E

= /E (e(thr) — Te(wpr)) = C : (e (up) — e(un)) de.
E

Adding and subtracting terms IIJe(u) and e(u), we obtain

3 /E (e(tpr) — Te(apr)) : € : (e (up) — e(up)) dz
E

- Z [/ —Mpe(epr)) : C: (Mpe(up) — Me(u)) do

D

" / (e(tbr) — 0e(apr)) = € : (Ne(w) — e(w)) da
FE

E

" / (e(tr) — TI%e(tp1)) : C - (e(w) — e(up)) dac
E

F

We estimate the three terms separately. For term D, we apply the Cauchy—Schwarz inequality

and a standard estimate of the L? projection to write

3 /E (e(tpr) — e(apy)) : C + (e (up) — Te(u)) das
FE

(3.79)
< Chlle(®pr) — MYe(vpr) || p2(q) llu — unl g1 ()
For term E, we again apply Cauchy—Schwarz and (3.68a) to write
S [ (elabn) - e(n) s € (Me(w) - s(w) do
B E (3.80)

< Caohlle(pr) — Mpe(yhr)ll 2 (o) lul 2 (o) -

73



Similarly for term F', we estimate

3 / (e(tpr) — e(apr)) : C : (e(w) — e(up)) das
E 7E (3.81)

< Cslle(pr) — pe(¥pr)| 2oy 1w — wnl g ()
Now combining (3.79), (3.80), (3.81) and using (3.68a) and (3.75a), we obtain the estimate
an(r, ) — a(r, up) < Ch?lu — us g2 (o) (|ulm2@) + 110] 22(0)- (3.82)
Combining all the necessary terms from (3.77), (3.78), (3.82), the estimate becomes
l — wnll L2 () < CR*(Jul a2y + 18]l 220 + 1Bl £2 )
< Ch*(Julgrz) + bl o)- O

3.5. Numerical results for SF-VEM

We present a series of numerical examples showing the application of the method to well-known
benchmark problems in plane elasticity. We examine the errors using the L> and L? norms, as
well as the energy seminorm, and compare the convergence rates of the method with the theoretical

estimates. In particular, we use the following discrete measures:

o — w0y = max () — ()] (3.83)

|u —unllp2) = \/Z/E lu — [Teuy|? de, (3.83b)
E

|lu — uplle = \/Z/ (8 — e (uy))TC( — Me(uy)) de. (3.83¢)
o JE

In order to compute the integrals in (3.83), we adopt the scaled boundary cubature scheme [41]. In
the SBC method, an integral over a general polygonal element F is written as the sum of integrals
over triangles that are mapped onto the unit square. Let f be any scalar function and ¢;(t) be the
parametric representation of the edge e;. Define ¢; to be the signed distance from a fixed point xg

to the line containing e; and |e;| denote the length of the i-th edge. On using the scaled-boundary
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parametrization, & = @;(§,t) = xo+&(c;(t) —xp), the integral of f over E can be expressed as [41]:

Ng 1,1
/E in =3 e /O /0 £F (pilé, 1)) de, (3.84)

where in the computations we set @y to be a vertex of the polygon. To compute the integral over

the unit square in (3.84), we use a tensor-product Gauss quadrature rule.

3.5.1. Patch test. The displacement patch test is widely used to test the polynomial consis-
tency of a finite element method. In this test, an exact polynomial displacement field is imposed
along the boundary of the domain 2. If a method is consistent, it will exactly reproduce the exact
solution up to machine precision (and small numerical rounding). For the first-order stabilization-
free VEM, the displacement field is approximated by the energy projection onto linear (affine)
polynomials; therefore, it should reproduce any affine displacement field.

Let = (0,1)2, and we impose an affine displacement field on the boundary:
u(x) =z and v(x)=x+y on IN.

The exact solution is the extension of the boundary conditions onto the entire domain 2. We assess
the accuracy of the numerical solution for three different types of meshes with 16 elements in each
case. The first is a uniform square mesh, the second is a random Voronoi mesh, and the third is a
Voronoi mesh that is obtained after applying three Lloyd iterations (see Figure 3.1). The results
are listed in Table 3.1, which show that near machine-precision accuracy is realized. This indicates

that the method passes the linear displacement patch test.

Mesh type L> error | L? error | Energy error

Uniform 3x1070[2x 10716 1x10°1°
Random 2x10718 | 5x10714| 9x10°13
Lloyd iterated | 3 x 107 | 8 x 10715 | 2x 10713

TABLE 3.1. Errors in the patch test on different types of meshes.

3.5.2. Eigenvalue analysis. Consider the closed domain (unit square), Q = [0,1]%, which
is discretized using nine quadrilateral elements. We are interested in the validity of the bounds
in (3.15). To this end, we solve the element-eigenvalue problem, Kpdr = Adg, to assess the

physical and nonphysical (spurious) modes of the element. Each element has three rigid-body
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(a) Uniform mesh (b) Random mesh (¢) Lloyd iterated

Ficure 3.1. Sample meshes used for the patch test.

(zero-energy) modes that each correspond to a vanishing eigenvalue (A = 0). For a stable element,
all other eigenvalues must be positive and bounded away from zero. We choose ¢ = 0,1,2,3
and measure the maximum number of spurious eigenvalues of the element stiffness matrix as we
artificially increase the number of nodes of the central element. For a well-posed discrete problem,
the number of spurious eigenvalues should remain at zero. We show a few sample meshes in
Figure 3.2. In Figure 3.3, the resulting number of spurious eigenvalues as a function of the number
of nodes of an element are plotted for £ =0, 1,2, 3.

We find that for £ = 0, any polygon that is not a triangle (Ng > 4) has spurious modes, whereas
for £ =1, an element with Ng > 6 has spurious modes. For ¢ = 2 and ¢ = 3, spurious eigenvalues
appear for Ng > 9 and Ng > 11 in the central quadrilateral element, respectively. This shows
that (3.17) is sufficient but not strictly required to ensure that the element stiffness matrix has the
correct rank and is devoid of nonphysical zero-energy modes.

To further test the bound in (3.17), we examine the eigenvalues of the element stiffness matrix
over a series of regular polygons (A. Russo, personal communication, April 2022). A few sample
regular polygons are shown in Figure 3.4. In Figure 3.5, we plot the number of spurious eigenvalues
as a function of the number of nodes of a regular polygon. We again find that £ = 0 has spurious
modes for all regular polygons N > 4, and for £ = 1, regular polygons with N > 5 have spurious
modes. For £ = 2 and ¢ = 3, there are additional eigenvalues that appear for Ng > 7 and Ng > 9,

respectively. This shows that the inequality in (3.17) is strict for regular polygons.
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(a) (b) (¢)

FIGURE 3.2. Sample meshes used in the element-eigenvalue analysis for £ = 0, 1, 2, 3.
The central quadrilateral element has (a) 4 nodes, (b) 7 nodes, and (c) 12 nodes.

3.5.3. Cantilever beam. We now consider the problem of a cantilever beam, subjected to a
shear end load | ]. In particular we consider the problem with material properties Ey = 2 x 10°
psi and v = 0.3, with plane stress assumptions. The beam has length L = 8 inch, height D =1
inch and unit thickness. We apply a constant load P = —1000 psi on the right boundary. We test
this problem on Lloyd iterated Voronoi meshes [ ]. In Figure 3.6, we show a few representative
meshes. For this problem, we compare the results of the stabilization-free VEM to a standard VEM
method with a stabilization term [9]. In Figure 3.7, we plot the L? and energy errors of both the
stabilization-free VEM and the standard VEM. We find that for the L? norm and energy seminorm,
both methods produce second-order and first-order convergence rates, respectively. This agrees
with the theoretical error estimates and demonstrates that the stabilization-free method compares
favorably with the standard stabilized virtual element method.

This problem is also tested on nonconvex meshes. We start with a uniform quadrilateral mesh
and split each element into two nonconvex heptagonal elements. In the convergence study, a
sequence of successively refined meshes are used; three meshes from this sequence are presented in
Figure 3.8. In Figure 3.9, we plot the L? and energy errors of both the stabilization-free VEM and
the standard VEM. The errors are comparable to the results in Figure 3.7 and reveals that the

stabilization-free method also performs equally well on nonconvex meshes.

3.5.4. Infinite plate with a circular hole. We next consider the problem of an infinite

plate with a circular hole under uniaxial tension. The hole is subject to traction-free condition,
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F1GURE 3.3. Results of the element-eigenvalue analysis for (a) £ =0, (b) £ =1, (c)
¢=2,and (d) ¢ = 3.

while a far field uniaxial tension oy = 1 psi, is applied to the plate in the z-direction. We use the
material properties Ey = 2 x 107 psi and v = 0.3, with a hole radius a = 1 inch. Due to symmetry,
we model a quarter of the finite plate (L = 5 inch), with exact boundary tractions prescribed as
data. Plane strain conditions are assumed. A Lloyd iterated Voronoi meshing is used [107]. In
Figure 3.10, we show a few illustrative meshes. We also plot the convergence curves for the three
associated errors in Figure 3.11. From this plot, we observe that the L? norm converges with order

2, and the energy is decaying at order 1, which agree with the theoretical predictions.
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(a) (b) (c)
FIGURE 3.4. Sample regular polygons used in the element-eigenvalue analysis for
{=0,1,2,3.

3.5.5. Hollow cylinder under internal pressure. Finally, we consider the problem of a
hollow cylinder that is subject to internal pressure [109]. The inner and outer radii of the cylinder
are chosen as ¢ = 1 inch and b = 5 inch, respectively. We apply a uniform constant pressure of
p = 10° psi on the inner radius, while the outer radius is traction-free. In Figure 3.12, we present a
few sample meshes that are generated using [107]. In Figure 3.13, we plot the errors in the three
norms and compare it with the maximum diameter on the mesh. We find that the convergence

rates in both the L? norm and the energy seminorm are in agreement with the theoretical rates.
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Relative L? error

(a) 150 ele-

FIGURE 3.6. Polygonal meshes used for the cantilever beam problem.
ments, (b) 1000 elements and (c) 3500 elements.
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F1GURE 3.7. Comparison of the convergence of the stabilization-free VEM (SF) and
a standard VEM with a stabilization term for the cantilever beam problem. (a) L?
error and (b) energy error.
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FiGUrE 3.10. Polygonal meshes used for the plate with a circular hole problem.
(a) 250 elements, (b) 1500 elements, and (c) 6000 elements.
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Ficure 3.11. Convergence curves for the plate with a hole problem.
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FIGURE 3.12. Polygonal meshes used for the pressurized cylinder problem. (a) 250
elements , (b) 1500 elements, and (c) 6000 elements.
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F1cure 3.13. Convergence curves for the hollow cylinder under internal pressure
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CHAPTER 4

Stabilization-Free Serendipity Virtual Element Method

For some problems with nonlinear materials, acoustics and other wave propagation problems,
highly accurate numerical methods are needed to fully resolve the underlying physical phenomena.
For these problems, the stabilization term may not be easily constructed or may interfere with the
accuracy of the solution. Therefore it is desirable to construct an arbitrary order virtual element
method without a stabilization term. From Section 2.4, to construct a standard k-th order VEM
would require the use of @ additional internal moment degrees of freedom. This increases the
cost to solve the system or requires applying static condensation. From serendipity FEM [4], it
was shown that by modifying the basis functions, the number of degrees of freedom can be greatly
reduced. A similar idea was pursued in [10,12] to develop the serendipity virtual element method
for scalar problems and in [53] for nonlinear elasticity problems. Serendipity VEM was found to
be robust for general polygonal meshes; however, it still requires a suitable stabilization term.

In this chapter, we combine the serendipity VEM approach [12] with the stabilization-free
VEM [37] in the previous chapter to construct arbitrary order stabilization-free virtual element
methods, which in many cases will not have any internal degrees of freedom.

We first introduce the serendipity space and the corresponding serendipity projection operator.
Then following the previous chapters use construct an virtual element space enhanced with the
serendipity projection. We show the numerical implementation of the higher-order VEM and
perform an eigenvalue analysis to determine a sufficient stability condition. We close the chapter
by applying a second- and third-order method to the patch test, two manufactured problems with
exact solutions, a beam subjected to sinusoidal load, and the infinite plate with a circular hole
problem.

This chapter is based on the work published in [36].
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4.1. Serendipity space and projection

We first introduce some properties of the serendipity space and define the serendipity projection
of the displacement field as proposed in [12]. We then present the derivation of two L? projection

operators, the L? projection of the displacement and the L? projection of the strain.

4.1.1. Properties of serendipity virtual elements. We recall some results on serendipity
virtual element methods for scalar problems from [12]. Let E be a polygon with Ng edges and
let ng be the minimum number of unique lines to cover 0E. For a k-th order method there are a

@ internal degrees of freedom (see Section 2.4).

total of kNg boundary degrees of freedom and
The idea of serendipity VEM is that we are able to fully define a computable projection operator
by only retaining a subset of all the degrees of freedom. In particular, it is desirable to keep all of
the degrees of freedom on the boundary to preserve continuity of the solution and to reduce the

number of internal moments for computational efficiency. To do this, we introduce two propositions

as proven in [12].

PROPOSITION 4.1.1. For k < ng, if the set of S degrees of freedom {01,0d2,...0s} contains all

of the kNg boundary degrees of freedom, then the following property holds true:

1(pk) = b2(pr) = -+~ =0ds(pe) =0 = pp, =0 Vpi € Pp(E), (4.1)
where 6;(+) is the i-th degree of freedom of its argument.
PROPOSITION 4.1.2. For k > ng, if the set of S degrees of freedom {01, 0d2,...,d5} contains all

kNg boundary degrees of freedom and contain all internal moments of order < k —ng, then the set

satisfies

61(pr) = d2(pr) = =0s(pr) =0 = pr. =0 Vpi, € P(E). (4.2)

Once these degrees of freedom are chosen, we can construct a serendipity projection operator

Hf such that it satisfies the properties:

Hf can be fully computed using d1, do, ..., dg, (4.3a)
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and
I pr =pe  Vpi € Pr(E). (4.3b)

This operator is used to define a serendipity virtual element space for a vector field and to construct

two L? operators.

REMARK 4.1.1. In [12], the notation 0;(-) is used to denote the i-th degree of freedom. For

consistency, we use the same notation in this chapter instead of the one introduced in (2.53).

REMARK 4.1.2. For k = 2, on any polygonal element E it is sufficient to take {61,02,...,05}
to be the vertexr and edge degrees of freedom. For k = 3, if E is at least a quadrilateral with four
distinct sides then it is also sufficient to take {01,02,...,dg5} as the vertex and edge degrees of

freedom.

4.1.2. Serendipity projection. For any element E, denote H'(E) := [H!(E)]? and C°(E) :=
[CY(E)]?. Let S be the number of sufficient degrees of freedom for a scalar function as defined in

Proposition 4.1.1 and 4.1.2, and then define the operator D : H'(E) N C°(E) — R?® by

D(v) = (01(v),82(v), ..., d25(v)), (4.4)

where §;(v) is the i-th degree of freedom of the vector field v. We define the serendipity projection
operator Iy : HY(E) N C°(E) — [Px(E)]? as the unique function that satisfies the orthogonality

condition:

(D(ITv — v), D(My)) pos =0 Vm, € [Pr(E)). (4.5a)

RQ

On writing out the expressions, we get the equivalent system:
25 25
> 6 (v)55(ma) =Y 5;(v)3;(ma)  ¥ma € [Pr(E)]. (4.5b)
j=1 j=1

4.1.3. L2 projection of the displacement field. We define the L? projection operator

119 : HY(E) — [Pr(E)]? of the displacement field by the function that satisfies the L? orthogonality
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relation:
(p,v —Iv)g =0 Vp € [Pr(E)]?, (4.6a)
where we use the standard L? inner product for vector fields:

(Pa'v)E:/EP-vdm. (4.6b)

Expanding (4.6a) and rewriting in matrix-vector operations, we have

/ p v dx = / plvdx Vp € [PL(E) (4.6¢)
E E

4.1.4. L2 projection of the strain field. Similar to the L? projection of the strain given
in Section 3.1.3 for the first-order method, we define the associated L? projection operator Hgs(.) :

HY(E) — Py(E)2X2 of the strain tensor by the unique operator that satisfies

(e?,e(v) —MYe(v))p =0 Vel € Py(E)2%2 (4.7a)

sym>

where we use the L? inner product (double contraction) for rank-2 tensor fields:
(el e)p = / el redr. (4.7b)
E

After using Voigt notation and simplifying, we obtain the system for the L? strain projection as

—_\T
/(H?s(v)) z-:Pcla::/ vTNfEepds—i—/vTaepdw VEPEPE(E)%XH%, (4.8a)
E OE E
where
ng 0 n
NOE .— | 1, (4.8b)
0 no Nq
9 0 2
9= | Wl (4.8¢)
0 & 2
Jdy Oz

and eP, I1%e(v) are the Voigt representations of e” and 1% (v), respectively.

REMARK 4.1.3. For the implementation of the projection operators, we use the monomial basis
given in (2.114) and (3.2).
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4.1.5. Enlarged Enhanced Serendipity Virtual Element Space. The integral defined on
the right-hand side of (4.6¢) and the last integral on the right-hand side of (4.8a) are not computable
from the degrees of freedom of a standard k-th order virtual element space. We follow a similar
process from Section 3.2 to construct an enhanced virtual element space where it is possible to
compute these integrals.

For any element F, fix a £ = ¢(F) and define the set EN,CE,Z as

v-pdw—/l‘[fv-pdcc
E E

B o._ ), 1 0(F) -
ENE, - { ¢ H'(E) n C°(E) / -

Vp € [Pe1(E)/[Pr—ns (E)}

where [Py (E)]?/[P—y,(E)]* denotes the set of vector polynomials in [P,_;(E)]? that are orthog-
onal to [Py, (E)]? with respect to the L? inner product on E. We then define the local enlarged

virtual element space as:
V;ﬁ = {’Uh € ENE,E : Awy, € []P)g_l(E)P, ve('vh) S [Pk(e)]2 Ve € &g, vy, € [CO(aE)]2}, (4.10)

where 7 (+) is the trace of a function (its argument) on an edge e;. In the above space we require
functions to be k-th order vector polynomials on the edges, and by the serendipity condition we
take the degrees of freedom to be the values of the function at the vertices and edges of the polygon

FE and possibly all the internal moments up to order k — ng. In general, there are a total of
25 = max {2kNg,2kNg + (k —ng + 1)(k —ng + 2)}

degrees of freedom. With the local space defined, we define the global enhanced virtual element

space as
Vi == {vp € [H'(Q)]? : vp|p € Vi for £ = ((E)}. (4.11)

For each E, we assign a suitable basis to the local virtual element space V,fé. Let {¢;} be the

set of canonical basis functions [9, 13] that satisfy d;(¢;) = d;j, where d;; is the Kronecker-delta.
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We express the components of any vy, € VkEé as the sum of these basis functions:

vl
vl O 0 ... 0 vl
T O o1 ¢ ¢s 2= Ny, (4.12a)
v? 0 0 ... 0 ¢ ¢2 ... o5 :
2
\US)
where we define INV as the matrix of vectorial basis functions:
o1 ¢2 ... ¢o¢ 0 0 ... O
N = = P$1r ... Ps ... P25] - (412]:))
0 0 ... 0 ¢1 ¢2 ... g

We now define the weak form of the virtual element method on this space. On defining a
discrete bilinear operator af : VkEf X VkEg — R and a discrete linear functional Ef : VkEz — R, we

seek the solution to the problem: find u; € VkEZ such that

afy (wp, vp) = €4 (vy) Vo, € Vi, (4.13)
Following [19], we introduce the local discrete bilinear form in matrix-vector form:
= T
ay (up,vp) = / (H?e(vh)> C)e(uyp) de, (4.14)
E

with the associated global operator defined as
ah(uhavh) = Zag(uhavh)' (415)
E
We also define a local linear functional by

(5 (vp,) :/ vgbhdm—i—/ vitds, (4.16)
E T:NOE

with the associated global functional
ln(vn) =Y 5 (vn), (4.17)
E

where by, is some approximation to b. For a k-th order method we use b, = Hgb, but from [6], it

. . _ 0
is sufficient to take by = II;;_,b.
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4.2. Numerical implementation of higher order methods

For simplicity of implementation, we only consider the case k < ng (meshes do not contain tri-
angles for k = 3). This removes the need for internal moment degrees of freedom in the construction

of the serendipity projection and simplifies the space EN f /-

4.2.1. Implementation of serendipity projector. We start with the implementation of
the serendipity projector. From (4.5b), we have for a = 1,2, ..., Ni, where N}, = dim([Px(E)]?) =
(k+ 1)(k + 2), the condition

28 28
> 6 (IMvn)dj(ma) =Y 65(vn)d;(ma).
=1 j=1

We choose v, = ¢;, the basis functions in V;ch and expand Hf p; in terms of the scaled monomial

basis functions:
Iy s = Z s%m/g, (4.18)

where m,, is an element of ]T/I\k(E) in (2.114). Expanding the left-hand side of (4.5b), we have

2S5 Ny, ‘ 2S5
S 65 (v (ma) = 3 s S 65(ms)s; (ma). (4.19)
j=1 B=1 j=1

Define the matrix G (a, 6 =1,2,...,Ng) by

o))

af = Z(Sj(mﬂ)éj(ma)- (4.20a)

j=1
Similarly, we define the matrix B representing the right-hand side of (4.5b) by
R 25
Bui= > 650035 (ma). (4.200)
j=1
Now combining these linear equations we can determine the coefficients {SZB} for the serendipity

projection by solving the linear system:

n’ =G 'B, (4.20c)



where (HS )gi = s% is the matrix representation of the serendipity projection operator in the scaled

monomial vectorial basis set.

