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Abstract

We review examples of Witten-Reshetikhin-Turaev quantum invariants, Hecke algebra, BMW algebra,
web categories, and relations between them. We define web categories for the quantum orthogonal group in
detail.

We also review recursive formulas for the highest-weight projectors in the web categories. We present

the triple clasp formulas for G, in detail.
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CHAPTER 1

Introduction

A knot is an embedding of a circle in the 3-dimensional space, and a link is a collection of non-
intersecting knots which may be linked together. Alternatively, a link is an embedding of a disjoint union of
finitely many circles in the 3-dimensional space, and a knot can be seen as a link with one component. Two
links are topologically the same when one link can be transformed to the other one by continuous distortion
of the ambient space. In other words, we study the embeddings of circles up to ambient isotopy.

When the ambient space is R, a link can be projected onto a plane R%. The projection is known as a

link diagram. For example, the link diagram of a Hopf link can be drawn as

When a link is drawn on a plane, there are two types of crossings once we assign an orientation to each

component of the link: a positive crossing \ which follows the right hand rule, and a negative

which follows the left hand rule.

crossing /

Reidemeister [51] and Alexander-Briggs [1] showed that two link diagrams describe the same link up

to isotopy of R?, if and only if they can be related by a sequence of the three Reidemeister moves:

J N N

(RI) \/\) & (RII) ( & (RIIT) / & \/
) ) \ .

N \\\ N\

A link invariant is a quantity assigned to each link, which remains unchanged for links that are the same
up to ambient isotopy. The link invariants associated to two link diagrams connected by Reidemeister moves
yield the same answer.

A framed link is a link where annuli are embedded in the 3-dimensional space instead of circles. A link

diagram can be seen as a diagram of a framed link by replacing each segment of the link diagram with a
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ribbon lying on the plane. Since the framing of the so obtained framed link is parallel to R?, it is called

the blackboard framing. For example, a framed Hopf link with the blackboard framing can be drawn as

\ l
. Since \KD = % # |, the Reidemeister move (RI) no longer holds for framed
I

links. Instead, one can replace (RI) by its modification

(RI)' >l .
/0

An invariant for framed links is a quantity assigned to each framed link, which remains unchanged for
framed links that are the same up to ambient isotopy. If the link diagrams of two framed links are connected
by a sequence of Reidemeister moves (R1)’, (R2), and (R3), then the invariants associated to the framed
links are the same. In this thesis, links refer to framed links, and link invariants refer to invariants of framed
links.

The discovery of the Jones polynomial in the early 1980’s [25] triggered mathematical developments
in areas including knot theory and quantum algebra. The Jones polynomial is a link invariant, written as a
Laurent polynomial in one variable. Witten [64] showed that the Jones polynomial of a given link can be
obtained by considering Chern—Simons topological quantum field theory. It was discovered by Reshetikhin
and Turaev [52] that the Jones polynomial can be defined by using the braiding structure in the Ribbon
category, which is universally constructed for any simple Lie algebra g, generalizing the Jones polynomial
to a family of quantum link invariants. When ¢ is at a root of unity, the ribbon categories also give invariants
of a three-manifold by coloring the link along which Dehn surgery [14] is performed. These quantum
invariants are known as Witten-Reshetikhin-Turaev invariants.

The Ribbon category related to the Jones polynomial can be presented as the Temperley-Lieb category
[60]. Half a decade earlier Rummer-Teller-Weyl found a description of morphisms between tensor products
of the vector representation of SL,(C) in terms of cup and cap diagrams [56, Equation 3]. The g-analogue of
their result is that the Temperley-Lieb Category is monoidally equivalent to the full monoidal subcategory
of Rep(U,(sl»)) generated by the g-analogue of the vector representation. Hence we can use diagrams and

graphical calculations in the Temperley-Lieb category to study the representation theory of U, (sl5).
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The web category of g, was first introduced by Kuperberg [35] to compute the quantum link invariants
for in the g; case. The definition of web categories was later generalized to include all the rank two simple
Lie algebra g, i.e. g =sl3, sp,, or gp [36]. It was shown in the paper that the web category of g is monoidally
equivalent to the category of fundamental representations of the quantum group U,(g), generalizing the
relation between the Temperley-Lieb Category and the representations of U,(sl).

Bearing the goal of giving graphically presented, generators and relations descriptions of the monoidal
categories of fundamental representations of quantum groups, the definition of web categories was later
extended to types A [11] and C [8].

Khovanov developed a homology theory for links that categorifies the Jones polynomial [30], which
provides a link invariant with more information than the Jones polynomial. Web categories are used for the
categorification of quantum link invariants in the s(3 case [31] and sl,, case [42,50, 54].

In this thesis, we review examples of quantum link invariants in different Lie types, the graphically
presented algebras and categories related to quantum invariants and representations of quantum groups, and
their relations to web categories. We define the web categories for the quantum orthogonal group, based on
joint work with Bodish [10]. We also demonstrate how to use web categories to study the representations of
quantum groups, by giving a graphical expression for any irreducible representation of the quantum group

U,(92), based on joint work with Bodish [9].



CHAPTER 2

Quantum invariants and Skein categories

2.1. Jones polynomial and Temperley-Lieb category

2.1.1. Jones Polynomial. The Jones polynomial is the very first example of quantum invariants for

links and knots. It can be computed via the following definition given by Jones.

DEFINITION 2.1.1.  [25] The Jones polynomial V,(¢") associated to a link or knot # is a Laurent

polynomial in 12 , satisfying the following relations:

Vi =1, tV / — \\ +(;%_t*%).\/t > < —0.
/ AN

2.1.2. Bracket polynomial. The bracket polynomial defined by Kauffman, also known as the Kauft-

man bracket, is a reinterpretation of the Jones polynomial.

DEFINITION 2.1.2. [28] The bracket polynomial (¢) of a link or knot %" is a Laurent polynomial in

A, which satisfies the following relations:

O O0) (=)

< |_|J£”> = —(A2+A72)<Ji/>, A nonempty.

EXAMPLE 2.1.1. We compute the bracket polynomial of a Hopf link.

CO-QD((O)



=0 O )= 0)

= (—AZ(A2+A_2)+1+1—|——A_2(A2—|—A_2))< >: N

DEFINITION 2.1.3. Given a link or knot J, the writhe of J is defined as the number of positive

crossings of # minus the number of negative crossings of J . Denote the writhe of # by wr(£).
The Jones polynomial can be seen as a normalized bracket polynomial in the following sense.

THEOREM 2.1.1. [28] Given a link or knot ¢, the relation between the Jones polynomial and the

bracket polynomial is the following
Vs (A7) = (=4) ) ()

2.1.3. Temperley-Lieb category. Using the skein relations from the bracket polynomial, we can de-

fine a graphical category know as the Temperley—Lieb category.

DEFINITION 2.1.4. [60] The Temperley—Lieb category TL is a pivotal Z(q*)-linear category whose
object is a tuple of dots, and whose morphism is a linear combination of planar matchings between two

tuples of dots, modulo the tensor ideal generated by the following relation:
=—(g+q7").

TL can be made into a Z(qi%)-linear braided tensor category by defining the braiding:

\ _l\/

\ /\



REMARK 2.1.1. The tensor product of objects in the Temperley—Lieb category TL is concatenation of
tuples of dots, for example: *® @ ®ee = eeese,
The tensor product of morphisms is horizontal concatenation. The composition of morphisms is vertical

stacking. For example, consider the following morphisms in the Temperley-Lieb category

f= % € Endrp(¢®®) and g= x A € Homyy (o7, 0%7),

U

U
f®g=% x A A O =—(q+q‘1)m ‘ f\'

M M

PROPOSITION 2.1.1. A link or knot £ evaluated as a morphism in the Temperley—Lieb category from

we know that

the empty word to the empty word yields a scalar (. )rr. Let ¢ = A%, (¢ )1y is related to the bracket

polynomial by the following relation
()L =—(g+q" " )H).

PROOF. Set g = A2, then % is evaluated in the Temperley—Lieb category by the same skein relations as
the ones applied to compute the bracket polynomial, until the end where an unknot is evaluated as —(g+¢ ')

in the Temperley-Lieb category whereas (unknot) = 1. O

2.2. Type A quantum link invariant and skein category, and Hecke algebra

2.2.1. HOMFLY-PT polynomial. The Jones polynomial is the quantum invariant for links and knots

in the sl case. A generalization to the sl, case is known as the HOMFLY-PT polynomial.

DEFINITION 2.2.1. [18,49] The HOMFLY-PT polynomial P, .(.%") associated to a link or knot ¢ is

a Laurent polynomial in x, y, and z, satisfying the following relations:

Px,y,z =1, x vayaZ \ +y- Px,y.,z / +z- Px,y,z ) < =0.

REMARK 2.2.1. Whenx=—t"\, y=t, andz =12 —1"2, Py () =V (H)
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2.2.2. HOMFLY-PT skein category. Using the language of category theory, one can take the skein

relations from the definition of HOMFLY-PT polynomial for knots and links to generate relations on tangles.

DEFINITION 2.2.2. [62] The HOMFLY-PT skein category 0S(z,1) is a Z[z*,1%]-linear pivotal cate-
gory whose objects are generated by { 1,| }, and whose morphism is a linear combination of matchings
(framed oriented tangles) between two words in the letters 1 and |, modulo the tensor ideal generated by

the following relations:

OHXE) (583 (5
B KX (O

REMARK 2.2.2. A link or knot & evaluated as a morphism in the HOMFLY-PT skein category from

the empty word to the empty word yields a scalar ( )4. ()4 is related to the HOMFLY-PT polynomial

by the following relation

, [—1!
N A = ———P 1 ().

2.2.3. Hecke algebra.

DEFINITION 2.2.1. The k-strand Hecke algebra of type A, denoted by Hy(q), is the unital associative

Z|q*)-algebra generated by T; for 1 < i < k— 1, with relations:

) TP =(g—q ") Ti+1,
) TTi Ty =T TiTiy for 1 <i<k-12,
(3) TiT; = TiT; for |i— j| > 1.



PROPOSITION 2.2.1. There is an isomorphism between the Hecke algebra and the endomorphism space

in the HOMFLY-PT skein category:

F . Hy (('Z) — EndOS(q—q*I,l) (T®k)

e A K

i—1 k—i—1
PROOF. One can verify that the relations in Definition 2.2.1 are satisfied by applying relations in Defi-

nition 2.2.2 whenz =g —¢~ . g

2.3. Type B,C, and D quantum link invariant and skein category, and BMW algebra

2.3.1. Kauffman polynomial. Further generalization of the Jones polynomial to the type B,C, and D

cases is known as the Kauffman polynomial.

DEFINITION 2.3.1. [29] The Kauffman polynomial L,,(.%") associated to a link or knot %" is a rational

function in r and z, satisfying the following relations:

/ N———
L. —L,,

. :Z‘Lr,z _ ,
/ /\

. \K) = r-Ly ) Ly =1

2.3.2. BMW category. Again, one can define a category whose morphisms are given by linear combi-

nations of tangles, which satisfy the skein relations from the Kauffman polynomial.

DEFINITION 2.3.2. Define the BUW skein category, BMW(r,z), to be the Z[r*, z*)-linear braided

pivotal category with generating object o, such that

N ) /:Z. S~
N N\ —~



and

\/\)r

REMARK 2.3.1. A link or knot £ evaluated as a morphism in the BMW skein category from the empty
word to the empty word yields a scalar (& )pgcp. (A )pcp is related to the Kauffman polynomial by the

following relation

r—r*1

(A )pep = <1+ >L,,Z(Jif).

<

2.3.3. BMW algebra.

DEFINITION 2.3.1. [5,45] The k-strand BMW algebra BMW,(r,7) is the unital associative Z[r*,z¥]-
algebra generated by e,-,g,-,gi_1 for 1 <i<k—1, with relations:
D) gi—g ' =z2l-e), gg'=1=g g
@ &= (1+) e

Z
() gigi+18i = gir18igi+1 for 1 <i<k—-2,

4) gigj = gjgifor|i—jl > 1,

(5) ejeir1ei=¢e;, eirieiei1 =eir1 forl1 <i<k—2,

(6) gigir1ei=eir1€i, gir18i€i+1 = eieiv1  for 1 <i<k—2,
(7) eigi = giei =r""e,

() eigiviei=re;, eir18i€iv1 =reiry  for1 <i<k—2.

PROPOSITION 2.3.1. There is an isomorphism between the BMW algebra and the endomorphism space

in the BMW skein category:

F : BMW;(r,2) — Endgyw(so) (¢°)

8i— /
[— \ [ —
i—1 k—i—1
_
e; —
T e
i— —i—



CHAPTER 3

Web categories

3.1. Quantum groups and their representation categories

We recall the definition of the quantized universal enveloping algebra U,(g) for any simple Lie algebra

g, as well as the representation category and fundamental representation category of U,(g).

DEFINITION 3.1.1. Define the quantum integer [n], := ‘;__:_1 . Denote [n],! := [1],]2],[3]y-..[n]y. De-
n ]! Wh .
11 _ =gq, /1 = .
note . RN env = q, write [n] := [n],

v

DEFINITION 3.1.2. [23, Section 4.3]

Let g be a semisimple Lie algebra, over C, with associated root system ®, viewed as a subset of the
weight lattice X. Fix a choice of simple roots I1 C ®. The Weyl group W acts on Z.®. Write (—,—) to denote
the unique W invariant symmetric bilinear form on Z®, normalized such that (&, o) = 2 whenever Q is a

short root. Write

2
V.= ((xO:X) €X and qq:=q'*??ecClq) forall oell

Define Uy(g) as the associative F-algebra generated by
Eq,Fou,Ki', o €Tl

subject to relations (R1)-(R6) [23, Section 4.3].
The algebra U,(g) is a Hopf algebra with comultiplication A, antipode S, and counit € defined on

generators as follows:

(3.1) AEg)=Eq@14+Ky®Eqy, A(Fy)=10F;+Fy®K,", A(Ky)=Kq®Kg,

(3.2) S(Eq) = —Ky'Eq, S(Fo)=—FoKa, S(Ko)=K,',
10



(3.3) €(Eq) =0, €(Fy)=0, and &(Kg)=1.

The irreducible, finite dimensional, type-1 representations of U, (g) are in bijection with the finite dimen-
sional irreducible representations of g(C). The dominant weights, X, are the Z>( span of the fundamental
weights @;. For each A € X, we write V(1) for the U,(g) module which corresponds to the g representation
with highest weight A.

The algebra U,(g) is a Hopf algebra, so its representation category is a monoidal category. We are
only interested in type-1 U,(g) modules, that is modules such that {Ky : a € IT} act diagonalizably with
eigenvalues in +¢" for m € Z. It is not hard to see that the condition of being type-1 is closed under taking

tensor product.

NOTATION 3.1.1. We write Rep(U,(g)) for the monoidal category of finite dimensional type-1 U,(g)

modules.

The category Rep(U,(g)) is completely reducible [23, Theorem 5.17]. Moreover, we can determine
how a module in Rep(U,(g)) decomposes by looking at its weight space decomposition.
The modules V(A) are type-1. Also, we have

Vv = @ v,

vex,

Au

where the integers m,”" are the same as those describing the tensor product decomposition of the analogous

g(C) modules. So the tensor product of type-1 modules are also type-1.

DEFINITION 3.1.1 ([23, Section 5.11). A module W € Rep(U,(g)) decomposes as a direct sum
W = @ngWu,

where

Wy ={weW | Kgw = ¢ *Ww, o € TT}.

We will call this direct sum decomposition the weight space decomposition of W, say that W, is the [

weight space of W, and call w € W, a weight vector of weight .. We say that

WUW = {1 | Wy, #0}
11



is the set of weights of W.

NOTATION 3.1.2. Let W be a module in Rep(U,(g)). For each A € X there are non-negative integers
my, (W) such that
W= P va)emW,

reX;

We write W : V(A)] :=my (W) in this case.

DEFINITION 3.1.2. The category of fundamental representations, Fund(U,(g)) is the full monoidal

subcategory of Rep(U,(g)) generated by the objects V (m;).

REMARK 3.1.1. The objects in the category Fund(U,(g)) are all isomorphic to iterated tensor products
of fundamental representations. This includes the empty tensor product, which we take to be the trivial

module, denoted by 1. The category is C(q)-linear additive, but is not closed under taking direct summands.

3.2. Web categories for G,

We now recall the definition of the first web category Web,(g>), initially invented to compute the

quantum invariants for links and knots in the G, case by introducing trivalent graphs [35].
3.2.1. Definition of g, Webs.

DEFINITION 3.2.1. [35,36] The category Weby(g2) is the strict pivotal C(q)-linear category, whose
objects are generated by self-dual objects @) and ®,, and whose morphisms are generated by the following

two trivalent vertices:

(0] Q)
)\ S HomWebq(gz)((Hl (%9 (771,&51) and )K S HomWebq(gz)(wl & (D'l,a)'z),
()] ()] o, ©

modulo the tensor-ideal generated by the following relations:

_ R Ruoit
5D Q‘ a0 @ SOENE

12



(S3) =0 , (S4) =0 , (S5) =0 ,
N
s6) [ )= —Bﬁﬂ I

(58) - I I S

The tensor product of objects in Webg(g2) is concatenation of words. Tensor product of morphisms is

horizontal concatenation. Composition of morphisms is vertical stacking.

EXAMPLE 3.2.1. Let

f= ‘ *eHomWe,,q(gz)(w{“,wl@wz), 8= \K

fog= € HomWebq(gz)(Gf(ﬁz, o) RO).

2 3
€ HomWebq(gz)(w;g) ’wig) )

Then

5 3
€ Homyyep, (g,) (B, @1 @ @ @ @)

and

LEMMA 3.2.1. The following relations follow from the skein relations given in Definition 3.2.1:
13



X
N
7

(510)

(S11)
(S13)

PROOF.

14



o1 At e 6
— g 2Pl
P
. (53 1 _ __[4l[e] /
(512): Hﬂ}* ;7 3 ‘ erny. (7

(813) : ﬁl\ /+Y1X [4]16] V
' 2 2]2[12
2/ \ g PP
~—"
sosmes 1N/ e Y, e
2/ N\ B Bl PP

Then by (S8), we can replace the internal double edge and get (S13).

. sy 1 6 __L4]l6] \<S/
(514) \Q/ [ 1%* i 3 i RP(I2
PR




(512) (s13) (s11) 1 1 1 1 [4]

RN _1p &_1[31J [lle (6]
B2 HW% 3112 /_( P12 [2

Then use (S8) to get rid of the internal double edges, and we obtain (S14).

3.2.2. Equivalence between Kar(Web,(g2)) and Rep(U,(g>)). We recall the results of [36] which
describe the relation between g, webs and representations of the quantum group associated to g,. We will

only work over the field C(g) where g is either an indeterminant or a generic element of C*.

NOTATION 3.2.1. Let ® be the root system of type go with Weyl group W and simple roots oy and 0,

where Q. is the short root. It follows that the positive roots are
D, = {0,301 + 0,200 + 00,30 +20p,01 + 0,0}
Equip 7.® with the W invariant symmetric form determined by
(ar,on)=2, (o4,m)=-3=(mm,q1), and (o,0p)=">6.

We write X for the integral weight lattice and X, for the dominant integral weights. The fundamental
weights are @) =20 + 0 and @> =30y + 2. We may use the notation (a,b) for a®, + b®,, in particular

X ={(a,b) |a,b > 0}.

DEFINITION 3.2.2. Let A, u € X,. We define u < A if AL — U is a non-negative linear combination of

positive roots. We also write f < A if 4 < A and L # A.

DEFINITION 3.2.3. Let w be an object in Webq(g2). Then w = wiws ... w, for w; € {®,®,}. We define

V(W) = V(W) @V(w2) @ ...V (wy).
16



REMARK 3.2.1. Note that

Viw) = @ v(n)™m

pnex,
The integers my :=my (V(w)) = [V(w) : V(u)] are the same as those describing the tensor product decom-

position of the analogous g,(C) modules.

NOTATION 3.2.2. Given an object W = wiwy...w,, we write

n
wiw = Y wtw;.
i=1

Note that wtw € X for all w.
THEOREM 3.2.1 ( [36, Theorem 5.1]). There is an essentially surjective monoidal functor
® : Weby(g2) — Fund(Ugy(g2))
such that (@) = V(@) for © € {®,,D,}.
THEOREM 3.2.2 ([36, Theorem 6.10]). Let w and u be objects in Webq(g2). Then
dim Homyyep, (g,) (W, u) = dim Hompynq(u,(g,)) (V (W), V (u)),
and it follows that the functor ® is an equivalence of monoidal categories.

Recall that given a category %, the Karoubi envelope of %, is the category with objects: pairs (X,e),
where X is an object in ¢ and e € End¢ (X) is an idempotent, and morphisms: triples (¢’, f,e) : (X,e) —
(Y,¢'), where f: X — Y is a morphism in ¢ so that ¢’ o foe = f. Given a C(g)-linear category ¢, the
additive envelope of ¢ is the category with objects formal direct sums of objects in 4 and morphisms

matrices of morphisms in €.

DEFINITION 3.2.4. Let € be a C(q)-linear category. Define the Karoubi completion of € to be the

additive envelope of the Karoubi envelope of €.
COROLLARY 3.2.1. The functor ® induces an equivalence of monoidal categories

Kar(Webq(g2)) — Rep(Uq(g2))
17



such that (w,e) — im®(e) and (¢, f,e) : (w,e) = (w,e') — (/o foe).

PROOF. Since every objectin Rep(Uq(g2)) is a direct sum of direct summands of objects in Fund(Uq(g2)),

this follows from & being an equivalence. ([l

3.3. Web categories in type A

DEFINITION 3.3.1. [11] Define the pivotal C(q)-linear category Web,(sl,) whose objects are gener-
ated by the objects k= k € {1,2,...,n— 1}, and whose morphisms are generated by the following four types

of vertices:

k+1 ko1
(k € Homyep, (51, (k@ 1k +1), ‘T’:’ € Homyp, (o1,) (k+1,k® 1),

n—k n—k
% € Homyyep, (1, (K, (n — k)%;{ € Homyyp, (s1,) (K~ ,n — k),

for k € Z>o, modulo the tensor ideal generated by the relations (2.3)-(2.10) from [11].

PROPOSITION 3.3.1. [11] The braiding P11 € Homyp (s1,)(1 @ 1,1® 1) is given by the following

3.3.1. Functor from the type A web categories to the HOMFLY-PT skein category.

PROPOSITION 3.3.2. The assignments T +— 1 and

XX

determines a pivotal braided monoidal functor
N:08(q—q',q") — Weby(sl,).

The functor is full when we restrict Web,,(s\,,) to its full subcategory whose objects are generated by 1.

PROOF. One can verify that the relations in Definition 2.2.2 are satisfied, by resolving crossings into

trivalent graphs using Proposition 3.3.1, and then apply relations in Definition 3.3.1. U
18



3.3.2. Equivalence between the type A web categories and the representation categories of quan-

tum groups in type A.

THEOREM 3.3.2. [11] There is a functor
d : Web,(sl,) — Fund(U,(sl,))

sending k to Ve, which is an equivalence of C(q)-linear pivotal categories.

REMARK 3.3.1. The composition of two functors ® o induces a full functor from OS(q—q~"

Fund(U,(sl,)), which is not faithful.

,q") to

3.4. Web categories in type C

DEFINITION 3.4.1. [8] Define the pivotal C(q)-linear category Web,(sp,,) whose objects are gener-
ated by the self-dual objects k € {1,2,...,n}, and whose morphisms are generated by the following trivalent
vertices:

k+1 k+1

€ Homyep, o,y (12K k+1) € Homyep, ap,,) (k@ 1,k+1)
1 k k 1

for k € Z>o, modulo the tensor ideal generated by idy for k > n, and the following relations.

k k+2 k+2
242 !
(3‘46‘)10:_%’ (3.4b) ?: 0, (3.4c)1¢k—1 =K, (3.4d)k+;<\ = /XH
k k 1 k1 1 k1

3.4.1. Functor from the type C web categories to the BMW category.
19



DEFINITION 3.4.2. [8] The braiding 1,1 € Homyep, (sp,,) (1 ® 1,1 ®1) is given by the following

1 1
N
\ =q ! 1 I-Fqn .
\ 1 1 [n]/l\

PROPOSITION 3.4.1. [8] The assignments ® — 1 and

AKX

determines a pivotal braided monoidal functor

n:BMW(—g""',q—q~") — Web,(sp,,).

The functor is full when we restrict Web ,(sp,,,) to its full subcategory whose objects are generated by 1.

3.4.2. Equivalence between the type C web categories and the representation categories of quan-

tum groups in type C.

THEOREM 3.4.3. [8] There is a functor
D : Web,(sp,,) — Fund(U,(sp,,))

sending k to Ve, which is an equivalence of C(q)-linear pivotal categories.

REMARK 3.4.1. The composition of two functors ® o1 induces a full functor from BMW(—g*"*!, q —

g ') to Fund(U,(sp,,)), which is not faithful.
3.5. Web categories for the quantum orthogonal group

3.5.1. Results and idea of the proof.
3.5.1.1. Results.

NOTATION 3.5.1. Let F := C(q) and A := C[q](4—1)cjq C F. Note that C=A /(q—1)A.

Y ypn
REMARK 3.5.1. Ifv is a power of q, in particular if v = q or ¢*, then quantum integers [n), := —
v—v
and quantum binomials [n],! := [1],[2],[3],...[n]y lie in A. Therefore we can consider their image in C or
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F. We do not make new notation for this, but instead leave it up to context whether a particular expression

involving quantum integers is in F, A, or C.

DEFINITION 3.5.1. Let R € {F,A,C}. Define the pivotal R-linear category Webg(O(m)) whose ob-
Jjects are generated by the self-dual objects n € Z>o, and whose morphisms are generated by the following

trivalent vertices:

)\ € Homyep,(o(m) (1 @k, k+1) )\ € Homyep, (o(m)) (k® 1,k +1)
1 k k 1

for k € Z>o, modulo the tensor ideal generated by idy for k > m, and the following relations.

34

k

2

k+2 k—+2
, (3.4d)k+X\ - /XH
k k 1 k1 1 k1
1 1
om—dk—am-m N\ S k2]

m—2k=2]m—4K] /+T\ T2k —22m—4|

VRS

REMARK 3.5.2. We will use the convention that strands labelled zero can be erased and strands labelled

k < 0 are equal to zero.

REMARK 3.5.3. The presentation of Webg(O(m)) we give in Definition 3.5.1 is practically the same as

the presentation of Web(sp,,,) in [8, Definition 1.1], but with different coefficients.
REMARK 3.5.4. When R =C, i.e. ¢ = 1, the coefficients in Relation (3.4e) are all £1.

There are also simplifications in the representation category when ¢ = 1. For example, the braiding'
becomes symmetric, meaning it is equal to its own inverse. In the symmetric case, there is a standard defini-
tion of the exterior power of a representation. But in the braided case things become more complicated [3].

This can be defined as the map Po fo® [23, Theorem 7.8], where P is the tensor flip map, f is as in [23, Section 7.9], and O is
the quasi-R matrix [23, Section 7.2].
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In Section 3.5.3.3 we carefully define the g-analogue of the exterior powers of the defining representa-
tion. Write Af& for the usual k-th exterior power of the defining representation and write A’% to denote
the g-analogue. For R € {F,C}, the monoidal category Fund(Ug(on)) is defined to be the full monoidal
subcategory of Ur (0 )-mod generated by A’ﬁ fork=0,...,m.

The main theorem of this article is the following.

THEOREM 3.5.2. Let R € {C,F}. There is a functor
Dp : Webgr(O(m)) — Fund(Ug (o))

sending k to A;} which is an equivalence of R-linear pivotal categories.

REMARK 3.5.5. Instead of working with O(m), we use Uc(on)?, which is a 7.]2 extension of the uni-
versal enveloping algebra of sop,. Every O(m) representation can be made into a module for Uc(oy,) and
vice-versa. Moreover, a C-linear map between such representations is an O(m) intertwinter if and only if
it is a Uc(om) intertwiner. In particular, the category Fund(Uc (o)) is isomorphic to the full monoidal
subcategory of Rep(O(m)) generated by the exterior powers of C". We choose to use Uc(on), instead of

O(m), since it is easier to see how to relate its representations to those of Ur(op,).

REMARK 3.5.6. Let R € {C,F}. Given an R-linear monoidal category € we can build an additive
monoidal category, denoted Add(%), where the objects are formal direct sums of objects in the original
category and morphisms are matrices of morphisms in the original category. Given an R-linear additive
monoidal category <7, we can build an additive monoidal category, called the Karoubi envelope of </ and
denoted Kar(</'), which is closed under taking direct summands. Objects in Kar(</) are pairs (X ,e), where

X is an object in &/ and e € End/(X) is an idempotent. Morphisms in Kar(</) are defined by
HomKar(,Qf)((Xae)a (Ya f)) = fHOmW(X,Y)E.

Finite dimensional representations of Ug(om) are completely reducible. Moreover, every finite dimen-

sional irreducible type-1 representation of Ug(on)) is a direct summand of some tensor product of Alfe ’S.

2This is just notation for an associative algebra which acts like the enveloping algebra of a non-existent oy, and should not be taken
literally. The Lie algebra of O(m) is simply s0m.
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Thus, we have an equivalence of R-linear additive monoidal categories
Kar(Add(Fund(Ug(om)))) = Rep(Ur(0m)),

where by Rep(Ug (o)) we mean the category of finite dimensional type-1 representations of Ug(0y,). Since
Add and Kar are universal constructions, we can interpret Theorem 3.5.2 as a presentation of the monoidal

category Rep(Ug(om)).

EXAMPLE 3.5.1. Let m = 1. Consider the one dimensional vector space V¢, spanned by basis vector v
and equipped with symmetric form (v,v) = 1. We have O(1) = 7 /2, where the generator ¢ € Z/2 acts as
o(v) = —v. Since A*(V¢) = 0 for k > 1, we see that Fund(Uc(0,)) is the monoidal category generated by
V. Write C to denote the trivial O(1)-module. It is immediate that

Vg’d Ve ifdisodd |
C ifdiseven.

1

and the isomorphisms are induced by v®¢ — v and v®¢ — 1 respectively.

Since m =1, we set idy = 0 in Webc(O(m)) for all k > 1. One easily checks that the only defining
relations which are not of the form O = 0 are Relation (3.4a), which says that the circle labelled 1 evaluates
to 1 € C, and Relation (3.4e) which says that the identity of 1 ® 1 is equal to the cup-cap.

The C-linear version of the n = 2 case of [27, Exercise 4.13(i)] says that if € is an C-linear additive
monoidal category which is closed under taking direct summands, then monoidal functors Rep(C[Z/2]) —
% are in bijection with objects X € €, equipped with an isomorphism o : X @ X — 14, such that @ ® id =
id®a. We leave it as an exercise to prove the m = 1, R = C, case of Theorem 3.5.2 by hand, and then use
Remark 3.5.6 to deduce the universal property described above. Hint: for the deduction step, use the pivotal

structure on Webc(O(m)) to rewrite the identity equals cup-cap relation so it resembles 0. ® id = id@a.

REMARK 3.5.7. What about the m = 1 case over F? It is easy to verify that F@Webc(O(1)) =
Webr(O(1)). Since SO(1) C O(1) is the trivial group, soy is the trivial Lie algebra. We are lead to de-
fine Up(s01)> =T and Up(01) = F[Z/2]. The same analysis in Example 3.5.1 works here to show that there
is a monoidal equivalence Webr(O(1)) = Fund(Ug(01)).

3Since U, (g) is generated by Eq, Fy, and K1 for a0 € T, and since there are no simple roots for so;, we think of Up(s0;) as the
F-algebra with no generators.
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EXAMPLE 3.5.2. Let m = 2. In this case, the Lie algebra of SO(2) = S' is abelian and therefore is
not semisimple. In particular, its enveloping algebra does not have a Serre presentation which can be q-
deformed as usual. We take the following approach. We define Ur(s0,) := F[K*!] and Vg := F-a; ®F -by,
with K -ay = g*a; and K - by = q~2by. There is then an involutive algebra automorphism of Ug(50), denoted
o, which acts by 6(K) = K~!. Defining 6(a;) = by and 6(b1) = a; induces an action on Vi by the algebra
Up(02) :=F[K*)(c | 6> =1, oKk*'oc =o(K*")). The Ur(0z) module Az, which is spanned by a;b,
has K*! in its kernel and o acts as —1. The category Fund(Ur(0,)) is a q-analogue of the category of
representations of O(Cz), generated by C? and det. Similar to when m = 1, we have an equivalence of
pivotal B-linear categories Webp(O(2)) = F @Webc(O(2)). However, the braiding on Weby(O(2)) is non-

trivial, so this is not an equivalence of braided categories.

REMARK 3.5.8. The m = 1,2 cases of our main theorem are somewhat hidden in the body of this paper.
We make a few comments along the way for how things change, but for the sake of readability we mostly
explain things when m > 3, so soy, is semisimple and therefore we have a more uniform notation. Regardless,

the main results still hold for m = 1,2, and the careful reader will be able to see what needs to be changed.

3.5.1.2. Idea of the proof. Citing classical results about invariant theory, Lehrer-Zhang prove [40, The-
orem 4.8] that there is an equivalence between the Brauer category [40, Definition 2.4], modulo the an-
tisymmetrizing idempotent on m + 1 strands, and the full monoidal subcategory of Rep(O(C™)) gener-
ated by C". Since A’g: is a direct summand of (C™)®, for k = 0,1,...,m, one might hope to reduce the
proof of our main theorem, when R = C, to a calculation verifying that the antisymmetrizing idempotent
W Yoes,. (— 1)!™)y is zero in Webe(O(m)). We carry out this calculation in Proposition 3.5.12.

The idea of the proof of Theorem 3.5.2 is roughly as follows. First prove the result for R = C, using
the ideas outlined above. Then, using the well-known result that the braiding endomorphism for the tensor
square of the vector representation generates the endomorphism rings of arbitrary tensor powers of the
vector representation, we prove that ®p is full. Finally, we carefully argue that everything we defined
actually makes sense over the ring A. The A versions of our categories and functors can then be specialized
to C or FF. Since A is a local ring and a principal ideal domain, basic facts about finitely generated modules

over a PID allow us to deduce our functor is faithful when R = F from knowing it is full over F and an

equivalence over C.
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Let us comment on why we do not just prove Theorem 3.5.2 directly for F the same way we do for C.
There is a g-analogue of Lehrer-Zhang’s result [40, Theorem 8.2], in which the Brauer category is replaced
with the BMW category. However, just as the definition of the g-analogue of the exterior powers is not
trivial, it is not so easy to explicitly describe the g-analogue of the antisymmetrizer in the BMW category.
Lehrer-Zhang only discuss it abstractly [40, Theorem 8.2(iii)], using the theory of cellular algebras. The
abstract description is sufficient to prove their result, but several years earlier Tuba-Wenzl gave a recursive
formula for this idempotent by relating it to the g-antisymmetrizer in the Hecke algebra [61, Equation 7.12].
There is also work on explicitly describing the g-antisymmetrizer in the BMW category: when m = 3
in [39, Equation 7.8], and for all m > 1 in [15,21,22]. These descriptions are not very easy to compute
with. An instance of this is that we have not yet found how to use the relations in Webr(O(m)) to show
the g-antisymmetrizer on m + 1 strands is zero in the web category for O(m), even though this is implied by

Theorem 3.5.2.

3.5.2. Web category for quantum orthogonal group. In this section we will use the generators and
relations for Webg(O(m)) to derive some further relations and to establish a connection to the Birman-
Mirakami-Wenzl algebras.

3.5.2.1. Further relations.

LEMMA 3.5.1.
k
(3.5) Na T [2m — 2k|[2m — 4k — 4] [m — 2k]
' 2][m — 2k — 2] [2m — 4]
k
PROOF.

1 1

2m—dk—4|m—2k [ [2m — 4k —4][m —2]
C[m—2k—=2]2m—4k] /! +[m—2k—2][2m—4] O
TN

k k k

k k

Ac)
34a)  [2m— 4k —4][m —2k] [2k] [2m — 4k — 4][m — 2] [2m — 4][m]
 m—2k—2][2m—4k] 2] m+[m—2k—2][2m—4] [m—2][2] m
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REMARK 3.5.9. When R = C, the coefficient in Equation (3.5) becomes (m — k).

Using the previous Lemma, it is not hard to derive the following relation generalizing Equation (3.4a)

LEMMA 3.5.2.

(Y 2m—4km] |m
(3.6) O = =2k |,

PROOF. We prove the claim by induction on k. The base case, k = 1, follows from Equation (3.4a) .

Assuming Equation (3.6) holds for k, we find

i [ oy [ [m—2K2m— 4k~ 4)m - 24 ~
O_ [2k+2] @  [2k+2]  [2][m— 2k —2][2m — 4k] O

36 2] [2m—2k]|[2m — 4k — 4|[m — 2k| [2m — 4k][m]
T k+2]  2m-2k—2)2m—4k  |m—2K][2m]

m
k 2
q

_ [2m—2k][2m — 4k — 4][m] |m

- Rk+2][m—2k—2]2m] |

_ 2m—4(k+1)|[m] | m
[m—2(k+1)][2m] ka1

REMARK 3.5.10. When R = C, the coefficient in Equation (3.6) becomes (’I?)

REMARK 3.5.11. Note that [2m — 4k|/[m — 2k] = [2] jn-x. Therefore, if m = 2k, then [2m — 4k|/[m —
2% =2.

The following relations are a simplification of Equation (3.4e) when k = m.

LEMMA 3.5.3.




PROOF. When k = m, the left hand side of Equation (3.4e) is zero, since a strand carries the label m+1.
Now, postcompose Equation (3.4e), when k = m, with a trivalent vertex 1 ® 1 — 2 and then simplify to
derive the triangle equals O relation. This triangle is a subdiagram of the first term on the right hand side of
Equation (3.4e), so that term is also zero. It is then easy to derive the identity equals merge-split relation in

the statement of the Lemma. OJ

3.5.2.2. The braiding.

DEFINITION 3.5.3. Let R € {C,A,F}. We define Rﬁl’l € Homyyep, (om) (1@ 1,1®1) as

1 1

\ X m—2) L

1 1 — 2 _ ( 2_q72> _q7m+2

(3.7) =q —
AN [2m —4] AT~

1 1

NOTATION 3.5.2. We will write the 90 degree rotation of ® [3171 diagrammatically as follows.

/

PROPOSITION 3.5.1.

(3.8)

/

(3.9) X - X =(@-q| 1 | :

PROOF. Equation (3.8) follows from rotating the diagrams on both sides of Equation (3.7), and then

apply Equation (3.4e) when k=1. Equation (3.9) follows from Equation (3.7) and Equation (3.8). U

REMARK 3.5.12. We have the identities

[m—2] 2 o ma o [2m — 8][m —2]
[2m—4]( EARAU T [m—42m—4]
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and

PROPOSITION 3.5.2. The following relations hold in Webg(O(m))

(3.10) \/\) Rl ,
2
2
(3.11) = —q° :
N Lo
1 1
/
(3.12) ( > < ,
(3.13)
PROOF.

=)0 P&

2

A
(

N

e
Q-

q —q7%)- q’"+2>

~

—_

/

>

~

(3.4a)

3. [2m 4][ ] [2m 2][2m —8|lm—2]  [m—2] mt2
(5)< Am—4|2m—4]  [2m— 4(q_q)q )
¢ ' A ég OB A

q —q’ 2
~ P
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/ 2 ~

( S \/ ! 5 e R S )
[2m — 4]

N N A >

g% 2| 2 m-2] , 2 —m+2\1/

=q " |q! 1 - 2 —[2m_4](q —q 7)q Py
1 1

] : L

+q 2|+ [[2’:1_241] (¢ —4q7?)- q’"zq“’"/l\

The same argument to verify the Reidemeister //1 braid relation in the proof of [8, Proposition 5.7] also

works in Webgr (O(m)), so we leave the verification of Equation (3.13) as an exercise. O

COROLLARY 3.54.

N \ ~—
2 72) . q72m+2

= ! Lt (g7 N ~(°~q
S AT

PROOF. Compose Equation (3.9) with the braiding ®3 1.1» then apply Equations (3.10) and (3.12).  [J

NOTATION 3.5.3. As noted in Remark 3.5.4, Remark 3.5.9, and Remark 3.5.10, upon specialization to
C there is a drastic simplification in the coefficients of the defining relations. In order to make clear to
the reader which calculations hold for any R € {F,A,C} and which are special to Webc(O(m)), we will
color the diagrams in Webc(O(m)) green. Thus, a blue diagram is interpreted in Webg(O(m)) for some

R € {F,A,C}, depending on context, while a green diagram is always interpreted in Webc(O(m)).

NOTATION 3.5.4. When R = C, Equation (3.9) implies RBLI = RB;}, so in our green diagrammatic

calculus for Webc(O(m)) we do not distinguish between the over-crossing and the under-crossing. Thus,
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the formula for the braiding becomes

(3.14) = - 2

LEMMA 3.5.4. When R = C, we have

(3.15) — = B

PROOF. This follows from

k+1

O

3.5.2.3. Finite generation. In order to make certain arguments relating the O(m) web category over F
and over C, we will need to know that the homomorphism spaces in Web, (O(m)) are finitely generated.
We first show that the webs with all boundary labels 1 can be rewritten in terms of the braiding along with

cups and caps.

DEFINITION 3.5.5. Define the standard web category StdWebg(O(m)) as the full monoidal subcategory
of Webgr(O(m)) generated by the object 1.

DEFINITION 3.5.6. Define the braiding standard web category StdWebg(O(m)) as the pivotal subcat-
egory of Webg(O(m)), where the objects in StdWebg(O(m)) are tensor products of the self-dual object 1,

and morphisms in StdWebg (O(m)) are generated by the braiding 3 11

REMARK 3.5.7. Let a,b € Z>o, and write wq for the longest element in the symmetric group S,1p.

Define Byca 20 to be the diagram in StdWebg(O(m)) which is the positive braid lift of the minimal length
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element in the coset wy - (S; X Sp) € St/ (Sa X Sp). Using that StdWebg (O(m)) is pivotal, Equation (3.12),
and Equation (3.13), a standard argument shows that this family of maps satisfy naturality and the hexagon

axioms, see e.g. [26, Example 2.1], and thus make the category StdWebg (O(m)) a braided category.
PROPOSITION 3.5.3. StdWebg(O(m)) = StdWebb (O(m))

PROOF. We need to show that any morphism in StdWebg (O(m)) is also a morphism in StdWebﬁ(O(m)).
We will prove this for web diagrams in StdWebg (O(m)). Then the desired result is immediate for linear

combinations of web diagrams. By Equation (3.7), we have

1 1
N \ N
Span 2 ) 9 1 1 - Span ) ) 1 1 )
1N \ 10N

1 1

so it suffices to show that an arbitrary web diagram in StdWebg (O(m)) can be rewritten as a linear combi-
nation of diagrams with strands only labelled 1 and 2.

Fix a diagram f in StdWebg (O(m)). Suppose that the largest label on a strand in fis [. If | > m+1, then
f=0,and if [ <2, then we are done. Assume that 3 </ <m. Fix a point in this / labelled strand, then choose
a direction and traverse the strand away from this point in that direction. Since f is in StdWebg (O(m)), the
labelled strand cannot extend to the boundary. So either we return to this point, or we meet a trivalent vertex.
Since [ is the largest label of a strand in f, and the trivalent vertex must be a generator from Definition 3.5.1,
this trivalent vertex has labels 1,/ — 1, and /.

If we meet a trivalent vertex, then traversing the [ labelled strand in the other direction we also meet
a trivalent vertex with labels 1,/ — 1, and /. On the other hand, if the strand is closed, then we can use
Equation (3.4c), with k = [, to introduce two trivalent vertices with labels 1,/ — 1, and /, up to an invertible
scalar in A. In either case, the / labelled strand is a segment between two trivalent vertices with labels
1,/—1,and .

We can either apply Equation (3.4e), with k+ 1 = [, or apply the following relation




and then apply Equation (3.4e), with k+ 1 = [. Thus, we can write f as a linear combination of web
diagrams, each of which has one fewer strand with label /. By induction, we can remove all strands with label
[, so f is a linear combination of diagrams with largest strand label less than or equal to / — 1. Using induction

again, we find that f is a linear combination of web diagrams with only 1 and 2 labelled strands. ([l

DEFINITION 3.5.1. Define the BUW category, BMWg(O(m)), to be the free R-linear braided pivotal

category* with generating object  which is self-dual of dimension % such that

XX l) (2

PROPOSITION 3.5.4. The assignments ® — 1 and

AKX

determines a full pivotal braided monoidal functor

and

Nr : BMWg(O(m)) — StdWebg(O(m)).

PROOF. It is clear that 1 is self dual with dimension [?n':l:;]][g']']. Combining Remark 3.5.7 with Lemma

3.5.3 we also see that StdWebg (O(m)) is braided. Thanks to Equation (3.9) and Equation (3.10), the claim
follows from the universal mapping property of BMWg(O(m)). The image of ng is StdWebﬁ(O(m)) =
StdWebg (O(m)), so nr is full. O

LEMMA 3.5.5. Homomorphism spaces in BMW (O(m)) are finitely generated A-modules.

PROOF. This is standard, for example see [44, Theorem 3]. ]

“4This means we can draw positive crossings to represent the braiding of e with itself, as well as draw cups and caps coming from
pivotal structure.
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PROPOSITION 3.5.5. Homomorphism spaces in StdWeb (O(m)) are finitely generated A-modules.

PROOF. Since 1y is full, this follows from Lemma 3.5.5. U

3.5.3. Representation theory of the quantum orthogonal group.
3.5.3.1. Quantum orthogonal algebra. Write X (sop,) C @, Z% for the weight lattice of s0.,, where

m =2nif mis even, and m = 2n+ 1 if m is odd. We enumerate the simple roots for so,, (i.e. type D,) as
N={a1=¢€—8&,...,0,_1 =&_1—&,0, =&_1+ &},
and for 507,41 (i.e. type B,) as
D={oy=¢€—¢&,....,0 1 =&_1— &, =&}

The pairing (—,—) for so0, is defined as (&, €;) = &;; and for s0y,,; is defined as (&,¢€;) = 25; ;. The

fundamental weights for so, are:

0 =&,00=€+8&,...,0,_ =&+ -+ &2,

e+t €1—& e+ +&_1+¢
_ 1 n—1 n and o, = 1 n—1 n

(o : :
! 2 2

if m =2n, and
O =€,0=€+&,....0,—1 =&+ -+ &1,

and

& oot e &
o, = 1+ +2n1+ n’

if m = 2n+ 1. The dominant weights, X (s0.,), are the Z>( span of the fundamental weights.

NOTATION 3.5.5. In order to make the statements of our results uniform, we need to compensate for the
different conventions for (—,—) if m is even or odd. To this end, we will write

Uy(s0,,), ifmisodd, and
Ur(sop) :=

Up(s0m), ifmis even.
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DEFINITION 3.5.2. Fora € X(s0y) and V € Ug(s0y,)-mod, we set
o _ (aVa)
Via]:={veV |Kqv=gqyq v, forall a € II}.

If v € V[a], then we say that v is a weight vector of weight a.

DEFINITION 3.5.3. Suppose that V is a finite dimensional Ur($0y, )-module such that
V= @an(som)V[a]a

then we say that V is a type-1 Uy (50, )-module.

For each a € X, (soy,), there is an irreducible type-1 Up(sop,)-module with highest weight a, and highest
weight vector v, which we will denote by Lg(a). Moreover, each finite dimensional irreducible type-1

Ur(som)-module is isomorphic to Lr(a) for some a € X (soy,) [23, Theorem 5.10].

DEFINITION 3.5.4. We define Lusztig’s divided powers algebra, denoted Uy (g), as the A-subalgebra in
U,(g) generated by K/, EY = E}/[nlg,!, and F = F}/[nlg, ), forall oo € Il and n € Z>y.