REMARK 4.2.1. To compute the matriz C:’, it is convenient to use
G=D"D,
where D is the 25 X Ny matriz that is defined by

Dj, :=6j(ma) (j=1,2,...25, a=1,2,...Np).

4.2.2. Implementation of the L? displacement projector. With the serendipity projec-
tion matrix on hand, we now construct the remaining projection matrices. We start with the
construction of the L? projection operator of the displacement field. From (4.6c), we have the
relation

/pTﬂgvh de = / pl oy, de. (4.21)

E E
Expanding vy, in terms of the basis in V,fg, we have v, = NY0;. Similarly we expand p and Hg'vh in
terms of the polynomial basis in [Py (E)]?. In particular we obtain p = NPp and vy, = NPII'%,,
where NP is given in (2.114) and II° is the matrix of coefficients of the L? projection . On

substituting into (4.6¢) and simplifying, we obtain
pl ( /E (NP)T NP dsc) 1%, = p’ < /E (NP)TNv da:) Op. (4.22)
Define the matrix
G ::/E(NZ’)TN” dx. (4.23a)

The integral on the right-hand side of (4.22) is not computable directly; however by applying the

enhancing property of the space (4.9), we can realize an equivalent computable matrix:

B = / (NPT N? da. (4.23b)
E
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Then, we solve for the projection matrix IT0 in terms of the matrices G and B:

m’ =G'B.
This projection matrix is used to compute the element force integral which appears in (4.26b).

4.2.3. Implementation of the L? strain projector. To compute the L? projection of

the strain we follow the construction in Section 3.3.2. Expand v, = N'v, , eP = NPEP and

% (vy,) = NPITvy. Substituting into (4.8a) and simplifying, we get the expression:
T
(&7 ( / (N?)T dia:> o), = ()7 < / (NfENp> Nvds — / (ONP)T N”da:) .
E dE E
Define the matrix
G := / (NP)T NP da. (4.24a)
E

Similar to (4.23b), the last integral in (4.8a) is not computable, so we again use the enhancing

property in (4.9) to construct an equivalent computable matrix:

P T
B = (NfENp) NVds — / (ONP) TIY N? da. (4.24b)
oFE E

We now solve for the strain projection matrix Il in terms of G and B by
I1=G 'B. (4.24c)

4.2.4. Implementation of element stiffness matrix and force vector. To construct the

element stiffness, we first rewrite (4.14) in terms of the matrices that have been constructed:

a (up,, vp) :z/}g(ﬂge(vh)>Tcﬂgs(uh)daz

= / (NPII&,)" C (NPIay,) da
E

of (m)” ( / (N»)Te NP da:> TLiy,.
E
Then, define the element stiffness matrix Kg by

Kp = (I’ < /E (N?YT'C NP dm) II, (4.25)
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where IT is given in (4.24c).

We now construct the element forcing term given in (4.16) as

Ef(vh):/ v,{bhdm—i-/ vl tds.
E INOE

After making the approximations by, = H%b and simplifying, we can rewrite the expression in the

form
(5 (vy) :/ vgﬂgbdaz—i—/ vl tds
E I:NOE
:/ (Hgvh)de:B—{—/ (NVo,)" Tds
E I:NOE

= o] [/E (NPﬁO)dem + /FME (Nt tds} . (4.26a)

Then, define the element force vector by

f = UE (NpﬁO)deer/maE (NY)T tds} . (4.26b)

All integrals that are required to form the element stiffness matrix in (4.25) and the element force

vector in (4.26b) are computed with the scaled boundary cubature (SBC) scheme [41].

4.3. Choice of ¢

In the previous sections, we have left the choice of ¢ = ¢(E) open. However, for a choice of ¢
that is too small, the resulting system will be unstable and contain nonphysical zero-energy modes.
For a choice of ¢ that is too large, the number of basis functions will be overly large and the system
will be expensive to solve. We now numerically establish a choice of £ that results in a well-posed,
stable discrete problem by performing an eigenvalue analysis. We examine specifically the case of

second- and third-order methods.

4.3.1. Eigenanalysis for regular polygons. We first study the stability on regular polygons
by considering the element eigenvalue problem Krpdp = Adg. For plane elasticity, the element
stiffness should have three zero eigenvalues that correspond to the three rigid-body modes, with
any additional zero eigenvalue being a non-physical (spurious) mode. We measure the number of
spurious eigenvalues of the local stiffness matrix over the set of regular n-gons. We fix £ = 3,4, 5 and

measure the number of spurious eigenvalues on a given regular polygon. In Figure 4.1 a few sample
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polygons are shown, and in Figures 4.2 and 4.3 we plot the number of spurious eigenvalues as a
function of the vertices of the corresponding polygon. The analyses over regular polygons reveals
that the element stiffness matrix is stable with the correct rank if the inequalities Ng < 2+ 1 and
Np < 20 —1 hold for k = 2,3 respectively. In [37], it was shown that for £ = 1 the inequality is
given by N < 20+ 3 for regular polygons. We conjecture that this pattern holds, and for a general

k-th order method, a sufficient inequality is given by Np < 2¢ — 2k + 5.

(a) (b) (¢)

FIGURE 4.1. Regular polygons that are used in the eigenanalysis.
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FIGURE 4.2. Figenvalue analysis on regular polygons with the second-order method.
(a) £ =3, (b) =4 and (c) £ =5.

We are also interested in robustness of the inequality when the vertices of an element are
perturbed. In particular, for £ = 2, 3 we first fix £ = 3,4, 5, then take the respective regular hexagon,
octagon, decagon and perturb one component of a vertex by . We measure the number of spurious
modes as a function of §. For k = 2 the three elements will satisfy the inequality Np < 2¢ + 1,
so we expect no spurious eigenvalues to appear, but for £k = 3 the inequality Ng < 2¢ — 1 is not

satisfied so we expect to see some additional spurious eigenvalues. From Figure 4.4, we observe
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Ficure 4.3. Eigenvalue analysis on regular polygons with the third-order method.
(a) =3, (b) =4 and (c) £ =5.
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FIGURE 4.4. Eigenvalue analysis on the perturbed regular polygons with the
second-order method. (a) ¢ = 3 on hexagon, (b) £ =4 on octagon and (c) £ =5 on
decagon.
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FiGURE 4.5. Eigenvalue analysis on the perturbed regular polygons with the third-
order method. (a) ¢ = 3 on hexagon, (b) £ = 4 on octagon and (c) ¢ = 5 on decagon.

that for small perturbations of the hexagon, octagon, and decagon that no spurious eigenvalues

arise. In Figure 4.5, we see that by perturbing the octagon and decagon, we are able to reduce the

number of spurious eigenvalues to zero when using ¢ = 4,5 respectively.
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4.3.2. Eigenanalysis for general polygons. We now consider a more general polygonal
mesh. Consider the unit square, 2 = (0,1)2, which is discretized using nine quadrilateral elements.
We again solve the element-eigenvalue problem, Kpdr = Adg. We choose £ = 3,4,5 and measure
the maximum number of spurious eigenvalues of the element stiffness matrix as we artificially
increase the number of nodes of the central element. We show a few sample meshes in Figure 4.6.
In Figure 4.7, the resulting number of spurious eigenvalues as a function of the number of nodes
of an element from the second-order method are plotted for £ = 3,4,5 and similarly the results of
the third-order method is plotted in Figure 4.8. We see that for k = 2, the spurious modes seem
to appear later than in the regular polygons, while for £ = 3 the results are closer to the regular
polygonal case. This suggests that the inequalities Ng < 2¢+ 1 and Ng < 2¢ — 1 provide an upper

bound for the choice of ¢ for k = 2, 3, respectively.

(a) (b) ()

FIGURE 4.6. Sample meshes used in the element-eigenvalue analysis for £ = 3,4, 5.
The central quadrilateral element has (a) 4 nodes, (b) 7 nodes, and (c) 12 nodes.

4.4. Numerical results for serendipity SF-VEM

We present a series of numerical examples in plane elasticity for second- and third-order
serendipity methods. For these tests we use the inequalities Np < 20 + 1 and N < 2/ — 1
for k = 2 and k = 3, respectively. We examine the errors using the L> and L? norms, as well

as the energy seminorm, and compare the convergence rates of the method with the theoretical
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Ficure 4.7. Eigenvalue analysis on the meshes shown in Figure 4.6 with the second-
order method. (a) £ =3, (b) £ =4 and (c) £ =5.
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FicURE 4.8. Eigenvalue analysis on the meshes shown in Figure 4.6 with the third-
order method. (a) £ =3, (b) £ =4 and (c) £ = 5.

estimates of standard VEM. We use the following discrete measures:

|u —upllpoe ) = max lu(x;) — up(x;)], (4.27a)

|u —upllp2) = \/Z/ lu — w2 de, (4.27D)

lu — up|la = \/ZE: /E (8 — Ve (up))"C (e — He(uyp)) de. (4.27¢)

4.4.1. Patch test. To test the consistency of the second- and third-order methods, we first
consider the quadratic and cubic displacement patch test. Let Q = (0,1)2, Ey =1 psi and v = 0.3

be the material properties. For the quadratic patch test, we impose a quadratic displacement field
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on the boundary and an associated load vector:

u(w):x2+3xy+7y2+5x+2y+8,
v(m):6m2+3my+y2+4x+9y+1 on 052,

—E_ v+ —y
b(:c) _ ) 1= (2 +3v+ 2 (1 ))

=L 243w+ 2(1-v))

For the cubic patch test we impose a cubic displacement field and load vector:

u(x) = 32° + 62y + Toy? + 8y° + 2 + 3xy + y* + bz + 2y + 4,
v(x) = 4a® + Ty + 8xy? + 11y° + 222 + 2y + 4y* + 8z + 9y + 11 on 99,

b(x) =L, (182 + 12y + 2 + v(14x + 16y + 1) + 15 (362 + 28y + 7))
€r) =

= (152362 + 28y + 7) + v(14y + 3 + 122) + 16z + 66y + 8)

The exact solutions is the extension of the boundary data onto the entire domain 2. We test
the numerical solution for the two methods for four different meshes with 16 elements in each case.
First we have a uniform square mesh, second we use a random Voronoi mesh, next we use a Voronoi
mesh after applying three Lloyd iterations and finally we use a non-convex mesh. The results for
the quadratic test are listed in Table 4.1, and the cubic test in Table 4.2. They show that the
errors are near machine precision, which indicate that the second- and third-order method passes

the quadratic and cubic patch tests respectively.

(a) Uniform (b) Random (¢c) Lloyd iterated (d) Nonconvex elements

FIGURE 4.9. Sample meshes used for the displacement patch test.

For most problems in mechanics, Neumann (traction) boundary conditions are applied on the
boundary; therefore, we are also interested in the patch test when Neumann boundary conditions

are imposed. Let = (0,8) x (—0.5,0.5) be a long slender bar with material properties Ey = 1 psi
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TABLE 4.1. Errors for the quadratic displacement patch test on different types of

Mesh type L>® error | L? error Energy error
Uniform I1x107 P [1x100% | 8x 107
Random 6x10715 | 1x107®| 1x1014

Lloyd iterated | 7 x 1071% | 1 x 1071 | 2 x 107"

Nonconvex |4 x 10715 |3x 10715 | 3x 107!

meshes.
Mesh type L error | LZ error Energy error
Uniform Tx107P [2x 107 2x107™
Random 6x10714 | 4x107 | 3x10713
Lloyd iterated | 1 x 1071 | 6 x 1071 | 4 x 10714
Nonconvex |3 x 107" [2x10715| 2x 10~ ™

TABLE 4.2. Errors for the cubic displacement patch test on different types of

meshes.

and v = 0.3. For k = 2, we construct the following exact solution:

u(x) =2y and v(x) ==z inQ,
0
b(x) = E (>
201 —v)

where the Dirichlet boundary is imposed along x = 0, and the remaining boundary conditions on
other edges are set to the exact tractions. For k = 3, we use the cantilever beam under shear end
load [109]. We obtain the numerical solutions over a set of three meshes with 16 elements in each.
The results for the quadratic and cubic cases are listed in Tables 4.3 and 4.4, respectively. The

results show that both the second- and third-order method pass this patch test with errors at worst

of O(10711).
Mesh type L™ error | L2 error Energy error
Uniform 2x 107 1 x107 8] 1x10713
Random 3x10713 |3x1078 | 4x1014
Lloyd iterated | 2 x 10712 | 2 x 10712 | 4 x 107"

TABLE 4.3. Errors for the quadratic equilibrium patch test on different types of
meshes.

4.4.2. Manufactured solution. We consider two manufactured problem as given in [54]

with known exact polynomial and nonpolynomial solutions over the unit square under plane stress
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Mesh type L> error | L? error | Energy error

Uniform 2x 107" [2x 1071 | 1x10711
Random 6x10712 | 6x10712| 6x10712
Lloyd iterated | 7 x 10713 | 8 x 10713 | 2 x 10712

TABLE 4.4. Errors for the cubic equilibrium patch test on different types of meshes.

conditions. The material properties are: Ey = 2.5 psi and v = 0.25. The exact solution and the

associated loading for the first problem are:

25 aty? 13, , 3 rys 5
__z 1o 9 d _ Ty 9 3.3
um =gty Tt Y Ty md v@ =y e
0
b(m) = )
0
and for the second problem are:
u(x) = zsin(rx) sin(ry) and v(x) = ysin(rx) sin(7wy),
bi) Urlesin(rz) sin(ry) — Sy cos(mx) cos(my) — T cos(mz) sin(my)
€r) =
112 5.2

S mrysin(mr) sin(my) — 37w cos(mx) cos(my) — T cos(my) sin(mxw)

We include the results for both these tests in Figures 4.10 and 4.11. In both figures, we plot the
discrete errors as a function of the square root of the number of degrees of freedom. From the
plots, we observe that the convergence rates for k = 2,3 in the L? and energy seminorm are in
agreement with the theoretical rates. This shows that the stabilization-free virtual element method

can reproduce the results from [54].

4.4.3. Beam subjected to transverse sinusoidal loading. Next, we consider the problem
of a simply-supported beam subjected to a transversely sinusoidal load [98]. The material properties
are chosen as: Fy = 2 x 10° psi and v = 0.3, and plane stress conditions are assumed. The
beam has length L = 8 inch, height D = 1 inch and unit thickness. We apply a sinusoidal load
P = —100sin(%*) 1b along the top edge, and along the two side edges we prescribe shear stresses
to keep the beam in equilibrium. This problem does not have a closed-form solution; however, it
can be shown that a generalized solution (one that satisfies some of the boundary conditions in an

average sense) can be found with a Fourier series Airy stress function. In [98], the solution for this
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F1GURE 4.11. Convergence curves for second manufactured solution on convex
polygonal meshes with (a) k=2 and (b) k = 3.

simply-supported beam is given as:

u(x) = — %cos(ﬁx) {A(1 + v)sinh(By) + B(1 4 v) cosh(5y)
+ C'[(1 + v)By sinh(By) + 2 cosh(By)]

+ D [(1 4 v)By cosh(By) + 2sinh(By)] } + wo,

v(x) =— %sin(ﬂ@ {A(1 + v) cosh(By) + B(1 + v) sinh(5y)
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+ C[(1 +v)Bycosh(By) — (1 — v) sinh(By)]
+ D [(1 + v)Bysinh(By) — (1 — v) cosh(By)] },
where the constants A, B,C, D, 3, ug are detailed in [98]. In Figure 4.12, we show a few sample

meshes for the beam, and in Figure 4.13 we show the convergence results. From these figures, we

observe that optimal convergence rates in Sobolev norms are achieved for both k£ = 2 and k£ = 3.

FIGURE 4.12. Polygonal meshes for the loaded beam problem. (a) 150 elements,
(b) 1000 elements and (c) 3500 elements.

We also test this problem with nonconvex meshes. We start with a uniform rectangular mesh,
then we split each element into a convex quadrilateral and a non-convex hexagonal element. We
show a few sample meshes in Figure 4.14. In Figure 4.15, the results show that the errors on

nonconvex meshes still retains the optimal convergence rate.

4.4.4. Infinite plate with a circular hole. Finally, we revist the infinite plate with a circu-
lar hole problem used earlier to test the first-order stabilization-free VEM in the previous chapter

(see Section 3.5.4). For the first-order case, it was shown that the SF-VEM was able to produce
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FIGURE 4.14. Nonconvex polygonal meshes for the loaded beam problem. (a) 32
elements, (b) 256 elements and (c) 1024 elements.
results that matched theoretical convergence results. However, it is known from [5, 16], that stan-

dard VEM methods with order k& > 2 will suffer from loss of convergence rates when approximating
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Ficure 4.15. Convergence curves of serendipity VEM on nonconvex meshes for
sinusoidal loaded beam problem. (a) k =2 and (b) k = 3.
domains with curved edges. We see this result in Figure 4.17, where both the second- and third-
order methods failed to attain the optimal convergence rates. With this result, it is natural to look

into the extension of stabilization free methods onto elements with curved edges.

FIGURE 4.16. Polygonal meshes for the plate with a circular hole problem. (a) 250
elements, (b) 1500 elements, and (c) 6000 elements.
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Fi1GURE 4.17. Convergence curves of serendipity VEM for plate with a circular hole

problem. (a) k=2 and (b) k = 3.
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CHAPTER 5

Stress-Hybrid Virtual Element Method on Quadrilateral Meshes

In computational mechanics, it is known that many standard displacement-based finite or vir-
tual element methods will suffer from volumetric locking as the material approaches the incom-
pressible limit and from shear locking in bending-dominated problems. One technique to reduce
this locking is by using a stress-based hybrid formulation first introduced in [89]. Starting with
the Hellinger—Reissner two-field functional, the stress and displacement fields can be independently
varied and chosen to retain stability and have optimal bending properties. The stress field is then
condensed on each element so that the method is purely displacement based. By following the
developments in [43,89,90], we introduce a stress-hybrid approach with a five-parameter stress
field to construct a stabilization-free virtual element method for quadrilateral elements. Although
the virtual element method is applicable to very general polygonal and polyhedral meshes, the ma-
jority of current industrial applications still rely on standard finite element meshes (triangles and
quadrilaterals in two dimensions). Therefore, in this chapter we focus on formulating the stress-
hybrid VEM on general quadrilateral meshes and in the next chapter we extend this approach to
six-noded triangular meshes.

In this chapter, we first present the Hellinger—Reissner variational principle, then apply it to
construct the weak formulation and a stress projection operator. Following the procedure in Sec-
tion 3.2, we define an enhanced virutal element space. Next, we discuss the choice of stress basis
functions and describe the numerical implementation of the method. Finally, numerical results
comparing the SH-VEM to the B-bar VEM [85] are presented on a series of benchmark problems
with v — 0.5 (nearly-incompressible): bending of a thin cantilever bean, Cook’s membrane under
shear load, infinite plate with a hole, pressurized cylinder and the flat punch.

This chapter is based on the work published in [38&].
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5.1. Hellinger—Reissner variational principle

In the previous chapters, we constructed the weak form directly from the governing boundary-
value problem; however, for more general applications, it is useful to start from a variational
principle. In the next two chapters, we utilize the Hellinger—Reissner variational formulation for
linear elasticity. The Hellinger—Reissner formulation assumes that the displacement field and the
stress field are independent and that the stress field does not satisfy the constitutive relation
pointwise. This gives more flexibility in choosing an approximation for the displacement and
stress spaces to avoid locking. The weak form is recovered by finding the stationary values of the

Hellinger—Reissner functional given by:

1 _
g [u, o] = —/ o:C1: o-da:+/ o:Vyudxr — / b‘udaz—/ t-uds. (5.1)
2 Jo Q Q I
After taking the first variation and requiring it to be stationary, we obtain the expression

ollgg[u, o; du, do| = /50’ : (Vsu — ct. o) dx + /0' : Vs(du) de — /b.éudaz
Q Q Q (5.2)

—/t-éuds:() Yéu € V,, do € V,,
It

where V, contains vector-valued functions in the Hilbert space [H'(€)]? that also vanish on T,

2X2

whereas V, contains functions in (LQ)Sym. This gives us the weak statement of the equilibrium

equations and strain-displacement relations:

/G':Vs(éu)dw—/b-duda:—/ t-duds=0 You €V, (5.3a)
Q Q I

/ bo: (Viau—C o) dz=0 Vo €V,. (5.3b)
Q

5.2. Virtual element discretization

Let 7" be a decomposition of € into nonoverlapping quadrilaterals (see Figure 5.1). For each
quadrilateral E € T", let hg denote its diameter, g its centroid, and x; = (z;,y;) the coordinate

of the i-th vertex.
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(a) (b) (c)

FiGUurE 5.1. Examples of admissible elements in the stress-hybrid virtual element
method (a) convex quadrilateral, (b) nonconvex quadrilateral and (c) degenerate
quadrilateral.