DEFINITION 3.5.5. Suppose that V is a free finitely generate A-module with an action of Uy (s0p,) such
that the Ky, action on 'V is diagonalizable over A with all eigenvalues positive powers of q, for all o € T1.

Then we say that V is a type-1 Up (50, )-module.

NOTATION 3.5.6. Let Ug(som) denote the usual enveloping algebra of so,,. Upon specialization to
C, we have instead to consider the elements hy in the Cartan subalgebra. For V € Uc(soy)-mod and
a € X(sop) we have

Vial :={veV |hqv=a(hq)v, forall a € IT}.

This is the classical notion of weight vector. For convenience, we will refer to finite dimensional U (s0y,)-

modules as type-1 modules.

NOTATION 3.5.7. Let R € {C,A,F}. Suppose that V is a type-1 Ug(som )-module. If V[a] # 0, then we

say that a is a weight of V.
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DEFINITION 3.5.6. Let R € {C,A,F}. Write (sow) for the free Z-module with basis {e® }acx (so,,)- The

formal character of a type-1 representation V is the expression

ch(V):= ) dimgVla]-e* € x(som).

acX(som)

For each a € X (so0y,) there is an irreducible Ug (s0y, )-module with highest weight a, and highest weight
vector v, which we denote by L¢(a). Each finite dimensional irreducible representation of Ug(soy,) is

isomorphic to L¢(a) for some a € X, (s0p).

LEMMA 3.5.6. Let R € {C,F}. The characters {ch(Lg())}acx, (so) @€ a basis for the span of formal

characters of all type-1 representations.
PROOF. Use that if Lg(a)[b] # 0, then (a—b) € Z>oP.,.. O
LEMMA 3.5.7. Let R € {C,F}. Every type-1 Ug(s0m)-module is completely reducible.

PROOF. This is Weyl’s theorem on complete reducibility, when R = C, and [23, Theorem 5.17], when

R=F O
LEMMA 3.5.8. IfV is a type-1 Uy (s0y,)-module, then

Ceve P Le(@™, Feve @ Le(a)™, andmy=n,.

acX, (soy) acX, (som)

PROOEF. Follows from Lemma 3.5.7, Lemma 3.5.6, and that dim¢ L (a)[b] = dimp Lr(a)[b] for all a €

X, (som) and b € X(s0,,) [23, Theorem 5.15]. O

LEMMA 3.5.9. Let R € {C,F}. Ifa,b € X (s0m), then Homy, (s, )(Lr(a),Lr(b)) = 0 if a # b, and

EndUR (50m) (LR (a)) =R idLR(a)-
PROOF. Follows from Schur’s lemma and standard theory about highest weight vectors. 0

When m = 2n there is an order 2 automorphism ¢ of the Dynkin diagram, swapping the simple roots

Oy—1 = &1 — & and oy, = &, 1 + &,. This induces an automorphism of Ur(s0y,) such that

G(Eanfl) = Ean’ G(Fanfl) = Fdn’ G(Kanfl) = Kan’
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G(Ean) =Eq, |, G(Fan) =Fo, |, G(Kan) =Ko, |,

and o fixes all the other generators for Ur(sop).
If m = 2n+ 1, there are no Dynkin diagram automorphisms. In this case we write ¢ to denote the

identity automorphism of Ug(sop,).

DEFINITION 3.5.8. [38, Section 8.1.2] Let Uy (on,) be the associative algebra generated by Up($0y,)
and o, such that 6> = 1 and X6~ ! = 6(X), for X € Up(sop).

The algebra Uy (on,) is a Hopf algebra with A, S, € defined on elements of Up(soy,) as in Definition 3.1.2,
along with

Alc)=0®0, S(o)=oc' and e(c)=1.

The automorphism & preserves Up (s0m) C Up(s0y ), so we define Uy (o) as the algebra generated by
Up(som) and o, such that 6Xo~' = o(X), for X € Uy (som). Note that Uy (or,) is the unital A subalgebra

of Ux(om) generated by o, Kz ', E((xn), and Fo(cn),for alln € Z>o, o € IL

DEFINITION 3.5.9. Define U (0y,) as the universal enveloping algebra of s0,,(C), denoted U (0, (C)),
augmented by the algebra automorphism, which we will denote by o, determined by the non-trivial Dynkin

diagram automorphism when m is even, and the identity automorphism when m is odd.

For any Ur(0m)-module which restricts to a type-1 Ur(son,)-module, we can use the same notion of
weight spaces as in Definition 3.5.3 and Notation 3.5.6, and such a module will be a direct sum of its weight
spaces. Note that the equation 6K,6~! = 6(Ky,) implies that ¢ acts on weight spaces. The induced action

on weights is such that ¢ acts on X (soy,) trivially if m = 2n+ 1, and o swaps @, and @, if m = 2n.

REMARK 3.5.13. Any finite dimensional representation of O(C™) is a finite dimensional representation
of Uc (o) such that the weights are contained in DI, ZE;, and vice-versa. Moreover, a linear map between
such representations commutes with the actions of O(C™) if and only if the map commutes with Uc(op).

Such representations are exactly the O(C™) modules which occur as submodules of (C™)®? for some d > 0.

DEFINITION 3.5.7. Let R € {C,A,F}. A Ug(om)-module such that its restriction to Ug(son) is type-1

with weights contained in ©'_,7¢€;, will be referred to as a type-1 UR(om)-moduleS.

SAn example of a Ug (o )-module which is not of this form would be the induction, from Ug (507, 1), of the irreducible spinor
module V (@), i.e. Ug(02011) @y V(@y).

502,41)
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DEFINITION 3.5.8. Let R[Z/2] denote the group algebra of 7./2 over R. There is an algebra homomor-
phism
Ugr(om) — R[Z/2]

with Ug(s0) in the kernel and such that 6 — —1 € Z/2. Composing this homomorphism with the sign

representation of /2, we obtain a one dimensional Ug(0m)-module, denoted detg.

REMARK 3.5.14. The module detg restricts to the trivial Ug(s0y,) module, and therefore is a type-1

Ug (om)-module.

There is a classification of finite dimensional irreducible type-1 Ur(on)-modules. If a € &7 ,Zg;N
X;(sopm), thena=Y"  a;¢ such thata; >--->a,_; > |a,|, and a, = |a, | if m = 2n+ 1, while a, is any
integer if m = 2n. For such an a, we obtain a representation Lg(a) of Ur(son,), which we can then induce
to Ur(0m). The induced module UR (0m) @y (so,,) LR (a) is isomorphic to Lg(a) © Lr(0(a)) as Ur(som)-
modules, by the map 1 ® £ — (¢,0) and 6 ® £ — (0, /). The action of U (0, ) is determined by

G- (L,0)=(0) and X -(0,0)=(X-L,0(X)-C).

If m=2n+1, or m = 2n and a, = 0, then the induced module decomposes into a direct sum of two ir-
reducible Ug(om)-modules corresponding to the +1 and —1 eigenspaces of . We write Lg(a,+1) and
Lgr(a,—1) for these representations. If m = 2n and a,, # 0, then the induced module is irreducible and is

isomorphic to Ugr (o) O (som) L(AL5 - 851, —ap).

PROPOSITION 3.5.6. Let R € {C,F}. The following is a complete and irredundant list of irreducible

type-1 representations of Ur (0w ). For m =2n+1:

Lg(a,+1) and Lg(a,—1), suchthat a;>

%
%

£

%
=

and for m = 2n:

UR(Om) ®UR(50m) L(a) such that a; >

%
%
£
%
=

Lg(a,+1) and Lg(a,—1), suchthat a;>

V
vV
=]
s

Il
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PROOF. Use that o is central when m = 2n+ 1. For m = 2n, observe that ¢ preserves the space of vec-
tors annihilated by E,’s and acts on weights by (ay,...,a,_1,a,) — (aj,...,a,_1,—a,). For more details,

see [20, Section 5.5.5]. O

LEMMA 3.5.10. Let R € {C,FF}. If S and T are two irreducible type-1 Ug (0, )-modules from the list of
irreducibles in Proposition 3.5.6, then

0 ifS#T, and
HOInUR(Um)(S,T) =

R-ids ifS=T.
PROOF. This follows by looking first at Homg (s,,,)(Res(S),Res(7')), then analyzing which of these

maps commute with 6. We leave it to the reader to complete the case-by-case analysis. (|

If W is a type-1 Ur(on)-module, then W* := Homg(W,R) is an Ur(oy,)-module via the antipode,
denoted S in Definition 3.5.8. We say W is self-dual if W = W* as U (o, )-modules.

LEMMA 3.5.11. The type-1 irreducible representations of Ug(on ) are self-dual.

PROOF. The irreducible representations of Ur(son) are self-dual. We leave it as an exercise to the
reader to verify that inducing a self-dual module from Ur(son) to Ur(om) results in a self-dual module.

Since a direct summand of a self-dual module is self-dual, the claim follows from Proposition 3.5.6. U
LEMMA 3.5.12. Let R € {C,FF}. Every type-1 Ug(om)-module is completely reducible.

PROOF. Let W be a type-1 Ur (0 )-module and let S C W be a Ur(0n,)-submodule, it suffices to show
that S is a direct summand of W. We adapt the argument in [2, Theorems 3.1, 9.2]. By Lemma 3.5.7 there is
an idempotent es € Endyy(so,,) (W) with image S. Note that ¢ induces a linear endomorphism of W which
preserves S. One can check that e := %(es + 0 oego0) is an endomorphism of W which commutes with
Ur(om), has image contained in S, and acts as the identity on S. Thus, € € Endy o) (W) is an idempotent

with image S. U

REMARK 3.5.15. It now follows that every irreducible type-1 Ug (0, )-module is self-dual.
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LetR € {C,A,F}. For a type-1 Ur (0m)-module W, we can restrict to obtain a type-1 Ur (50, )-module.

In particular, for a € X(so0,,), we have W{a]. For € € {£1} and a € X(s0,) such that o(a) = a, define
Wla,e]:={weWJ[a]| o(w)=¢€-w}.

Note that if o(a) # a, then o acts on W[a] ® W[o(a)] as dimW [a] copies of the regular representation of

(6) = 17)2.

DEFINITION 3.5.9. Let x(O(m)) denote the free Z-module with basis {e(®®) FaexX (om),e=+1U{€* Facx (om)-
o(a)=a c(a)#a
We define the formal character of W to be the expressions

ch(W):= Y dimW[a,ele®®+ Y dimW(ale* € x(O(m)).
acX(som) acX(sopy)
o(a)=a o(a)#a

LEMMA 3.5.13. Let R € {C,F}. The formal characters of the irreducible representations in Proposition

3.5.6 form a basis for the span of formal characters of all type-1 representations.
PROOF. Use Lemma 3.5.6 and keep track of £1 eigenspaces of ©. U

PROPOSITION 3.5.7. Let R € {C,F}. The character of a type-1 Ug (o )-module determines the isomor-

phism class of the representation.
PROOF. Use Proposition 3.5.6, Lemma 3.5.13, and Lemma 3.5.12. O

LEMMA 3.5.14. Suppose that V,W are type-1 Up (0 )-modules. Then
dim¢ Homy,.(, ) (C®V,C@W) = dimp Homy, (o (FQV,FoW).
PROOF. If U is a type-1 Up (0ry)-module and a € X (soy,) such that 6(a) = a, then
dimcC®UJa,e] =1ky Ula, €] = dimpF QU |a, €].
The result then follows from Proposition 3.5.7 and Lemma 3.5.10 ([l

LEMMA 3.5.15.

CoUp(om)/(Kg—1,a €II) = Uc (o) and FRUp(om) = Ur(om).
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PROOF. The first isomorphism follows from [12, Proposition 9.2.3]. The second isomorphism is clear.

O

LEMMA 3.5.16. Let R € {C,F}. If V and W are type-1 representations, then

HomR®UA(om) (R X V,R X W) = HomUR( )(R (039 V,R X W)

Om

PROOF. The action of C®Up (o) on V and W factors through U (0m) = CQUa (0m)/(Kg — 1, € T1).

The claim then follows from Lemma 3.5.15 U

LEMMA 3.5.17. Suppose that V,W are type-1 Up(0y,)-modules. Let R € {C,F}. Then there is an

R-linear map

bR:R®HomUA( )(V,W)—)HOI’HUR( )(R®AV,R®AW),

Om Om

10f— (1ov—1®f(v)).
PROOF. Since V and W are finitely generated free A-modules, so is Homy (V,W). Therefore,
R ®@Homy (V,W) = Homgga (RQV,R@W).

We obtain a map

Om

Br : R®Homy, , 1(V,W) — R@Homy (V,W) = Hompes (RO V,RQW),

and it is routine to verify that the image is contained in Homggy, (o,,) (R®V,R®@W). The claim then follows

Om
from Lemma 3.5.16. O
REMARK 3.5.16. In general, if f : A™ — A" is injective, then FQf : FRA™ — FR A" is also injective.
However; this may fail for CQ4(—). For example the endomorphism of A given by multiplication by g — 1

is injective, but becomes zero after applying the functor C®p(—).

3.5.3.2. Quantum vector representation. The natural vector representation of the orthogonal group has

a type-1 g-analogue.

NOTATION 3.5.8. Fix m € Z>1. Let n be such that m = 2n, if m is even, and m = 2n+1, if m is odd.
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DEFINITION 3.5.10. Let Vi be the Ur(s0,,)-module with basis:

ap,az,...,ay,u,by,....ba,by  ifm=2n+1
alaab"'7an7bn7"'7b27b] lfm:2l’l,

such that fori=1,...,n—1

F-ai=ai1, F-biy1=Db;,
Ei-ai 1 =a;, E;-bj=0bjy,
F,-a,=u, Fn'”:(Q+q_l)bna En'”:(Q+q_1)an7 E, b,=u, lfm:2n+17

Fy-an=b,, E, b,=ay, ifm=2n,
and

Kqv = (qz)(o“ww), where wt(a;) = &, wt(u) =0, and wt(b;) = —¢&;.

NOTATION 3.5.9. Write Vy to denote the A span of the given basis for Vy. This is a free A-module of

rank m.
LEMMA 3.5.18. The algebra Uy (soy, ) preserves the A-module Vy.

PROOF. All the higher divided power operators: E,Ed) and Fk(d), fork=1,...,n,and d > 2, act as zero

on Vi, except if m = 2n+ 1, when Fn(z)an =b,, and E,gZ)bn =a,. O
REMARK 3.5.17. The algebra Ug(s0m) = CQUp (s0m) /(Ko — 1) acts on Vg := CQVj.
REMARK 3.5.18. In the notation of Section 3.1.2, we have Vg = Lg(®,), for R € {C,F}.
LEMMA 3.5.19. Setting 6 -a; = (—1)"ay, induces an action of Ug(on) on Vg, for R € {C,A,F}.

PROOF. Letv € Vg. Then there is X, € Ur(s0y) such that v=X,,-a;. Define 6-v=0(X,)-(0-a;). This
determines a well-defined Ug (o) actionif 6-(0-v) =vando-(X-(c-v)) =0(X)-v, forall X € Ur(soy)

and v € Vr. We check the first equality:

o-(0-v)=0-(0(X)-(0-a1)) = (=1)"0-(0(X,)-a1) = (=1)"0(0(X,)) - (0-a1) = X, -a1 =,
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and the second equality:

o-(X-(o-v))=0-(X-(6(X)-(0-a))) = (-1)"0-(X-(0(X,)-a1))

= (=1)"o-(6*(X) - (6(X,)-a1)) = (—1)"0 - ((6*(X)o(X,)) -a1)

REMARK 3.5.19. We have the following explicit description of 6’s action on Vg.

o-a,=—a;, fori<n, o©c-u=-—u, and 0-b;j=—b;, fori<n, ifm=2n+1,

c-a,=a;, fori<n, o©-a,=b,, 6-b,=a,, and o©-b;=>b;, fori<n, if m=~2n.

REMARK 3.5.20. In the notation of Proposition 3.5.6, the representation Vg is isomorphic to Lgr(®,—1),
if m is odd, and Lr(®),+1), if m is even. The reason for the choice of sign becomes apparent in the next
section. It is to ensure that Ug(oy,) acts on the exterior algebra by algebra automorphisms, making the
algebra structure maps Ug (0 )-module homomorphisms, and that Ug (o) acts on the top exterior power as

detg.

3.5.3.3. Quantum exterior algebra. The usual exterior algebra A® (V) is defined as the quotient of the
tensor algebra of V¢ by the two sided ideal generated by the symmetric tensors S?(V¢). As a module over the
special orthogonal group SO (V¢ ), we find that S?(V) contains a copy of the trivial module, corresponding to
the symmetric form preserved by SO(Vc). The complement of the trivial module in S?(V¢) is the irreducible
module L¢ (20)).

From this perspective, we see that to define a g-analogue of the exterior algebra, we first need to find
the g-analogue of the symmetric square. Moreover, this can be done by decomposing VE@Z into irreducible

submodules and defining the symmetric square to be the submodule Ly (2@, ) @ Ly (0).

LEMMA 3.5.20. The F-span of
ai®ai,  bi®bi,

ai®aj+q laj®a i<]j,
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b;@bi+q *b;@b; i< ],
a;@bj+q?hj®a; i# ],
aiQu+q u®a;, uRbi+q *b;iQu,
a;i®@bi+q b1 ®aic1 +q a1 @b +q *hi®a;  i<n,
Ay Qb +q *b,Qa,+q lu®u ifmis odd,

is the U (0, ) submodule OfV]f®2 generated by a; Q@ ay.

The F-span of

_2\n n ) .
;+qq)1 u@u+ Z ((—612)’7161[ @b — (—¢*)*"'b; ®a;) ifmis odd,
i=1

or

n
((*qz)lilai®bi+(*612)2"717119,'@)61,') if m is even.

=1

1

is the unique copy of the trivial submodule of Vﬂfi@z.

Thus, the F-span of these vectors taken together is
Lr(20,) © Ly (0).

PROOF. We leave it to the reader to use Definition 3.5.10 and Equation (3.1) to check this claim. g

REMARK 3.5.21. The braiding endomorphism of Vi&* acts on Lp(2®) as ¢%, on L(0) as ¢*~*", and
on Ly (@) as —q 2 [38, Equation 6.12]. It follows that Ly (2) @ L (0) is equal to the subspace of “positive”

eigenvectors for the braiding. This subspace is also referred to as S2, in [3].

DEFINITION 3.5.11. Define A} to be the associative A-algebra generated by the elements

ai,...,ay,u,b,,...,b;
subject to the following relations:
a=0 b?=0,
aja; = —q-aa; i<},

bibj=—q"b;b; i< j,
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bja; = —q aib; i# ],
ua; = —qza,-u, biu= —qzub,-,
biv1aiv1 = —aip1biy1 — (qubiai+q2aibi) i<n,
bna, = —q4a,,b,l — q3u2 if mis odd,
u=0 ifmiseven,

n
2 -1 2\2n—i . .
—u + a;b; — (— bia;) =0 ifmisodd,
PP 1:21 ibi —(—q°) i z) if

and

)3 ((=¢*) " 'aibi+ (—¢*)* "'bia)) =0 ifmis even.
i=1

Let AIA be the A submodule spanned by monomials of degree k.

LEMMA 3.5.21. If m = 2n is even, then the relations
i—1
bia;=—abi— Y (—=¢") "¢ —q )aiwbik i=1,....n,
k=1

are equivalent to the relations
biv1air1 = —aibi — (¢ *biai+ @*aib)  i=1,...,n—1
and
Z ((_q2)i71aibi + (_q2)2n7i71biai) =0.

If m =2n+1 is odd, then the relations

i1
bia; = —a;b; — Z{(—qz)_“rl (P —q Dai_bi_x i=1,...,n

k=1
and
n
Z “4* = q ) ans1—kbn1—k:
are equivalent to the relations
(=" i ~1 22n—i )
Ut + abi— (—q° )" 'bia;) =0,
C]“‘q i=1
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bi1ai1 = —aim1biv1 — (¢ 2biai+qaib;)  i=1,...,n—1,

and

bya, = fq4anbn — q3u2.

PROOF. We provide an example calculation in each case. Generalizing these to the general case is left
to the reader.

Suppose m = 2-2. We are tasked with showing that

(3.16) biay = —aihy and byay = —arby — (¢* —q ?)a1by
is equivalent to
(3.17) brar = —arby — (q’2b1a1 +q2a1b1) and  a1b, +q*biay — ¢?arbr — ¢*brar = 0.
Assume Equation (3.16), then

byay +ayby + g *brar + g arby = —azby — (q° — g *)arby +azby —q *aibi +q*aib; =0
and

arbi +q*brar — g*arby — *brar = a1by — g*arby — g*azby — ¢* (—axby — (4> — g *)arby) .
Assume Equation (3.17). First, we rewrite the second relation as

biai = —q *aib1 +q by +q baar,
so the first relation becomes
brar = —azby — (¢ *bray + g*a1b1) = —azhr — g~ * (—q *ar1by + q @by + g *brar) — g*arb,

which we rewrite as

g (@ +q brar=—q (¢ +q Habr—q (¢ — g Haiby.
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Since > +q > € A and ¢*>+q7 %2 = (¢* — ¢ *)/(¢* — ¢ ?), this implies
bray = —azhs — (¢* —q )ayb;.
Now, rewriting the second relation in Equation (3.17) again we find
bia; = —q *aibi +q *axby+q 2 (—azbr — (¢ —q ?)aib1) = —aiby.
Suppose m =2 -1+ 1. We need to show that
(3.18) bia; = —a;b; and = —cfl(q2 —qu)albl

is equivalent to

q+q—1u2+a1bl+q2blal =0 and blal :_q4a1b1_q3uz.

(3.19)

Assume Equation (3.18). Then

—q* —q*

g+q! u? +a1by + ¢*bra; = d+q (_471(42—q72)a1b1) +a1by — ¢*aib

=q(q—q Yayby +a1b) — g*ajh; =0

and

biay +q'aiby + ¢u* = —aiby +q*aiby +¢° (—q~ ' (¢* — g H)arby) =0.

Assume Equation (3.19). Then we can rewrite the first relation as
W =q (g+q Nabi+(g+q b
so the second relation becomes
biai = —g'aibi —¢'w’ = —g*aib1 — ¢’ (¢ (g +q Darbi + (g +q Hbiar)

which we can rewrite as

(" + &+ Dbiar = (—=¢* — ¢ — Daiby.
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Since q4 +q2 +1 € A”, itfollows that bya; = —ayb;. Thus, we can rewrite the first relation in Equation (3.19)
again as

w'=q *(g+q Naibi — (g+q aibi = —q ' (¢* — g P)aiby.

O
COROLLARY 3.5.1. The algebra A}, is the associative A-algebra generated by the elements
ai,...,ay,u,by,,...,by
subject to the following relations:
=0 b?=0,
aja; = —qzaiaj i <],
bibj = —q2bjbi 1< j,
bjai=—q’aib; i# ],
ua; = —q*au, bu=—q ub;,
i—1
bia; = —aibi— Y (—=¢") "N q* —q )ai wbix,
k=1
u=0 ifmiseven,
n
wW=qY (-4 ) MG —q ) ans1—ibus1—k  if mis odd.
k=1
PROOF. This follows immediately from Definition 3.5.11 and Lemma 3.5.21. g

DEFINITION 3.5.12. It will be convenient to write the vectors in Va as follows:

vi:=a;, for i=1,...,n,

Vim—it+1 :=b;, for i=1,...,n,

and if m =2n+1, then

Vn+l = U.
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There is an involution of {1,...,m} defined by i — i’ := m—i+ 1. We will write vy := vy_;y1. Let S C
{1,...om}. If S = {s1,...,sk} such that s; < ... < sy, set vs = vy, ---vs,. We extend the involution i — i’ to

the set of subsets of {1,...,m} by S §":={s},...,s5;}. Note that vg := vy ---vy.

THEOREM 3.5.10. The set {vs}scq1,..m) forms a basis of Ay. In particular, {vs}scq1,..m) forms a basis
|S|=k
ofA’A.

PROOF. This is a standard application of Bergman’s diamond lemma [4, Theorem 1.2]. Note that if
1 <--- < m, then the lexicographic order on monomials in v; satisfies the hypotheses of the diamond lemma,
and the irreducible monomials are the elements of {vg} sc{1,...m)- Therefore, it suffices to show that all the
ambiguities in the defining relations are resolvable.

The following are all the overlap ambiguities in the defining relations of A} :
axaydy, djd;d;, bxDyby, bibibj7 bxbxay7 bybyu, a;aia;, ajdidg,
bibjbj, bibjai, bibju, b,-bjaj, bxayay, bxayaz,

uaxay, uaja;, beuay, byua,, buu, baa., bjaja;, uuay, and wuuu,

where | <x,y,z,i,j,k<n,x#y,z<y andk <i<j.
We provide an example calculation to verify the resolution of an ambiguity, and leave the rest as an

exercise. To simplify notation, write & := (g> — g~2). On the one hand, we have

(uu)a; = q Z (=g?)" " DE qibra;
k=1

q Y, (=) " eaaibi—q Y, (=) " Eaaibi+q Y, (—¢7) " by

1<k<i 1<k<i i<k<n
=q (—*) " E (1= (=))E) aaibe+q Y, (—¢*) " Eqianby
1<k<i i<k<n
=q (—q*) " Earaibi+q Y., (") Eaiady,
1<k<i i<k<n

48



and on the other
n
u(ua;) = (—q*)uau(—q* ) ap’ = q Y (—q*) " Eaiaby
k=1
=q Y ()" eaaibi+q Y, (=) Eaiaiy.

1<k<i i<k<n

O

REMARK 3.5.22. Write Ay to denote the associative R-algebra with generators and relations as in Def-

ERRE)

inition 3.5.11. The basis {vs}sc{1,..m) of A} is also a basis for Ay, when R € {C,F}. Define isomorphism

lk1A§—>R®Agbva'—> 1 ®vs.

3.5.3.4. Fundamental category for orthogonal groups. For simple Lie algebras, the fundamental cate-
gory is the monoidal category generated by irreducible representations with highest weight a fundamental
weight. We define an analogue of this category for Ur (0, ), when R € {F,A,C}. The first step is to show

that fork=0,1,...,m, A]fz are non-isomorphic, irreducible, self-dual Ug (o, )-modules.

LEMMA 3.5.22. The action of Up(son,) on the tensor algebra of Vi descends to an action of Ur(s50y,)

on Ay. Moreover, the multiplication for Ay, is U (s0m) equivariant.

PROOEF. This follows from observing that Ur(sop,) preserves the defining relations. See the discussion

in [37, Sections 3.2, 4.1] for the symmetric analogue. g

DEFINITION 3.5.13. Let wtvg := Y ;cg Wtv;, where wWtv; is as defined in Definition 3.5.10. Then Ky - vs =

(qZ)(tx,wtvs)‘

REMARK 3.5.23. The modules A"fF are finite dimensional type-1 representations of Ug(son,), in partic-

ular we have
A']f; = @ A]IE- [a].
acX(sopy)

In fact, this remains true over A, since A is spanned by {vs} Sc{1,...m) and each vs is a weight vector.

LEMMA 3.5.23. We have the following equality of formal characters:

) dim A& [a]e® = ) dim A% [a]e?.

acX(soy) acX(sopy)
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PROOF. Follows from observing that vs € A‘lf | [wtvs] for R € {C,F}. O

LEMMA 3.5.24. Let R € {C,F}. We have the following isomorphisms of Ugr(som )-modules.
Ifm=2n+1, then

Allg%LR((D'l), A%%LR(G)Q), ceey Aﬁ_lgLR((anl),

and AR = Lr(2m,).

If m = 2n, then
AR ZLR(®), AR ZLg(®2), ..., AR *=2Lg(@,2),

A;le_l %LR(afn,l —1—(0"), and A% %LR(an,l)@LRan).

In either case Af = Lg(0)

PROOF. Thanks to Lemma 3.5.7, it suffices to compute characters, and the result follows for R = C

from [19, Sections 19.2, 19.4], and then for R = F, from Lemma 3.5.23. ]
LEMMA 3.5.25. The algebra Uy (son) preserves the lattice Ay C Ag.

PROOF. Since Uy (50) preserves V¢ C V£ for all d > 0, it suffices to show that U (sop) preserves
the A-span of the defining relations for Aj. This then immediately reduces to verifying that E((xz) and FO(CZ)

preserve the A-span of the defining relations. For example, using that A(F) = 1@ F + F @ K~!, we find:

Fl(z) a1 ®ap = Fl-(a1®az+6]72a2 ®ay) = (612612®a2+6172a2®02) =@ ®a.

q2 _}_6172 q2 _}_qu

The remaining calculations we leave to the reader. O

LEMMA 3.5.26. Let R € {C,A,F}. The operator ¢ € Ug(on) acts via the coproduct on Vi, for all
d > 0, and preserves the defining relations of Ay. Thus, there is an action of Ug(0m) on Ay, and the algebra

structure maps are Ug(on) equivariant.

PROOF. Use the description of 0’s action on Vg in Remark 3.5.19 to verify that o preserves the relations

in Definition 3.5.11 of Ag. O
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PROPOSITION 3.5.8. Let R € {C,F}. The Ug(om)-module A% is self-dual and irreducible for k =
0,...,m, if Ny = A{e' then i = j, we have the following isomorphisms of UR(om)-moduleSG.

If m=2n+1, then
Ap 2 Lg(@;, (1)), Ap~' 2 Lg(@;,—(—1)), fori=0,1,...,n—1,

g = Lr(2@,,(<1)"), and AR = Lg (2@, —(~1)").

If m = 2n, then
Ap = Lg(@;,+1), Ap'=Lg(®;,—1), fori=0,1,...,n—2,

A;li_l gLR(ain,1+afn,—|—1), A;lg—H gLR(w,1,1+wn,—l), and
R = UR(Om) QUg (s0m) LR(2wn*1)'

PROOF. Self duality is from Lemma 3.5.11. Thanks to Proposition 3.5.7, and Lemma 3.5.24, the re-
maining claims follow once we show that ¢ acts on vv; ...v; by the prescribed eigenvalue in the statement
of the Proposition. We will argue this for viv;...v,, where o always acts by —1, leaving the other cases to
the reader. Using the coproduct from Definition 3.5.8, we find 6(v; ...v;,) = 6(v1) ... (vy). From Remark

3.5.19 we see that form =2n+1,

C(viva...vm) = (—v1)(—v2) ... (=Vi) = —ViVa.. . V.
For m = 2n,
C(VIV2ee Vi) = V1o Vpe 1V 1 ViVt 2 - - - Van = —V1V2 . Vi,
where the last equality follows from Lemma 3.5.21 and the defining relations of Ag. O

REMARK 3.5.24. Let R € {C,[F}. There is an isomorphism of Ug(om)-modules Ay = detg, and isomor-

phisms of Ur(om)-modules Ay = detg ®A}’§*".

REMARK 3.5.25. Since A is not a field, it does not make sense to ask for Ai& to be irreducible. However,
we will show, in Lemma 3.5.32, that AK is a self-dual Up (oy,)-module, essentially by proving that there is
an isomorphism AL — (AL)* which preserves Al and (A)*.

YIn the notation of Proposition 3.5.6. Writing @y = 0.
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LEMMA 3.5.27. Let R € {C,F}, then we have the following tensor product decompositions.

Le(@ + @, +) e AT oA if k<m—1, and

Ak @ Vg =
AR i k=m.
PROOF. Standard result (up to tensoring with detg). See [34] and [61, Equation 6.1]. ]

DEFINITION 3.5.14. Let R € {F,A,C}. Define the monoidal category Fund(Ug(ow)) to be the full
monoidal subcategory of Ur(om)-modules generated by A% for k=0, ....m. Define StdFund(Ug (o)) as
the full monoidal subcategory of Ug(om)-modules generated by A} = Vi.

Let Y= (7;,...,7,), such that 0 <y, <m, fori = 1,...,s. We write A} := Al ®---® Ak. Objects in

Fund(Ug (o)) are all of the form Ak for some 7.

PROPOSITION 3.5.9. Let y=(7v,...,Y,) and 8 = (81,...,8;) such that0 <y, <m, fori=1,...,s, and

0<8;<m, for j=1,...,t. Then dimc Homy (5, (A%, AL) = dimp Homyy, () (AL, AD).

PROOF. The Ug(om)-module AX is type-1, for k = 0,...,m, see Definition 3.5.7 and Remark 3.5.23.
Tensor products of type-1 modules are type 1, so AX is a type-1 Uy (0, )-module for all y. The result then

follows from Lemma 3.5.14. U]
LEMMA 3.5.28. Homomorphism spaces in Fund(Ua (o)) are free and finitely generated A-modules.

PROOF. Since AX and Ag are both free and finitely generated A-modules, see Theorem 3.5.10, the
A-module Homy (AX,A“;) is free and finitely generated over A. Since A is a PID, the claim follows from

observing that Homy, (,.) (AL,A%) C Homy (AL, A2). O

We also define an auxiliary R-linear monoidal category R®@ Fund (U (0y,)), which has the same objects

as Fund(Uy (o)), but with morphisms

HOMR 5 Fund (U (o)) (AR, A2) := R @ HoMpyna(u, (o)) (AR, AD).

We have identifications 1, := 1y, ®-+- @1y, : Af{ — R®A!, see Remark 3.5.22. Using bg from Lemma

3.5.17, we define a monoidal functor

Br : R Fund(Uy (0n,)) — Fund(Ug (o)),
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on objects as AK > Alz, and on morphisms by sending r ® f € Homggpund (U, (om)) (AX,A“;) to
15_1 o [JR(F(X)f) oly &€ HomFund(UR(am)) (Al}/{,/\%)

REMARK 3.5.26. The notation makes Bg appear more complicated than it is. Let R € {C,A,F}. The
{vs} basis for Ay, gives rise to a basis for A}, for all y, and therefore a basis for HomR(A%,Ag)for all v, 0.
For f € Homgy,uqu A(Um))(AX,Ag), we can use this basis to view f as a matrix with entries in A. Then for

R € {C,F}, Br(1® f) is the same matrix, but with the entries interpreted as elements of R.

One of our main goals is to derive various relations among morphisms in Fund(Uy (01,)). However, it

will be easier to work in Fund(Up(oy,)), so the following lemma is useful.
LEMMA 3.5.29. The functor By is faithful.

PROOF. Follows from injectivity of by, see Remark 3.5.16. O

3.5.3.5. Generating intertwiners for tensor products of exterior powers.

DEFINITION 3.5.15. Let R € {C,A,[F} and define

R_I+j . Ai J i+j
mw- ‘AR®AR—>AR

by x®y — xy.

REMARK 3.5.27. The map Rm;? is a Ug(om)-linear transformation such that

Vilnit @ V{1 it j} 77 VLt 1t} -
In particular, when i+ j < m, the map is non-zero and therefore is surjective. Moreover, Bg (Am; ,-J )=

R itJj
mi7j .

Let R € {C,A,F} and let X be a free R-module with basis Bx = {b1,...,bs}. Then X* := Homg (X,R)
has basis {b],...,b};}, where b (b;) = §; ;. Consider the elements C € X ® X* defined by

d
C= b,’@b?.
i=1
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There are R-linear maps

coev:R—=X®X* 1—C, and ev:X"®X—R, [fx— f(x).
It is easy to verify that
(3.20) (idy ®ev) o (coev®idy) =idy and (ev®idx-)o (idx- ®coev) =idx- .

REMARK 3.5.28. We can regard R as the trivial Ug (0, )-module via the counit, denoted € in Definition
3.5.8. Also, If X is a Ug(om )-module, which is free over R, then X* is as well, via the antipode, denoted S in
Definition 3.5.8. One easily checks that the maps ev and coev are Ug (o )-module maps, where Ug(oy,) acts

on X ® X* via the coproduct.

DEFINITION 3.5.16. Let R € {C,A,F}. Define
Ko Ve — (Va)*
to be the unique Ug (o, )-linear map such that
VI V.

This is easily seen to be an isomorphism of R-modules. Also, we have Br(*¢,) =Ro,.
We define
Rei: V@ Vg — R by evo(Ro, ®id),

and
Rel:R—gaVr by (ido®e,)™")ocoe.
Note that for R € {C,A,F}, we have Br("cy) =Rey and Br(Per) = Rey.
REMARK 3.5.29. Let R € {C,A,F}. Recall that Vi is generated over Ug(s50,)<° by a; while Vg is
similarly generated by b}. It then follows from explicit calculation using: Ug(om) equivariance of R, the

formulas for the antipode in Definition 3.1.2, and the description of the action on Vg in Definition 3.5.10,

that if m = 2n+ 1 is odd, then

Roi(@) = (—=¢)7'b;, Roi(u) = (—=¢*)" 'R, and Rei(b) = (—¢*)"a},
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and if m = 2n is even, then
Roi(a) = (=¢")" "6} and Rei(bi) = (—¢*)" " a;.
DEFINITION 3.5.17. Let R € {C,A,F}. Define ®c, € Homy, () (R, Ak © AR) inductively by
2 Bk @Bmk Yo (id o @Fey @id 1) oRey
k—1,1 1k—1 AL AL ~1-

LEMMA 3.5.30. Let R € {C,A,F}. Then®c; # 0.

PROOF. Since Re; = Br(“c) for R € {C,F}, it suffices to show Cer #0.
Let m; € HomC(A% ®Af&,(C) be the projection to vi...v;y ® Vyy_g41. ..V, With respect to the basis
{vs® VT}S,TC{I,...,m}‘ It suffices to show that m; o Ccx # 0.

|S|=[T|=k
Write ((Cq)l)_l(v;‘.) =tjvj, where j/ =m—k+ 1. Note that r; € C* for j =1,...,m. Then

1 -1 —1
Mo Cer(1) = o Y m (Vw(l)”-vw(k)(g’(c(pl (V) -~ (Vw(l))>

weSy
...l
= Z T, (vw(])"'vw(k)®Vw(k)"-'vw(l)’)
WESk
...t
_ 1 0 k Z T, (—1) ( )Vl VR (—l) '(W)Vm,k,1 ... Vm)
weSy
=f...I 75 0.
O
DEFINITION 3.5.18. Let
Ry, = (ev® idAﬁ) o (id(Aﬁ)* @Rep)
Since ev € Homy, (o,) ((AR)* @ Ak, R), it follows that Ry, € Homy, o, ) ((AR)*, AR).
LEMMA 3.5.31. We have the following equality in HomUR(Um)(R7A§ ®A§)
Rey = (id/\’ie @Ry,) o coev
PROOF. Follows from Equation 3.20. (|

LEMMA 3.5.32. Let R € {C,A,F}. Then Ry, is an isomorphism.
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PROOF. Thanks to Proposition 3.5.8, for R € {C,F}, Ry, is an isomorphism if and only if Ry, # 0.
isomorphism if and only if & € A if and only if & does not map to zero under A — C. Since Br(*y;) =
Ry, and By is faithful, the claim will follow if we show Cyy # 0. This follows from Lemma 3.5.30 and

Equation 3.20. g

DEFINITION 3.5.11. Let R € {C,A,F}. Define R, := (Ry,)~! and

Rep:=evo (R, ®idy) € Homyy(o,) (AR @ A, R).

REMARK 3.5.30. When k = 1, the previous definition agrees with Definition 3.5.16.
LEMMA 3.5.33. Let R € {C,A,F}. The following equality of morphisms holds.
(idpe @Rer) o Rep@idy) =idyx  and  (Rep@idyy ) o (idyr @Fer) = idye -

PROOF. Using Equation (3.20) this follows from the definition of Re; and Rc; along with the interchange

law for monoidal categories’ g

PROPOSITION 3.5.10. The category Fund(Uy (0, )) can be described by a planar diagrammatic cal-
culus with unoriented strands such that isotopic diagrams represent equal morphisms, and the unoriented

cups and caps labelled by k are equal to *c; and “ey. respectively.

PROOF. Using the pivotal structure from [59], which is such that the Frobenius-Schur indicator of each
irreducible is +1, it is known that Fund(Ur(s0,,)) can be described by an unoriented diagrammatic calcu-
lus [58]. For more details, see the discussion in [8, Section 2.2 and Theorem 5.1]. Viewing Fund(Up(0y,))
as a subcategory of Fund(Ur(so,,)), it follows that Fund(Uy(0,)) can be described by an unoriented dia-

grammatic calculus with respect to some cups and caps

cup;, € Homy,( )(F,AIH‘; ®AL) and cap, € HomUF(Om)(A]I} QAL ).

Om

Note that we can re-scale cup, by any A, € F* as long as we also re-scale cap, by 4, L

7If € is a monoidal category, then for o € Home (X,Y) and o € Home (X', Y"), we have (@ ®idy/) o (idy @) = (idy ®a’) o
((X ®ier).

56



We know that Homy, (o, (FF, A’I‘F ®A’I‘F) is one dimensional. Also, both cup; and ¥c; are non-zero elements

of Homy, (o, (F, A% ® AX). Therefore, there is A, € F* such that "¢, = A - cupy. Using the hypothesis that

we can describe Fund(Up(0y,)) graphically with cup, and capy, and Lemma 3.5.33 we find

]Fek = ]FekO (ld/\lﬂf‘ ®((1d/\§ ®A’k_1 'Capk) ) (Ak . Cupk®1d/\lﬂg))>
=2 " capgo (((Fu?k ®id/\’fg) o (idAIE; @M - cupy)) ®idA’fF>
— 27" -capyo ( (Fer®idy) o (idy @Fer)) ®idA;fF)
=" cap,.

F F

So without loss of generality we may assume that cap, = " e, and cup;, = ¢.
Note that,

%F(Aek) = ]Fek and %F(Ack) = Fck.

Given any graphical equation involving coupons labelled by morphisms in Fund(Uy (0,)), cups, and caps,
we can then apply Br(—) and deduce, from the above discussion, an equation of morphisms in Fund(Ug(0p,)).

It follows from Lemma 3.5.29 that this equation of morphisms is true in Fund (U (om)).

o

DEFINITION 3.5.19. Define Amﬁﬂ using the graphical calculus for morphisms as the 180 degree ro-

tation of Am;ﬂ. For R € {C,F}, define Rmi’ij = ‘BR(Amﬁ’_{j}. By Proposition 3.5.10 it does not matter

|

whether we rotate clockwise or counterclockwise.

LEMMA 3.5.34. LetR € {C,A,F}. Fork=1,...,m,

R k R_Lk-1 [Zk] .
k— = Wld/\; .

PROOF. For R = A, this follows by using the graphical calculus for Fund(Uy (o)) and Definition

3.5.17. Then applying By yields the result for R € {C,F}. O

57



LEMMA 3.5.35. LetR € {C,A\F}. Fork=1,...,m,

R [2m — 4k|[m] |m

R — -1
O o) [ |

P

PROOF. We give a sketch, for more details see [8, Section 2.2].

First, we observe that EndA(AOA) =A-id A0 and every A-linear endomorphism of the trivial module
commutes with Uy (o), so EndUA(om)(AOA) = A-idyo. It follows that Aepoher = dy(m) +idyo . for some
dr(m) € A. Thus,

CeroCer=di(m)-idyy  and Tepofer=di(m)-idy,

where di(m) denotes the image of di(m) under A — C. So it suffices to show the claim for R =F.

Taking the trace of the identity of an object, with respect to our chosen pivotal structure, gives the
quantum dimension. The quantum Weyl dimension formula states that for our chosen pivotal structure on
Rep(U(som))

qdim(Lp(a)) := trace, (idLF(a)) = (_1)(Pv,2a) I:][> W ,

where v = ¢, if m is odd, and v = qz, if m is even. On the other hand, the trace of id Al with respect to our
chosen pivotal structure, is exactly the coefficient dy(m).
We leave it as an exercise to use the quantum dimension formula, along with Remark 3.5.11, to derive

the dimension formula in the statement of the Lemma. For a hint, look at proof of [8, Proposition 2.2]. [

The last intertwiner we will consider is the braiding isomorphism By, v, : Ve @ Vi — VF @ Vp. To
this end, we observe that Vi ® Vi is a direct sum of three non-isomorphic irreducible representations®:
Ly(2m;,+1), which is characterized as containing v; ® vy, Lp(®2,+1), which is isomorphic to AIZF, and
Vr(0,+1), the trivial module. Write 7y, 7 1), and 7 for the projections in EndUF(om)(Vfgz) with image

Ly (2@,+1), Lp(®>,+1), and Lr(0,+1) respectively. Then it follows from [38, Equation 6.12] that

2—2m

BVF,VF = q27r(2) _q_zn(m) +q (o) and ﬁ_IV]F,VJF — q—zn(z) _qzn(l.’]) _|_q—2+2m

o)

8Except when m = 1, and we have V(2) = 0 = Vy(1,1). In this case v; ® v; generates Vi (0).
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LEMMA 3.5.36. We can express the braiding and its inverse in terms of our previously defined mor-

phisms as
2 - F_ LI F 2 m-2] , -2\ —m+2 F F
Bveve = q" idvey, — my o mm—m(q - )q s Eepotey
and
. . 1,1 2 [m— 2] oy e
B IVEVF =q 2'1dV]F®VF _sz O]le’l_'_ [2m_4} (qz_q z)qm Z'FcloFel-

PrROOF. First, we note that

2] g 11 F 2 [m —2][2m] F. F
Ty = ﬁ Ty 0Ty g and o) = [21”1*4] [m] [m]qz T C10 €.
Since idv,eve = T(2) + 71 1) + Mo, it follows that
. 2] g 11§ 2 [m —2][2m] F. F
—id _ = — . .
7[(2) 1 VEQVE [4] mz [¢] m17] [Zm _ 4] [m] [m]qz C10 €1
Thus,
. 2] 5 [2] 1,1 2
Bveve = ¢ idvecve + <_q2[4] - ZW Fmy” oFmy
2 [m —2][2m] 2om M —2][2m] F,. F
" ( Al Al
. 1,1 2 m—2 oy
= q2 . ldV]F®V]F —]sz O]Fle — [[Zm _4].] (q2 —q 2)q m+2 ]Fcl O]F€1 .
The same argument is used to derive the formula for B‘IVF’VF. t
DEFINITION 3.5.20. Let R € {C,A,F}, we define
2 . R 11 _ R 2 (m—2] 5 5 _mi2 k. R
ﬁVRva ::q .ldVR®VR_ m2 © le - [zm_4] (q _q )q : Clo el
and
) 2. 1,1 2 m—2 _ _
B IVR,VR =q 2'1dVR®VR —Rmz oRle + [[Zm _i] (q2 —q z)qm 2. Re o0Re,

LEMMA 3.5.37. Let R € {C,A,F}. The 90 degree rotation of By vy is By, v,-

PROOF. The claim is equivalent to

(idVR ®R€1) o (BVRNR ®idVR) o (idVR ®ﬁVR7VR) = (Rel &® idVR)-
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By Lemma 3.5.29 it suffices to show this is true for By, v,. The Hexagon equation implies that
Bveoveve = (Bvp,vy ®1idy; ) o (idy, ® Bvy,ve). Since we are in a strict braided monoidal category, we also
have By, = idy,. Also, by naturality of the braiding we have (idy, ® Fer)o Bvesve vie = Brvg © Fer® idy ).

Thus,

(idy, @ e1) o (Bvy.ve ®idy,) o (idy, @ Bve.vi) = (idy, @ e1) 0 Brasove v
= Bry. o (Fer ®idy,)
= idv]F O(Fel (= idV]F)

= (Fey @idy,).

Unsurprisingly, the braiding when g = 1 is just the tensor flip map.
LEMMA 3.5.38. The map By, v, acts on VE2 by v@w = w@v.