5.2.1. Stress-hybrid projection operator. We now define the projection operator for the

stress-hybrid formulation. On choosing do = P € [Py(E)]2%2 and o € [Py(E)]2%2 in (5.3b), we have

sym sym
/]P’: (Vsu—(Cflza) dx = 0.
E

This condition is true for all P € [Py(E)]Z%3, so we can view C™! : o as a projection of V,u with
2x2
sym*

respect to the space [Py(E)] Now, let the assumed stress field be taken as o := Ilgo, where Ilg

is the stress projection operator. Then, the orthogonality condition becomes

/ P: (Viu—C ' :llgo) de=0 VP e [Py(E)25r, (5.4a)
E
or equivalently
/]P :C! i Tgo de = / P:Vaude VP e [P(E)Z. (5.4b)
E E

After applying the divergence theorem and simplifying, we obtain

/EIP’:C1:Hgadw:/BE(IP’-n)-uds—/E(V-IP)-udw, (5.5)

where n = (n,, ny)T is the outward unit normal along OF. For later implementation, we convert
this expression into the associated matrix-vector form. Let P, IIgo be the Voigt representation of

P and IIgo, respectively. Then, (5.5) can be written as

/ P C o do = / P NEy ds — / (a@)Tuda: VP € [Po(E)252, (5.6a)
E OF E
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where N2 is the representation of the outward normals and @ is the matrix divergence operator

that are given by

ng 0
o o 0 &
N =10 Ny | > 0 := 5 0 | (56b)

Ny Ny

5.2.2. Virtual element space. Following Section 3.2 with £ = 1, we define the first-order

vector-valued virtual element space on an element E as [2,9]:

Vh(E) = {Uh S [Hl(E)]z : Avy, € [Pl(E)}Q, 'Uh‘e S [Pl(e)]Q Ve € 8E, 'Uh‘c')E S [Co(aE)]Q,
(5.7)
/ vy - p de = / vy -pde Vp € [PO(E)]Z}
E E

where A is the vector Laplacian operator and II¢ is the energy projection operator defined in (3.6).
On this space, the vector-valued functions are continuous on the boundary and affine along each
edge e, so we can choose the degrees of freedom (DOFs) to be the function values at the vertices of
E. Each element has a total of eight displacement DOF's. For each element F we also assign a basis
for the local space V4 (E). Let {¢;} be the standard scalar basis functions in standard VEM [9]
that satisfy the property ¢;(x;) = d;;. Using the scalar basis, we define the matrix of vector-valued
basis functions by
¢1 ¢2 ¢3 ¢4 O 0 0 O

Y= = Y1 P2 ...(P81|7 (58&)
0 0 0 0 ¢1 ¢2 o3 ¢y

then any function vj, € V;,(E) can be represented as:

8
vp(x) = Z pi(x)v; = ¢d, (5.8b)
i=1

where v; is the i-th degree of freedom of vy,.

REMARK 5.2.1. In the current and the next chapters, we use a different notation to represent
the matriz of basis functions. The matriz NV given in (3.21b) is defined for elements with arbitrary

many vertices, while in this chapter and the next, the number of vertices is fired to Np = 4 and
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Ng = 6, respectively. Therefore, to differentiate between the two cases, we use the notation @ to

denote the matriz with either 8 or 12 basis functions.

5.3. Numerical implementation

5.3.1. Matrix representation of the stress-hybrid projection. We present the matrix
representation of the SH-VEM projection, which relies on the rotated coordinates introduced by
Cook [43] (see Figure 5.2). In the SH-VEM, an assumed stress ansatz is first defined on E’ (rotated
element) and then transformed to E using the stress transformation equations. The computation
of the element stiffness matrix is carried out on E.

5.3.1.1. Rotated coordinates. It is known that using global Cartesian coordinates to construct
a b-term expansion of the stress field leads to an incomplete stress approximation and the resulting
element stiffness matrix is not rotationally invariant [43,90,93]. We follow the modification pro-
posed by Cook [43] to construct a local coordinate system for each element E. Let xp,xg, Tg, g
be the midpoints of the edges of element E (see Figure 5.2). Define L1 and Ls as the length of the

line segments PQ and RS, respectively. Then, we compute the angles

- TR—T 11601 + Lo6
91:arctan<yQyP>, ngarctan<RS>, OZM. (5.9)
rQ —Tp Ys — YR L+ Lo

0 &
Yy
Y\
\ Oy
1
\S *"”’
2 Q ”,'
\ Lo z 01
== N0
¥ >
P&’
R

FiGURE 5.2. Construction of the local coordinate system for a distorted quadrilat-
eral.
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On using the angle 6, we define the rotated coordinates (2’,%’) via the transformation

, x c s| |z
= = :=Qx, c¢=cosf, s=sinf. (5.10)

Y -5 C )

5.3.1.2. Stress-hybrid virtual element formulation. We now present the stress-hybrid approach,
which constructs the stress basis functions and stiffness matrix over the distorted element E. For
a quadrilateral element, using the complete linear stress basis given in (3.2) (¢ = 1) results in an
overly stiff element; therefore, we only use a five-dimensional subset of this basis. On a square, the

selection of the stress basis in the stress-hybrid finite element method as [90]

1] (o) (o] [v)] (o
M5ﬂ = 0/, 1 307,907,542
0 0 1 0 0

ensures that uniform stress states as well as pure bending can be exactly represented. To tailor
this approach to VEM, we use this 5 stress expansion in a local coordinate system (FE is rotated)
and then apply the stress transformation equations to obtain the stress ansatz on F.

Let E’ be the rotated element with vertices (), y;), centroid @/;, and diameter h’;,. In a rotated

element E’, we assume the stress expansion llgo’ = P'@’, where P’ is given by

1007 0
P=1010 0 ¢|=|P P, P, P, P, (5.11a)
001 0 0

and the rotated scaled monomials are

/ / / /

;U T Ty 'Y —Yp

6— ) 77_ h/
E/

(5.11b)
M,

On viewing each column P! of the matrix P’ as an equivalent tensor P, we apply the rotation

matrix @ given in (5.10) to obtain a transformed tensor P;:

Pi=Q'PiQ. (5.12)
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After computing each tensor P; and rewriting them in terms of 3 x 1 vectors P;, we define the

matrix P* by [43]

2 52 —2cs  A(en—sf) s+ sn)
P*:[Pl P, P; P, P5]: 5?2 2 2cs  s%(en—s€) Ak +sm) | (5.13)

cs —cs c?—s? cs(en—s€) —cs(ck + sn)

where ¢ and s are given in (5.10). Without loss of generality, we choose an orthogonal basis for

terms representing constant stresses, which results in the matrix
1 0 0 c?(cnp—sE)  s%(cE+ sn)
P=10 1 0 s*cp—s& cA(cE+sn) |- (5.14)
0 0 1 es(enm—sE) —es(c€+ sn)

We now construct the stress-hybrid projection operator on the space V,(F) over the original element

E with respect to the basis P. From (5.6a), we have the relation:

/IPTC_IHgadm:/ IP’TNaEuhds/ (8P)" wy, da.
E OF E

Expanding uj in terms of the basis in Vj,(F), we have u;, = ¢d, where d is the displacement
vector. We also expand Ilgo in terms of P: Ilgo = P(3, and since PP is arbitrary we take P =

P, (i=1,2,...,5). After substituting in (5.6a) for each i = 1,2,...,5 and simplifying, we obtain

(/E PTC_IPd“’) B= (/8E PN ds - /E(aP)Tcpdm) d. (5.15)

For this choice of P, we have 8P = 0 (divergence-free), so we obtain

</E PTclpdm> 8= </8E PT NP, ds) 4 516)

Now define the corresponding matrices H and L by

the system:

H :/ PTC'Pdx, L :/ PTNEp s, (5.17a)
E OE
and then the stress coefficients are given by
B=H'Ld:=Tlsd, (5.17b)
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where IIg is the matrix representation of the stress-hybrid projection operator with respect to the

symmetric tensor polynomial basis P.
5.3.2. Element stiffness matrix and element force vector. Following the structure of (5.3a),
we define the discrete system using the projection operator llgo by:
ay, (un, dun) = £ (Sup),

where

af (uy, duy,) ::/ Hga(éuh)TCflﬂgo'(uh)da:,
E

tF bun) = [

(bup)Tbdx + / (6up)Ttds.
E

I'«nNoE

Expanding Ilgo in terms of 8 and applying (5.17b), we obtain
af (up, dup) = (6d)T (1) ( /E pPT'c-p dw) Mzd := (6d) Kgd, (5.19)

where we identify the element stiffness matrix for SH-VEM as
Kp = ()" </E PTCc~'p dac> s =I5 HII,. (5.20)

In Appendix A, we give an alternate stress-hybrid virtual element formulation based on Cook’s
approach [43], and show that it is identical to the stress-hybrid element stiffness matrix that is
obtained using P* in (5.13).

Now for every element F, the element force vector is given by

Ie :—/ cprda:—i—/ pltds. (5.21)
E I'NOE

For a low-order method, the first term in (5.21) is approximated by taking the nodal average of
the basis functions ¢ and then using a single-point quadrature to compute the integral [37]. The

second term is computed using Gauss quadrature over the element edges.

5.3.3. B-bar VEM. The B-bar finite element method [94] is a well-established technique to

alleviate volumetric locking for nearly incompressible materials. Recently, a B-bar virtual element
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formulation has been proposed in [85]. The method was shown to be robust for nearly incom-
pressible problems and delivered more accurate results than the B-bar finite element method. For

later numerical tests, we compare the results of the SH-VEM to a B-bar VEM. Following Park et

at. [85], we first decompose the material moduli matrix C' in terms of its eigenvectors:
3
C=> \pip], (5.22)
i=1

where (A, p;) is the i-th eigenpair of C. It is known for plane elasticity that p; = %[1, 1,0/ and

Al =2K+ %“, where £ is the bulk modulus and p is the shear modulus. We express (5.22) as

3
C = pipi + Y Aipip] = Can + Cuev- (5.23)
=2

The element stiffness matrix in the B-bar formulation is the sum of a consistency matrix and a

stabilization matrix. For the consistency matrix K¢, we have after simplification:
K¢ = (115)7 ( /E (SM)TC(SM) d:c) e
= )" ([ snyem(snn e ) s+ me)” ([ (sn) oS iz )
= K§) + Ky, (5.24)
where S is defined in (2.129b), IIS is given in (3.34) and M is:

10 - n £ 0
01 & & 0 n

The expression for the stabilization matrix is:

K = (I -115)TA(I — 11°), (5.25a)
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where II€ is the representation of the energy projection with respect to the basis functions ¢ defined

by II* = DII§, with

_ml(wl) mao(xy) ... mﬁ(a:l)_
D_ mi(xy) mo(x2) ... mg(x2) 7 (5.25b)
_ml(w4) mo(xy) ... m6(a:4)_
and A is a diagonal matrix with components
A = max ((ngv)m-, %) . (5.25¢)

5.4. Numerical results for SH-VEM on quadrilateral elements

We present a collection of two-dimensional numerical examples for linear elasticity under plane
strain conditions. We examine the errors of the displacements in the L? norm and energy seminorm,
and the L? error of the hydrostatic stress. The exact hydrostatic stress (denoted by $) and its

numerical approximation are computed as:

meelo) g = LY (), + (e, (520

p=

where (HBO')Z. is the i-th component of IIgo. The convergence rates are computed using the

following discrete error measures:

|w —unllg2) = \/Z/ |lu — w2 de, (5.27a)
o JE

1P = PrllL2) = \/Z/E P — pu|* de, (5.27b)
E

w — upll, = \/;/E(a—nﬁa)Tcua—nﬁa) de. (5.27¢)

5.4.1. Eigenvalue analysis. We first examine the stability of the SH-VEM for rotated ele-
ments through an eigenanalysis. From Cook [43], it is known that for a noninvariant method, a
rectangular element rotated by 7 will contain spurious zero-energy modes. For this test, we take a

T T T

unit square and rotate it by angle v = 0, ¢, 7, §, and then compute the eigenvalues of the element

stiffness matrix. The material has Young’s modulus Fy = 1 psi and Poisson’s ratio v = 0.4999999.
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Three formulations are considered: an unrotated 53, rotated 56 and an unrotated 75. In the
unrotated formulations, the projection matrix is computed on the original element E without ap-
plying the rotated coordinate transformation given in (5.10), and for the 78 formulation a 7-term

expansion is used forP:

100mn0 0 ¢
P=10100¢ n O
00100 —¢ —n

Every method has three physical zero eigenvalues that correspond to the zero-energy modes. For a
method to be stable the next lowest eigenvalue must be positive and not close to zero. In Table 5.1,
we indicate the fourth smallest eigenvalue of the element stiffness matrix for the three formulations.
The table shows that both the rotated 58 and the unrotated 73 have their eigenvalues unaffected
for any angle . However, as « is increased to v = 7, the next lowest eigenvalue of the unrotated 53
formulation becomes zero. This shows that the 58 SH-VEM in global coordinates is not rotationally
invariant. Numerical tests also reveal that the 78 formulation ameliorates volumetric locking but
is much stiffer for pure bending problems, and therefore both unrotated 58 and 78 formulations

are not considered in the remainder of this paper.

Method y=0|vy= =7 =3
Unrotated 56 | 0.444 | 0.111 | 0.000 | 0.111
Rotated 55 | 0.444 | 0.444 | 0.444 | 0.444
Unrotated 75 | 0.444 | 0.444 | 0.444 | 0.444

ol

TABLE 5.1. Comparison of the fourth-lowest eigenvalue on a square that is rotated
by angle v for three stress-hybrid VEMs.

To further test the stability of the SH-VEM on different convex and nonconvex element types,
we consider two additional tests. For the second test, we study the effects of perturbing a vertex of
a unit square. We construct quadrilaterals with coordinates {(0,0), (1,0), (y1,72), (0,1)}, where
71,72 € (0.05,10). For every combination of 7; and 2 we compute the element stiffness matrix on
this quadrilateral and then determine its fourth smallest eigenvalue. A few representative elements
and a contour plot of the eigenvalues are shown in Figure 5.3. The contour plot reveals that

deviations from the unit square decreases the value of the fourth smallest eigenvalue; however, the
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eigenvalue remains positive and away from zero (greater than 0.003) in all cases. This test shows

that no spurious zero eigenvalues appear even for large perturbations of the unit square.
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FIGURE 5.3. (a)—(d) First sequence of distorted quadrilaterals, where the fourth
vertex is located at (y1,72), and (e) contour plot of the fourth-lowest eigenvalue as
a function of v and ~s.

In the third test, we examine the effects of varying the angles of a unit square by con-
structing quadrilaterals with coordinates {(0,0), (cosv1, —sin~1), (1,1), (—sin~ya,cosvy2)}, where
V1,72 € [—Zl—r, %] We again compute the eigenvalues of the element stiffness matrix for different
combinations of v; and 3. Figure 5.4 shows a few representative elements and a contour plot of the
fourth smallest eigenvalue. The contour plot shows that the smallest nonzero eigenvalue remains
positive and away from zero (greater than 0.004) for any combination of 71,72 € [—ZIT: %], and

hence demonstrates that distorting a quadrilateral by varying its angle does not affect the stability

of SH-VEM.
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FIGURE 5.4. (a)—(d) Second sequence of distorted quadrilaterals, where the two
vertices that are varied are located at (cos~y;, —sin~y;) and (—sin~ys, cosvz2), and (e)
contour plot of the fourth-lowest eigenvalue as a function of v and ~s.

5.4.2. Manufactured problem. We examine the effects of increasing the Poisson ratio to
the incompressible limit (v — 0.5) on a manufactured problem with a known solution [3]. The
problem domain is the unit square and the Young’s modulus Fy = 1 psi and the Poisson’s ratio

v € {0.3, 0.4, 0.4999, 0.4999999}. The exact solution with associated loading is given by:

2 cos(mz) sin(my)
1+v

u(x) = —cos(mx) sin(ry) and wv(x) = sin(nx) cos(my), b(x) =
— sin(7x) cos(my)

In Figure 5.5, we show a few sample meshes for the unit square, and in Figure 5.6 we show the
convergence rates in L? error of displacement and the energy seminorm as v is varied. We assess
five formulations: standard VEM [11], SF-VEM [37], second-order stabilization-free serendipity
VEM (SFS-VEM) [36], B-bar VEM [85], and SH-VEM. From these plots, we observe that as v is
increased, the standard VEM and SF-VEM fail to converge, while both B-bar VEM and SH-VEM
converge with rates that are in agreement with theory. For the SFS-VEM, the rates of convergence
in the compressible regime is one order higher in the L? error of displacement and energy seminorm

than the first-order methods, as expected. However, we find that as v increases, the rates of
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convergence become suboptimal and the accuracy of the solution deteriorates. This shows that the

SFS-VEM also suffers from volumetric locking.
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FIGURE 5.5. Quadrilateral meshes for the manufactured problem. (a) 150 elements,

(b) 1500 elements and (c) 6000 elements.
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FIiGURE 5.6. Comparison of the convergence of standard VEM, stabilization-free
VEM, stabilization-free serendipity VEM, B-bar VEM and SH-VEM for the manu-
factured problem on unstructured meshes (see Figure 5.5). Each column represents
a different value of v. (a) v = 0.3, (b) v = 0.4, (¢) v = 0.4999 and (d) v = 0.4999999.

We also test this problem on noncovex meshes. We begin with a uniform rectangular mesh
and then split each element into a convex and a nonconvex quadrilateral. A few sample meshes
are shown in Figure 5.7. Numerical results are presented in Figure 5.8, which reveal that even
on nonconvex meshes B-bar VEM and SH-VEM retain optimal rates of convergence, while the

SFS-VEM still converges suboptimally in the incompressible limit.
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FIGURE 5.7. Nonconvex quadrilateral meshes for the manufactured problem. (a)
32 elements, (b) 512 elements and (c) 2048 elements.
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FiGure 5.8. Comparison of the convergence of standard VEM, stabilization-free
VEM, stabilization-free serendipity VEM, B-bar VEM and SH-VEM for the manu-
factured problem on nonconvex meshes (see Figure 5.7). Each column represents a
different value of v. (a) v = 0.3, (b) v = 0.4, (c¢) v =0.4999 and (d) v = 0.4999999.

Lastly, we examine the conditioning of the global stiffness matrix to ensure that increasing the

Poisson’s ratio and varying the element shapes and refinement does not lead to ill-conditioning. In

Figure 5.9, we show the condition number of the five methods as v — 0.5 on both unstructured

and nonconvex meshes.

From the plot, we observe that the condition number of SH-VEM is

comparable to the other four methods for compressible materials. As the material becomes nearly

incompressible, the condition number increases for all methods on the coarsest mesh. However, we

observe that the growth of the condition number with refinement for B-bar VEM and SH-VEM is
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similar to the case when v = 0.3, which is in agreement with the O(h~2) increase of the stiffness

matrix condition number in the finite element method.
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F1cURE 5.9. Comparison of the conditioning of the global stiffness matrix of the
standard VEM, stabilization-free VEM, stabilization-free serendipity VEM, B-bar
VEM and SH-VEM for the manufactured problem. The first row is for the unstruc-
tured quadrilateral mesh (see Figure 5.5), the second row is for the nonconvex mesh
(see Figure 5.7). Each column represents a different value of v. (a) v = 0.3, (b)
v =04, (c) v =0.4999 and (d) v = 0.4999999.

5.4.3. Thin cantilever beam. We consider the benchmark problem of a thin cantilever beam
under a shear end load [109]. The material has Young’s modulus Ey = 1x 10° psi and v = 0.49995.
The beam has length L = 32 inch, height D = 1 inch and unit thickness. The left boundary is
fixed and a shear end load of P = —100 lbf is applied on the right boundary. We use a regular
rectangular mesh with N € {1, 2, 4, 8, 16} elements along the height and 10N elements along the
length. In Figure 5.10, we show a few representative meshes and in Figure 5.11 we compare the
rates of convergence of B-bar VEM to SH-VEM in the three error norms. In Figure 5.12, we plot
the end displacement of the three methods and contours of the hydrostatic stress for SH-VEM.
From these results, we observe that the accuracy of SH-VEM is far superior to B-bar VEM and
the displacements in the SH-VEM display superconvergence (close to the exact solution) on coarse

rectangular meshes.
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FIGURE 5.10. Rectangular meshes for the cantilever beam problem. (a) 10 ele-
ments, (b) 40 elements and (c) 160 elements.
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We consider another test for the cantilever beam problem using a mesh with either one or two

FiGurge 5.11. Comparison of B-bar VEM and SH-VEM for the thin cantilever
beam problem on structured meshes (see Figure 5.10). (a) L? error of displacement,
(b) energy error and (c) L? error of hydrostatic stress, where N is the number of
elements along the height of the beam.

elements along the height and M elements along the length. We choose the number of elements M €

{2, 4, 8, 16}. The meshes are depicted in Figure 5.13 and the convergence of the tip displacement

for the two cases is presented in Figure 5.14. The plots reveal that SH-VEM is accurate even

for high aspect ratio elements and is free of shear locking. However, for one element along the

height and with refinement along the length, we observe that B-bar VEM converges to a value

below the exact value (see Figure 5.14a) and for the case of two elements along the height, the end

displacement is not accurate (see Figure 5.14b).
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FIGURE 5.12. (a) Convergence of the end displacement for the cantilever beam
problem. The mesh consists of 10N x N rectangular elements, where N is the
number of elements along the height of the beam (see Figure 5.10), (b) contour plot
of hydrostatic stress for SH-VEM.
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FiGurE 5.13. Rectangular meshes for the cantilever beam problem with fixed
length to height ratio for each element. (a), (b), (c¢), (d) 16:1, 8:1, 4:1 and 2:1;
and (e), (f), (g), (h) 32:1, 16:1, 8:1 and 4:1.

It is known that distortions of a rectangular mesh can lead to shear locking in the thin beam
problem [76]. We study this issue on perturbed trapezoidal meshes that are shown in Figure 5.15.
In Figure 5.16, we present the convergence of the end displacement. The plot shows that on such
meshes SH-VEM is convergent but with reduced accuracy; however, note that the B-bar formulation

fails to converge to the exact end displacement for the case N =1 (see Figure 5.16a).
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FiGure 5.14. Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of M x N quadrilaterals, where M is the number of elements
along the length of the beam (see Figure 5.13). (a) N =1 and (b) N = 2.

FI1GURE 5.15. Trapezoidal meshes for the cantilever beam problem. Mesh is refined
along the length with (a) 1 element along the height and (b) 2 elements along the
height.

We also solve the cantilever beam problem on nearly degenerate quadrilateral meshes. We start
with a regular rectangular mesh, and then split each element into four quadrilaterals with two of the
elements have collapsing edges. A few sample meshes are shown in Figure 5.17. In Figure 5.18, we
compare the convergence rates of B-bar VEM and SH-VEM in the three norms, and in Figure 5.19
we present the convergence of the tip displacement as well as the contour plot of the hydrostatic
stress using SH-VEM. The plots reveal that B-bar VEM and SH-VEM retain optimal convergence
rates. Furthermore, the convergence of SH-VEM is monotonic; however its accuracy is worse when
compared to the uniform mesh case. This decrease in accuracy can be attributed to the poor shape

(near-degeneracy) quality of the elements.
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FiGure 5.16. Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of M x N trapezoids, where M is the number of elements
along the length of the beam (see Figure 5.15). (a) N =1 and N = 2.

(d)

FIGURE 5.17. Nearly degenerate meshes used for the cantilever beam problem. (a)
40 elements, (b) 160 elements (c) 360 elements, and (d) magnification of a single
element split into four quadrilaterals.

5.4.4. Cook’s membrane. Here we consider the Cook’s membrane problem under shear
load [43] (see Figure 5.20). This problem is commonly used to test a combination of bending
and shear for nearly-incompressible materials. The material has Young’s modulus Fy = 250 psi
and Poisson’s ratio v = 0.4999999. The left edge of the membrane is fixed and the right edge has an
applied shear load of F' = 6.25 1bf per unit length. This problem does not have an exact solution;
a reference solution for the vertical displacement at the tip of the membrane is v = 7.769 inch [85].
We first test this problem on an unstructured quadrilateral mesh. A few sample meshes are shown

in Figure 5.20. In Figure 5.21, the convergence of the tip displacement and that of the hydrostatic
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FI1GURE 5.18. Comparison of B-bar VEM and SH-VEM for the thin cantilever beam
problem on nearly degenerate meshes (see Figure 5.17). (a) L? error of displacement,
(b) energy error and (c) L? error of hydrostatic stress, where N is the number of
elements along the height of the beam.
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FIGURE 5.19. (a) Convergence of the end displacement for the cantilever beam
problem. The mesh consists of 10N x N nearly degenerate quadrilaterals, where
N is the number of elements along the height of the beam (see Figure 5.17), (b)
contour plot of hydrostatic stress for SH-VEM.
stress are presented. The plot shows that the B-bar VEM and SH-VEM have comparable accuracy
and convergence for the tip displacement. In addition, SH-VEM is able to produce a relatively
smooth hydrostatic stress field on an unstructured mesh.
Next, the SH-VEM is now assessed for the Cook’s membrane problem on nonconvex meshes.
We begin with an unstructured quadrilateral mesh, and then each element is split into a convex
and a nonconvex quadrilateral. A few representative meshes are shown in Figure 5.22. The plots

of the convergence of tip displacement and the contour of the hydrostatic stress are presented in

Figure 5.23. The plots show that even on nonconvex meshes, the convergence of the tip displacement
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FIGURE 5.20. (a) Cook’s membrane problem. (b), (c), (d) Unstructured quadrilat-
eral meshes with 100 elements, 300 elements and 1000 elements, respectively.
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FIGURE 5.21. (a) Convergence of the tip displacement for Cook’s membrane prob-
lem. The mesh consists of unstructured quadrilaterals (see Figure 5.20). (b) Contour
plot of the hydrostatic stress for SH-VEM.

of B-bar VEM and SH-VEM are proximal, and the contours of the hydrostatic stress for SH-VEM

remains relatively smooth.

5.4.5. Plate with a circular hole. We revisit the infinite plate with a circular hole problem
used in the previous two chapters (see Section 3.5.4) but now in the incompressible limit. The

material has Young’s modulus Ey = 2 x 107 psi and Poisson’s ratio v = 0.4999999. We first
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FI1GURE 5.22. Nonconvex quadrilateral meshes for the Cook’s membrane problem.
(a) 100 elements, (b) 250 elements and (c) 1000 elements.
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Ficure 5.23. (a) Convergence of the tip displacement for Cook’s membrane. The

mesh consists of nonconvex quadrilaterals (see Figure 5.22). (b) Contour plot of the
hydrostatic stress for SH-VEM.

test this problem on structured quadrilateral meshes; a few representative meshes are shown in
Figure 5.24. In Figure 5.25, we compare the convergence results of the B-bar formulation and the
SH-VEM, and find that both methods deliver optimal convergence rates. In Figure 5.26, we also

compare the contours of the hydrostatic stress by the two methods and find that they both are

smooth and have comparable accuracy.

129



/ / / IIIII//////// f%f}

I HERERARRNY
T
T ey

[HEEEERRNY

[TV

(a) (b) ()

FIGURE 5.24. Structured quadrilateral meshes for the plate with a hole problem.
(a) 256 elements, (b) 1024 elements and (c) 4096 elements.
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F1GURE 5.25. Comparison of SH-VEM and B-bar VEM for the plate with a circular
hole problem on structured meshes (see Figure 5.24). (a) L? error of displacement,
(b) energy error and (c) L? error of the hydrostatic stress.
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FIGURE 5.26. Contour plots of the hydrostatic stress on structured meshes (see Fig-
ure 5.24) for the plate with a circular hole problem. (a) exact solution, (b) B-bar
VEM, (c) SH-VEM.
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We now consider the plate with a circular hole problem on a perturbed mesh. We start with
a structured mesh, then for each internal node we perturb its location. Representative meshes are
shown in Figure 5.27. In Figure 5.28, we show the convergence rates of the two methods and find
that both methods retain optimal convergence on the perturbed mesh. In Figure 5.29, the exact
hydrostatic stress and contour plots of the error, p — py, are shown. The plots reveal that both
methods produce relatively smooth error distributions of the hydrostatic stress field, with the B-bar

VEM having smaller pointwise error than SH-VEM.

(a) (b)

FIGURE 5.27. Perturbed quadrilateral meshes for the plate with a hole problem.
(a) 256 elements, (b) 1024 elements and (c) 4096 elements.
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Ficure 5.28. Comparison of SH-VEM and B-bar VEM for the plate with a circular
hole problem on perturbed meshes (see Figure 5.27). (a) L? error of displacement,
(b) energy error and (c) L? error of hydrostatic stress.

5.4.6. Hollow cylinder under internal pressure. We again consider the problem of a hol-

low cylinder with inner radius @ = 1 inch and outer radius b = 5 inch under internal pressure [109].
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FiGUrE 5.29. Contour plots of the hydrostatic stress for the plate with a circular
hole problem on perturbed meshes (see Figure 5.27). (a) exact solution, and error
in the hydrostatic stress field, p — py, for (b) B-bar VEM and (c¢) SH-VEM.

However, due to symmetry, we model this problem as a quarter cylinder. A uniform pressure of
p = 10° psi is applied on the inner radius, while the outer radius is kept traction-free. The material
has Young’s modulus Fy = 2 x 10° psi and Poisson’s ratio v = 0.4999999. For this example, the
hydrostatic stress field is constant; therefore, we use an element averaged approximation to compute
the hydrostatic stress pp. We first examine this problem on structured quadrilateral meshes; a few
representative meshes are presented in Figure 5.30. In Figure 5.31, the convergence rates of B-bar
VEM and SH-VEM are shown. For both methods, convergence in L? norm and energy seminorm
is optimal. The contour plots in Figure 5.32 show that both methods are able to reproduce the

constant exact hydrostatic stress field on a uniform mesh.
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FIGURE 5.30. Uniform quadrilateral meshes for the hollow cylinder problem. (a)
256 elements, (b) 1024 elements and (c) 4096 elements.
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FiGure 5.31. Comparison of B-bar VEM and SH-VEM for the hollow cylinder
problem on structured meshes (see Figure 5.30). (a) L? error of displacement, (b)

energy error and (c) L? error of hydrostatic stress.
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FiGure 5.32. Contour plots of the hydrostatic stress field on structured meshes
(see Figure 5.30) for the hollow pressurized cylinder problem. The exact hydrostatic

stress is 4166.6666 psi. (a) B-bar VEM and (b) SH-VEM.

Now we solve the pressurized cylinder problem on a sequence of nonconvex meshes; a few

representation meshes are shown in Figure 5.33. Figure 5.34 shows that both the B-bar VEM

and the SH-VEM deliver optimal convergence rates; however unlike the uniform mesh case, the

hydrostatic stress field is not exactly reproduced by either method. In Figure 5.35, we compare the

contour plots of the error in the hydrostatic stress field for the two methods. We observe that both

methods are very accurate away from the inner circular boundary but produce much larger errors

in its vicinity (see Figures 5.35b and 5.35d). The maximum error of the SH-VEM is 30 percent,

whereas that of B-bar VEM is markedly worse at 55 percent. Compared to Figure 5.33c, if the

nonconvex quadrilateral is distorted even more, we find from our simulations that the maximum
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error in the hydrostatic stress for SH-VEM increases to 35 percent, whereas the maximum error

using B-bar VEM has a 10-fold increase.
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FIGURE 5.33. Nonconvex quadrilateral meshes for the hollow cylinder problem. (a)
512 elements, (b) 2048 elements and (c) magnification of a single element split into
convex and nonconvex partitions.
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Ficure 5.34. Comparison of B-bar VEM and SH-VEM for the hollow cylinder
problem on nonconvex meshes (see Figure 5.33). (a) L? error of displacement, (b)
energy error and (c) L? error of hydrostatic stress.

5.4.7. Flat punch. Finally, we consider the problem of a flat punch as described in Park et
al. [85] and shown in Figure 5.36. The domain is the unit square and we choose Ey = 250 psi
and v = 0.4999999. The left, right and bottom edges are constrained in the direction normal to
the edges, and the top has a constant vertical displacement of v = — 0.03 applied on the middle
third of the edge. A sequence of unstructured quadrilateral (see Figure 5.5) is used to solve this
problem. The hydrostatic stress field from both methods are presented in Figure 5.37. The plots

show that both methods produce relatively smooth hydrostatic stress fields of comparable accuracy.
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F1cURE 5.35. Contour plots of the relative error in the hydrostatic stress on non-
convex meshes (see Figure 5.33) for the hollow pressurized cylinder problem. The
exact hydrostatic stress is 4166.6666 psi. (a) B-bar VEM, (b) B-bar VEM (color
scale for error is between 0 and 10 percent), (¢) SH-VEM and (d) SH-VEM (color
scale for error is between 0 and 10 percent.
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In Figure 5.38, plots of the trace of the strain field are shown for B-bar VEM and SH-VEM, and we

find that consistent with the exact solution the numerically computed strain field is nearly traceless.

135



|
|
|
|
|
|
|
|
|
|
D)

1

05¢

FicUure 5.37. Contour plots of the hydrostatic stress on unstructured meshes
(see Figure 5.5) for the flat punch problem. (a) B-bar VEM and (b) SH-VEM.
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FiGURE 5.38. Contour plots of the trace of the strain field on unstructured meshes
(see Figure 5.5) for the flat punch problem. (a) B-bar VEM and (b) SH-VEM.
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CHAPTER 6

Stress-Hybrid Virtual Element Method on Six-Noded Triangular
Meshes

In many applications with complex geometries, the standard quadrilateral and hexahedral ele-
ments used in FEM are not easily generated. Triangular and tetrahedral meshes can be automati-
cally generated for very general geometries using robust and well-established meshing algorithms.
However, the majority of triangular and tetrahedral elements are overly stiff in bending problems
and suffer from volumetric locking in the incompressible limit. Many of the techniques developed
in finite elements to alleviate locking are applicable to only quadrilateral elements, although there
has been progress in constructing robust and accurate triangular elements. Using the foundation
of the virtual element method, we seek a method that is locking-free on triangular meshes. Fol-
lowing the approach of Chapter 5, we examine a stress-hybrid formulation for six-noded elements
using equilibrated stress fields, and by applying the ideas of | , ], we introduce a penalty
stress-hybrid approach.

In this chapter, we revisit the Hellinger—Reissner variational formulation and use it to con-
struct the stress-hybrid projection operator. We then examine the different choices of stress basis
functions and show the aspects of numerical implementation. Next, we introduce an alternative
method using an equilibrium penalty term. This approach is refered to as the Penalty Stress-Hybrid
Virtual Element Method (PSH-VEM). To conclude the chapter, we present results comparing the
Composite triangle FEM (CT FEM) [60], B-bar VEM [85], SH-VEM, and the PSH-VEM. The
four methods are used to solve a series of benchmark problems in the nearly-incompressible limit:
bending of a thin cantilever beam, Cook’s membrane, infinite plate with a circular hole, pressurized
cylinder, a manufactured problem with a sinusoidal solution, and the punch problem.

This chapter is based on the work published in [35].
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6.1. Stress-hybrid virtual elements for triangular elements

Let 7" be a decomposition of § into six-noded elements (see Figure 6.1). For each element F,

denote its diameter by hp, its centroid by &g and the coordinate of the i-th vertex by @; = (z;, y;)-

(a) (b) ()

FIGURE 6.1. Examples of admissible six-noded elements (a) nonconvex element,
(b) hexagonal element and (c) six-noded triangular element.

6.1.1. Variational formulation. Following (5.1), we write the Hellinger—Reissner functional

for linear elasticity:

1 _
Myrfu,0)=—= [ 0:C':odx+ [ 0:Vude— [ b-udx— [ T uds.
2 Ja Q Q r,

After taking the first variation of Ilgg(+,-) and requiring it to be stationary, we obtain the weak

statement of the equilibrium equations and strain-displacement relations:

/U:Vs(du)dac—/b-dudm—/ t-duds=0 You €V, (6.1a)
Q Q Iy

/ 6o : (Vsu—C ' :io) dz =0 Vo €V, (6.1b)
Q

where V,, C [H'(2)]? contains vector-valued functions that vanish on I',, and V, contains symmetric

2x2

tensor-valued functions in [L?(€2)]2%3.

6.1.2. Stress-hybrid projection. Let ¢ € N be the largest degree of the polynomials used
for the stress approximation on an element. Then following (5.4), define the projection operator

IIgo for the stress-hybrid formulation by the condition

sym>»

/ P: (Vsup, —C ' :Mgo) de =0 VP e [Py(E)252
E
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which is rewritten as

/]P’:C_l :Hgadx—/IP:Vsuhdx VP € [Py(E))2X2
E E

sym*

Now applying the divergence theorem and simplifying, we obtain

/P:C_lzﬂﬂa'dw:/ (IP’~n)~uhd5—/ (V- P) -y, de, (6.3)
E OF E

Let P, IIgo be the Voigt representation of P and Ilgo, respectively. Then, (6.3) can be written as

sym»

/]P’TC'lﬂﬂada::/ IP’TNaEuhds—/ (0P)" wpda VP € [Py(E))2:2 (6.42)
E OFE E

where N9 is the matrix representation of the outward normals along the boundary of E, and 8

is the matrix divergence operator that are given by

ng 0
or % 0 %
N =10 ny| 0= 5 ol (6.4b)

Ny Ny

6.1.3. Choice of stress basis for a hybrid formulation. Now that we have a projection
operator for the stress, we need to choose a suitable polynomial basis for the stress field. Using too
few basis functions will result in an unstable element; while using too many will lead to overstiff
elements. It is known that for a stress-based method, using a stress approximation that satisfies
the element equilibrium condition results in more accurate stress distributions for homogeneous
problems [62, , , |. For plane isotropic elasticity, a convenient set of suitable stresses that
satisfy the equilibrium equations with zero body force are derived from the Airy stress functions [34,

,96]. A collection of fifteen potential stress fields is given in Voigt representation by [34]:

10000 & 0 0 2n —n?&2—n? £(&2—-6n2) & 3¢%n  n(3¢2—2n?)
P=|0100¢c0 n 20 0 ¢ n2—¢2 3én? —£(26%-3n?) —n(6£2—n?) n? . (6.5)
00100—n—¢—£ —n? 0 —2n —n(36%-29%)  —3&%n  £(2¢%-3n%) —-3¢?

For a six-noded element, there are twelve displacement degrees of freedom and three rigid-body
modes, so a minimum of nine terms are needed for the stress approximation [92]. However, it is
also known that using an incomplete stress approximation will result in a stiffness matrix that is

not rotationally invariant [43,90], or result in elements with inaccurate stress distributions [116].
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Therefore, we only consider the complete bases with the first eleven terms of (6.5) and all fifteen

terms. We denote any stress basis with k independent terms by kf.

REMARK 6.1.1. The set of stress basis in (6.5) is an extension of the 53 hybrid-stress basis
introduced in [89] and the 155 basis introduced in [105]. In [5/], a similar collection of divergence-

free polynomials is used as a basis for the enhanced strain VEM.

We also examine a basis similar to the hybrid basis given in [54], which uses a mix of nine

uncoupled constant and linear polynomials and four divergence-free quadratic polynomials:

100 &00mn 00 0 21 —n? €—p?
P'=10100¢00mn0 2 0 & n2-g. (6.6)
001 00¢EO0O0TDNR =& - 0 =2

6.1.4. Virtual element space. Similar to the previous chapters, the standard virtual element
space is not sufficient to compute the projection Ilgo for arbitrary ¢ without adding additional
degrees of freedom; therefore, we reuse the enhanced virtual element space given in (3.19) for each

element E:

Vi(E) = {vh e [HYE))? : Avy, € [P_i(E)]?, vple € [P1(e)]? Ve € OE,
(6.7)

onlor € [C°OB)]?, /E

vy pde = / vy -pde Vpe€ [Pe—l(E)]z},
E
where A is the vector Laplacian operator and e is an edge of the element. We note that for a stress
basis that uses degree ¢ polynomials, the space requires the enhancing property | UL pdr =
I} g Fvp, - p dx to hold for all vectorial polynomials up to degree £ — 1. For each element E we
also assign a basis for the local space V}(E). Let {¢;} be the scalar polygonal basis functions in
standard VEM [9] that satisfy the Kronecker-delta property ¢;(x;) = d;;. Using the scalar basis,
we define the matrix of vector-valued basis functions by
¢1 P2 P3 - g O 0 0O - 0
P = = |:(‘01 W2 ... P12 (683‘)
0 0 0 -+ 0 o1 P2 P3 - o6
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then any function vy, € V3, (E) can be represented as:

12
vp(x) = Z pi(x)v; = ¢d, (6.8b)
i=1

where v; is the i-th degree of freedom of vy, and d is the displacement vector with components v;.

6.1.5. Implementation of the stress-hybrid projection. From (6.4a) we have the weak
discrete relation given by:
/ @TC_lmdas = / P NPy, ds — / (Bﬁ)Tuh dex. (6.9a)
E OB E
The last term in (6.9a) is not computable for general P; however since the elements of P are
polynomials of degree at most ¢ — 1, we apply the definition of the virtual element space (6.7) to
rewrite as

/ P C 0 do = / P’ NP, ds — / (8P)" T uy, da. (6.9b)
E oF E

Expanding wy, in terms of the basis in V;,(E), we have uj, = ¢d, where d is the displacement vector.
We also expand Ilgo in terms of P: Ilgo = P(3, and since P is arbitrary we take P=P (i=
1,2,...,15). After substituting in (6.9b) for each i = 1,2,...,15 and simplifying, we obtain the

( /E PTCHPdw) B= < /8 ; P'N%pds — /E (aP)" nwm) d. (6.10)

For any choice of P in (6.5), we have the divergence-free condition 8P = 0, so we obtain

system:

</ PTclpdm> B= < PTNYE, ds> d. (6.11)
E OF

Now define the corresponding matrices H and L by

H:/PTc—lpdx, L= PTN%gpds. (6.12a)
E OFE

Since P has linearly independent columns and C~! is symmetric positive-definite, the matrix H

is invertible. Then the stress coefficients are given by

B=H'Ld:=Td, (6.12b)
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where IIg is the matrix representation of the stress-hybrid projection operator with respect to the

symmetric tensor polynomial basis P.