PROOF. Let s denote the tensor flip map. Since g— 1 =01in C, we see that Definition 3.5.20 simplifies to

ic, bl

2 .
R m; ; factors through A((z: and squares to 2, we have 5 ~m," o

C C

— R, L1 2 . 1,1
[))V(C,VC _ldVC®VC - m2 o ml,l- SlnCC m2 o}

2 1 /- . .. . . .
le’l = 5 (idy,@v, —5), the anti-symmetrizing idempotent. Thus, By, v, = idv.ev, — (idveev. —5) =s. O

3.5.4. Existence of the functor. Let R € {F,A,C}. We will prove that there is a pivotal functor P :
Webg (O(m)) — Fund(Ug(op)). Since Webgr(O(m)) is a generators and relations category, it suffices to
define where generators go and check relations. Thus, the majority of this section is devoted to deriving
various relations among morphisms in Fund(Ug(0y,)). For later arguments, it is important for us to have
canonical identifications between R ® ®, and ®gr. To make this precise, we construct @y first, then define
DR ;= Bro(RRDPy).

3.5.4.1. Deriving relations. In this section, all graphical calculations are in the category Fund(Ug (0,) ),
as opposed to Webg (O(m)), and trivalent graphs represent the multiplication maps Ak ® A{{ — A;{j . That
this is valid for R € {C,A,F} is justified by Proposition 3.5.10. To make this clear, we will use grey dia-
grams in this section. We also assume that we are working in Fund(Uy (0,,)), unless we explicitly say that
we are working over I or C.

First, since Aj is an associative graded algebra, we have the following.
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k+1+m k+1+m
(32]) k+l — k+m
m ko m ko1

Lemma 3.5.35 says that

[2m — 4k|[m] |m
(3.22) k = ,

[m—2k|[2m] |

(]2
and from Lemma 3.5.34 we find,
k
[2k]
(3.23) 1 k-1 = &4
2]
N k
Since Homy, (q,,) (AL AK) =0, we also have
k

(3.24) 1| Jk+1 =0.

k+2
Let k = 0 in Equation (3.24), we have

1
(3.25) =0.

2
LEMMA 3.5.39.
k

(3.26) Na e :[2m—2k][2m—4k—4][m—2k]

[2][m — 2k — 2][2m — 4k]

61



PROOF. We temporarily work over F. Since Homy,( )(A’I},A’I‘F) is 1-dimensional, there exists a € F

Om

such that

1 k+1 =

r k

If we show Equation (3.26) is true over F, then in particular & € A, so Lemma 3.5.29 implies the equation
also holds in Fund(Ug (0y,)).

Observe that
[2m — 4k][m] |m

k1| S+l = — g = T
e * m—2k2m] |,
L]2
On the other hand,
k+1
101 — [2k +2] _ [2k+2] 2m—4k—4][m] | m
2] 2] [m—2k=2]2m] |} ;
Thus,
o [2m — 4k|[m] |m d [2k+2] 2m—4k—4]|[m] | m d
T —— . 0 — . 0,
[m—2k][2m] | 1 2 Ay 2] [m—2k=2]2m] |} 4 2 Ay
q q
and since id AL = 0, we can compare coefficients and solve for ¢ from
2m—4k|[m] |m|  [2k+2] 2m—4k—4][m] | m
[m — 2k|[2m] k|, 2]  [m—2k—2]]2m] k+1] |
q q
O
LEMMA 3.5.40.
2m — -2 2m — -2
(3.27) 2 [2m —8]lm —2] _ [2m —8]m—2]
[m—4][2m — 4] 2 [m—4][2m — 4]
1



PROOF. By Definition 3.5.20 and Lemma 3.5.37, we know that the 90 degree rotation of Py, vy is the

same as 7y, v, s0

— _ 2 -2y, —mt2 1
q 5 2m—a) (@ —a7)q
! 1 1
1 1
1
-2
_ -2 L [m 2 2\ m=2
q +[2m_4](q q°)q
1 1 :

We obtain Equation (3.27) by combining terms and using the identities in Remark 3.5.12. U

LEMMA 3.5.41.

A =2
mi|m —
(3.28) A
> [m][2m — 4]
1 1 1 1
PROOF. This is immediate from Equation (3.27), Equation (3.23), and Equation (3.25). ]
LEMMA 3.5.42.
! 1
1
3.29) A £42 0 2k +-2][2m)[m — 2] k+2
' ‘ k1 [2)[m][2m—4]
k
k+1 kel
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PROOF.

k+2 k+2

k+2
k+t (3.21) 2 3.28) [2m][m —2]
1 s k s 2/ \k
1 k 1 1 [m][2m — 4]
2 1 2 1 1 ! k+1
1 k+1 1 k+1
k+2
k+2
321 [2m][m—2] k1 323) [2k+2][2m][m —2]
[m][2m—4] [ [\ (2] [m][2m — 4]
k+1 1
1 k+1
O
LEMMA 3.543. Fork+1<m,
2
1/\1
p #0.
k+1 k+1

PROOF. Since this triangle is part of the left hand side of Equation (3.29), and the right hand side of
Equation (3.29) is a non-zero scalar multiple of the map m’ﬂ;zﬂ which, as long as k42 < m, is non-zero by

Remark 3.5.27. OJ

LEMMA 3.5.44.

(3.30) =0

PROOF. We know that A” @ A = dety @ dety = A2. Also, Proposition 3.5.8 implies that
F F F P p
dimg Homy, ,.) (AR, AF) = 0.

Om

This means that Equation (3.30) holds after applying B, and the claim follows from Lemma 3.5.29. ([l
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PROPOSITION 3.5.11. Suppose that k < m. Then the following equation holds in Fund(Uy (oy,)).

2 B [2m — 4k — 4][m — 2k] [2m — 4k — 4][m — 2]
(3.31) I/ \1 = k+1 +[m—2k—2][2m—4k] k—1 B [m—2k —2][2m — 4]

k—1 k k k k

PROOF. We prove Equation (3.31) by induction. We verified the base case, that Equation (3.31) holds
when k = 1, in Lemma 3.27. Suppose Equation (3.31) holds in Fund(Uy (0m)) for £ > 1, then we will
show that it is true for K+ 1. Since Alj‘gl =0 when k+ 1 > m, we may assume k+ 1 < m, in order for
Equation (3.31) to be non-trivial in Fund(Ug (0y,)). Suppose that k+ 1 < m. We temporarily work over F.
It follows from Lemma 3.5.27 that A]IE‘—H QW = Af;”z D A’I‘F @ Ly(®), + @y, +1). Therefore, the merge-split
to k + 2, the merge-split to &, and id A vy form a basis for EndUF(Om)(AfF ® V). In particular, there are

x,y,z € IF such that

k1 | k+1 1 k+1 1
1
(3.32) k 5 =x k+2 +y k +z
1
k+1 1 k+1 1 k+1 1 k+1 1

Now, in order to find a linear system of equations about x,y,z, we first attach caps or trivalent vertices, in

three different ways, to each term of Equation (3.32).

/N =x i +y k +z
k
[
1 1 k41 k41 k+1 k+1
2
1 1 2 2 5
2 1/\1 1/ \1 |
=x
1 1 k+2 Ty k Tz
k k+1 k+1 k+1 k+1 k+1
k1 k1
1
1 1 1
) ! !
2 k+2 k+2 k k+2 k+2
1/ \l1 =x +y +z
k41
i k+1 k+1
k+1 k+1 k41
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In order to simplify the second equation, we need to relate the two triangles on the right hand side. Using

results in [34], one can check that since k+ 1 < m, dimyp Homy, (o, (A]I‘FJrl QA2 ,AII‘FH) =1. By Lemma 3.5.43

2
1 1

- £0.
k+1 k+1

So there exists T € [F such that

(3.33) =1
k+1 k+1 k+1 k+1
On one hand, we know:

2 1

VNN 329y [2k4-2][2m)[m — 2]
k+2 k — [2)[m][2m—4] ke

k1 TN k+1 k+1

(326) [2k+2][2m][m — 2] [2m — 2k — 2][2m — 4k — 8] [m — 2k —2] _**!
B [2][m][2m — 4][2][m — 2k — 4][2m — 4k — 4]

On the other hand, we know that

AN AN @27 [2m—8][m—2] N VN
k k T m—4]2m—4 ENS k k
k+1 k+1 * k+1 k+1
k+1 k+1 k+1 k+1
1
[2m — 8][m — 2] ‘
[m —4][2m — 4] k k ’
k+1
k+1 k+1
where
1 1
- - (3.23) ([2k—|—2]>2 k+1
e 2 ’
k+1 k+1
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1 G239 [2m—2K][2m — 4k —4]fm—2k] 2k +2] A+
k k B [2][m — 2k — 2] [2m — 4k] 2]

k+1
k+1 k+1

By the inductive hypothesis,

2

1 1
N (31) 112 11 [2m— 4k —4)[m — 2] e [2m — 4k — 4][m — 2] !
k ot k P P [m—2k—2|2m—4k] |k Pt k [m— 2k —2|[2m — 4] %
k+1 k+1 e U k+1 k+1 k+1 k+1
1 1 1 1
OB m—dk+dlm—26 [\ oo [2m— bkt d]m—2k] 5
[m—2k+2]2m—4k] |k — K [m—2k+2]2m—4k] | k-1 &k
k+1 k+1 k+1 k+1
1 1
(28 [2m—dk+4][m —2k] [2m][m 2] , G2y [2m — 4k+4)[m — 2K] [2m][m — 2] .
[m—2k+2][2m—4k] [m]2m—4] | k-1 & [m—2k+2][2m—4k][m|]2m—4] |k -1 &
k+1 k+1 k+1 k+1

(323) [2m — 4k +4][m —2k][2m|[m — 2] [2k] [2k + 2] kel
 [m—2k+2]2m—4k)[m]2m—4] 2] 2]

In conclusion,
[2m — 4k][m — 2k — 2]
[m—2k][2m — 4k — 4]
So by applying Equations (3.22), (3.23), (3.24), (3.25), (3.26), (3.29), and (3.33), we have the following

system of linear equations.

[2m — 2k —2)[2m — 4k —8][m —2k—2]  [2k+2]  [2m—4][m]
[2][m — 2k — 4][2m — 4k — 4] X+ 2] y+ o) Z
[4]  [2m—4k][m—2k—2]
@_[m—zk][zm—4k_4]x+y, and
[2k+2][2m][m—2] [2k+4]x
A~ @ e

0=
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The values

x=1

 [2m— 4k —8][m—2k—2]
 [m—2k—4)[2m — 4k — 4]
[2m — 4k — 8][m — 2]

[m— 2k —4]|[2m — 4]

satisfy the equations, and therefore are a unique set of solutions. Since x,y,z € A, it follows from Lemma
3.5.29 that Equation (3.31) holds in Fund(Ug (o)) when k+ 1 < m.

Now, suppose that k+ 1 = m. Lemma 3.5.27 implies that A’I‘FJrl QVF = AlfF- Thus, there exists y € [F such

that
k+1 1
(3.34) =Y K ;
k+1 1 k+1 1
SO
k+1
L=y & 1
k+1 k+1
' ' 2m —4][m] [2k+2] [2m — 4][m]
Using Equations (3.22) and (3.23), we get W-ldl\ﬁﬂ =v- T 1dAIkF+1, soy= m €A,

It follows from Lemma 3.5.29 that Equation (3.34) also holds in Fund (U (o).
On the other hand, consider Equation (3.31) when k = m. Lemma 3.5.44 implies that the left hand side
of Equation (3.31) is zero. Also, the first term on the right hand side of Equation (3.31) has a label m+-1, so

is also zero. Thus, Equation (3.31) becomes

0_O+[2m—4m—4][m—2m] _ [2m—4m—4[m 2]
o [m—2m—2]2m—4m] [m-1 [m—2m—2|[2m — 4] ’
which agrees with Equation (3.34). U
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THEOREM 3.5.12. Let R € {C,A,F}. There is a pivotal functor ®g : Webg(O(m)) — Fund(Ug (o))

such that,
i+1 i+1

i+1 i+1
)\ ’—>Rmi,1» )\ ’—>Rm1,ia and q)R(RBl,l):ﬁVmVR

i 1 1 i

Moreover, we have canonical identifications Pg = Bro(R® Dy).

PROOF. Suppose we have @4 as in the statement of the theorem. Then for R € {C,F}, we define dg

as the composition

Webg(O(m)) = R® Web, (O(m)) 2224 R @ Fund(Uj (o)) =% Fund(Ug (05)).

It is then easy to see that it suffices to prove the result over A. To this end, we just need to check the
defining relations in Web, (O(m)), see Equation (3.4), are satisfied in Fund(U (0 )). This follows from
Equations (3.22), (3.23), (3.25), (3.21), and (3.31).

Having established everything else in the statement of the theorem, the equality CIDR(RﬁM) = Bvp.Vk

follows from comparing Definition 3.5.20 and Definition 3.5.3. ([l

3.5.4.2. Compatability with classical invariant theory. Let C" be a vector space with basis {vy,...,v,}
and bilinear form (v;,v;) = &; j. We write O(C™) for the subgroup of GL(C™) preserving (—, —).

We want to identify StdFund(Uc(0,)) with the full monoidal subcategory of Rep(O(C™)) generated
by C™. To this end, consider the C-basis for V:

(\/—71)"*1<%h"), (\/—71)i*1<‘”%[’i>, i=1,...,n, ifm=2n
(ﬁ)’”(%b"), (\/—;1)"*1\%, and (\/j)i*1<‘1’%]’i), i=1,....,n, ifm=2n+1.

This basis gives an identification C" = V¢ under which the form (v;,v;) = §; ; on C" agrees with the form
(v,w) =Ce;(v@w) on V.

Let #(m) be the Brauer category as defined in [40, Definition 2.4 and Theorem 2,6]. Lehrer-Zhang
prove there is a unique monoidal functor F : %(m) — Rep(O(C™)) = Rep(Uc (o)) such that the crossing
diagram maps to the tensor flip map, and the cup and cap diagrams map to the natural homomorphisms

constructed with (—, —) [40, Theorem 3.4].
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On the other hand, we have constructed a monoidal functor ®c |siaweb(0(m)) : StdWebc (O(m)) —
StdFund(Uc (0 )). Using the canonical identification BMW¢(O(m)) = #(m), Proposition 3.5.4 gives
a monoidal functor n¢ : #(m) — StdWebc(O(m)). By definition, F o ¢ sends CBL | to the tensor flip
map, and by Lemma 3.5.38 @ acts the same way. Thus, after identifying StdFund(Uc (0,,)) with the full

monoidal subcategory of Rep(O(C™)) generated by V¢, we have F' = ®¢ |siawebe(0(m)) © 1IC-

3.5.5. Proof of the equivalence.

3.5.5.1. Reduction to standard subcategories. Let R =T or C. In Theorem 3.5.12 we showed the
existence of a pivotal functor ®g : Webgr(O(m)) — Fund(Ug(op)). Our goal is to show that the functor
®p is an equivalence. Essential sujectivity is immediate from the definitions, but we need to work to show
®g is full and faithful. The first step is to reduce to showing that ®r|[siawebg (O(m)) : StdWebgr(O(m)) —
StdFund(Ug (0, )) is full and faithful.

LEMMA 3.5.45. Let R € {C,F}. If Or|siaweng(0(m)) i5 full, then Pp is full. If Or|siaweny(0(m)) i faithful,
then g is faithful.

PROOF. Using the merge and split trivalent vertices, it is easy to see that each generating object k in

Webg (O(m)) is a direct summand of 19¥. The claim then follows from [8, Lemma 5.5]. O

3.5.5.2. Fuliness. It is well known that if R = C or F, then the Brauer algebra, respectively the BMW
algebra, is Schur-Weyl dual to Ur(0y,) acting on tensor powers of Vg. An adjunction argument, see [8,

Theorem 5.8], then yields fullness of Pr|siawebg (0(m))- We give precise citations in the proof below.
THEOREM 3.5.13. Let R € {C,F}. The functor ®g|suweby0(m)) is full.

PROOF. We first argue for R = C. We know that F is full [40, Theorem 4.8]. Also, F = $¢ \Stdwehc(o(m)) o
Nc, so it follows that D¢ |siawen(0(m)) 1s full.
Suppose R = IF. Then by [38, Theorem 8.5] the operators id ® v, v, ®id generate Endy, o, (VR49), for

all d € Z>o. Since @ is monoidal and ®r(*B; ;) = Bv;,vg. it follows that the map

@r : Endsaweby (0(m)) (1°¢) = Endyy (o) (Vie'?)
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is surjective for all d € Z>. Since ®r is pivotal, we can use adjunction in StdWebg(O(m)) and StdFund (U (o))
to deduce that

®r : Homggaweny(o(m)) (197, 19¢) — Homy, (o) (V. ViE™)

is surjective for all b, ¢ € Z>¢ such that b+ ¢ is even. Since the homomorphism spaces are zero when b+ ¢

is odd, it follows that ®r|saweby (0(m)) is full. O

3.5.5.3. Faithfulness. Our goal is to show that a functor is faithful, so we will necessarily have to
analyze the kernel of a functor. The kernel of a monoidal functor is a monoidal ideal, so we recall some

Lemmas about the interactions between monoidal functors and monoidal ideals.

NOTATION 3.5.10. Let € be an R-linear monoidal category and let x be a homomorphism in €. Write

(x) to denote the monoidal ideal generated by x in €. Given a morphismy € Homg (X,Y), we write y € (x)

ifye H0m<x> (X,Y).

LEMMA 3.5.46. Suppose that G : € — 2 is an R-linear monoidal functor and x is a morphism in €.

Then if y € (x), then G(y) € (G(x)).

PROOF. Follows from observing that G preserves linear combinations, tensor products, and composi-

tions of morphisms. 0
Classical invariant theory gives us a description of the kernel of the functor F : Z(m) — Rep(O(C™)).

DEFINITION 3.5.14. Given an element w € Sy, we naturally get an element w € End:%(m)(l(@k). Let
ay = %ngsk(—l)f(w)w € End,@(m)(l(@k). We will represent the elements ay and nNc(ay) graphically by a
box labelled by k.

THEOREM 3.5.15. The kernel of the functor
F : #(m) — StdFund(Uc (0p,))

is the monoidal ideal generated by a,, .
PROOF. This is [40, Theorem 4.8(ii)]. ]

LEMMA 3.5.47. The kernel of the functor ®c|sawep.(0(m)) IS the monoidal ideal of StdWebc(O(m))

generated by N (a+1).
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PROOF. Since ®c(Nc(am+1)) = F(am+1) = 0, we have (Nc(ams1)) C ker®c. To show the reverse
inclusion, let f € ker®¢. Since 1 is full, see Proposition 3.5.4, there is some f in %(m) such that n¢(f) =
f. Thus, F(f) = ®c onc(f) = @c(f) =0, so f is in the kernel of F. Theorem 3.5.15 implies f € (@, 1),
and by Lemma 3.5.46 we have f = nc(f) € (Nc(ami1)). O

We will show that ®¢ |StdWebC(O(m)) is faithful. Since this is equivalent to the kernel of ®¢ being (0), we
want to argue that N¢ (a,,+1) is already equal to zero in StdWeb¢ (O(m)). This is implied by a diagrammatic
calculation in Web¢ (O(m)), which relies on the following Lemma.

LEMMA 3.5.48. The following equation holds in StdWebc(O(m)).

11 1 11 1

(3.35) k+1 | = & _

PROOE. Apply nc to the analogous equation in %(m), which holds by [40, Lemma 2.11(1)]. |

Next, we perform the calculation in Webg (O(m)) required to deduce N¢(a+1) = 0.

PROPOSITION 3.5.12. Let k € Z>¢. The following equality holds in StdWebc (O(m)).

—
—_
—_
—

(3.36) k = k




PROOF. We use proof by induction. The base case, k = 1, is trivial. Suppose (3.36) holds for k € Z>.

The following graphical calculation proves that Equation (3.36) holds for k+ 1.

</
1 o rrerel 3

LN LU | k_2
| k | k—1
il O ] | - ! . 639 k
(k—1)!
| X | k—1
| f—2
11 1 11 11 ' L r&%
2
1 11 1
111 111
(34c)
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COROLLARY 3.5.2. The functor
Dc|siawen (0(m)) : StdWebc (O(m)) — StdFund(Uc (o))
is faithful.

PROOF. Since strands labelled by m + 1 are equal to zero in StdWeb¢ (O(m)), Proposition 3.5.12 im-

plies that N¢ (@m+1) = 0. We then deduce from Lemma 3.5.47 that ker®¢ = (0), i.e. O is faithful. d

Before we prove that ®p ’StdWeb]F(O(m)) is faithful, we state two technical lemmas.

LEMMA 3.5.49. Let W, F be A-modules and assume that W is finitely generated over A. Let f :W — F
be an A-module homomorphism. Suppose that RQ f : RQ@W — RQF is surjective for R € {F,C}, and
that dim¢c (C®F) = dimp(FQF ). If CQf is injective, then F Qf is injective.

PROOF. Since A is a principal ideal domain and W is finitely generated, it follows that W =2 Adimr (FaW) a1
where F®T = 0. Since A is also a local ring with residue field C, it follows that there are ry,...,ry € Z>;

such that T = &% (A /M"") and d = dim¢ (C @W) — dimp(F ®W). In particular,
dimc (C®W) — dimp(F@W) > 0.
Suppose C®f is injective. Then C® f is an isomorphism, so
dimc (C@W) = dim¢ (C®F),

and F ®f is surjective, so

dimp (F ®W) > dimp (F ®F) .

We further assumed that dimc (C®F) = dimp(F ®F). It follows that
dimg(C@W) — dimp(F@W) < dime(C®F) — dimg (FRF) = 0.

Hence,

dimF(F ®W) = dil’n(c (C ®W) = dim(c ((C ®F) = dim[p(]F ®F).

Surjectivity of F ® f implies that F @ f is an isomorphism. U
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LEMMA 3.5.50. Let W, F be A-modules and assume that W is finitely generated over A and F is free
and finitely generated over A. Let f : W — F be an A-module homomorphism. Assume further that for
R € {C,F}, there are vector spaces Fg and linear maps bg : R @ F — Fg, such that by is injective. Suppose
that bro (R® f) : RQW — Fg is surjective for R € {C,F}, and that dim¢ Fr = dimy Fy. If be o (C®f) is

injective, then by o (F® f) is injective.

PROOF. Let R € {C,F}. Since br o (R® f) is surjective, it follows that bR is surjective so dimg Fr <
dimgr(R® F). Since by is injective, it follows that dimp(F ®F) < dimg Fr. Thus, by is an isomorphism and

Using that F is free over A, we find
dim¢c(C®F) =rkp F = dimp(F ®F) = dimp Fr = dim¢ Fc.

Thus, surjectivity of b¢ implies b¢ is an isomorphism.
Suppose bc o (C®f) is injective. Since bg is an isomorphism for R € {C,F}, the claim follows from

Lemma 3.5.49. OJ

THEOREM 3.5.16. The functor
q)]F’StdWebF(O(m)) : StdWebr (O(m)) — StdFund(UF(om))

is faithful.

PROOF. For R € {C,F} and d,e € Z>( we have induced maps

194 19¢)

PR : Homgigweby (0(m)) ( — Homgqrund(Ur (on)) (Vi 4 VRO).

It suffices to show that Py is injective for all d,e € Z>(. Recall from Theorem 3.5.12 that Pg = Bro(R®
@,). So we will use Lemma 3.5.50 when W = Homggaweb,, (0(m)) (179, 1%), F = Homgapund(U, (o)) (vod, vee,
[ =Pa, Fr = Homgapund(Ug on)) (V& *> Vit ©)- and br = Br.

Proposition 3.5.5 says that Homgqwen A(O(m))(lg’d ,19¢) is a finitely generated A-module, and Lemma
3.5.28 implies that Homggrund (U, (o)) (VA@"I, Vg’e) is a free and finitely generated A-module. Lemma 3.5.29
implies that By is injective.
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Theorem 3.5.13 implies that Pr = Bro(R® P, ) is surjective for R € {C,F}. Proposition 3.5.9 says
that dimp Homggapund(Us (o)) (Vis ¢+ Vi *) = dime Homsgapund(Uc (o)) (Ve VE)-

By Corollary 3.5.2 we know that ®¢ is injective. Thus, Lemma 3.5.50 implies that @ is injective. [
3.5.5.4. Main theorem. We now prove Theorem 3.5.2

PROOF. Thanks to Lemma 3.5.45, it follows from Theorem 3.5.13, Corollary 3.5.2, and Theorem
3.5.16 that ®g is full and faithful. Since the objects of Fund(Ug (o)) are tensor products of A%, for
k€{0,1,...,m}, and Pgr(k) = Ak, it follows that Pg is essentially surjective. Hence, ®g is an equivalence

of R-linear pivotal categories. ([l

REMARK 3.5.31. Since Fund(Ug(on)) is a ribbon category, with braiding By, v, we can use the
equivalence Pg to define a braiding on Webgr(O(m)). We know that Og (RBLI) = Bvg.vg and Pg (Rﬁlll) =
B'v, vy Naturality of the braiding on Fund(Ug (o)) allows us to define a braiding on Webg(O(m)), as
in [8, Section 5.9]. The functor g can then be treated as an equivalence of braided pivotal (in fact ribbon)

categories.
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CHAPTER 4

Clasps

4.1. Introduction and history of highest weight projectors

4.1.1. History of Clasp Formulas. Let V € Rep(U,(sl,)) denote the g-analogue of the vector represen-
tation of SL,(C). For each n € Z>, there is an irreducible representation V (n), which is a direct summand
of V®" and which is not a direct summand of V®™ for m < n. Note that V(1) = V. So for each n, there is an
idempotent in the Temperley-Lieb category which can be viewed as the idempotent in Endy, (s, (Ven) with
image V (n). The condition that V (n) is not a summand of V®" for m < n implies that composing a projector
with any cap diagram will result in zero.

These idempotents are usually called Jones-Wenzl projectors, as they were first considered by Jones [24,

Section 4.2], and the following explicit inductive formula was first given by Wenzl [63].

! ! H@
[n—1]

@.1) = 1] |+ -

T

Here we use the notation [m] to denote the quantum integer [m], := 4

- q,l , for each m € Z. Our convention
is that a red box with label n is the morphism in the Temperley-Lieb category which corresponds to the
idempotent with image V (n).

The Jones-Wenzl projectors and the recursive formula in Equation (4.1) describing them have been
proven useful in link homology [13], Soergel bimodules [16], and the theory of subfactors and planar alge-
bras [48]. The present work is concerned with generalizing Equation (4.1) from sl, to the Lie algebra g,.
However, many things we say in the introduction make sense for all semisimple Lie algebras.

Fix a finite dimensional semisimple Lie algebra g. There is an associated quantum enveloping algebra

U,(g), which is a C(q) algebra defined by generators and relations which “quantize” the Serre presentation
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of the usual enveloping algebra [23, Chapter 4]. The finite dimensional irreducible type-1 representations’
are in bijection with the finite dimensional irreducible representations of g, i.e. for each dominant integral
weight A there is a finite dimensional irreducible module of U,(g), which we denote by V(1). We will
abuse notation and write Rep(U,(g)) to refer to the category of finite dimensional type-1 representations
of U,(g). The algebra U,(g) is a Hopf algebra [23, Section 4.8], and it turns out that Rep(U,(g)) is closed
under taking tensor products. Furthermore, since we are working over C(g), where ¢ is an indeterminant or
a generic element of C, the category Rep(U,(g)) is a semisimple tensor category, and the Grothendieck ring
of Rep(U,(g)) is isomorphic to the Grothendieck ring of the category of finite dimensional representations
of g.

The recursion in Equation (4.1) is expressed in terms of the Temperley-Lieb category, which describes
the full monoidal subcategory of Rep(U,(sl»)) generated by V. The generalization of this subcategory to
arbitrary quantum groups is Fund(g) in Definition 3.1.2.

We denote the set of fundamental weights of g by {@;}. Let A be a dominant integral weight. Then we
can write A = Y n;®;, where n; € Z>(. There is a partial order on all weights, where p < A when A — i is
a Z>o-linear combination of positive roots. With respect to this partial order, the irreducible representation
V(L) has highest weight A. Also, V(1) is a direct summand of the tensor product &,V (®;)*". Thus,
there are projection and inclusion maps @,V (@;)“" — V(1) — @,V (@;)“" such that the composition is
an idempotent C; in Fund(U,(g)). We are interested in finding explicit descriptions of these idempotents,
generalizing Formula (4.1).

Unless A is a fundamental weight or zero, V(1) will not be an object in Fund(U,(g)). However, C;
is a morphism in Fund(U,(g)) and we think of it as a replacement for V(4). Analogous to how V(1) is
characterized as the irreducible representation with highest weight A, the morphism Cj is characterized as
the non-zero idempotent endomorphism of @; V (@;)®" such thatif f: ®;V(@;)*" - V(@;,)@---QV (®;,)
is a morphism in Fund(U,(g)), and };_, @;, < A, then foCy =0.

Kuperberg [36] introduced the terminology clasp to refer to an idempotent projecting to the highest
weight irreducible summand of a tensor product of fundamental representations, viewed as a morphism in

Web,(g). If the highest weight of this irreducible summand is A, then we will call this idempotent a A-clasp.

IThis means that for all simple roots «, the element K acts on the u weight space of any representation by +q(“*“> [23, Section
5.2]. We will only consider type-1 representations in this paper.
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To generalize the Jones-Wenzl recursion, a first step is to find recursive formulas of clasps in the rank two
cases.

In the sl3 case, a recursive formula was given by Ohtsuki and Yamada [46, Definition 2.4], where they
called a clasp a “magic element”. Later, Dongseok Kim found other recursive formulas for the sl3 case as
well [32, Theorem 3.3].

In [17, Conjecture 3.16], Elias made his type A clasp conjecture, which implies a recursive description
of each sl,, clasp using the language of sl, webs. Also, [17, Theorem 2.57] provides a basis for all homo-
morphism spaces between fundamental representations for sl,. These bases have a particularly nice form
which reduces the validity of the type A clasp conjecture to an explicit calculation, which is hard to carry out
for an arbitrarily large n. In [43], Martin and Spencer proved the type A clasp conjecture with cell modules.

Since sp, is rank two, there are two simple roots: one short ¢ and one long a;. We write ®; and
@, for the corresponding fundamental weights. In the sp, case, Kim gave recursive clasp formulas for the
a®;-clasp [32, Corollary 4.3] and the b@,-clasp [32, Corollary 4.5]. However, an inductive formula for the
sp4 a) + by-clasp remained unknown until recently, when Bodish derived formulas generalizing Elias’s
type A clasp conjecture to type C, [6, Theorem 1.5].

In the g, case, little was known before the present work. Attempts at getting the g-clasp formulas
have been made, including a few base-case calculations by Sakamoto and Yonezawa [57, Section 5]. In this
paper, we give triple clasp expansions for the g, A-clasps for all dominant integral weights A. Our results

are summarized in the following theorem.

THEOREM 4.1.1. Let A be a dominant integral weight for g,. Then the A + @ clasp is given by the

following recursive formula.

A+o A

i A
D( ELLXL”)

[ Ato [=[ 2 |o

A+o A




Here a red box labelled by ¥ denotes the x-clasp, i.e. the morphism in Web,(g2) which corresponds to
the idempotent with image V(). The diagrams ]D)(iELLijD“ ) and ’ ELL;EL are given explicitly in Formula
(4.6) and Formula (4.7) in Section 4.3.1. The coefficients Pft’;:w are given explicitly by Equation (4.8) to
Equation (4.29) in Section 4.3.1 and Equation (A.1) to Equation (A.3) in Appendix A.1.

4.1.2. Connection to the Clasp Conjecture. Let I be a field. Consider objects X and S in an addi-
tive [F-linear Karoubian category with duality D, i.e. a contravariant endofunctor with D? 22 id, such that

End(S) =F-idg, D(X) =X, and D(S) = S. Given 7 : X — S, we obtain amap 1 =D(7) : § — X and
mol = Kidg,
for some k € FF. If k¥ # 0, then S is isomorphic to the image of the idempotent

e= —1lOT.
K

In [17, Definition 3.8], the coefficient x, computed in the sl,, web category, is called a local intersection
form. We carry out analogous calculations in the g, web category and find an analogue of Elias’s clasp
conjecture holds for G.

In fact, we expect that something in general will hold. Let g be a simple Lie algebra and let U,(g)
be the associated quantum group. Let W denote the Weyl group associated to g. For V € Rep(U,(g)) we
will write wtV to denote the set of all weights p such that the yu weight space of V is non-zero. Fix a
fundamental weight @. For each u € wtV (@), such that u is in the same W orbit as @, there should be a

clasped elementary light ladder map®
A
LLy 3 V(A) @V(B) = V(A +p).

DEFINITION 4.1.1. For an extremal weight | in a fundamental representation (i.e. a weight in the W
orbit of @; for some i) we write d,, to denote the minimal length element w € W so that w(lL) is dominant.

We also define @, to be the set of positive roots which are sent to negative roots by d,.

In examples, this is most easily defined using web categories. But with some care should make sense in general, even without
having a generators and relations presentation of Fund(g). The main feature should be that the map is the composition of projectors
and neutral maps with some fixed map from V (Ai) @ V(@) — V (Apin + 1), Where Ay, is the smallest dominant weight so that
V(1)@ V(@) contains a copy of V(A + ).
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CONJECTURE 4.1.1. If we denote by D the duality® on Fund(g), and write
LY oD(LL ™y = k¥ id
2,B yWoj L@ OV (A+u)s

then

(Y, A +p)]
4.2) o=+ || q .
( bo T e, (0 A+ it p)] e

Here p is the sum of the fundamental weights and l(a) = (a, ) /2.
REMARK 4.1.1. The conjecture is proven to be true in types A, [43] and in type C, [6].
The following Proposition is an elementary consequence of our main theorem.
PROPOSITION 4.1.1. The conjecture is true for g;.
PROOF. See Corollary 4.3.1. O

REMARK 4.1.2. We also expect there to be a more general form of the conjecture which describes what
happens for L € V(@) which are not in the extremal Weyl orbit. The work in this paper and [6] could give
enough data to guess the answer when V(®), is one dimensional, but we have not yet carried this out.
We also hope the general form of the conjecture will give rise to a product formula which computes the

elementary divisors of the matrix of local intersection forms when dimV (@), > 1.

4.1.3. Witten-Reshetikhin-Turaev invariants via skein-theory. Let g be a simple Lie algebra over C.
In order to define an analogue of the Jones polynomial for g, Reshetikhin and Turaev defined a link invariant
using the category Rep(U,(g)) [53]. Their construction gives a knot invariant for every type-1 representation
of U,(g). More generally, one can label each component of a link with an object in Rep(U,(g)) and their
construction gives the colored quantum link invariant.

Kuperberg’s original motivation for studying Webg(g2) was to compute the quantum link invariant
associated to gp. Originally, he gave a diagrammatic method to compute the g, link invariant when each
component is colored by the first fundamental representation [35]. Soon after, using Weby(g>), he gave
diagrammatic tools for computing the g, link invariant colored by both fundamental representations [36,

3Again, this is most easily defined in terms of webs, in which case it is just flipping the diagram upside down.
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Section 4]. In this paper, we give explicit formulas for idempotents projecting to each irreducible U,(g>)
module. Combined with Kuperberg’s earlier work this gives a diagrammatic approach to computing the
quantum invariant of a link with components colored by any irreducible.

Reshetikhin-Turaev’s paper about their link invariant was intended as a prequel to their work which gave
an associated 3-manifold invariant [52]. The first step one takes to make sense of their 3-manifold invariant
is to leave behind representation theory of U,(g) for generic ¢ and work instead with ¢ specialized to a root
of unity.

E (@

g2) be the Z[g,q']-subalgebra of Uy(g,) generated by —r2— Lo and KE!, for all
g q g y o

la] (@ 1a] ey

Let Uzjg 1)
simple roots «, and all a € Z>o. When & is a root of unity in C, we can study the relation between
C®4—c Webg(g2), and the category of tilting modules of C®,_g Uy, ,1(92)- It is possible to adapt the
approach from [7], which itself is based on [17], to prove that the Karoubi envelope of C Qg=¢ Wqu(gz) is
equivalent to the category of tilting modules as long as [2]¢, [3]¢ # 0. The same result is work in progress of
Victor Ostrik and Noah Snyder, but they propose a slightly different approach.

When & is a root of unity of order greater than 5, the generators of the negligible ideal in the category
of Ug(g2) tilting modules are (identity morphisms of) certain irreducible tilting modules with quantum
dimension zero. Irreducible tilting modules are also Weyl modules, so these generating objects correspond
to clasps in Webg(g2). Moreover, the objects which survive in the negligible quotient are the irreducible
Weyl modules with non-zero quantum dimension. Once the equivalence between the web category and
the category of tilting modules is established, one can give a generators and relations presentation of the
associated modular tensor category” using the g» triple clasp formulas for the negligible clasps. Combined
with our description of the clasps corresponding to the irreducible Weyl modules with non-zero dimension,
this gives an explicit way to compute the quantum g, 3-manifold invariant [52].

On the other hand, topologists have tried to understand the quantum 3-manifold invariants with graphical
categories. A construction of the quantum sl, 3-manifold invariant using the Temperley-Lieb category was
given by Lickorish [41]. This work was generalized to the sl3 case by Ohtsuki and Yamada [46] with sl3
webs. A self-contained proof of invariance under Kirby moves [33] using the graphical category was given

in both cases. One can now give similar constructions and proofs in the g, case by using our clasp formulas.

“In the case that & is a root of unity that actually gives rise to a modular category as the negligible quotient [55].
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4.2. Clasps and light ladders for G,

4.2.1. Definition of clasps.

@
LEMMA 4.2.1. Let D € Endyp,(g,) (W) such that (D) acts as zero on V(wtw) CV(w). Then we can
write D as linear combination

D = ZAi oB;,
i
where B; € Homwebq(m)(y,gi) and A; € HomWebq(gz)(gi,y) for some u; with wtu; < wtw.
PROOF. Since

Viw)=V(wtw) @ V(u)™™,

H<wtw

our hypothesis on ®(D) implies that we can write ®(D) = }'; 1; 0 ;, where for each i there is some y; < wtw
such that m; is a projection V(w) — V(;) and 1; is an inclusion V (1;) — V(w).
For each y; fix an object u; in Webg(g2) with wtu; = p;. There is a projection % : V(u;) — V(;) and

inclusion ¥ : V(u;) — V(u;) so that % 0 ¥ = idyy,). Then we can write
Lo = liOidV(u,') oT; = lio}/io')/ioﬁi.

Thus, ;0% € Homy, (4,)(V (u;),V(w)) and Yom e Homy, (g,)(V(w),V (u;)). The desired result now follows

from & being an equivalence. U]

DEFINITION 4.2.1. The neutral coefficient of a diagram D € End(w) is the scalar by which ®(D) acts

on the one dimensional weight space V(W )ww. We write ®(D)ly(w),., = Np -id.
LEMMA 4.2.2. Let D € Endyp,(g,) (w). Then we can express D as a linear combination of diagrams
D =Np-idy+) A;oB;,
i
where B; € HomWebq(gz)(w,gi) and A; € HomWebq(gz)(Qi,w) Sfor some u; with wtu,; < wtw.

PROOF. Consider ®(D) — Npidyy) € End(V(w)). This endomorphism has V(W) in its kernel and

@
therefore also acts as zero on V(wtw) C V(w). The desired result now follows from Lemma 4.2.1. O
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DEFINITION 4.2.2. Let w € Weby(g2). A diagrammatic w-clasp is a morphism Cy, € EndWebq(gz)(y)
which satisfies the following conditions:
(1) Gy #0,
(2) CyoCy =Cy, and

3) IfD € HomWebq(gz)(y,g) and wtu < wtw, then DoCy, = 0.

REMARK 4.2.1. Note that we only use the terminology clasp to refer to idempotents. This is consistent
with Kuperberg’s original use of the term [36], but less general than Elias’s [17, Definition 1.12]. In Section

4.2.2, we will define generalized clasps, which will agree with Elias’s notion of clasp.
LEMMA 4.2.3. Ifthe w clasp exists, then it is unique and Nc,, = 1.

PROOF. Suppose Cy, and C’E are both w-clasps. By Lemma 4.2.2 we can write Cy = N¢,, id+},;A; 0 B,

and C’ﬂ = Ng, id +Y;AloB]. As a consequence of the definition of clasps, we find
Cy =CyoCy = (N¢, id+ Y A;oB;) oCy = Ng,Cy
i
and
Gy =Cy0Cy = (Ng id+ ) Ajo B) o Cy, = Ny Gy
Since w-clasps are non-zero elements of the vector splace Endwebq(gz)(w), it follows that N¢,, = 1 = N¢y,.

Thus,

w

Cy =Ne,Cy = (N, id+) AioB;) oCy = CyoCy
i
= Cyo (Ngyid+) AjoB;) = N¢,Cy = Cy.
,- b
O

DEFINITION 4.2.3. Let Ty € Endy,(g,)(V(w)) be the idempotent endomorphism with image V (wtw).

The endomorphism ®~1(my) in Endyyep, (g,) (W) is the algebraic w-clasp.

LEMMA 4.2.4. The algebraic clasp is a clasp, and @' (y,) = Cy.

PROOF. Since the algebraic clasp is non-zero and idempotent, we just need to argue that the alge-

braic clasp satisfies the third condition in the definition of clasp. Fix u such that wtu < wtw and let
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D € Homyyep,(g,)(w,u). The module V(wtw) is not isomorphic to any summand of V(u), so we know
that Homy, (g, (V (wtw), V (u)) = 0. Therefore, @(D) o 7, = 0, and by Theorem 3.2.2 we may conclude that
Do (@ ! (my)) =0. O

LEMMA 4.2.5. Let w be an object in Weby(g>), then there is a unique diagrammatic w-clasp Cy and

®(Cy) is an idempotent endomorphism of V(w) projecting to V (Wtw).

PROOF. From Lemma 4.2.4 we see that clasps exist and map under @ to the projector for V(wtw).

Uniqueness follows from Lemma 4.2.3. U

LEMMA 4.2.6. Let E € Endyep, (g, (W) be a non-zero endomorphism so that E?=E. [fC4oDoE =0

for all D € Homyyep,(g,) (w,u) such that wtu < wtw, then E = Cy,.

PROOF. Since we assume E is non-zero and idempotent, we just need to show that E satisfies the
third condition in Definition 4.2.2. Fix u such that wtu < wtw. Suppose inductively that Bo E = 0 for all
B e Homwebq(gz) (w,v) where wty < wtu. By Lemma 4.2.2 we can write C, = id+ ) ;A; o B; where each A;

has domain v; such that wty; < wtu. If D € Homyyep, (g, (w,u), then
(4.3) DoE =idoDoE =CyoDoE—Y AjoBjoDoE=—Y AjoBjoDoE.
i i

Since B; € Homwep, (g,) (1, V;) and D € Homyep, (g,) (W, u), we have B;o D € Homyyep, (4,) (W, V;). The induc-

tion hypothesis applies, so (B; o D) o E = 0, and Equation 4.3 implies Do E = 0. g

LEMMA 4.2.7 (Clasp Schur’s Lemma). Let u,v € Webq(g2) and let D € Homyyep, (4,) (u,v).

(1) If wtu # wty, then CyoDoCy = 0.
(2) Ifu=y, then CyoDoCy = Np - C,.

PROOF. By Corollary 3.2.1, we find: dimHomg, web,(g,)(CusCv) = Swtu,wiy- Thus, we can deduce the

following.

(1) If wtu # wty, then HomKarWebq(gz) (CE7CX) =0.
(2) If u=y, then HomKarWebq(gz)(CgaCy) =C(q) Cu.
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LEMMA 4.2.8. Let w,u, and v € Weby(g2). If V(wtv) is not a direct summand of V(wtw) @V (wtu),
then

CyoDo(Cy®Cy) =0

forall D € HomWebq(gz) (WRu,V).

PROOF. Corollary 3.2.1 implies that dim Homy,(web, (g,)) (Cw ® Cu, Cy) = 0, when V (wtv) is not a direct

summand of V(wtw) @ V(wtu). O
LEMMA 4.2.9 (Clasp absorption). Let w = x®y ®z in Weby(g2), then
(idy ®Cy ®id;) 0 Cy = Cy = Cy 0 (idy ®Cy ®id,).

PROOF. Since V(wtw) appears with multiplicity one in V(w), it follows that 7, is a central idempo-
tent in Endy,(4,)(V(w)). Therefore, (idy ®Cy ®id,) 0 Cy = Cy o (idy ®Cy ®id,) is also an idempotent and
Cyo Do (idy®Cy ®id,) o Cy = 0 for all D € Homyyep,(g,) (W, u) such that wtu < wtw. Thus, by Lemma
4.2.6 it suffices to show that (idy ®Cy ®id,) o Cw # 0. This is deduced from observing that the morphism
®((idx ®Cy ®id,) o Cy) acts on V(w)wiw as multiplication by 1. O

4.2.2. Neutral diagrams and generalized clasps.

DEFINITION 4.2.4. We will write Hgfg; = ‘H‘ and Hg;gf = ‘H‘. These are the basic neutral dia-

grams.
LEMMA 4.2.10 (Neutral absorption). If w = w, @@, W, and W' = w, 0, @ W,, then
(idw, ® Hy? g @idy, ) 0 Cy 0 (idw, @ Hg & @idy,) = Cy
in Endyep, (g,) (W)-

PROOF. Write Hg = idy, ® Hp 3! ®idy, and Hi, = idy, ® Hg' g ®idy,. By Lemma 4.2.3 we only
need to show that (Hg) oCy o (H,) satisfies the defining properties of a clasp.
Let D € Homyyep, (g,) (w',u) where wtu < wtw'. Then Do H% € Homyyep, (g,) (w,u) and wtw = wtw' >

! !
wtu, so DoHy oCy = 0. So Hy o Cy o Hy, satisfies the third condition in the definition of clasps.
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The following calculation shows that H}}, o HY 6 Cy = Cy.

| | | |
.l.ﬁ o0 ...M.l. l..ﬁ..l ...H.l.
1 | [4][6] | |
(44 I O 2 1 S

So we have

(HY oCyoHy) o (HY 0CyoHy,) = HY 0 Cy o (Hy, o HY o Cy) o Hy,

w w

This tells us that H% o Cy o Hy, satisfies the second condition in the definition of clasps.
What’s more, H%/ oCy o0 H%, # 0. Otherwise Cy, = Hi o (Hg oCyo Hi) o H% = 0, which is a contra-

diction. 0

DEFINITION 4.2.5. A neutral diagram Ny; € Homyep, (g,) (w,w') is a composition of tensor products of
identity diagrams and basic neutral diagrams. A reduced neutral diagram, is a neutral diagram such that

0,0 QL) (] 0,0 ; w'
Haoa, ©Ha o, 07 Ha @, ©Haq, do not occur as subdiagrams of Ny .

LEMMA 4.2.11. Fixw and w'.

(1) There is a neutral diagram N%/ if and only if wtw = wtw’.

(2) If wtw = wtw/, then there is a reduced neutral diagram in Homyyp, ( )(y, w').

9 -
(3) Reduced neutral diagrams are unique.

(4) Suppose lNi and 2N§ are two neutral diagrams. Then lNg oCy = 2N§ oCy.
PROOF. Omitted. U
NOTATION 4.2.1. Suppose wtw = wtw/, then we will write H%, for the reduced neutral diagram in

Homyyep, (g,) (w, w").
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EXAMPLE 4.2.1. Consider w = 0,® 0,00 , W = O100,®0>. We know that wtw = wtw' =

H |
(3,2). The reduced neutral diagram is H* = L_~ H

DEFINITION 4.2.6. Given a diagram D in Webq(g,) we will write D(D) for the diagram obtained by

flipping D upside down. Note that D(H@ ) = H&,.

DEFINITION 4.2.7. Given X,y so that wtx = wtw = wty, we define the generalized clasp C% = HXE o

Cy oHy. From Lemma4.2.11 it follows that if NXE and Ny’ are any neutral diagrams, then Cg = NXE oCyoNy.