REMARK 6.1.2. For a nondivergence-free basis, the use of (6.9b) can lead to an overly stiff
element. An alternate approach used in [5/,70], is to introduce additional internal moment degrees
of freedom to compute the last integral in (6.9a). These additional DOFs result in better performing
elements but require an additional static condensation on the element stiffness matriz. Another
approach is to follow the idea of using composite elements [60] to compute the stress projection
operator. For each element, we construct a sub-triangulation and assume the displacement field
(displacement projection) is affine on each subtriangle. This piecewise displacement field can then be
used to compute the integral in (6.9a). We tested a virtual element formulation based on composite
elements and found that the resulting elements were more flexible but still suffered from volumetric

locking.

6.1.6. Element stiffness and forcing. Following the procedure of Section 5.3.2, we define

the discrete system:
af (up, dup) = 1F (5uy),

where

af(uh,éuh) ::/ Hﬂa(duh)TC_lﬂga(uh) dx,
E

tF o) = [

(6up)Tbdx +/ (6up) Tt ds.
E

I'yNoE

After expanding IIgo and simplifying, we construct the element stiffness matrix
Kp = ()" </ PTCc~'p dac> s =I5 HI,. (6.14)
E
Similarly, for every element F, the element force vector is given by

I ::/ gode:I:—i-/ pltds. (6.15)
E T'tNOE
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6.2. Equilibrium penalty stress-hybrid method

In the original stress-hybrid approach, we used a set of stress basis functions that satisfy the
equilibrium equations without body force. In general, this is difficult or not possible for nonlin-
ear, anisotropic and three-dimensional problems. It was also found in our numerical tests that
many higher order polynomial terms were needed in order to preserve the stability without us-
ing a stabilization term. This requirement increases the cost of integration and results in stiffer
solutions. An alternative method is to adapt the approach by [116]. It was found that for dis-
torted elements, the original Pian-Sumihara element does not satisfy elementwise equilibrium; this
resulted in shear locking and large errors in pure bending problems on distorted meshes. The
remedy suggested in | , ] is to add an additional term which penalizes the functional when
the stress basis functions are not in equilibrium. In the limit as the penalty term approaches in-
finity, the equilibrium conditions are exactly satisfied. This formulation was shown to mitigate
shear locking in the Pian-Sumihara element and to improve performance in axisymmetric prob-
lems [116,117]. A similar method was developed in [106], which uses carefully selected scaling
parameters to eliminate excess shear stresses rather than enforce equilibrium. Later, the penalty
equilibrium formulation was applied to fracture mechanics [118] and extended to the Hu-Washizu
variational principle [32,33]. The addition of an equilibrium penalty term is also used in [22, ]
to construct superconvergent stress recovery methods. In this section, we utilize the penalty ap-
proach to weakly enforce equilibrium conditions on a set of non-equilibrated stress basis functions.
We first introduce a Hellinger—Reissner functional with an additional penalty term, then define a
penalized stress-hybrid projection operator from the associated weak strain-displacement relation.
Finally we construct the element stiffness matrix, forcing vector and discuss a choice for the penalty
parameter and basis functions.

We start with a modified Hellinger—Reissner functional with an equilibrium penalty term:

HHR*[u,J]:—1 o:Cliode+ [ o:Viude— [ b-ude— | t-uds
2
Q Q Q I

_2/§2(V-a+b)-(v-a+b)dw,

(6.16)
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where a > 0 is a penalty parameter. After taking the first variation, the stationary condition

results in the weak equilibrium equations and modified strain-displacement relations:
/ o : Vs(ou)dx —/ b-oudx — / t-ouds=0 You €V, (6.17a)
Q Q Iy
/50: (Vau—C': o) daz—a/ (V-60) - (V-0+bdx=0 Yoo €V,. (6.17b)
Q Q

6.2.1. Penalty stress-hybrid projection and implementation. We first construct the
penalized stress-hybrid projection operator on an element E from the modified strain-displacement

relation. By modifying (6.17b), we define the projection by the condition:

/JP’: (Vsuh—(C_l:H/ga) dsc—a/ (V-P)-(V-Ilgo +b)dx =0,
E E

which can be rewritten as

/P:Clzﬂgadw—i—a/ (V~P)-(V-Hga)daz—/P:Vsuhdw—a/ (V-P)-bdx.
E E E E
After applying the divergence theorem, we get

/P:Cl:ﬂﬁadw—i—a/ (V-P)- (V- Ilgo)dx
E

B (6.19)
:/ (]P"n)'uhds—/(V-]P’)~uhdw—a/(V-IP’)'bda:.
OE E E
Using Voigt notation, we rewrite (6.19) in terms of matrix-vector operations
/ FTC_ll'[/ga dz + a/ (oP)! 9Tl 50 dx :/ P’ NP, ds — / (OP)Tuy, da
E E OE E (6.20a)

—a/E(aP)dem.

The second term on the right-hand side is not computable from the element DOF’s; however, by
applying the definition of the virtual element space (6.7), we rewrite the relation in a computable
form
/ @TC_IHBO' dx + oz/ (0P)T 9o dx :/ @TNaEuh ds — / (OP) TI*wy, dx
b g oF B (6.20b)
—a / (OP)Tbdx.
E
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Letting P = P, IIgo = PP and u;, = ¢d, we obtain the system of equations:

</ PTc—lpdx+a/ (BP)Té)Pdm>,B
E E

= < PTNYEpds — / (aP)TH€¢dx>d—a / (0P) bdx.
OF E E

Define the corresponding matrices by
H :/ pPT'Cc 'Pdx, H, :/ (OP) 9P dx,
E E
L= [ PTN%yds— / (OP) "I dx, L,= / (OP)Tbdx.
OE E E

Then the stress coefficients are given as

B=(H+ O‘Hp)il(Ld - O‘Lp)‘

(6.21)

(6.22a)

(6.22b)

(6.22c)

6.2.2. Element stiffness and forcing. The element stiffness matrix can be constructed by

using the the discrete equilibrium equations based on (6.17a)

/E WTVS(&U}L) de = /

b Suy, dz + / fTéuh ds.
E

Iy

On applying (6.17b) and simplifying, we rewrite the first integral as

/ Hﬁa(uh)TVS(éuh) dx :/ Hﬁa(uh)TC’_lﬂﬁa(&uh) dx
E

E

+a / (8150 (un))" (BTT50r (Gun) + b) da.
E

Now we have the equation

/ Hga(uh)TC_IHﬂcr(éuh) dx + Oé/ (Bﬂgd(uh))T(aﬂﬂd((suh) +b)dx
E E

_ / b Sy, do + / T’ Sy, ds.
E I'tNOFE

After expanding Ilgo = PB and simplifying, we construct the element stiffness matrix

Kp=LT(H +aH,) 'L,
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and the element force vector is given by

fe = / plbde + / ¢Ttds +aL” (H + aH,) 'Ly, (6.25b)
E T'tNOE

where H, Hy,, L, L,, are given in (6.22).

6.2.3. Choice of penalty parameter. Similar to the stabilized virtual element method, one

drawback of the penalty equilibrium method is the need for a properly designed penalty parameter

K
Ey >

a. In [116], a = where Ey is the Young’s modulus and & > 103 is a large dimensionless
number, is suggested. However, we found that this can result in the loss of stability for problems
with highly distorted meshes. It is suggested in [32], that the penalty term should be scaled by a
term that depends on the geometry in order to attain consistent units. In particular, « is chosen
to be of the form a = %@, where {y is a characteristic length that is dependent on the element
geometry. In our tests, we let g be the minimum length from the element centroid to the nodes
and x = 10*. From our numerical experiments on benchmark problems, we found that using the
penalty parameter o = % resulted in higher accuracy and superconvergence on sufficiently refined
uniform meshes. However, in the case when Ey is small (« too large), low energy modes appear in
the element stiffness matrix. From [74], it is suggested that a reasonable value of ﬁ is between

10 and 100; therefore, we fix an arbitrary upper bound of 10 in our tests. That is, we use
. K 2
a= mln{lO, —}EO. (6.26)
Ey

For the penalty equilibrium stress-hybrid method, we do not require the equilibrated stress
basis functions given in (6.5). Instead, we seek the smallest number of stress basis functions that
still retains stability and is not overly stiff in bending. For a six-noded element, a minimum of nine
terms are needed; but it was found in [37] that the 95 complete linear basis is not sufficient for

stability. We choose the 123 expansion with complete bilinear polynomials given by

1 00&00mn00¢ 0 0
P=10100¢00mno0 0 ¢ 0f- (6.27)
00100¢EO0O0mn 0 0 &n
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6.3. Numerical results for SH-VEM on triangular elements

We present a series of numerical examples in linear elasticity under plane strain conditions on a
variety of meshes. The unstructured triangular meshes used in these examples are generated using
DistMesh [88]. We compute the errors of the displacement in the L? norm and energy seminorm,
and the L? error of the hydrostatic stress (denoted by ). The convergence rates of CT FEM, B-bar
VEM, SH-VEM, and PSH-VEM are computed using the discrete error measures given in (5.27).
Similar to the previous sections, we use the scaled boundary cubature (SBC) method [41] to
compute the matrices H in (6.12a), H,, L and L, in (6.22), and the integrals appearing in (5.27).
The matrices H, H,, and L are integrals of polynomial functions and are exactly computed by the
SBC method. The integrals in (5.27) are in general not integrals of polynomials but they can be

computed to arbitrary accuracy with the SBC method.

6.3.1. Eigenvalue analysis. We examine the eigenvalues of the SH-VEM for general triangu-
lar elements to determine the stability of the method. The material has Young’s modulus Fy =1
psi and Poisson’s ratio v = 0.49995. We assess the eigenvalues of the standard VEM [11], B-bar
VEM [85], composite triangle FEM [60] and the three formulations: a 118 and 150 that is based on
the Airy stress function basis given in (6.5), and a 138 hybrid formulation given in (6.6). For a sta-
ble method, the element stiffness matrix should have three zero eigenvalues that correspond to the
zero-energy modes and the next smallest eigenvalue should be positive and bounded away from zero.
For this test, we construct six-noded triangular elements with vertices at {(—1,0), (1,0), (v1,72)},
where v; € [-10,10], 72 € [.05,10], and then nodes are placed at the midpoints of each edge
(see Figure 6.2). For each combination of v; and 2, we compute the first non-rigid body eigen-
value, which corresponds to the fourth smallest eigenvalue of the element stiffness matrix. The
contour plots of the first non-rigid body eigenvalue are given in Figure 6.3. The plots show that
the 115 formulation will develop spurious modes as the elements become highly distorted. The 1543
SH-VEM and B-bar VEM produced similar ranges for their eigenvalues and both do not produce
any spurious zero-energy modes. The eigenvalue in the 133 formulation had a similar range to the
standard VEM and further numerical tests show that the 135 formulation locks in the incompress-
ible limit. Therefore both the 113 Airy stress and 138 hybrid formulations are not considered in

the remaining examples. The 155 SH-VEM will be denoted as SH-VEM in the later examples.
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(a) (b) (c)

FIGURE 6.2. (a)-(c) Sequence of six-noded triangular elements with vertices at
{(-1,0), (1,0), (o, B)} and nodes placed at the midpoint of each edge.

6.3.2. Eigenvalue analysis of the penalty formulation. We test the stability of the PSH-
VEM with different values of the penalty parameter a. The material has Young’s modulus Fy =1
psi and Poisson’s ratio v = 0.49995. We choose four penalty parameters a € {%,62, 1042, 100€3}
and examine the first non-rigid body eigenvalue of the element stiffness matrix of the penalty
stress-hybrid formulation. For each «, we repeat the eigenvalue analysis presented in the previous
section. In Figure 6.4, the countour plots of the the first non-rigid body eigenvalue as a function
of (v1,72) are shown. The plots reveal that as « increases, the maximum value of the eigenvalue
decreases. This implies as a — oo, the element stiffness matrix will be rank-deficient and lose
stability. However, for the tested values of «, no spurious eigenvalues appear even for highly

distorted elements.

6.3.3. Eigenvalue analysis for near incompressibility. It is known that in the incom-
pressible limit (v — 0.5) that the element stiffness matrix should only have one eigenvalue that
tends to infinity [101]. Elements with more than one infinite eigenvalue will experience volumetric
locking. We examine the eigenvalues of the element stiffness matrix for the standard VEM, CT
FEM, B-bar VEM, 158 SH-VEM, and 125 PSH-VEM on a single element. The material has Youngs
modulus Fy = 1 psi and Poisson’s ratio v = 0.4999999. In Table 6.1, the five largest eigenvalues of
each method is presented for a regular six-noded triangular element (see Figure 6.1c) and Table 6.2
shows the eigenvalues for a six-noded nonconvex element (see Figure 6.1a). The tables show that
the standard virtual element approach has all five largest eigenvalues tending to infinity, which

leads to severe volumetric locking. The composite element has three diverging eigenvalues, which
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SH-VEM, and (f) 158 SH-VEM.
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FIGURE 6.4. Contour plots of the fourth smallest eigenvalue as a function of (71, 7y2)

using the penalty parameters (a) a = %, (b) a=4¢ (c) a =10, and (d) a =

10043.

can result in the mild locking behavior. The B-bar VEM, SH-VEM, and PSH-VEM have only a

single large eigenvalue for both the regular and the nonconvex element.

VEM CT FEM [ B-bar VEM [ 155 SH-VEM | 123 PSH-VEM
1.1x10[81x107F] 2.1 x 1071 6.3 x 1071 43 x 1071
1.2x 10| 1.2x10° | 2.2x 10! 8.8 x 1071 82 x 107t
1.7x 10 | 3.7x10° | 7.5 x 10! 1.9 x 109 8.4 x 107!
1.8 x 105 | 4.2 x10° | 9.6 x 10! 4.5 x 10! 2.8 x 100
5.0 x 108 | 4.6 x 10° 4.2 x 106 4.2 x 106 4.2 x 106

TABLE 6.1. Comparison of the five largest eigenvalues of the element stiffness matrix

on a six-noded triangular element.
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VEM CT FEM | B-bar VEM | 155 SH-VEM | 123 PSH-VEM
1.2x10% [ 5.8 x 1071 | 2.9 x 107! 5.3 x 1071 3.6 x 1071
1.3x10% ] 1.9%x10° | 3.9x 107! 1.5 x 100 1.3 x 109
58 x 109 | 4.8 x 105 | 2.1 x 109 6.6 x 10° 2.0 x 109
5.9 x 10 | 5.6 x 10° 2.2 x 109 1.8 x 10! 5.1 x 109
1.2x 107 | 6.8 x10% | 6.7 x 106 6.7 x 106 6.7 x 106

TABLE 6.2. Comparison of the five largest eigenvalues of the element stiffness matrix
on a six-noded nonconvex element.

6.3.4. Thin cantilever beam. We revisit the problem of a nearly incompressible thin can-
tilever beam subjected to a shear end load as described in Section 5.4.3. The material properties
are given by Fy = 1 x 10° psi and v = 0.49995. We first use a set of unstructured triangular
meshes. In Figure 6.5, we show examples of the unstructred meshes and in Figure 6.6 we show the
convergence of the four methods in the displacement L? norm, energy seminorm, and L? norm of
hydrostatic stress. Figure 6.7 shows the convergence of the end displacement and the contour plot of
hydrostatic stress for the SH-VEM. For methods that experience volumetric locking, non-physical
oscillations will appear in the hydrostatic stress field. The plots reveal that the two stress-hybrid
approaches yield better results, with the PSH-VEM having superior convergence and accuracy in

the displacement, energy, and hydrostatic stress.
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FIGURE 6.5. Unstructured triangular meshes for the cantilever beam problem. (a)
600 elements, (b) 1600 elements, and (c) 3000 elements.

In the following tests, we examine the four methods on meshes with N =1 and N = 2 elements
along the height of the beam. For many formulations, these meshes will lead to overly stiff displace-
ments and shear locking. The first set of meshes is constructed by taking a uniform quadrilateral
mesh and splitting each element into two right triangles (see Figure 6.8). The convergence of the
end displacement of the four methods is presented in Figure 6.9. For N = 1, the two stress-hybrid

methods are converging to the exact solution, while CT FEM experiences shear locking and B-bar
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Fi1GURE 6.6. Comparison of CT FEM, B-bar VEM, SH-VEM and PSH-VEM for the
thin cantilever beam problem on unstructured meshes. (a) L? error of displacement,
(b) energy error, and (c) L? error of hydrostatic stress.
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FIGURE 6.7. (a) Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of unstructured triangles. (b) Contour plot of the hydro-

static stress for PSH-VEM.

VEM diverges from the exact solution (see Figure 6.9a) and for N = 2, B-bar VEM is still overly

flexible (see Figure 6.9b). In both cases, the PSH-VEM shows far superior accuracy in displacement

even on coarse meshes.

The second set of meshes is constructed by taking a uniform quadrilateral mesh and splitting

each element along the two diagonals to form four triangles. The meshes are shown in Figure 6.10

and the convergence of the end displacement is depicted in Figure 6.11.

The plots show that

SH-VEM and PSH-VEM converge to the exact solution for both N = 1 and N = 2; however,

the SH-VEM is much stiffer and less accurate than the penalty approach. CT FEM suffers from

locking, while B-bar fails to converge for the case of a single element along the height.
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FIGURE 6.8. Structured meshes for the cantilever beam problem. Mesh is refined
along the length with (a)-(d) 1 element along the height and (e)-(h) 2 elements along

the height.
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FI1GURE 6.9. Convergence of the end displacement for the cantilever beam problem.
The mesh consists of M x N right triangles, where M is the number of elements
along the length of the beam. (a) N =1 and (b) N = 2.

FiGURE 6.10. Structured meshes for the cantilever beam problem. Mesh is refined
along the length with (a)-(d) 1 element along the height and (e)-(h) 2 elements along
the height.

The third set of meshes is constructed by taking the previous mesh and collapsing one of the

triangles to a nearly degenerate triangle (see Figure 6.12). The plots showing the convergence of the
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FIGURE 6.11. Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of M x N triangles, where M is the number of elements
along the length of the beam. (a) N =1 and (b) N = 2.

end displacement is given in Figure 6.13. The plots reveal that for these meshes, the stress-hybrid
methods are converging to the exact solution, while CT FEM and B-bar VEM do not converge in
the case of a single element along the height. When using two elements along the height, the B-bar
formulation is tending to the exact solution but is not accurate, while CT FEM still suffers from
locking and does not converge. The PSH-VEM again attains a much more accurate solution than

the other methods; however, it appears to be stiff for the coarsest mesh when N = 2.

(i)

FIGURE 6.12. Structured nearly degenerate meshes for the cantilever beam prob-
lem. Mesh is refined along the length with (a)-(d) 1 element along the height and
(e)-(h) 2 elements along the height. (i) Magnification of a single element split into
four six-noded triangles.

One benefit of the virtual element formulation is that it allows for very general element shapes.
In particular, for the final set of meshes we use a mixture of distorted nonconvex hexagons and

convex hexagons. A few representative meshes are shown in Figure 6.14. In Figure 6.15, we present
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FiGURE 6.13. Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of M x N triangles with some nearly degenerate, where M
is the number of elements along the length of the beam. (a) N =1 and (b) N = 2.

the convergence of the end displacement for the four methods. In both cases N =1 and N = 2,

SH-VEM and PSH-VEM are convergent, but CT FEM is overly stiff.

REMARK 6.3.1. The solutions produced by 158 SH-VEM are much stiffer than those found using
the 58 formulation on quadrilaterals in [38]. In particular, for uniform rectangular meshes with
N =1, the 58 SH-VEM converges to nearly the exact solution with just M = 8 elements along the
length of the beam. However, the PSH-VEM offers coarse mesh accuracy that is similar to the 53
SH-VEM.

(a)
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ANAAANAAAAAAAAAAAAAAAAAAAA
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(d)

FIGURE 6.14. Meshes with nonconvex elements for the cantilever beam problem.

Mesh is refined along the length with (a)-(d) 1 element along the height and (e)-(h)
2 elements along the height.
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FiGURE 6.15. Convergence of the end displacement for the cantilever beam prob-
lem. The mesh consists of M x N convex and nonconvex elements, where M is the
number of elements along the length of the beam. (a) N =1 and (b) N = 2.

The penalty stress-hybrid approach provides the best accuracy for the cantilever beam problem;
however, it relies on the choice of a suitable penalty parameter . Therefore, we examine the
sensitivity of the bending solution of PSH-VEM to the penalty parameter. For this test, we use
the same material properties Ey = 1 x 10° psi and v = 0.49995. The problem is solved on a
mesh consisting of M x 1 right triangles (see Figure 6.8). The default penalty parameter is given

10%¢2

by a = e = 107142, To test the sensitivity of the parameter, we vary the penalty parameter

three orders of magnitude on each side. That is, « is varied from 10_4€(2) to 10253. In Figure 6.16,
the convergence of the end displacements for different values of « is presented. The plot shows
that increasing a above the value 1071/2 does not greatly affect the solution; however, decreasing
makes the solution stiffer. If we decrease the value of a by three orders of magnitude to av = 1074¢2,

the solution becomes overly stiff and produces much larger errors than the other values of a.