PROPOSITION 4.2.1. The generalized clasps satisfy the following properties:
(1) G=Cy
(2) GioH; =Gy,
(3) HioCx =5,
(4) CjoCx =C%, and
(5) D(Gy) =G

PROOF. Exercise for the reader. For hints, see [17, Proposition 3.2]. ]

4.2.3. Elementary Light Ladders.

ft f
NOTATION 4.2.2. We write £ Hlandfz(k> - [k]2 - where [kt = [K][lk—1]... [2][1] and [K]3 :=
q3 .
Kol = g3 - [2]3 [1]p- Note thar [k = 5.
For each fundamental weight @ € {@;, @, } we choose a basis {'vy a }i—| ...dimv (@), for all weight spaces

V(@),. Our convention will be to not record the superscript i in "vu,a; when the weight space is multiplicity

one. Explicitly, we choose the following basis of V (@) ):
VaoLe =V V-L)e =1V, Ve -n.e = Lfivis Voo s = fifafivi,

wlzfl(z)fzfl"h V(1,-1).0 = A2 ffivi, and V(- f1f2f1 b fivi,

and the following basis of V (@,):

Vo0, = V2, VE-1).@ =22, Vao.e =12v2, Vi1, f1 fszz,
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Vo -1).m, = f2f1(2)f2V27 V(-32).@ = f1(3)f2V27
Yo0.m = flfzfl(z)fzm V0,008 = f2f1(3)f2V2,
VG3,-2).0 = fz(z)fl(3)f2V2, V(—2,1),8 = fl(z)fzfl(z)fzm
V(1,-1), f1f2 fl ) fova, V(-1,0), fl fz fl  fova,
V(-3,1), f1 fz f1 'fyva, and V(0,~1), fzfl fz fl ) fyva.

REMARK 4.2.2. The following relation holds in V (®-):

S fz(Z)f1(3)f2V2 = fo](Z)fol(Z)fQVQ.

Thus, there are two ways to present the vector v(| _1) g,-

DEFINITION 4.2.8. For each vector 'v, g € V(®), we associate a diagram in Webq(g>) denoted 'Ly, g.

Our convention will be to not record the superscript i in iLy,ar when the weight space is multiplicity one.

L 0),m, 12\ Liyye, 3:‘h Loy, o = | ) L0,0),m, 12’_\\
- Leve = Lone =0

Lo na =" L(_3,2)7@_\Hﬁ "Looo ﬁ Loy h
T TR
Lisiye, = ‘ILI_W Lo-na={")

The diagram iL“7a; is a morphism from ’me W —' Yoo We will refer to ' x

w@ as the in strand of

'Ly and "X%w as the out strand of 'Ly, i. Note that |l = Wt(iXIJ@') wt('x Xy.m)-

EXAMPLE 4.2.2. For L_ ‘m we have X(_» 1) o —(D'1ZD'1,X(izl)wzzwz,and(—Z,l):

Wt(Z(—Z,l),sz) - Wt(z(—Z,l).ﬁfg)‘
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NOTATION 4.2.3. If W is a subspace of a Uy(g2) module, we will write
Ker(upy(W):={weW : ¢{Tw=0=¢""w}.
LEMMA 4.2.12. Let a,b € Z>. Fix a fundamental weight @ and let @ € wtV (@). Then
4.5) [V(a,b) @V (@) : V((a,b) + u)] = dimKer, ) (V(@))-
PROOF. Follows from [47, Theorem 2.1]. ]

LEMMA 4.2.13. The following are equivalent:
(1) ‘vuo € Kerup)(V(®)y), and
(2) There is (c,d) € N x N such that wi('x,, &) + (c,d) = (a,b).

PROOF. The lemma can be deduced from the following claim: the weight of the in strand for 'L, g,
wt('x, ) is equal to the minimal (a,b) so that ‘v, g € Ker(,)(V(®)y). The claim is verified from the
vector to diagram correspondence "v#@ — iL%w, along with Equation (4.5), and the description of action of
e1 and e; on the vectors in each fundamental representation. Computing ey, - "v#,a; is left as an exercise, the

most interesting case is the zero weight space for the second fundamental representation. ([l

EXAMPLE 4.2.3. Whena >3 andb>2, [V(a,b)@V(®,) :V((a,b)+ )] =1 when u # (0,0), and
[V(a,b) @V (@,) : V(a,b)] = 2. The reader should compare this with the observation that for each 'Ly g,
the number of @ colored in strands is less than or equal to 3 and the number of ©, colored in strands is

less than or equal to 2.

For each dominant integral weight A = a®; +b®, € X, we choose a distinguished object u; € Webg(g2)

such that wtu, = A.
EXAMPLE 4.2.4. We must have Upg) = 010 and for Ui p) we choose one of @, or O, ).

DEFINITION 4.2.9. Let w be an object in Webq(g2) and let A = wtw. Suppose that vy, o € Ker; (V (@) ),
so in particular A+ € Xy. Let (¢,d) := A —wt('x, g), then by Lemma 4.2.13 we have (c,d) € Nx N, so

there is a reduced neutral diagram

S(ea) @(xy,
H“(/,d) ( ﬂID)

W S(eq) (X p)-
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Since (c,d) + Wt(izu ar) = A+ W, there is also a reduced neutral diagram

Ul 4u . i
S(c.d) ®(iZu.m) “X(ed) ®( Xﬂv“’) — rtp -

We define the elementary light ladder diagram to be

LI =W o ((dy, ) 9L ) o (M idg ).

w0 T S(c,d) ®(iXu.w

EXAMPLE 4.2.5. Consider w = ©,0,®0,0; and ® = @. We know that A = wtw = (3,1). When

p=(-2,1), so A +p=(1,2), choose uy ., = B 1B@>. Then

When u = (0,0), A+ u = (3,1), choose Uy = O101@ 0. Then

'ELLS o = and ~ ’ELLJ 3 =
| |

DEFINITION 4.2.10. Let w € Webq(g2). Write A = wtw, and suppose that 'vy g € Ker) (V(®)y). We

define the (clasped) light ladder diagram to be the following diagram:

‘LL o =C

Uiy © (iELLil,g;“) o (Cy®idg).
LEMMA 4.2.14. Let N%/ : w — W be a neutral diagram. Then
‘L% o (NY ®idg) 0 Cy @idg = LLy g

PROOF. Follows from Lemma 4.2.11. O

DEFINITION 4.2.11. Suppose that vy g,/ vy.g € Kerww (V(®)y) (we allow for i = j). We define the

(clasped) double ladder diagram 1o be the following diagram in Endygp, (q,) (WR®):
ijLLHAﬂL — (]D)(iLLH?Lﬂt)) ° (jLLﬂlﬂt)
WO ‘W, 'w,o /*

In the case that V (@), is one dimensional, we will drop the superscripts ij in double ladders and drop

superscript i in (clasped) light ladders.
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EXAMPLE 4.2.6. Consider w = ©0)0,®,®), ® = 0. When i1 = (—2,1) , choose Uy = 0100,

W
b +
LL;%” = | and IL]LEE’EZ," =| G |
| |
e I

then

REMARK 4.2.3. Using the definition of the elementary light ladder, and basic properties of clasps, we

can expand the clasped light ladder:

i L*““ =,

Ul +u

o (ELLy ') o (Cy ®idg)

S(c,d)

We can similarly expand the clasped double ladder:
LLgd : = (D(LLys')) o (VLLy &)

= (Cw®idg) o (D(ELLy &')) oC

Witp

o (JELLY3") o (Cow ®idg)

. W . . P 7(cd (y ﬁ;)
= (CE((,-,J)®("X;1.&;) ®1dw) o ((ldﬁ(c.d))@’D(lL#ﬂ)) oC )®(Jyu "

) @Uxy @)

0 <(id£(e>f)) ®jLH.,Gi> (Ciej ®1d )

This more complicated looking expanded formula, is actually simpler when viewed in terms of the graphical

calculus, as we illustrate in Example 4.2.7.

NOTATION 4.2.4. When wtx = wty = (a,b), we will use an (a,b) labelled box in Homyyp, (g,)(X,y) to

denote Cg.
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EXAMPLE 4.2.7. Let w = 0, 0,®0,0,,® = ®,. When u = (0,0), choose Uy = 010,00, then

(using Lemma 4.2.10) we have

Upy
'L mﬁfu =

REMARK 4.2.4. As (a,b) varies, so does Ker,,)(V(@)). However, the vector vg = vg 1 is always
contained in Ker(,y,)(V(®)). Moreover, the associated elementary light ladder is just a composition of

neutral diagrams, so the associated (clasped) double ladder can be simplified to
L]ng}tgjw = CE@@'

Thus, the (clasped) double ladder associated to the highest weight vector in V(@) is itself a clasp.
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4.3. Triple Clasp Formula for G,

4.3.1. Formulas.

(4.6)
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(4.8)

4.9

(4.10)

4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

(10)  _
Hap)a =1

-1y __lat1]

COR [d]
l‘(27_1) _ [3b+3][a+3b+4]

(a0).@1 3b][a +3b+3]

©00 la+2]la+3b+5]2a+3b+ 6]
t J—

(@h).o = 2][alla+3b+3][2a+3b+4]

[
(—21) _ la+1][2a+3b+5][3a+3b+ 6]

“ab)@ = (g 1][2a+ 3b+ 4[Ba+3b 1 3]

(-1 __Bb+3]la+3b+4)2a+3b+5][3a+6b+9]

(@b).6r — [3b][a+3b+2][2a+3b+4][3a+ 6b+ 6]

(10 _ la+1]la+3b+4][2a+3b+5][3a+3b+6][3a+6b+9]

(@b).®r — [a][a+3b+3][2a+3b+3][3a+3b+3][3a + 6b + 6]

01  _

Hab)m = 1

G- _ [3b+3]
(a,b), @2 — [31?]

(1,0) [a+3]la+3b+6]

(@b).0: = [][alla+3b+3)

1) _  la+1]ja+2]2a+3b+7]

@ = Bl —1][al[2a+ 3b+4]

ot [Bb+3)la+3b+4)la+3b+5]2a+3b+7]

“ab)® ~ [3][3b][at 36+ 2)a+3b+ 3][2a 1 3b+ 4]

l‘(_3’2) B [a+ 1] [361 + 3b+6]
(@b).® (g —2][3a+3b+ 3]

t
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(3,-2) [3b+3] [a—|—3b+4] [3a+6b+9]

4.2 =
(4.20) "ab)® = [3p—3][a+ 3b+ 1][3a+ 6b+ 6]
@21 (21 _ la+1][a+3b+6][2a+3b+5][2a+3b+6][3a+3b + 6]
(@b) @ [3][a — 1][a+ 3b+3][2a+ 3b+3][2a+ 3b +4][3a+3b + 3]
4.22) [(1=1) _[a+3][3b+3][a+3b+4][2a+3b+5][2a +3b + 6][3a + 65+ 9]
‘ (a.0).@ 3][a][3b][a+ 3b+ 2][2a + 3b + 3] [2a + 3b +4][3a+ 6b + 6]
4.23) (10 _ lat1]la+2[a+3b+4][a+3b+5][2a+3b+5][3a+3b +6][3a+6b+9]
‘ (@b).@ — [3][a—1][a][a+ 3b+2][a+3b+3][2a+ 3b+3][3a+3b+3][3a+ 6b + 6]
(4.24) [0 [a+1][2a+3b+5][3a+3b+6][3a+ 6b+9]
(a,b),@ [a —2][2a+3b +2][3a+ 3b][3a+ 6b + 6]
©0-1) _ [3b+3]la+3b+4][2a+3b+5][3a+3b+6][3a+6b+9]
(4.25) t =
(a,b), @ [3b][a+3b+ 1][2a+ 3b+2][3a+3b +3][3a + 6b + 3]
00) Meno, )
pl (0, _ a,b),m a,b),m
(4'26) < t(“»b)aw2> o 2’11‘(0’0) z,zt(O 0)
(a,b),@z (a b) [0))
. £,(0,0)
4.27) Drapy - =det (P10 )
Moreover,
12,00  _ 21,00
(4.28) “arym = Hab)my
[4][6][a + 2][3b+ 6][a + 3b + 5][2a + 3b + 6] [3a + 3b + 9] [3a + 6b + 12)]
4.29) -@(a.b) = )
’ (2][3][12][a][3b][a + 3b +3][2a+ 3b+4|[3a+3b+3][3a + 6b + 6]

and the entries of the matrix can be computed from the relations in Appendix A.1.

4.3.2. Verifying the clasp conjecture. Before proving our main theorem, we will prove the following,

which implies the clasp conjecture in type G.

COROLLARY 4.3.1. Fix A = a®, +b®, with a,b € Z>(. Let @ € {®;,®,} be a fundamental weight,

and let L € W - @ be a weight in the Weyl group orbit of ®. Then

(&Y, A +p)] e
o=+ ' )
o ilﬂ@%l+6+pmm>

96



PROOF. Intype G, The W invariant bilinear pairing on Z® is determined by (a;, ;) =2 and (o, o) =

6. In particular, /(o) = 1 and [(0) = 3. We set ¥ = 20./(at, &). The positive roots are
(4.30) 0,300 + 00,200 + 0,300 +20p, 00 + 0, 0,

the corresponding coroots are

4.31) o) o + o) 200 +3a) o) 420, 0 +30) o

To simplify notation, we will write s; := s¢,. It is not hard to see that

(4.32) dig) =1, doy =1, d(_2,1) = s15251, d(3,-2) = $251582,
(4.33) di_11) =1, di, 1) =52, d,—1) = s1525152, d(_3,1) = 52515251,
(4.34) da,—1) = s182, d(_32)=s251, d(_10)=s152515251, and dg_1) = 5251525152

The claim then follows from the formulas for til_w in Section 4.3.1. One verifies this by using that if

W= SB,SB, ---SB,s then

{OC S CI>+ Twol e CID,} = {Bﬂ’sﬁn(ﬁnfl)’sﬁnsﬁn—l (ﬁnfg),. < SB,SB,_y - .Sﬁz(ﬁl)},

along with the quantum number identity [r] s = [3n]/[3]. O

4.3.3. Proof of Triple Clasp Formula. Suppose that V(wtu) is a summand of V(wtw)®V (@), and

that (a,b) = A = wtw and (m,n) = u = wtu —wtw. Then we will write

24 (m.n)

pt %
lvo =" ap)o

Our convention is that the p/ superscript is neglected when dimV (@), = 1. By definition the elements
Pétiw only depend on the weights wtw and wtu, not the words w and u.

We will write (Petiw) to denote the matrix of scalars P(tim, for v,,ve € Keryiw(V(@)y).

LEMMA 4.3.1. The matrix (P'ty, &) is invertible over C(q).
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PROOF. From Section 4.3.1, using Equation (4.8) to Equation (4.25), and Equation (4.29), one can

check that the determinant of this matrix is invertible in C(g). O

DEFINITION 4.3.1. Let w € Webq(g2), write A = wtw, and let @ € {@, ™, }. We define the triple clasp
to be the following inductively defined diagram:
Tyoo =Ty ®idg — )y ("t )i Ty

pewtv(@)\{@} -
vi,vjE€Keryw (V(@)y)

where
Ty = (Ty ®idg) o (D(ELLy ') o Ty, ., 0 (ELL] ') o (T ®idg).

DEFINITION 4.3.2. By Lemma 4.2.7 there is a scalar P* Ki’}(}” such that

u u u
PLLy g oD(LLy3) =" Ky'a' - Cuy.,-

We call the matrix

u,
("K',

such that v,,,v; € Keryw(V(®)y), a local intersection form matrix.
LEMMA 4.3.2. If wtw = wtw/, then

pl Br+p _ pl Ya+u
K , .

wo — Ky
PROOF. First observe that

pl MAtu
Kwa “Cu.y

=PLL} S oD(‘LLya)

=PLLy o o (Cy ®idg) o D('LLy ')

=PLL) &' o (HY, ®idg) 0 (Cw ®idg) o (HY ®idg) o D(‘LLy &)

=PLL ™ o (Cw ®idg) o D(LLLE)
= PLLY o D('LL )
u

_pl My
="Ky CE“”.

The claim follows from comparing neutral coefficients. U
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NOTATION 4.3.1. We will write

pl. M. pl, Yrtp
K)L,Gi = Ky o

where wtw = (a,b).

EXAMPLE 4.3.1. Consider w = ®,0,®,®; and ® = @,. When u = (—2,1), choose Uy = 0100
Then

LIL I (12)|
UA4p | | (1a2) |
\ anl |
Mige Cu =] G D [ G.D |
| U]
[Cu | [(1,2) ]
I (1,2)]
When p = (0,0), choose Uy = 0100, ®,. Then we have the following:
LI €] LI G|
Co, | [ G| | Cuy | LG |
(2,1) (3,0)
| |
P2 Cu |=| fm 1= [GD ]| . % G |=] ‘Cw | = G|
(3,0 (2,1)
| |
| Cun | LB | | Cu | B |
TTTT anl RRE

REMARK 4.3.1. When u = (0,0), by taking the quantum trace, we know that 1’21(;%“ = Z’IK;}%". So

. , . (U . ,
the local intersection form matrix (p Ky o ) is symmetric.

NOTATION 4.3.2. Fix the following set of formal variables
X = {xE;i;w |a,b,c,d € Z>o and @ € {asl,wz}}.

We will consider elements in the ring </ == C(q)[x™! | x € Z].
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Suppose that (a,b) = A = wtw and (m,n) = [ = wtu,  , —wWtw, then we will write

L5 (m7”
pépuwk,wu = pgp(a,b)),w €,

where P'p EZ}:){W is the recursive relation described by Equation (A.4) to Equation (A.25), in Appendix A.2.

We also write pep%;n’;)) oK) to denote the right hand side of the recursive relation with each Plyht

o
replaced with P K/lll,ar Similarly, we write pZPEZ}?)),m(t) to denote the right hand side of the recursive relation

: pl M pl U
with each X).0 replaced by Ho

Our convention is that the pl superscript is neglected when dimV (@), = 1.

EXAMPLE 4.3.2. Consider w and v, ., in Webq(g2) such that wtw = (a,b) and wty, ,,, = (a+1,b).
Also, let ® = ©,. By Equation (A.13):

Wiy (10) [7] 1 (3,-1) 1
P,z = Pab)@ = B L Ya—2p+1),8 ~ (221

a—1,b),my Ka—1,).@
REMARK 4.3.2. Since the recursive relations in Appendix A.2 are elements of </, there is no question

whether a particular element in 2~ appearing in a relation is invertible or not. Thanks to Lemma 4.3.1 the
E;n”bl?’w(t) are also always well defined. This is not obviously true for P* pEZi’;))’w(K‘). However we
. u u

will prove that K4 =1, 4"

elements P'p

THEOREM 4.3.1. If w € Webq(g2), A = wtw, and @ € {1,2}, then

— Worn Wy
Ty=Cy and Kyg =lyg -

We will prove Theorem 4.3.1 by induction. To simplify the arguments, we will break the various steps

of the proof into smaller lemmas about the following statements. In what follows we write A = wtw.

Si(w):= <Tw = Cw>

Si(w, @) : = <1’£1<Lv1vfg,“ = Pét%vfg,”,for all u € wtV (@) and for all vy, , vy ¢ € Kery (V((D)M)
So(w, @) : = <Cw®id@ € span U {pZLLig’l >
pewtV(m)

vpveeKer, (V(@)yu)
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Sh(w, @) : = <{pL i’f};‘}vﬁel{eu (v(@),) is a linearly independent set, for all 1 € th(GF))

S3 (W7w) = <{PL HE)L,E)'“}VPGKCI)L(V(GF)M) is a basis for HomKarWebq(gz)(CE®idwvcﬂa+p)v

forall u € WtV(ZD'))

Sy(w, @) : = <p£l<;f§,” = pgpig,“(K),for all p e WtV(Gf))
Ss(w, @) : = <Tw®w = Cy ®idg — Y (") ﬂ'f'L]L%ﬂ)
pewtV(o)\{o}
vi,vj€Kery (V(@)y)
Se(w): = (Tvi = TW>

Sg(w, @) : = (CuoDo Twes = 0,for u such that (wtu—2) € wtV(®@)\{@} and for all possible diagram D>

LEMMA 4.3.3. If V(A + ) is a summand of V(A) @V (®), then A +u < A + @.

PROOF. Suppose V(A + u) is a summand of V(A1) ®V(@). Then V(®@), # 0. It follows that u €
O+ Z<yPy,s00—u > 0. ([l

LEMMA 4.3.4. If S| (X) for all x such that wtx < wt(w Q®), then S, (w, @).

PROOF. Write A = wtw. Since Ty gp = Cwam,

Cyvoo =Twea = Tw®idg — Z (pztil,gfﬂ)i_jl ‘ijTTil,gl-
pewtV(o)\{o}
V,’,VJ'EKCIA(V(@')”)

Also, we have wtw < wi(w®@ @) and wtu, ,,, < wt(w®@®), for all 4 such that V(A + ) is a summand of
V(A)®V(®),so Ty =Cy and T,

., = Cu, - Therefore,

Ty = (Ty®idg) o (D(ELLy &')) o T,

U ru

o (J'ELL;E,“) o (Ty ®idg)

= (Cy®idg) o (D(ELLy ")) oC

u; ., © (jELLHEA,gL) o (Cy®idg)
= LLg 3"
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The claim follows from observing that Cy g5 = LL&{U“ , which is a consequence of Lemmas 4.2.9 and 4.2.10

(i.e. clasp absorption and neutral absorption).

LEMMA 4.3.5. If S| (w,®), then Sy(w, D).

PROOF. Write A = wtw. For each u such that V(A + ) is a summand of V(1) ® V (@), consider the

linear relation

Y&, PLLS & =0.
P

We can precompose the relation with ]D)(ZLLEE’%“) for all v, € Ker, (V(@),) to obtain a family of relations

Zép P 3«15‘1 =
By our hypothesis, we obtain
Zép ét;vlgl =0,
and it follows from Lemma 4.3.1 that each §, = 0. U
LEMMA 4.3.6. If Sy (w, @), then S3(w, ®).
PROOF. Let g = wtu—wtw. By combining Corollary 3.2.1 with Equation (4.5), we may deduce the
following
dim Homg - web, (g,) (Cw ® idg, Cu) = dimHomy, g,) (V (wtw) @ V (@), V (wtu))
= dimKeryw (V(@)y).

The claim follows by observing that a linearly independent set with cardinality equal to the dimension of

the vector space must be a spanning set. g
LEMMA 4.3.7. If S4(w,®), and S’ (x, y) whenever wt(x @y) < wtw, then S|(w,®).

PROOF. The right hand side of the equation 7', s =y, (k) only involves terms / K.y such that
wt(x®y) < wtw. If we write pzp%v@(t) to denote the same formula with each ¥/ Kiu/ replaced by ’Jt; v

then our hypotheses imply that



Thus, to show that S (w, @) holds we must verify the following equality of rational functions in C(g):

which we verified using the SAGE code included with the source file of the arXiv version of [9]. U

EXAMPLE 4.3.3. We take verification of Equation (A.13) as an example. In order to verify that

(10) (1.0) _ 7] I 6oy 1
, (t)= Bl i le2pye T 2o
Ha-1.6).0, Ha—1.b).0,

we first write the t(s 9 s explicitly using Equations (4.17), (4.9), (4.16), and (4.10) to obtain
(), @

),

la+3)la+3b+6] _ [7] 1 _Bb+el) 1
[3][a]la+3b+3]  [3] ld] 36+ 3] [3b+3][a+3b+3]"
<M> [3b][a+3b+2]

We can rewrite this as:

(qa+3 _ q,a,3) (qa+3b+6 _ qfa73b76) (6] _ qfl) _

(4.35)
(@ —q ) (g — g )(g*t3013 — ga3b73)
(4.36) 9 —q” B (g ' — g~ (g*+6 — g=3b-6) B (g3 — g3b) (go3b+2 — gma—3b-2)
. q3 _ q*3 (qa _ qfa)(q(3b+3)fq*3h73) (q3b+3 _ q73b73)(qa+3b+3 - q*a*3b73) .