6.3.5. Cook’s membrane. Next, we consider the problem of the Cook’s membrane under
shear load as described in Section 5.4.4. The material has Youngs modulus Fy = 250 psi and
Poisson’s ratio v = 0.49995. The first set of meshes comprise of structured triangular meshes; a few
sample meshes are shown in Figure 6.17. Figure 6.18 presents the convergence of the tip displace-

ment of the four methods and the hydrostatic stress of the PSH-VEM. The plot in Figure 6.18a
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FIGURE 6.16. Comparison of the convergence of end displacement for PSH-VEM
when using different choices of penalty parameter . The mesh consists of M x 1
right triangles, where M is the number of elements along the length of the beam.

shows that, unlike in the cantilever beam problem, the CT FEM, SH-VEM, and PSH-VEM all per-
form worse than the B-bar formulation. Figure 6.18b shows that the PSH-VEM is able to produce

a relatively smooth hydrostatic stress field with no visible signs of volumetric locking.
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FIGURE 6.17. Structured triangular meshes for the Cook’s membrane problem. (a)
100 elements, (b) 1000 elements, and (c) 2500 elements.

The second set of meshes that we test consists of unstructured triangles. In Figure 6.19, sample

meshes are shown. The convergence of tip displacement and the contour plot of PSH-VEM is given
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FIGURE 6.18.

VEM and PSH-VEM have

SH

in Figure 6.20. The plots show that for the unstructured mesh,

the fastest convergence, while B-Bar VEM becomes very flexible and converges from above. The

hydrostatic stress contours of PSH-VEM remain smooth and agree with the contours found on

structured meshes.
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FIGURE 6.19. Unstructured triangular meshes for the Cook’s membrane problem.
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FIGURE 6.20. (a) Convergence of the tip displacement for Cook’s membrane prob-
lem. The mesh consists of unstructured triangles. (b) Contour plot of the hydro-
static stress for PSH-VEM.

6.3.6. Plate with a circular hole. We consider the problem of an infinite plate with a
circular hole of radius a = 1 inch under uniform tension as given in Section 5.4.5. The material
has Young’s modulus Ey = 2 x 107 psi and Poisson’s ratio v = 0.49995. The first test of this
problem is on unstructured triangular meshes with representative meshes shown in Figure 6.21.
In Figure 6.22, we show the convergence results of the four methods that are tested and find that the
three methods CT FEM, B-bar VEM, and SH-VEM all have optimal convergence rates. However,
the penalty stress-hybrid method has third order superconvergence in the energy seminorm and
L? norm of hydrostatic stress. In Figure 6.23, we plot the contours of the pointwise error p — py
of the hydrostatic stress. The plots reveal that the penalty stress-hybrid method has the smallest
pointwise error and the remaining three methods produce similar error distributions.

We now solve the problem on perturbed meshes. In [3], it is shown that small perturbations
of a regular triangular mesh can lead to locking and a reduction in the rate of convergence in the
hydrostatic stress error. For this test, we start with a regular quadrilateral mesh and then cut along
both diagonals to create four triangles. The point of intersection of the two diagonals are perturbed
for each quadrilateral. Representative meshes are shown in Figure 6.24. In Figure 6.25, we plot the
convergence of the four methods and find that CT FEM, B-bar VEM, and SH-VEM all still retain
optimal rates of convergence. The penalty formulation exhibits second order superconvergence in

the energy seminorm and L? norm of the hydrostatic stress. The contour plots in Figure 6.26 show
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FIGURE 6.21. Unstructured triangular meshes for the plate with a hole problem.
(a) 500 elements, (b) 1000 elements, and (c) 3000 elements.
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FIGURE 6.22. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the plate with a hole problem on unstructured meshes. (a) L? error of displacement,
(b) energy error, and (c) L? error of hydrostatic stress.

that the four methods all have relatively smooth error distributions of the hydrostatic stress and

display no signs of volumetric locking.

6.3.7. Hollow cylinder under internal pressure. Next, we consider a hollow cylinder
subject to internal pressure. The description of the problem and boundary conditions are given
in Section 5.4.6. The material properties are Fy = 2 x 10° psi and v = 0.49995. For this problem,
the hydrostatic stress field is constant and we found that using nonconstant stress functions in
the SH-VEM resulted in larger errors around the element corners. Therefore, we use an element
averaged hydrostatic stress approximation for SH-VEM. We first solve the problem on structured
triangular meshes; a few representative meshes are shown in Figure 6.27. In Figure 6.28, we show

the rates of convergence in three error norms. The three methods CT FEM, B-bar VEM, and
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FiGURE 6.23. Contour plots of the error p—pj, in hydrostatic stress on unstructured
meshes for the plate with a circular hole problem. (a) CT FEM, (b) B-bar VEM,
(c) SH-VEM, and (d) PSH-VEM.

SH-VEM produce optimal convergence in the displacement L? norm, L? norm of hydrostatic stress
as well as in the energy seminorm; while the PSH-VEM has second order superconvergence in the
energy seminorm and third order in the L? norm of the hydrostatic stress. In Figure 6.29, we plot
the contours of the relative error in the hydrostatic stress field for the four methods. The plots
show that the maximum errors concentrate along the inner radius and improves when away from
the boundary. The SH-VEM and PSH-VEM produce the smallest relative errors, with a maximum
of around 8 and 1.2 percent, respectively.

We now test the hollow cylinder problem on an unstuctured triangular mesh; a few represen-

tative meshes are presented in Figure 6.30. In Figure 6.31, the convergence results are given and
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FIGURE 6.24. Perturbed triangular meshes for the plate with a hole problem. (a)
250 elements, (b) 500 elements, and (c) 2500 elements.
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FI1GURE 6.25. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the plate with a hole problem on perturbed meshes. (a) L? error of displacement,
(b) energy error, and (c) L? error of hydrostatic stress.

again show that CT FEM, B-bar VEM, and SH-VEM deliver optimal rates. The penalty approach
attains third and fourth order superconvergence in the energy seminorm and hydrostatic stress L?
norm, respectively. The contour plots in Figure 6.32 show that for CT FEM, B-bar VEM, and
SH-VEM, the errors are concentrated near the inner radius. The largest error from SH-VEM is 9
percent, while both CT FEM and B-bar VEM produce much larger errors of 70 and 60 percent,
respectively. For PSH-VEM, the errors are much smaller, with a maximum relative error of 0.4
percent.

Next, we examine the effects of the penalty parameter on the convergence rates of the pressurized
cylinder problem. For simplicity, the material properties are set to be Fy = 1 x 10* psi and

v = 0.49995. The problem is solved on structured triangular meshes (see Figure 6.27). The initial
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FI1GURE 6.26. Contour plots of the error p — pp, in hydrostatic stress on perturbed
meshes for the plate with a circular hole problem. (a) CT FEM, (b) B-bar VEM,
(c) SH-VEM, and (d) PSH-VEM.

penalty parameter is o = %“Yﬁl = E%, so we test « in the range of 10_36(2) to 10363. In Figure 6.33, we
show the rates of convergence in the three error norms for different values of the penalty parameter
a. The plots show that varying « did not affect the convergence of the displacement errors; however,
the convergence of the energy seminorm is slightly affected and the rate of convergence in the L?

norm of the hydrostatic stress is significantly reduced as « is decreased.

6.3.8. Manufactured problem. The basis functions derived from the Airy stress functions
only satisfy the equilibrium conditions without a body force. Therefore, we test the convergence

on a problem with a nonzero body force. We consider a manufactured problem given in [100] with
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FIGURE 6.27. Structured triangular meshes for the hollow cylinder problem. (a)
128 elements, (b) 512 elements, and (c) 2048 elements.
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FI1GURE 6.28. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the pressurized cylinder problem on structured meshes. (a) L? error of displacement,
(b) energy error, and (c) L? error of hydrostatic stress.

the exact solution and loading given by:

u(x) = sin 27y (cos 2mx — 1) + sin 7z sin 1y,

14+ A

v(x) = sin 2wz(1 — cos 2my) +

sin 7z sin 7wy,

14+ A

b(z) ) (%) cosm(x +y) — u(8cos 2mx sin 2wy — 4 sin 2wy + %H sin 7z sin 7y)
€Xr) = —T Y
(%r’f) cosm(x 4+ y) — u(—8 cos 2wy sin 27w + 4sin 2wx + )\iﬂ sin 7z sin 7y)

where A and p are the first and second Lamé parameters given by

N EyV N Ey

A+v)1—2) " 2a10y
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FI1GURE 6.29. Contour plots of the relative error in the hydrostatic stress on struc-
tured meshes for the pressurized cylinder problem. The exact hydrostatic stress is
4166.528 psi. (a) CT FEM, (b) B-bar VEM, (c) SH-VEM, and (d) PSH-VEM.

For this problem, the material properties are set to EFy = 1 psi and v = 0.49995. The first
set of meshes we use is a perturbed unstructured triangular mesh. A few sample meshes are
shown in Figure 6.34. The plots in Figure 6.35 show that the four methods converge optimally
in displacement L? norm, energy seminorm, and hydrostatic stress L? norm. The PSH-VEM
has smaller errors in both the energy and hydrostatic stress, but does not reach second order
superconvergence. The contour plots in Figure 6.36 reveal that large errors in CT FEM appear
along the boundary, while the other three methods have smooth hydrostatic stress fields.

Now, we solve the manufactured problem on a series of structured meshes. The meshes are

generated by taking a uniform quadrilateral mesh, then splitting each element along the diagonal
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FIGURE 6.30. Unstructured triangular meshes for the hollow cylinder problem. (a)

500 elements, (b) 1000 elements, and (c) 2500 elements.
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FiGUurE 6.31. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the pressurized cylinder problem on unstructured meshes. (a) L? error of displace-
ment, (b) energy error, and (c) L? error of hydrostatic stress.

into two triangles. Then each triangular element is split into three pieces; a few representative

meshes are shown in Figure 6.37. As was the case with the perturbed meshes, Figure 6.38 shows

that all four methods deliver optimal convergence rates. The PSH-VEM again has the smallest

errors in energy and hydrostatic stress, while the SH-VEM has the largest errors in hydrostatic

stress. The contour plots in Figure 6.39 are relatively smooth and do not show large errors along

the boundary.

REMARK 6.3.2. From the sensitivity analysis of the beam and hollow cylinder, we know that if

10462

« s three orders of magnitude smaller than

By then the convergence rates in energy seminorm

and L? norm of the hydrostatic stress are affected. For this manufactured problem, when using a

Young’s modulus Ey =1 psi and o given in (6.26), the penalty parameter is set to the minimum
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FiGURE 6.32. Contour plots of the relative error in the hydrostatic stress on un-
structured meshes for the pressurized cylinder problem. The exact hydrostatic stress
is 4166.528 psi. (a) CT FEM, (b) B-bar VEM, (c¢) SH-VEM, and (d) PSH-VEM.

4 p2
value o = 1003. This value is three orders of magnitude less than l%fo ; therefore, the errors

of energy and hydrostatic stress are not expected to have higher order convergence rates even for
uniform meshes. However, from our numerical tests, having a larger Ey or increasing the upper

bound on the penalty parameter o results in superconvergent solutions on sufficiently reqular meshes.

6.3.9. Punch problem. Next, we adapt the problem of a punch being driven into a solid as
described in [114] for nearly incompressible hyperelastic materials. This problem is used in [114]
to test the robustness of mixed virtual element methods for large deformations and to compare
to standard mixed finite element formulations. In our tests, we assume a linearly elastic material

and solve the problem on a unit square domain using Fy = 250 psi and v = 0.4999999. The
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F1GURE 6.33. Comparison of the convergence of PSH-VEM for different choices of
the penalty parameter « for the pressurized cylinder problem on structured meshes.
(a) L? error of displacement, (b) energy error, and (c) L? error of hydrostatic stress.
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FIGURE 6.34. Perturbed triangular meshes for the manufactured problem. (a) 200
elements, (b) 1000 elements, and (c) 3600 elements.
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FI1GURE 6.35. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the manufactured problem on perturbed meshes. (a) L? error of displacement, (b)
energy error, and (c) L? error of hydrostatic stress.
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FI1GURE 6.36. Contour plots of the hydrostatic stress on perturbed meshes for the
manufactured problem. (a) CT FEM, (b) B-bar VEM, (c) SH-VEM, and (d) PSH-
VEM.

left and top edges are horizontally constrained, while the bottom edge is vertically constrained.
Along half of the top edge, a uniform load of F' = —250 Ibf per unit length is applied. For this
problem, we examine the three methods B-bar VEM, SH-VEM, and PSH-VEM. We first use an
unstructured triangular mesh (see Figure 6.40a) and plot the resulting contours of the hydrostatic
stress in Figure 6.40. The contours are plotted on the deformed configuration. From the plots, we
find that the three methods produced relatively smooth hydrostatic stress fields, with B-bar and
PSH-VEM having a similar range. In Figure 6.41, plots of the trace of the strain field are shown
on the undeformed configuration. The three methods yielded nearly traceless strain fields, which

is consistent for a nearly incompressible material.
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FIGURE 6.37. Structured triangular meshes for the manufactured problem. (a) 150
elements, (b) 600 elements, and (c) 2400 elements.
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FI1GURE 6.38. Comparison of CT FEM, B-bar VEM, SH-VEM, and PSH-VEM for
the manufactured problem on structured meshes. (a) L? error of displacement, (b)
energy error, and (c) L? error of hydrostatic stress.

Next, we use a mesh with convex and nonconvex elements with an example mesh shown in Fig-
ure 6.42a. The contour plots of the hydrostatic stress are given in Figure 6.42. The plots show that
even for nonconvex elements, the three methods retain relatively smooth hydrostatic stress fields.
In Figure 6.43, the contours of the trace of the strain field is presented. Similar to the unstructured

case, the strain field of the three methods are nearly traceless.

6.3.10. Stabilized stress-hybrid methods. We also examined a stabilized formulation of
98 and 118 SH-VEM (both are rank deficient) using a 9-term and 11-term divergence-free basis,

respectively. We found that the two stabilized stress-hybrid formulations did not show signs of
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FiGURE 6.39. Contour plots of the hydrostatic stress on structured meshes for the
manufactured problem. (a) CT FEM, (b) B-bar VEM, (c) SH-VEM, and (d) PSH-
VEM.

volumetric locking, did not have spurious eigenvalues and attained higher accuracy than 158 SH-

VEM. However, both stabilized methods were less accurate than the PSH method and they did not

exhibit superconvergence in the hydrostatic stress. Further details can be found in Appendix B.
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FIGURE 6.40. (a) Representative unstructured mesh for the punch problem. Con-
tour plots of the hydrostatic stress for the punch problem plotted on the deformed
configuration using unstructured meshes. (b) B-bar VEM, (c) SH-VEM, and (d)
PSH-VEM.
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F1GURE 6.41. Contour plots of the trace of the strain field for the punch problem

plotted on the undeformed configuration using structured meshes. (a) B-bar VEM,
(b) SH-VEM, and (c) PSH-VEM.
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FIGURE 6.42. (a) Representative nonconvex mesh for the punch problem. Contour
plots of the hydrostatic stress of PSH-VEM for the punch problem plotted on the
deformed configuration using nonconvex meshes. (b) B-bar VEM, (¢) SH-VEM, and
(d) PSH-VEM.
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FIiGURE 6.43. Contour plots of the trace of the strain field for the punch problem

plotted on the undeformed configuration using nonconvex meshes. (a) B-bar VEM,
(b) SH-VEM, and (c) PSH-VEM.
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CHAPTER 7

Conclusions

In this thesis, we studied extensions of the Virtual Element Method (VEM) without a stabiliza-
tion term to planar linear elasticity problems. In the standard VEM, a discrete space is constructed
such that on an element, the space contains all polynomials up to degree k£ and also non-polynomial
functions that satisfy a Poisson problem. On each element, function values along the boundary and
internal integral moments are used as the degrees of freedom, which uniquely defines functions in
the discrete space. The basis functions are chosen to satisfy a Lagrange property; however, these
basis functions are not computed and are unknown (virtual). Since the basis functions do not need
to be computed, it allows for the use of very general polygonal meshes when compared to the finite
element method. Different projection operators are used to give polynomial approximations to the
functions and their derivatives. Then the weak bilinear form of an elliptic problem is approximated
by a polynomial term using the projection operator, which preserves consistency of solution (passes
the patch test), and a stabilization term that preserves the coercivity. The stabilization term is not
unique and depends on the underlying problem. However, for the Poisson problem, a simple choice
of the dofi-dofi or a diagonal stabilization provides accurate results. It is shown that standard k-th
order virtual element converges at the same theoretical rate as the corresponding finite element
method.

We studied an extension of the stabilization-free virtual element method [19] to planar elasticity
problems. To establish a stabilization-free method for solid continua, we constructed an enlarged
virtual element space that included higher order polynomial approximations of the strain field. On
each polygonal element we chose the degree ¢ of vector polynomials, and theoretically established
that the discrete problem without a stabilization term was bounded and coercive. Error estimates
of the displacement field in the L? norm and energy seminorm were derived. We set up the
construction of the necessary projections and stiffness matrices, and then solved several problems
from plane elasticity. For the patch test, we recovered the displacement and stress fields to near
machine-precision. From an element-eigenvalue analysis, we numerically confirmed that the choice
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of ¢ was sufficient to ensure that the element stiffness matrix had no spurious zero-energy modes,
and hence the element was stable. For problems such as cantilever beam under shear end load,
infinite plate with a circular hole under uniaxial tension, and pressurized hollow cylinder under
internal pressure, we found that the convergence rates of the stabilization-free VEM in the L2
norm and energy seminorm were in agreement with the theoretical results.

For some problems, it is important to have higher accuracy to resolve nonlinear phenomena;
therefore, we studied a higher order (serendipity) extension of the stabilization-free virtual element
method [19,37] for plane elasticity. To establish a high order stabilization-free method for solid
continua, we constructed an enlarged virtual element space that included higher order polynomial
approximations of the strain field. To eliminate additional degrees of freedom we incorporated the
serendipity approach into the virtual element space [12]. On each polygonal element we chose the
degree ¢ of vector polynomials such that the element stiffness is of correct rank. We set up the
construction of the necessary projections and stiffness matrices, and then solved several problems
from plane elasticity using a second- and third-order method. For the patch test, we recovered
the displacement and stress fields to near machine-precision. From an element-eigenvalue analysis,
we numerically examined a suitable choice of ¢ that was sufficient to ensure that the element
stiffness matrix had no spurious zero-energy modes, and hence the element was stable. For a few
manufactured problems and the cantilever beam problem under sinusoidal top load, we found that
the convergence rates of the second- and third-order stabilization-free VEM in the L? norm and
energy seminorm were in agreement with standard VEM theoretical results. However, consistent
with expectations, we have verified that the serendipity virtual element method on affine edges has
reduced convergence rates for domains with curved edges [16].

To treat nearly-incompressible materials in linear elasticity, we departed from the commonly
used assumed-strain approaches in finite element methods that rely on the Hu-Washizu three-
field variational principle [102, |. Instead, we revisited the assumed stress (or stress-hybrid)
formulation that use the two-field Hellinger—Reissner variational principle [90]. In so doing, we
proposed a stress-hybrid formulation [90] of the virtual element method on quadrilateral meshes
for problems in plane linear elasticity. In this approach, the Hellinger—Reissner functional is used to
define weak imposition of equilibrium equations and the strain-displacement relations to determine

a suitable projection operator for the stress. On each quadrilateral element, we constructed a local
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coordinate system [43,44] and used a 5-term divergence-free symmetric tensor polynomial basis in
the local coordinate system. The rotation matrix was then used to transform the stress ansatz to
the global Cartesian coordinates so that element stiffness matrix computations could be conducted
directly on the physical (distorted) element. On applying the divergence theorem on each element
and using the divergence-free basis, we were able to compute the matrix representation of the
stress projection solely from the displacements on the boundary. This resulted in a displacement-
based method that was computable using the virtual element formulation. In Appendix A, we
showed that the proposed approach was equivalent to a stress-hybrid virtual element formulation
that follows the recipe of Cook [43] to transform the element stiffness matrix from local to global
Cartesian coordinates. The SH-formulation was tested for stability, volumetric and shear locking,
and convergence on several benchmark problems. From an element-eigenvalue analysis, we found
that the proposed method was rotationally invariant and remained stable for a large class of convex
and nonconvex elements without needing a stabilization term. For a manufactured test problem
in the incompressible limit (v — 0.5), we showed that the SH-VEM did not suffer from volumetric
locking. From the bending of a thin beam and the bending in the Cook’s membrane problem, we
found that the method was not susceptible to shear locking. For a plate with a circular hole, the
methods produced optimal convergence rates and smooth hydrostatic stress fields for both convex
and nonconvex meshes. For the pressurized cylinder, optimal convergence rates in the L? norm
and energy seminorm of the displacement field were realized, and both the B-bar VEM and the
SH-VEM reproduced close to the exact hydrostatic stress on uniform meshes. However, it was
observed that the hydrostatic stress field using the B-bar VEM and the SH-VEM on distorted
nonconvex meshes produced larger errors, with the latter being more accurate. In the problem of a
flat punch, the B-bar VEM and the SH-VEM produced relatively smooth hydrostatic stress fields
that were comparable and the strain field was pointwise nearly traceless.

For complex geometries, it is difficult to automatically generate high-quality quadrilateral
meshes. There are robust and well-established automatic meshers for triangular elements. However,
triangular elements are known to suffer from shear locking for thin structures and also volumetric
locking in the incompressible limit. We examine an extension of the stress-hybrid virtual element
method [38] to first-order six-noded triangular virtual elements for linear elastic problems. This

work is a first attempt to study two-dimensional virtual element formulations for incompressible
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elasticity on general triangular meshes (including Delaunay meshes). In this approach, we used the
Hellinger—Reissner variational principle to construct a weak equilibrium and strain-displacement
conditions. The weak strain-displacement condition is used along with the virtual element formula-
tion to define a computable projection operator for the stress field. In the initial approach, we used
a divergence-free polynomial tensor basis and by combining it with the divergence theorem, we were
able to compute the stress projection with only the displacements along the boundary. When using
a nondivergence-free basis, we relied on the modification of the virtual element space introduced
in [20] and a secondary energy projection to recover the stress projection. However, we found that
this requirement is rather restrictive and leads to elements being overly stiff. Therefore, we relaxed
the condition by introducing a penalty term to weakly satisfy the element equilibrium condition and
alleviate locking. The SH and PSH-formulations were then tested for stability using an eigenvalue
analysis. For the divergence-free basis, a 15-term expansion was used to ensure no zero-energy
modes appeared for highly distorted elements, while a complete bilinear 12-term expansion was
used for the penalty element. For the thin cantilever beam and Cook’s membrane problems we
found both SH-VEM and PSH-VEM were not sensitive to shear locking. The PSH-VEM was able
to reproduce nearly exact bending solutions even on coarse meshes. For the plate with a circular
hole and pressurized cylinder the stress-hybrid method produced optimal convergence rates in the
L? norm of the displacement, energy seminorm, and L? norm of the hydrostatic stress; while the
penalty formulation produced superconvergent rates in energy seminorm and L? norm of the hy-
drostatic stress. The plate with a hole had relatively smooth hydrostatic stress fields, while for the
pressurized cylinder it was observed that large errors concentrated around the interior boundary
but the stress-hybrid methods were more accurate. In the manufactured problem, SH-VEM and
PSH-VEM showed no signs of locking and had relatively smooth contours of hydrostatic stress.
The PSH-VEM showed better accuracy for the manufactured problem; however, for our choice of
penalty parameter, the PSH-VEM did not achieve superconvergent rates for the energy seminorm
or L? norm of the hydrostatic stress. For the punch problem, both SH-VEM and PSH-VEM did
not show instabilities in the hydrostatic stress field and produced nearly traceless strain fields.
In Appendix B, we examined a stabilized version of the 93 SH-VEM and 115 SH-VEM. The 95
and 115 SH-VEM uses a 9-term and 11-term divergence-free basis, respectively. The stress-hybrid

methods were then tested on additional benchmark problems. An eigenvalue analysis was used to
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test stability and volumetric locking of the two stress-hybrid methods. The thick cantilever beam
problem showed that the stabilized methods with fewer basis functions were less stiff in bending.
The plate with a hole problem showed that the stress-hybrid approaches converged optimally in all
cases. The two stabilized methods attained better accuracy than 158 SH-VEM, with 96 SH-VEM
having performance that is more comparable to the penalized approach. From these tests, we found
that the two stabilized stress-hybrid formulations did not show signs of volumetric locking and did
not have spurious eigenvalues.

In this work, we developed two different formulations of the stabilization-free virtual element
method for solid continua. The first, strain-based, approach was shown to give comparable results
to the standard VEM without needing to design a stabilization term. This approach has already
been extended to three-dimensional problems and also to finite strain elasticity | , |; however,
there are still questions about its computational efficiency and applicability to large-scale problems.
The second approach, based on the hybrid-stress formulation, showed robust performance for thin
beams and for nearly incompressible problems. The next step is to extend the stress-based approach
to three dimensional elasticity. An ongoing effort is attempting to develop a ten-noded tetrahedral
element that is stable, robust in the incompressible limit and is highly accurate for thin structures.
A known problem with a stress-based approach is that it is more difficult to solve nonlinear problems
since it involves inverting a nonlinear stress-strain law. However, by applying strategies developed
in [1,65,66,67] it could be feasible to develop the SH-VEM for nonlinear problems. An alternative
approach using the Hu-Washizu three field variational formulation [70,71], seems to strike a balance
between the SF-VEM and SH-VEM. It uses a strain-based approach so it is easily applicable to
nonlinear problems and shows promising performance for nearly incompressible problems. However,
further investigations are needed to compare the differences in efficiency, accuracy and robustness

of the stress and strain-based approaches.
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APPENDIX A

A Stress-Hybrid Formulation Based on Cook’s Approach

In this Appendix, we present an alternate formulation of the stress-hybrid virtual element

method based on defining the element stiffness matrix on a rotated element as introduced by

Cook [43]. Let E' be a rotated element, and following (5.17), define the corresponding matrices
H' and L' by
H — / (PY'C'Pdx, L' — / (P NP o s, (A.1a)
/ 8E/

where P’ is given in (5.11a) and ¢’ are the virtual element basis functions on E’. We then solve

for the stress coefficients (3’ in terms of the rotated displacements using
B =H)'L'd :=T,d. (A.1b)
The element stiffness matrix on the rotated element E’ is given as
Kp, = (I)" ( / / (PHY'c—tp d:c’> I, = (I1};)" H'IIj, (A.2)

and define the rotation matrix R as

0
0
0

© o o O

0 O
Q o
0 Q
0 O

Q

where @Q is given in (5.10), and 0 is the 2 x 2 zero matrix. Then the element stiffness matrix in

Cook’s formulation on the original element F is recovered by:

K$=RTKpR. (A.4)
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Now, on applying (A.1b) and simplifying, we write the element stiffness matrix as
K$=RT(H)"'L)\"H'(H)'I'R = (L'R)T(H")"(I'R).

We now show that the SH-VEM using the basis P* in (5.13) is identical to Cook’s formulation,
ie., Ky =K¢.

PROOF. On expanding the element stiffness matrix of the SH-VEM given in (5.20) and simpli-
fying, we get

Ky =T H'T; = (HY) ') H*(H'L*) = (L))" (H")"'L*.
We first examine the matrix H*. From (5.17a), we have
H* = /E (PHTC ' P* de,

and after multiplying out the matrices and using an equivalent tensor representation, we write the

components of H* as
-1
H; _—/’sz(C : P; dz,

where P} is the tensor representation of the i-th column of P*. Using (5.12), we rewrite this

integral in terms of the rotated basis P}, that is
H} = /E Q"PQ:C:Q"PiQdx.
It can be shown that for an isotropic material modulli tensor C, that
Q'PQ:C:Q"P,Q=P;:Q"Q"C'QQ: P, =P;:C": P
Therefore, we now have for all 4,5 =1,2,...5:

* .c1. =
Hj = E/’P;.C . Pl da’ = HJ. (A.6)

Next, we examine the matrix L*. From (5.17a), we have
L* :/ (P*)TNaE(PdS,
oF
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After converting to an equivalent tensor representation, we write the components of L* as:

L= [ Pron) s
OFE

Since ¢; and cp; are both piecewise affine functions on OF and OF’, respectively, it can be shown
that the integration of ¢; along the boundary of an element F is equivalent to integrating go}- along

the boundary of the rotated element E’. That is, for any vector field f, we have

Ef(w)"des:/aElf(a:(zc))-cpjds_

With this, we rewrite L;kj in the rotated coordinates as
Ly= [ Promeds= [ @PQ-QT) - Gis = [ (@) ds.
oF OE' oE'

If we take the basis functions in the standard order ¢5,; | = (¢, 0)T" and ¥y = (0, gi);)T, then we

can simplify L;kj as:

Ly, = /a (P + (P ran)d) ds’ — s /a (P))iany + (P aamly)dl ds’ = cLly; | — sLly,
£’ B/

ti=s /a (P + (P ranb) ) ds’ + /a (P))rany + (P))aamly)dl ds’ = sLly, 1 + cLly;,
B/ B/

where ¢ and s given in (5.10). On multiplying out the matrix L' R, it can be shown that

(L/R)ﬂj—l = CL;2j—l - 5L;2j
(L'R)igj = sLjg;_1 + cLiy;,
and therefore for all ¢ = 1,2,...5 and j = 1,2,...4, we have
Lf2j—1 = CLg2j—1 - 3L;2j = (L/R)z?jfl (A.7a)

L;kQJ = SL{in—l —+ CL{ZQj = (L/R)ZQJ (A?b)

From (A.6) and (A.7), we obtain H* = H' and L* = L'R. On substituting these in (A.5) and

using (A.4) leads us to the desired result:

K = (1) (H)"'L* = (UR)T(H'){(I'R) = K§. 0
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APPENDIX B

Stabilized Stress-Hybrid Methods

In the standard virtual element method, a stabilization term is necessary to ensure that the
element stiffness matrix has correct rank. For completeness, we examine effects of a stabilization
term on the two methods 95 SH-VEM and 115 SH-VEM, which were shown earlier to have zero-
energy modes. The 98 SH-VEM is constructed from the first 9 terms of the basis given in (6.5),
while the 118 SH-VEM uses the first 11 terms. For the stability term, we follow the construction

given in [6]:
Ks=r1[I-D(D"D)"'D"], (B.1a)

where 7 is a scaling factor, I is the identity matrix and D € R'2%6 is the matrix containing the

degrees of freedom of the polynomials m,, € M (E) given by

—ml (:781) mg(wl) c. m6(m1)-
D ml(mg) mg(mg) e mﬁ(ar:g) ‘ (B.lb)
_ml (:]36) mQ(azﬁ) . m6(:c6)_

It is common to choose the scaling factor to be proportional to the trace of the element stiffness
matrix Kg; however, this choice of scaling will lead to an overly stiff solution for nearly incom-
1

pressible materials [85,95]. For simplicity, we set 7 = 3 in the following examples. The stabilized

element stiffness matrix is then given by
K =Kg+ Ks. (B.2)

B.0.1. Eigenvalue analysis. We first repeat the eigenvalue analysis presented in Section 6.3.1.
Contour plots for the fourth smallest eigenvalue are presented in Figure B.1. The plots reveal that
the stabilization term has eliminated the spurious eigenvalue for both 98 SH-VEM and 115 SH-
VEM.
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Ficure B.1. Contour plots of the fourth smallest eigenvalue of (a) stabilized 93
SH-VEM and (b) stabilized 118 SH-VEM.

Next, we repeat the eigenvalue analysis in Section 6.3.3 to test for locking in the near-incompressible
limit. The five largest eigenvalues of the element stiffness matrix for 98 and 115 SH-VEM are given
in Table B.1 for a regular six-noded triangular element and in Table B.2 for a nonconvex element.
The tables show that both methods only have a single eigenvalue that tends toward infinity. This

suggests that the two stabilized elements are not prone to volumetric locking.

Eigenvalue | 95 SH-VEM | 118 SH-VEM
1 7.8 x 1071 9.0 x 1071
2 1.2 x 109 1.3 x 109
3 1.3 x 109 1.5 x 109
4 4.6 x 109 4.6 x 10°
5 4.2 x 108 4.2 x 108

TABLE B.1. Comparison of the five largest eigenvalues of the element stiffness ma-
trix on a six-noded triangular element.

Eigenvalue | 95 SH-VEM | 115 SH-VEM
1 5.9 x 101 79 %1071
2 1.8 x 109 1.8 x 109
3 2.1 x 10° 4.9 x 10°
4 9.9 x 10° 9.9 x 10°
5 6.7 x 109 6.7 x 10°

TABLE B.2. Comparison of the five largest eigenvalues of the element stiffness ma-
trix on a six-noded nonconvex element.

B.0.2. Bending of a thick cantilever. We consider the bending of a cantilever beam under

plane stress conditions with a shear end load as shown in [55,56] for different triangular elements.
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The material has a Young’s modulus Ey = 30000 psi and Poisson’s ratio v = 0.25. The beam has
a length of L = 48 inch, a height of D = 12 inch, and unit thickness. A shear load of P = 40 Ibf
is applied on the right boundary, while the left boundary is fixed. For this problem, we compare
the tip displacement of the stress-hybrid methods: 155 SH-VEM, 123 PSH-VEM, 93 SH-VEM,
118 SH-VEM, and the 55 SH-VEM for quadrilaterals given in [38]. The mesh for the 55 SH-VEM
consists of N x N (N = 1,2,4,8,16) structured quadrilateral elements with an aspect ratio of 4 : 1,
while the corresponding triangular mesh is constructed by splitting each quadrilateral element along
a diagonal (see Figure B.2). In Table B.3, the normalized tip displacement for the different methods
on each mesh is shown. The table shows that all the SH-VEM and PSH-VEM methods converge
with mesh refinement, but the 158 SH-VEM, which uses higher order terms, is slightly stiffer. The
other three methods on six-noded triangles have comparable performance to the 55 SH-VEM on

quadrilaterals.

(c) (f)

FiGURE B.2. Structured meshes for the thick cantilever beam problem. Meshes in
(a)-(c) consists of quadrilaterals with an aspect ratio of 4 : 1 and (d)-(f) consist of
triangular meshes where each corresponding quadrilateral element is cut along the
diagonal.

B.0.3. Plate with a circular hole. Finally, we revisit the plate with a circular hole problem
that is presented in Section 5.4.5. For this problem, we compare the convergence of the stress-
hybrid methods: 1558 SH-VEM, 128 PSH-VEM, 98 SH-VEM, 115 SH-VEM, and the 55 SH-VEM,
in the error norms given in (5.27). We first test this problem on structured quadrilateral and
triangular meshes with the same number of global degrees of freedom; a few sample meshes are

shown in Figure B.3. In Figure B.4, the convergence results are given for the stress-hybrid methods
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58 SH-VEM | 158 SH-VEM | 125 PSH-VEM | 95 SH-VEM | 115 SH-VEM
1x1 0.7637 0.4536 1.6185 0.4798 0.4778
2 x2 0.9413 0.8236 1.0665 0.8668 0.8612
4 x4 0.9856 0.9610 1.0133 0.9787 0.9770
8% 8 0.9965 0.9917 1.0030 0.9971 0.9966
16 x 16 0.9992 0.9982 1.0007 0.9997 0.9996

TABLE B.3. Comparison of the normalized tip displacements for the cantilever

beam problem on structured meshes. The meshes are constructed from N x N

(N =1,2,4,8,16) quadrilaterals with aspect ratio of 4 : 1.
and show that all the methods converge optimally in the displacement L? norm, energy seminorm
and L? norm of the hydrostatic stress (the penalty approach attains superconvergence in energy
and hydrostatic stress). The 56 SH-VEM has the smallest error in displacement, but the triangular
SH-VEM have better accuracy in energy and hydrostatic stress, with the 125 PSH-VEM and 96

SH-VEM having the smallest errors.
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Ficure B.3. (a) A structured quadrilateral mesh and (b) a structured triangular
mesh with the same number of degrees of freedom for the plate with a hole problem.

We now test the plate with a circular hole problem on unstructured meshes. The quadrilateral
meshes for 55 SH-VEM are constructed by taking unstructured triangular meshes and splitting
each triangle into three elements. Representative meshes with similar global degrees of freedom

are shown in Figure B.5. In Figure B.6, we present the convergence rates of the five stress-hybrid
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FIGURE B.4. Comparison of 538 SH-VEM, 155 SH-VEM, 123 PSH-VEM, 945 SH-
VEM, and 115 SH-VEM for the plate with a hole problem on structured meshes
(see Figure B.3). (a) L? error of displacement, (b) energy error, and (c) L? error of
hydrostatic stress.

methods. Like the case of structured meshes, all five methods deliver optimal convergence rates on

unstructured meshes, with 125 PSH-VEM followed by 98 SH-VEM delivering the lowest errors in

the energy seminorm and L? norm of hydrostatic stress.

(a) (b)
FIGURE B.5. (a) An unstructured quadrilateral mesh and (b) an unstructured tri-

angular mesh with a similar number of degrees of freedom for the plate with a hole
problem.
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FIGURE B.6. Comparison of 53 SH-VEM, 158 SH-VEM, 123 PSH-VEM, 93 SH-
VEM, and 115 SH-VEM for the plate with a hole problem on unstructured meshes
(see Figure B.5). (a) L? error of displacement, (b) energy error, and (c) L? error of

hydrostatic stress.

190




[1]

2]

3]

[4]

[10]

[11]

[12]

[13]

[14]

Bibliography

M. AcrawAL, A. NANDY, AND C. S. Joa, A hybrid finite element formulation for large-deformation contact
mechanics, Comput Methods Appl Mech Eng, 356 (2019), pp. 407-434.

B. AumAD, A. ALsAEDI, F. BrEzzI, L. D. MARINI, AND A. RUSsO, Equivalent projectors for virtual element
methods, Comput Math Applications, 66 (2013), pp. 376-391.

M. AINSWORTH AND C. PARKER, Unlocking the secrets of locking: Finite element analysis in planar linear
elasticity, Comput Methods Appl Mech Eng, 395 (2022), p. 115034.

D. ARNOLD AND G. AwWANOU, The serendipity family of finite elements, Foundations Comput Math, 11 (2011),
pp. 337-344.

E. ArtioLl, L. BEIRAO DA VEIGA, AND F. Dass1, Curvilinear virtual elements for 2D solid mechanics appli-
cations, Comput Methods Appl Mech Eng, 359 (2020), p. 112667.

E. ArtioLi, L. BEIRAO DA VEIGA, C. LOVADINA, AND E. Sacco, Arbitrary order 2d wvirtual elements for
polygonal meshes: part I, elastic problem, Comput Mech, 60 (2017), pp. 355-377.

E. ArTiOLI, S. DE MIRANDA, C. LOVADINA, AND L. PATRUNO, A family of virtual element methods for plane
elasticity problems based on the Hellinger—Reissner principle, Comput Methods Appl Mech Eng, 340 (2018),
pp. 978-999.

E. ArTIOLI, S. DE MIRANDA, C. LOVADINA, AND L. PATRUNO, A dual hybrid virtual element method for plane
elasticity problems, ESAIM: M2AN, 54 (2020), pp. 1725-1750.

L. BEIRAO DA VEIGA, F. BREzzI, A. CANGIANI, G. MANZINI, L. D. MARINI, AND A. RUSSO, Basic principles
of virtual element methods, Math Models Methods Appl Sci, 23 (2013), pp. 119-214.

L. BEIRAO DA VEIGA, F. BREZZI, F. DAssI, L. MARINI, AND A. RuUsso, Serendipity virtual elements for general
elliptic equations in three dimensions, Chinese Annals of Mathematics, Series B, 39 (2018), pp. 315-334.

L. BEIRAO DA VEIGA, F. BREzzI, AND D. MARINI, Virtual elements for linear elasticity problems, STAM J
Numer Anal, 51 (2013), pp. 794-812.

L. BEIRAO DA VEIGA, F. BrREzzI, L. MARINI, AND A. RUSSO, Serendipity nodal vem spaces, Comput Fluids,
141 (2016), pp. 2-12.

L. BEIRAO DA VEIGA, F. BREZzZI, L. D. MARINI, AND A. RuUsso, The hitchhiker’s guide to the virtual element
method, Math Models Methods Appl Sci, 24 (2014), pp. 1541-1573.

L. BEIRAO DA VEIGA, F. BREzzI, L. D. MARINI, AND A. RuUSs0, Virtual Element Method for general second-

order elliptic problems on polygonal meshes, Math Models Methods Appl Sci, 26 (2016), pp. 729-750.

191



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

L. BEIRAO DA VEIGA, C. LOVADINA, AND A. RUSSO, Stability analysis for the virtual element method, Math
Models Methods Appl Sci, 27 (2017), pp. 2557-2594.

L. BEIRAO DA VEIGA, A. RuUsso, AND G. VAccA, The virtual element method with curved edges, ESAIM:
M2AN, 53 (2019), pp. 375-404.

T. BELYTSCHKO AND W. E. BACHRACH, Efficient implementation of quadrilaterals with high coarse-mesh
accuracy, Comput Methods Appl Mech Eng, 54 (1986), pp. 279-301.

T. BELYTSCHKO AND L. BINDEMAN, Assumed strain stabilization of the 4-node quadrilateral with 1-point quad-
rature for nonlinear problems, Comput Methods Appl Mech Eng, 88 (1991), pp. 311-340.

S. BERRONE, A. BORIO, AND F. MARCON, Lowest order stabilization free virtual element method for the Poisson
equation. arXiv preprint: 2103.16896, 2021.

———, Lowest order stabilization free virtual element method for the 2d Poisson equation. arXiv preprint:
2103.16896, 2023.

—, A stabilization-free virtual element method based on divergence-free projections, Comput Methods Appl
Mech Eng, 424 (2024), p. 116885.

T. BLACKER AND T. BELYTSCHKO, Superconvergent patch recovery with equilibrium and conjoint interpolant
enhancements, Int J Numer Methods Eng, 37 (1994), pp. 517-536.

E. F. I. BOERNER AND P. WRIGGERS, A macro-element for incompressible finite deformations based on a
volume averaged deformation gradient, Comput Mech, 42 (2008), pp. 407-416.