Making the substitutions A = q® and B = q°, we obtain:

(Ag*—A"'q3)(AB¢° —A"'B ¢ %) (g —q"") _
(@ —q3)(A—A"1)(AB3¢* —A~1B3¢73)
g —q 7 (Ag'-A7'q)(B¢*—B 3¢ °) (B?—B%)(AB*¢* —A"'B 3¢ ?)

4.38 - - :
*3%) ¢©—q° (A-AT)(B¢-B7q7) (B¢ -B7q7)(AB¢ —ATIB )

4.37)

Then we can use .simplify_full() in SAGE to simplify the rational function of A, B, and g, which is given by
the difference of the left hand side and right hand side of the above equation. The result computed by SAGE

is equal to 0, which tells us that Equation (A.13) holds.

LEMMA 4.3.8. If Si(x) for all x such that wtx < wt(w @®), and S| (w, @), then Ss(w,®).
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PROOF. By the definition of Ty, z We find

Tyow = Ty @idg — Y (Pt )5 T Ty ™.
pewtV(@)\{o}
Vi,VjEKerWlﬂ(V(CD')“)
Then by our hypotheses, we deduce that
Twow = Cy ®idg — Y (Plcga ™) - TLLy s ™.

pewtV(@)\{@} !
Vi,VjGKerwtﬂ(V(w)#)

LEMMA 4.3.9. If S5(w, @), then S¢(w Q).

PROOF. By Lemma 4.2.7 we deduce the following multiplication formula for double ladders:
P'LLy 50" LLy 5 = Swtuwiy' Ko - *LLY, .

Using the expression for T, wp from Ss(w, @) and the above formula, one can explicitly compute to verify

that Ty @ is idempotent.

LEMMA 4.3.10. If S5s(w,®) and S3(w,®), then Sg(w,®).

PROOF. Write A = wtw. Let u € wtV(®@)\{®@} and let u € Webg(g>) such that wtu = A + u. Let
D € Homwyep, (g,) (w®®,u). Consider the neutral diagram Hﬁ’l Hiu—uy +y and write D = Hi’”” oCyoD.

Combining that clasps are idempotent with Lemma 4.2.7 we find
Cyy,, oD o VLLY 5 =84y Cy,,, 0D 0 (Cy @idg) o TLLy "
By S3(w, @) there are scalars & such that

G

Uitp

oD o (Cy ®idg) = Z & kLLilvgl'
viEKeryww (V (@) )
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Thus, using S5(w, @) we can rewrite G

/
U oD oTygw as

Cy,., 0D o (Cy ®idp)—

Z (pgki,’tg,”);jl Cuy oD o (Cy ®idg) o ijLL%&g,”
vivieKen (V(@),) -

_ CEHM oD/ o (CE ®idw) _ Z Z(pé Kumu)”lék kLLJJru tj]u[;/uu
vi,vj€Kerww (V(®@)y) k

= Cg;ﬁu OD’ o (Cﬂ ®idw) - Z Z(M K%vfgu)tjl’é k \:}%u ]LLHAHL
vi,vj€Keryiw (V(@)y) ;

=Gy, oD'o(Cu®ido) = T Yl g
vj€Kerwtw (V(@)y)

=Cy,,, oD 0 (Cy ®idg) — Y &) 'jLL‘E’Vlvg’u
vi€Kerwiw (V(@)y) -

=0.

Using Lemmas 4.2.9 and 4.2.10 it is not hard to see that C, o Hy = CyoD, and it follows

Witn “A+

thatCEODOTE(@m =0. L]

LEMMA 4.3.11. Let w € Weby(g2) and let @ be a fundamental weight. If S>(x, W) and S (x, y) when-

ever wt(x @y) < wtw, then S4(w, D).

PROOF. Consider x, ¥ such that wt(x @y) < wtw. By S»(x, y) we obtain the following.

Cl®idll/ = Z Ué Uwix+p IJLwa[)(er

pneWLV(y)
vi,vj€Kerwix (V(Y)u)

Postcomposing with PLL;?’J,”“ and using Lemma 4.2.7 results in the next sequence of equalities.

pLL%W$+” _ Z l‘]g Ywix+u pLwaliru ijLngl;f+”
X, X,
vi,vj€Kerwex (V(¥)u)

o lj wlx+,u pl wlx+[,L j 7wtx+[,1
= )3 Exv Kyy Ly
viovjE€Kerwex (V(¥)u)

By S5(x, y) it follows that
Z ljé Bwix+u pt w‘;<+l,l — 5jp'

vieKerwx(V(¥)p)
105



From Definition 4.2.10, we can use that clasps are idempotent to write

LLy Y oD(LLy ) = C

Uwtx +y

OELLyy ™ o (Cy®idy) o D(ELLyy ™) oC

Uytx+y "

By Definition 4.2.9, ELL;YJ,““’ is a neutral map. Therefore, Lemma 4.2.11, Lemma 4.2.10, and Lemma

4.2.9, along with clasps being idempotent, implies

LLy Y oD(LLy ) = C

Hwty%—vl'

It follows that Ki‘f},“"’ = 1. Thus, ;f{,}”"’ =1 and

(4.39) Cray = Cx®@idy — Z (p@KivI;fw )l;l ) ij]LILiﬁ;,“”.
pewtV(y)\{vy}
vi,vj€Kerwix (V (W) )

Observe that

iy 5Co ="LLy o D(‘LL, &)

= Cy0PELLY, 50 (Cy ®idg) o D("ELLy, ) 0 Cy.

Then use Equation (4.39) for w = x @y to rewrite the C,, term on the right hand side. This new sum will
reduce to a scalar multiple of C, by repeatedly applying graphical reductions or by replacing another clasp,
necessarily of the form Cyg g for some y, @ such that wt(y @ @) < wtw, using Equation (4.39). The exact
form of the coefficient is determined via the calculations in Appendix A.4 of the arXiv version of [9], where

u

it is shown to be equal to ng;w(lc). Therefore, 7'k 5Cy = PKpE 5(K)Cu and the desired result follows

from looking at the neutral coefficient of each map. U

EXAMPLE 4.3.4. The above argument is best illustrated by example. Consider w with wtw = (a,b) and

assume S»(x, ) and S5(x, y) whenever wt(x @y) < wtw. Note that

(1) _ 1
Plap).m = 2] (—1,1)
Xa—1,b).@
We will show that Ki%ll’bm = p((;;)’la)jl(lc). Let wt(v@ @) = wtw. It follows from Lemma 4.3.2 that
Kiﬂ“a}:"’“) = ICXH fg;;l“jg,‘f. By definition we have that Ki%’a,lfgl) Cg(a—l,b ) is equal to
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Ua—1,b+1) . Uia—1,p+1)
Cg(a—l.bJrl) OELL!@@JM ° (CX@WI ®1dwl ) OD(ELLX@@JH ) OCE(a—l,lﬂl)'

As in the first half of the proof of Lemma 4.3.11, our hypotheses allow us to write
Crom =G ®idg, — Yy (" Kivr}!lw );jl : ijLLi‘,Vglw'
pewtV(m)\{@ }

v,',ijKEFMX(V(G)'] )”)

Using Lemma 4.2.8, we observe that if 4 # (—1,1), then

Cﬂ(af Lb+1

Ua—1,b+1) 0 Bwiviu\—1 ij Uty +u o Ya—1,b+1)
JOELL G55, 0 (", *)ij' Ly, " ®iday ) o D(ELLy 5, 3,) © Cy,

—1,b+1)

is zero. Finally, applying web relations (and properties of clasps) we find

(-1.1) _ 1
K(a,b),wlcg(a—l,w) - <_ [2] (-1 >Cu(a—1,b+1)'
Kia—1.b),0

We conclude with a schematic of the graphical calculations involved.

(a—1,b+1)

(a—1,b+1) (a—1,b+1)

(a—1,b)
(a—2,b)
(a—2,b) e 1 i
o ‘ ’ B (7171)
(a=2,b) K(a—16).m,
(a—2,b)
(a—1,b) !

(a—2,b) (a—1,b+1)
1 1
=—[2] @1b) - = | =(—[2] - p=ny ) —
(a—1.b),m (a-2.6) (a-1.b).; (a—1,b+1)

(a—l,blﬁl_l (a=1,b+1)

Finally, we combine the previous lemmas to deduce the result of our main theorem.
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PROOF OF THEOREM 4.3.1. We will prove the result by induction on wtw with respect to <. The base
case follows from observing that 7j is 1 times the empty diagram, which agrees with Cp. Assume that S (x)
holds for all x such that wtx < wtw and assume that S} (y, y) holds for all y, y such that wt(y ® y) < wtw.
We will show S;(w) and S} (W', @), where w = w' Q@.

Consider y, y such that wt(y @) < wtw. Then S;(x) holds whenever wtx < wt(y @), and by Lemma
4.3.4 we deduce S (y, ). Thus, Sz(y, w) holds for all y, y such that wt(y @y) < wtw.

If y, y is such that wt(y ®y) < wtw, then our inductive hypothesis also says that S (y, y) holds. Along
with Lemmas 4.3.5 and 4.3.6, this implies S5 (y, ) and S3(y, v). Hence, S5(y, ) and S3(y, w) holds for all
Yy, ¥ such that wt(y @y) < wtw.

For x such that wtx < wtw, we have S>(y, ¥) and S5 (y, ¥) whenever wt(y ® y) < wtx. So from Lemma
4.3.11 we deduce S4(x, @) for all x such that wtx < wtw and for arbitrary @.

If w=w @@, then wtw' < wtw, so S4(W',@). Also, if wt(y@y) < wtw', then wt(y @) < wtw so
S (y, w) holds whenever wt(y ®@y) < wtw'. Thus, Lemma 4.3.7 implies S} (W', @).

At this point, we know that S;(x) whenever wtx < wt(w'®®) and that S} (w’,®@) holds. Therefore,
Lemma 4.3.8 implies that Ss(w’, @) holds too. Then from Lemma 4.3.9 we deduce S¢(w' @) is true.

Moreover, since S| (W', @) is true, Lemmas 4.3.5 and 4.3.6 together imply S3(w’, @). Therefore, we can
use Lemma 4.3.10 to deduce Sg(w', @).

If we show that Ty oq # 0, then Definition 4.2.2 and Lemma 4.2.3 will tell us that S¢(w' ®®@) and
Sg(w', @) imply S;(w @®), so we are then done by induction. To see that Ty g is not 0, we apply P
from Theorem 3.2.1 and evaluate on a weight vector in V(W' @® )wiw +g. Using Ss5(w', @), along with the
observations that for all u such that wtu — wtw' =y € wtV (@)\{@}, the map & (*/ LL@M) acts as zero on
V(W @0 )wiw +a (since these maps factor through representations which do not have wtw’ +@ as a weight)

and @ (Cy ®idg ) acts on V(W @®)ww +o as multiplication by 1, we deduce that Ty g is non-zero. [
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APPENDIX A

Appendix for G, clasp expansions

A.1. Relations for computing the Pft((sﬁ’g))v - coefficients

(A1)

122,00 12,00 _ [3]la+2][3a+6b+9] _
2] (@b).o (a,b), 2][3b][a+3b+3][2a+3b+4][3a+ 3b+3|[3a+ 6b+ 6]

([3a+3b+6][2a+3b+5]+[a+3b+4][3b+3]+ [3“+3b+g][3b+3”2]2 +lat4]— [a—2]>

(A2)

L1,

©00) _ [6][8][15] | [2][a+2][a+3b+5][2a+3b42]  [a—2][3b+6][2a+3b+2][3a+3b]
(@b)@ —[3][5][12] = [3][a+ 1][a+3b+4][2a+3b+4]  [a][3b+3][2a+3b+3][3a+3b+ 3]

la—1)[3b+6][a+3b+5][a+3b+6][2a+3b+6]  [3b]ja+3b+1][2a+3b+2][3a+6b+3]

B][a][3b+3][a+3b+3][a+3b+4][2a+3b+3] ' [3b+3][a+3b+3][2a+3b+3][3a+6b+ 6]

la+2][a+3][3b][a+ 3b+2][2a+3b + 6]
Bllalla+ 1][3b+ 3][a+3b+ 3] [2a+ 36 + 3]

(A.3)
“fﬁf @( ) Crlane, P60 17143,’3?,@([4][6])2
Tny BPBPIE Ty \ 2
]+ a+3][3b][a+3b+2][a+3b+3][2a+3b+4]
[3][ ][ 2] [3B]la+2][3b+3][a+3b+4][a+3b+5][2a+3b+7|

la—1][a][3b+ 6][a+3b+6][2a + 3b + 4] 2][a][la+3b+3][2a+ 3D+ 8]
Blla+1]ja+2][3b+3][a+3b+5]2a+3b+7)  [3]la+1]ja+3b+4]|[2a+3b+ 6]
[a+4][3b][2a+3b+8][3a+3b+12]  [3b+6]ja+3b+7][2a+3b+ 8][3a+6b+ 15]
la+2][3b+3][2a+3b+7)[3a+3b+9] " [3b+3][a+3b+5|[2a+3b+7)|[3a+6b+ 12]
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A.2. Recursions for the coefficients

o led) o (ed) (cd) . (cd)
We write Xlab) = Xap).o and Yab) = Xap).o
(A4) prp) o =1
(-1 _ 1
(A5) Py = (21— LD
(a—1,b)
e-1n 7] I 1
(A.6) Py m = [a1 — Gio1) Ma+3bp-2) " (1.0) 112
oo 3l Yiap-1) Yiap-1) [3]
2,1 (—1,1)
a7 p00 BI8]  Fa—2b+1)  Farib-1) 1
: (ab), @ — LD 2.1 (0,0)
l [214] Xa—1.b) Xa—1.b) 2] Zx(a—uy)
2 2
(-2.1) BI8] (-1 1 1 (0,0) 1 El 1 )
(A.8) Plab)o = Xa-1b) ™ 1) =) Xla—2p41) — + X,
a,b), a—1, -1, -1, a—2, (0,0) (-1,1) (a—1,b)
l 2114 Xa-1,6) \*a—2.b) Xa—1,p) 2] Xa—2,b)
2
1 ( 3, 1 1 1)
T2 L (-1,1) _(-1,1) [7]
Xa—1,b) 2 Xa—2,b) *(a—3.b) 2
2 2
(1,-1) [6][8][15] T (2 1 2]\ 00 1 LY -1
(A9) Piolyya =~ TG Mat3b2) T 10 \[3]) Nt T mmn \ ) Mer2e-2)
: BI51012] Yab-1) / Yab-1) 3] Yab-1) 3)
2
1 (1>2x<2,_1> ! ( [4)l6 ) o ([4“61 >
(=1,1) (a—1,b) (0,0 2 0,0
Yo 3] my(a’bll) 2131°[12] z,zygaﬁb[ Y [2][12]
+< Lo, ) 6] (4]l
(0,0) (0,0) 2
172y(a’b71) 21 (a,b—1) [2][3] [12] [2” 2]
-0 _ 2712 L)) 1 (2 1 e
(A.10) Plap).m = 4l _x(_l"l) x(afz,b+1)_x(2.,—l) x(a+1,bf1)—1—x(_2,1) X(a=3,b+1)
(a—1,b) (a—1,b) (a—1,b)
1 (—1,1) 1
a0 Mab-1) T T(C10)
(a—1,b) (a—1,b)
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A1) Py g =1

G-1 _ 6] 1

(A.12) p(a,b)ﬁfz__m NCEIR
(a,b—1)
o) _ 7] L 6oy !
(A.13) p(a,b),wz - [3] T (-1,1) J(a=2b+1) x(2,71)
(a—1,b) (a—1,b)
7M1 om 1 1\’ o 1Y
(—1,1) (1,0)
(A14)  pl e =1 — e ( ) o —<+>
ab), ) EE e (a-2,b+1) ~ (0,0) )
’ 2] Xa—2,b) 3] Xa—1,6) \*a—-2.b) Xa—1,p) 2] X(a—2,b)
(A.15)
R e I R N
ab).@ G,-1) Y(a+3,b— {1,0) a+1,b— ) a1, 2.1
> [B][5] Y(ab-1) Y(ab—1) 3] Y(ab-1) 3] Y(ab-1) 3]
(A.16)
(_171)
P32 _ —@x(*“) N 1 @Jr 1 B Yia=2b+1)
(@b).@ ~ 3] 2] @26 " Ciny (- \2\[2] 0 (-BD (—11) ((~1L1) (-1,1) 2
X(a—2.p) (x(u—3,b)) (a=4.b+1) Xa—1,p) (x(a—z,b)x(a—a b))
i 3] i 1\ /B I ?
(_171)
[E=X)) ( Kla—20) T =10 ( (—1,1)> < (—1.0) ))
Xa—1,b) 2] Xa—2,p) \*a-3.b) 2] Xla—ab+1)
(A.17)
L1 (00 _le][8][1s] 1 L G ) S S (1SS S ) S
(ab),m — (—1,1) 7 (a—2,b+1) (2,—1) 7 (a+1,b—-1) (0,0) (a—1,b) (=2,1) 7 (a=3,b+1) (1,—1)
L I Ma—1.b) Ya-1.6) Ma-1) Ha-10)
(A.18)
2,2p((0f)> :_[4][6]2[18]_ 1 yE_35227 . 1 yE_ml)’ 1)—#%1’0)1,)_#%3’_31,),)
a,b),® (3,—1) 2 (a+3,b— (1,0) a+1,b— (—1,1) (a1, (=32) Y(a=3,b+1
’ BIEI02] Y(ab-1) Y(ab-1) Y(ab-1) Y(ab-1)

2,2.,(0,0) 2 1,2,,(0,0) 2,1,,(0,0) 1,1,,(0,0) 2
R S O 1 O IR Y R O X)) 4 labon) 41617 Vap1) [ [4][6]
Dap-1y) \ [2][12] Dap-1)  Dap—) ) 2127 Dwap—1y \ [12]
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(—1.1) (1.0)
12,00 _ P8 Yt ( 4, ) Vi) < 4 2 )
(a.b),@ — (1,0) L) L) L1 (-1
> RIBIPIN Y(ab-1) 3] Xa—1b-1) Y(ab-1) 3] [3]x(a—1,b—1)x(a—2 b—1)

(A.20)

2 2,2.(0,0)
(3,-2) [4][6]°[18] (3.-1) 1 ([3]2 11,(00) 2-[3] 15 (00) y(a+3,b—2>)
)

p(a7b),a;2 = - [3] [9] [12] y(aJ;f]) - ygzb_l)l (a+3,b-2) (3,—1) y(a+3,b*2) (yg3;1)2>> 2

2 2,2.(0,0) 2
1 yED 1 JED ) 00 Yao-1)  [4][6] 3D
y&g)_]) (a+1,b—1) )’8;_1)1) (a,b—1) (a+2,b-2) 9(%17_1) [2][12] (a,b—1)

1,2,,(0,0) 1,1,,(0,0) 2
5. Yap-) [4][6] [ [4][6] LBl )y Yab-1) ([4][6] | -1 ) G6-1
Plap—ry [212]\ [12] ~ “lab=) J7(ab=1) )

L ([4l6] [6] 1 [4][6)* ECICANS
e ([12]_[3]+ G ([3][12]_1+ G [12] ))

Yap-1) Y(ab-2)

1,1,,(0,0) (1,2,,(00)
G8I0S) (1) ('m—zm 2 ("0%00) | 22 00 )

N2 1) Ya—2,b+1)
<xE '2])> X(a—2.b)

b sy Ya-1b) B
(2,-1) “(at1lb-1) (0,0) 1) \2 (=2,1) L) (—1,1) \2 (~1,0)
Kla—1b) Kla—1b) (xg 3))> Fla—1,b) <x£a72}7) §a73,21)) Kla—1
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1

N

(A.22)

(a+1,b-2)

(7171)

(a—1,b—1)%

(3’71)
-2) (

+
y

(a,b—2)

(_171)

1
)
(a+1,b-2)

(a+1,b-2)

B

(_171)

(a+1,b

(_1’1)

(a—1,b—1)

(37_1)

(a—1,b)

(a,b—2)

(7171)

X

+
X

1
3]

1
(3771)

(a—1,b

y

4
3]

(a7b)7t’52

(A.23)

( 771)

(a—2.b

(7 171) (377 1)
(a—2,b)” (a—3,b)
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7b) )

(0,0)
(a2

(*%>_m%

(a—2,b

(31_1) N
(a—3,b)

1
)y

&)
(a—2,b

(a—1,b—1)

(a—2,b

N (2771)

1
(3571)
)Y (a—3.b)

(a=2,b

(7171)

(0.0)
(a—1,b)

1,2
) ) Y
)

(a—2,b

(a—3,b)

(3771)

1)
a-2b)Y

(a—3,b)

(_171)

(a—5.b+1)

(31_1)

21’
3]
3]

1
(_171)
(0,0)

Xa—4,b+1)

B
2]
(a—4,b+1

2 (0,0)

(7171)
2]

)("

(_111)

(a—2,b
(a—4,b+1)"(a—3,b)

(27_1)

(*1,1)
(a—1b-1)
[3)[5][12]
—1L1) _(—L,1)
+
)
(a—5b+1) X
(m_
)

(a—2,b)

(7151)
3%y

(73’1)

(a,b) N0

(a—2,b)
(a—2,b

(2771)

(A24) p

1
X

(a—4,b)

1
(7171)

2] [Z]XE;;J)))X

(a—2,b

1
(7271)
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_|_

(-1,1) GB-1)  _(2-1) (0,0) - B 2
Xa-ap+1)Y(a=5b+1)  Ka—4b+1) X(a—2.b) 2 x ) Al _1’1) (xga_l’l)))
( 3] 1 <[2]2+ 1 >
T ] (LD NV (-1,1) 2
2 Xa— 3] y(a_s,b+1)x(a—3,b) Y(a— 5h+1
2
Lo(B, 1 ) ! 1 <m ) ) 12,00 ( 3]
+ =t - = 2y ey =57 -
(0,0) ( (—1,1) (—1.1) —2.1) (—1,1) 1D (a=3.b+1)
X(a—2,b) 2] Xa-30)/ Ya-3p)  Fa-2.b) ] [z}x(a73,b)x(a74,b) 2]

2\ 2
1 1 1 1 3] 1 22.(00)
AT A S e RN e VAN ) ~ 7 (0.0) HJF L) Y(a-3p+1)
X, (x ’ )) Xa—4p+1)Y (a—5p+1)  Ma—ab+1) Xa—2,b) X(a=3.b)

1
“1,1)  (h12.(0,0) >
Xla— 4b+1 x a—3,b) 2] Xa—ab+1)

—

=

(a—3,b

1 ([3] L ([3} L1 )
0= 2l 00 2] (1D
Xa—1,b) 2 X(a—2.b) 2 X(a—3.b)

2
1 (-32) 1 1 1 3] 1 5]
b Youn 1 = -+ -
2 (10) ))) (ab=1) " (~10) ( (-1 (L1 ( -1 (1D
21[3] Y(a=3b-1) Xa—1,6) \Ma—2.b) *(a—3.b) 2 X(a—4,b+1)X(a=3,b) 3]

o-1 _ [7][8][15] | ) | I 1 -
(A.25) Pab)m = - Y o) T Y 0" =10 Yia—
ab), G1) Ya+3b-2) ~ (1,00 Yatl,b—1) — (—1,1) Yla—1,b)
BB Y(ab-1) Y(ab-1) Y(ab-1)
2,2,(0,0) 1,2,,(0,0)
__1 Y2 - 1 Y2 - Yab-1) 11 ©9 4 Yab-1) 12,00
2-1) Yat+2b-2) T (32) Ya-3b+1 ab—1 ab—1
Yiap-1) Yiap1) Dab-1) Dlap-1)
2,1,,(0,0) 1,1,,(0,0)
L Yabon) 2 00 Yab-1) 2,2y(0(b)) 1 Ly 1 Y&
a,b—1 a 1 a+3,b— -2 a—2,
D(ap-1) (b= Dab-1) ( ) yg 2)) (e : yEa;l)l) ( )
LNCER) L0 L 61 L o
T a0 Yat1b-2) T (1,0) Ya—1b-1) T (=31) Ya-3b) " _(0,-1) Y(ab-2)
Y(ab-1) Y(ab-1) (ab—1) Y(ab-1)
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