C. BonM, J. KoRELC, B. HUDOBIVNIK, A. KRAUS, AND P. WRIGGERS, Mized virtual element formulations
for incompressible and inextensible problems, Comput Mech, (2023).

A. Borio, C. LOVADINA, F. MARCON, AND M. VISINONI, A lowest order stabilization-free mized virtual element
method, Comput Math Applications, 160 (2024), pp. 161-170.

S. C. BRENNER, Q. GUAN, AND L.-Y. SUNG, Some estimates for virtual element methods, Comput Methods
Appl Math, 17 (2017), pp. 553-574.

S. C. BRENNER AND L. R. Scort, The Mathematical Theory of Finite Element Methods, Texts in Applied
Mathematics, Springer, New York, third ed., 2008.

F. BrEzzl AND M. FORTIN, Mizxed and Hybrid Finite Element Methods, Springer Series in Computational
Mathematics, Springer, New York, first ed., 1991.

G. CAMACHO AND M. ORrriz, Computational modelling of impact damage in brittle materials, Int J Solids
Struct, 33 (1996), pp. 2899-2938.

A. CaANGIANI, G. ManziNi, A. Russo, AND N. SUKUMAR, Hourglass stabilization and the wvirtual element
method, Int J Numer Methods Eng, 102 (2015), pp. 404-436.

B. Cao, Solutions of Navier equations and their representation structure, Advances in Applied Mathematics,

43 (2009), pp. 331-374.

192



32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Y. P. Cao, N. Hu, H. FUKUNAGA, J. Lu, AND Z. H. YA0, A highly accurate brick element based on a three-field
variational principle for elasto-plastic analysis, Finite Elem Anal Des, 39 (2003), pp. 1155-1171.

Y. P. Cao, N. Hu, J. Lu, H. FUKUNAGA, AND Z. H. YAO, A 3d brick element based on Hu—Washizu variational
principle for mesh distortion, Int J Numer Methods Eng, 53 (2002), pp. 2529-2548.

S. CeN, X.-R. Fu, AND M.-J. ZHOU, 8- and 12-node plane hybrid stress-function elements immune to se-
verely distorted mesh containing elements with concave shapes, Comput Methods Appl Mech Eng, 200 (2011),
pp. 2321-2336.

A. CHEN, J. E. BisHor, AND N. SUKUMAR, Stress-hybrid virtual element method on siz-noded triangular
meshes for compressible and nearly-incompressible linear elasticity, Comput Methods Appl Mech Eng, 426
(2024), p. 116971.

A. CHEN AND N. SUKUMAR, Stabilization-free serendipity virtual element method for plane elasticity, Comput
Methods Appl Mech Eng, 404 (2023), p. 115784.

———, Stabilization-free virtual element method for plane elasticity, Comput Math Applications, 138 (2023),
pp- 88-105.

——, Stress-hybrid virtual element method on quadrilateral meshes for compressible and nearly-incompressible
linear elasticity, Int J Numer Methods Eng, (2023). DOI: https://doi.org/10.1002/nme.7384.

H. CHI, L. B. DA VEIGA, AND G. PAULINO, Some basic formulations of the virtual element method (vem) for
finite deformations, Comput Methods Appl Mech Eng, 318 (2017), pp. 148-192.

E. B. CHIN, J. B. LASSERRE, AND N. SUKUMAR, Numerical integration of homogeneous functions on convex
and nonconvez polygons and polyhedra, Comput Mech, 56 (2015), pp. 967-981.

E. B. CHIN AND N. SUKUMAR, Scaled boundary cubature scheme for numerical integration over planar regions
with affine and curved boundaries, Comput Methods Appl Mech Eng, 380 (2021), p. 113796.

P. G. CIARLET, The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathe-
matics, Philadelphia, second ed., 2002.

R. D. Coox, Improved two-dimensional finite element, J Struct Div-ASCE, 100 (1974), pp. 1851-1863.

R. D. Cook, Avoidance of parasitic shear in plane element, J Struct Div-ASCE, 101 (1975), pp. 1239-1253.
R. D. Cook, A plane hybrid element with rotational d.o.f. and adjustable stiffness, Int J Numer Methods Eng,
24 (1987), pp. 1499-1508.

R. D. CoOK, Some options for plane triangular elements with rotational degrees of freedom, Finite Elem Anal
Des, 6 (1990), pp. 245-249.

M. CreMONESI, A. LaMPERTI, C. LovADINA, U. PERECO, AND A. RUSSO, Analysis of a stabilization-free
quadrilateral virtual element for 2d linear elasticity in the Hu- Washizu formulation, Comput Math Applications,
155 (2024), pp. 142-149.

E. CACERES, G. N. GATICA, AND F. A. SEQUEIRA, A mized virtual element method for a pseudostress-based

formulation of linear elasticity, Appl Numer Math, 135 (2019), pp. 423—442.

193



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[62]

[63]

[64]
[65]

[66]

L. B. pA VEIGA, A. CHERNOV, L. MASCOTTO, AND A. RUSSO, Exponential convergence of the hp virtual
element method in presence of corner singularities, Numer Math, 138 (2018), pp. 581-613.

K. T. DANIELSON, Fifteen node tetrahedral elements for explicit methods in nonlinear solid dynamics, Comput
Methods Appl Mech Eng, 272 (2014), pp. 160-180.

F. Dassi, C. LOVADINA, AND M. VISINONI, Hybridization of the virtual element method for linear elasticity
problems, Math Models Methods Appl Sci, 31 (2021), pp. 2979-3008.

F. Dasst AND L. MAscOTTO, Exploring high-order three dimensional virtual elements: Bases and stabilizations,
Comput Math Applications, 75 (2018), pp. 3379-3401.

M. L. DE BELLIS, P. WRIGGERS, AND B. HUDOBIVNIK, Serendipity virtual element formulation for nonlinear
elasticity, Computers and Structures, 223 (2019), p. 106094.

A. M. D’ALTRI, S. DE MIRANDA, L. PATRUNO, AND E. SAacco, An enhanced VEM formulation for plane
elasticity, Comput Methods Appl Mech Eng, 376 (2021), p. 113663.

J. Eom, J. Ko, AND B. CHAI LEE, A macro plane triangle element from the individual element test, Finite
Elem Anal Des, 45 (2009), pp. 422-430.

C. A. FELIPPA, A study of optimal membrane triangles with drilling freedoms, Comput Methods Appl Mech
Eng, 192 (2003), pp. 2125-2168.

J. W. FouLk III, J. T. OsTIEN, B. TALAMINI, M. R. TUPEK, N. K. CRANE, A. MOTA, AND M. G. VEILLEUX,
Ezxtending a 10-node composite tetrahedral finite element for solid mechanics, Int J Numer Methods Eng, 122
(2021), pp. 3845-3875.

A. L. GaiN, C. TarniscHl, AND G. H. PAULINO, On the virtual element method for three-dimensional linear
elasticity problems on arbitrary polyhedral meshes, Comput Methods Appl Mech Eng, 282 (2014), pp. 132-160.
S. GHOSH AND R. MALLETT, Voronoi cell finite elements, Comput Struct, 50 (1994), pp. 33-46.

Y. Guo, M. Orrtiz, T. BELYTSCHKO, AND E. A. REPETTO, Triangular composite finite elements, Int J Numer
Methods Eng, 47 (2000), pp. 287-316.

K. HORMANN AND N. SUKUMAR, eds., Generalized Barycentric Coordinates in Computer Graphics and Com-
putational Mechanics, Taylor & Francis, CRC Press, Boca Raton, 2017.

J. JIROUSEK AND A. VENKATESH, Generation of optimal assumed stress expansions for hybrid-stress elements,
Comput Struct, 32 (1989), pp. 1413-1417.

C. S. Jog, A 27-node hybrid brick and a 21-node hybrid wedge element for structural analysis, Finite Elem
Anal Des, 41 (2005), pp. 1209-1232.

———, Improved hybrid elements for structural analysis, Mech Mater, 5 (2010), pp. 507-528.

C. S. JoG AND R. BAYADI, Stress and strain-driven algorithmic formulations for finite strain viscoplasticity for
hybrid and standard finite elements, Int J Numer Methods Eng, 2009 (2009), pp. 773-816.

C. S. Jog AND G. S. J. GAuTAM, A monolithic hybrid finite element strategy for nonlinear thermoelasticity,

Int J Numer Methods Eng, 112 (2017), pp. 26-57.

194



[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[78]

[79]

[80]

[81]

C. S. JoGg AND P. P. KELKAR, Non-linear analysis of structures using high performance hybrid elements, Int
J Numer Methods Eng, 68 (2006), pp. 473-501.

C. KADAPA, Novel quadratic Bézier triangular and tetrahedral elements using existing mesh gemerators: Ap-
plications to linear nearly incompressible elastostatics and implicit and explicit elastodynamics, Int J Numer
Methods Eng, 117 (2019), pp. 543-573.

A. KARIMIPOUR AND E. NOROOZINEJAD FARSANGI, Airy stress function for proposed thermoelastic triangular
elements, J Eng Math, 138 (2023), p. 11.

A. LAMPERTI, M. CREMONESI, U. PEREGO, A. Russo, AND C. LOVADINA, A Hu—Washizu variational approach
to self-stabilized virtual elements: 2d linear elastostatics, Comput Mech, (2023).

——, A Hu-Washizu variational approach to self-stabilized quadrilateral virtual elements: 2d linear elastody-
namics, Comput Mech, (2024).

L. LEONETTI AND M. ARISTODEMO, A composite mized finite element model for plane structural problems,
Finite Elem Anal Des, 94 (2015), pp. 33-46.

T. L1, X. Ma, J. Xiul, AND W. CHEN, Higher-order hybrid stress triangular Mindlin plate element, Comput
Mech, 58 (2016), pp. 911-928.

C. S. LoNgG, S. GEYER, AND A. A. GROENWOLD, A numerical study of the effect of penalty parameters for
membrane elements with independent rotation fields and penalized equilibrium, Finite Elem Anal Des, 42 (2006),
pp. 757-765.

X. Ma AND W. CHEN, Refined 18-dof triangular hybrid stress element for couple stress theory, Finite Elem
Anal Des, 75 (2013), pp. 8-18.

R. H. MAcCNEAL AND R. L. HARDER, A proposed standard set of problems to test finite element accuracy,
Finite Elem Anal Des, 1 (1985), pp. 3-20.

D. S. MaLKUS AND T'. J. HUGHES, Mized finite element methods — reduced and selective integration techniques:
A unification of concepts, Comput Methods Appl Mech Eng, 15 (1978), pp. 63-81.

L. MAscoTTO, Ill-conditioning in the virtual element method: Stabilizations and bases, Numer Meth Part D E,
34 (2018), pp. 1258-1281.

J. MENG, X. WANG, L. Bu, AND L. MEI1, A lowest-order free-stabilization virtual element method for the
laplacian eigenvalue problem, J Comput Appl Math, 410 (2022), p. 114013.

M. MENGOLINI, M. F. BENEDETTO, AND A. M. ARAGON, An engineering perspective to the virtual element
method and its interplay with the standard finite element method, Comput Methods Appl Mech Eng, 350 (2019),
pp- 995-1023.

E. A. S. NeTo, F. M. A. PirEs, AND D. R. J. OWEN, F-bar-based linear triangles and tetrahedra for finite
strain analysis of nearly incompressible solids. part i: formulation and benchmarking, Int J Numer Methods

Eng, 62 (2005), pp. 353-383.

195



[82]

[83]

[84]

[85]

[86]

[87]

[88]
[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

V. M. NGUYEN-THANH, X. ZHUANG, H. NGUYEN-XUAN, T. RABCZUK, AND P. WRIGGERS, A virtual element
method for 2d linear elastic fracture analysis, Comput Methods Appl Mech Eng, 340 (2018), pp. 366—395.

H. NGuYEN-XUAN, K. N. CHAU, AND K. N. CHAU, Polytopal composite finite elements, Comput Methods
Appl Mech Eng, 355 (2019), pp. 405-437.

A. ORTIZ-BERNARDIN, R. SILVA-VALENZUELA, S. SALINAS-FERNANDEZ, N. HITSCHFELD-KAHLER, S. LUZA,
AND B. REBOLLEDO, A node-based uniform strain virtual element method for compressible and nearly incom-
pressible elasticity, Int J Numer Methods Eng, 124 (2023), pp. 1818-1855.

K. PArk, H. CHI, AND G. PAULINO, B-bar virtual element method for nearly incompressible and compressible
materials, Meccanica, 56 (2020), pp. 1423-1439.

K. PAark, H. CHI, AND G. H. PAULINO, On nonconvex meshes for elastodynamics using virtual element methods
with explicit time integration, Comput Methods Appl Mech Eng, 356 (2019), pp. 669-684.

K. Park, H. CHi, AND G. H. PAULINO, Numerical recipes for elastodynamic virtual element methods with
explicit time integration, Int J Numer Methods Eng, 121 (2020), pp. 1-31.

P.-O. PERSSON AND G. STRANG, A simple mesh generator in MATLAB, SIAM Rev, 46 (2004), pp. 329-345.
T. H. H. P1aN, Derivation of element stiffness matrices by assumed stress distributions, AIAA Journal, 2
(1964), pp. 1333-1336.

T. H. H. P1aAN AND K. SUMIHARA, Rational approach for assumed stress finite elements, Int J Numer Methods
Eng, 20 (1984), pp. 1685-1695.

T. H. H. P1aAN AND P. ToONG, Relations between incompatible displacement model and hybrid stress model, Int
J Numer Methods Eng, 22 (1986), pp. 173-181.

T. H. H. P1an AND C.-C. Wu, A rational approach for choosing stress terms for hybrid finite element formu-
lations, Int J Numer Methods Eng, 26 (1988), pp. 2331-2343.

R. PILTNER AND R. L. TAYLOR, A quadrilateral mized finite element with two enhanced strain modes, Int J
Numer Methods Eng, 38 (1995), pp. 1783-1808.

——, A systematic construction of b-bar functions for linear and non-linear mixed-enhanced finite elements
for plane elasticity problems, Int J Numer Methods Eng, 44 (1999), pp. 615-639.

B. D. REDDY AND D. VAN HUYSSTEEN, A virtual element method for transversely isotropic elasticity, Comput
Mech, 64 (2019), pp. 971-988.

M. REZAIEE-PAJAND AND A. KARIMIPOUR, Three stress-based triangular elements, Eng Comput, 36 (2020),
pp. 1325-1345.

A. Russo AND N. SUKUMAR, Quantitative study of the stabilization parameter in the virtual element method,
2023.

M. H. SADD, FElasticity Theory, Applications, and Numerics, Academic Press, Burlington, Massachusetts,

first ed., 2005.

196



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

[112)

[113]

[114]

[115]

G. Scovazzi, B. CARNES, X. ZENG, AND S. RossI, A simple, stable, and accurate linear tetrahedral finite ele-
ment for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach,
Int J Numer Methods Eng, 106 (2016), pp. 799-839.

T. Suivt, P. J. O’HAarA, R. DESHMUKH, AND J. J. MCNAMARA, Solution of nearly incompressible field
problems using a generalized finite element approach, Comput Methods Appl Mech Eng, 368 (2020), p. 113165.
J. Simo, F. ARMERO, AND R. TAYLOR, Improved versions of assumed enhanced strain tri-linear elements for
3d finite deformation problems, Comput Methods Appl Mech Eng, 110 (1993), pp. 359-386.

J. C. Simo AND T. J. R. HUGHES, On the variational foundations of assumed strain methods, J Appl Mech,
53 (1986), pp. 51-54.

J. C. SiMO AND M. S. RirAl, A class of mized assumed strain methods and the method of incompatible modes,
Int J Numer Methods Eng, 29 (1990), pp. 1595-1638.

R. L. SPILKER, Improved hybrid-stress axisymmetric elements including behaviour for nearly incompressible
materials, Int J Numer Methods Eng, 17 (1981), pp. 483-501.

R. L. SPILKER, S. M. MASKERI, AND E. KANIA, Plane isoparametric hybrid-stress elements: Invariance and
optimal sampling, Int J Numer Methods Eng, 17 (1981), pp. 1469-1496.

K. Y. SzE, On immunizing five-beta hybrid-stress element models from ‘trapezoidal locking’ in practical analyses,
Int J Numer Methods Eng, 47 (2000), pp. 907-920.

C. TavuiscHI, G. H. PAULINO, A. PEREIRA, AND I. F. MENEZES, Polymesher: a general-purpose mesh generator
for polygonal elements written in Matlab, Struct Multidiscipl Optim, 45 (2012), pp. 309-328.

P. THOUTIREDDY, J. F. MOLINARI, E. A. REPETTO, AND M. ORTIZ, Tetrahedral composite finite elements,
Int J Numer Methods Eng, 53 (2002), pp. 1337-1351.

S. P. TIMOSHENKO AND J. N. GOODIER, Theory of FElasticity, McGraw-Hill, New York, third ed., 1970.

D. vaN HUYSSTEEN AND B. REDDY, The incorporation of mesh quality in the stabilization of virtual element
methods for nonlinear elasticity, Comput Methods Appl Mech Eng, 392 (2022), p. 114720.

C. WANG, X. ZHANG, AND P. Hu, Assumed stress quasi-conforming triangular element for couple stress theory,
Acta Mech Solida Sin, 30 (2017), pp. 335-344.

N.-E. WIBERG AND F. ABDULWAHAB, Patch recovery based on superconvergent derivatives and equilibrium, Int
J Numer Methods Eng, 36 (1993), pp. 2703-2724.

E. L. WiLsoN, R. L. TavyLor, W. P. DOHERTY, AND J. GHABOUSSI, Incompatible displacement models, in
Numerical and Computer Methods in Structural Mechanics, S. J. Fenves, N. Perrone, A. R. Robinson, and
W. C. Schnobrich, eds., Elsevier, 1973, pp. 43-57.

P. WRrIGGERS, B. D. REDDY, W. RusT, AND B. HUDOBIVNIK, Efficient virtual element formulations for
compressible and incompressible finite deformations, Comput Mech, 60 (2017), pp. 253-268.

P. WRiGGERSs, W. T. RusT, AND B. D. REDDY, A virtual element method for contact, Comput Mech, 58

(2016), pp. 1039-1050.

197



[116] C.-C. Wu AND Y. CHEUNG, On optimization approaches of hybrid stress elements, Finite Elem Anal Des, 21
(1995), pp. 111-128.

[117] C.-C. Wu aAND Y. K. CHEUNG, Penalty-equilibrating approach and an innovative formulation of 4-noded hybrid
stress elements, Commun Numer Meth En, 12 (1996), pp. 707-717.

[118] Q. X1a0, B. KARIHALOO, AND F. WILLIAMS, Application of penalty-equilibrium hybrid stress element method
to crack problems, Eng Fract Mech, 63 (1999), pp. 1-22.

[119] B.-B. Xu, F. PENG, AND P. WRIGGERS, Stabilization-free virtual element method for finite strain applications,
Comput Methods Appl Mech Eng, 417 (2023), p. 116555.

[120] B.-B. Xu AND P. WRIGGERS, 3d stabilization-free virtual element method for linear elastic analysis, Comput
Methods Appl Mech Eng, 421 (2024), p. 116826.

[121] O. C. ZIENKIEWICZ, Displacement and equilibrium models in the finite element method by B. Fraeijs de Veubeke,
chapter 9, pages 145-197 of Stress Analysis, edited by O. C. Zienkiewicz and G. S. Holister, published by John
Wiley & Sons, 1965, Int J Numer Methods Eng, 52 (2001), pp. 287-342.

198



	Abstract
	Acknowledgments
	Chapter 1. Introduction
	Chapter 2. Virtual Element Method 
	2.1. Mathematical preliminaries
	2.2. Governing equation and weak form of Poisson's equation
	2.3. Finite element method for Poisson's equation
	2.4. Virtual element method for Poisson's equation
	2.5. Strong form and weak form for linear elasticity
	2.6. Virtual element method for linear elasticity

	Chapter 3. Stabilization-Free Virtual Element Method
	3.1. Polynomial space and projection operators
	3.2. Enlarged enhanced virtual element space
	3.3. Numerical implementation
	3.4. Theoretical results
	3.5. Numerical results for SF-VEM

	Chapter 4. Stabilization-Free Serendipity Virtual Element Method
	4.1. Serendipity space and projection
	4.2. Numerical implementation of higher order methods
	4.3. Choice of l
	4.4. Numerical results for serendipity SF-VEM

	Chapter 5. Stress-Hybrid Virtual Element Method on Quadrilateral Meshes 
	5.1. Hellinger–Reissner variational principle
	5.2. Virtual element discretization
	5.3. Numerical implementation
	5.4. Numerical results for SH-VEM on quadrilateral elements

	Chapter 6. Stress-Hybrid Virtual Element Method on Six-Noded Triangular Meshes
	6.1. Stress-hybrid virtual elements for triangular elements
	6.2. Equilibrium penalty stress-hybrid method
	6.3. Numerical results for SH-VEM on triangular elements

	Chapter 7. Conclusions
	Appendix A. A Stress-Hybrid Formulation Based on Cook's Approach 
	Appendix B. Stabilized Stress-Hybrid Methods 
	Bibliography

