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Abstract

We review examples of Witten-Reshetikhin-Turaev quantum invariants, Hecke algebra, BMW algebra,

web categories, and relations between them. We define web categories for the quantum orthogonal group in

detail.

We also review recursive formulas for the highest-weight projectors in the web categories. We present

the triple clasp formulas for G2 in detail.
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CHAPTER 1

Introduction

A knot is an embedding of a circle in the 3-dimensional space, and a link is a collection of non-

intersecting knots which may be linked together. Alternatively, a link is an embedding of a disjoint union of

finitely many circles in the 3-dimensional space, and a knot can be seen as a link with one component. Two

links are topologically the same when one link can be transformed to the other one by continuous distortion

of the ambient space. In other words, we study the embeddings of circles up to ambient isotopy.

When the ambient space is R3, a link can be projected onto a plane R2. The projection is known as a

link diagram. For example, the link diagram of a Hopf link can be drawn as .

When a link is drawn on a plane, there are two types of crossings once we assign an orientation to each

component of the link: a positive crossing which follows the right hand rule, and a negative

crossing which follows the left hand rule.

Reidemeister [51] and Alexander-Briggs [1] showed that two link diagrams describe the same link up

to isotopy of R3, if and only if they can be related by a sequence of the three Reidemeister moves:

(RI) ↔ , (RII) ↔ , (RIII) ↔ .

A link invariant is a quantity assigned to each link, which remains unchanged for links that are the same

up to ambient isotopy. The link invariants associated to two link diagrams connected by Reidemeister moves

yield the same answer.

A framed link is a link where annuli are embedded in the 3-dimensional space instead of circles. A link

diagram can be seen as a diagram of a framed link by replacing each segment of the link diagram with a
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ribbon lying on the plane. Since the framing of the so obtained framed link is parallel to R2, it is called

the blackboard framing. For example, a framed Hopf link with the blackboard framing can be drawn as

. Since = ̸= , the Reidemeister move (RI) no longer holds for framed

links. Instead, one can replace (RI) by its modification

(RI)′ ↔ ↔ .

An invariant for framed links is a quantity assigned to each framed link, which remains unchanged for

framed links that are the same up to ambient isotopy. If the link diagrams of two framed links are connected

by a sequence of Reidemeister moves (R1)′, (R2), and (R3), then the invariants associated to the framed

links are the same. In this thesis, links refer to framed links, and link invariants refer to invariants of framed

links.

The discovery of the Jones polynomial in the early 1980’s [25] triggered mathematical developments

in areas including knot theory and quantum algebra. The Jones polynomial is a link invariant, written as a

Laurent polynomial in one variable. Witten [64] showed that the Jones polynomial of a given link can be

obtained by considering Chern–Simons topological quantum field theory. It was discovered by Reshetikhin

and Turaev [52] that the Jones polynomial can be defined by using the braiding structure in the Ribbon

category, which is universally constructed for any simple Lie algebra g, generalizing the Jones polynomial

to a family of quantum link invariants. When q is at a root of unity, the ribbon categories also give invariants

of a three-manifold by coloring the link along which Dehn surgery [14] is performed. These quantum

invariants are known as Witten-Reshetikhin-Turaev invariants.

The Ribbon category related to the Jones polynomial can be presented as the Temperley-Lieb category

[60]. Half a decade earlier Rummer-Teller-Weyl found a description of morphisms between tensor products

of the vector representation of SL2(C) in terms of cup and cap diagrams [56, Equation 3]. The q-analogue of

their result is that the Temperley-Lieb Category is monoidally equivalent to the full monoidal subcategory

of Rep(Uq(sl2)) generated by the q-analogue of the vector representation. Hence we can use diagrams and

graphical calculations in the Temperley-Lieb category to study the representation theory of Uq(sl2).

2



The web category of g2 was first introduced by Kuperberg [35] to compute the quantum link invariants

for in the g2 case. The definition of web categories was later generalized to include all the rank two simple

Lie algebra g, i.e. g= sl3 , sp4, or g2 [36]. It was shown in the paper that the web category of g is monoidally

equivalent to the category of fundamental representations of the quantum group Uq(g), generalizing the

relation between the Temperley-Lieb Category and the representations of Uq(sl2).

Bearing the goal of giving graphically presented, generators and relations descriptions of the monoidal

categories of fundamental representations of quantum groups, the definition of web categories was later

extended to types A [11] and C [8].

Khovanov developed a homology theory for links that categorifies the Jones polynomial [30], which

provides a link invariant with more information than the Jones polynomial. Web categories are used for the

categorification of quantum link invariants in the sl3 case [31] and sln case [42, 50, 54].

In this thesis, we review examples of quantum link invariants in different Lie types, the graphically

presented algebras and categories related to quantum invariants and representations of quantum groups, and

their relations to web categories. We define the web categories for the quantum orthogonal group, based on

joint work with Bodish [10]. We also demonstrate how to use web categories to study the representations of

quantum groups, by giving a graphical expression for any irreducible representation of the quantum group

Uq(g2), based on joint work with Bodish [9].
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CHAPTER 2

Quantum invariants and Skein categories

2.1. Jones polynomial and Temperley–Lieb category

2.1.1. Jones Polynomial. The Jones polynomial is the very first example of quantum invariants for

links and knots. It can be computed via the following definition given by Jones.

DEFINITION 2.1.1. [25] The Jones polynomial Vt(K ) associated to a link or knot K is a Laurent

polynomial in t
1
2 , satisfying the following relations:

Vt

 = 1, t ·Vt


− t−1 ·Vt


+(t

1
2 − t−

1
2 ) ·Vt

 = 0.

2.1.2. Bracket polynomial. The bracket polynomial defined by Kauffman, also known as the Kauff-

man bracket, is a reinterpretation of the Jones polynomial.

DEFINITION 2.1.2. [28] The bracket polynomial ⟨K ⟩ of a link or knot K is a Laurent polynomial in

A, which satisfies the following relations:

〈 〉
= 1,

〈 〉
= A

〈 〉
+A−1

〈 〉
,

〈 ⊔
K

〉
=−(A2 +A−2)

〈
K
〉
, K nonempty.

EXAMPLE 2.1.1. We compute the bracket polynomial of a Hopf link.

〈 〉
= A

〈 〉
+A−1

〈 〉
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= A2

〈 〉
+

〈 〉
+

〈 〉
+A−2

〈 〉

= (−A2(A2 +A−2)+1+1+−A−2(A2 +A−2))

〈 〉
=−A4 −A−4

DEFINITION 2.1.3. Given a link or knot K , the writhe of K is defined as the number of positive

crossings of K minus the number of negative crossings of K . Denote the writhe of K by wr(K ).

The Jones polynomial can be seen as a normalized bracket polynomial in the following sense.

THEOREM 2.1.1. [28] Given a link or knot K , the relation between the Jones polynomial and the

bracket polynomial is the following

VA−4(K ) = (−A)−3wr(K ) · ⟨K ⟩ .

2.1.3. Temperley–Lieb category. Using the skein relations from the bracket polynomial, we can de-

fine a graphical category know as the Temperley–Lieb category.

DEFINITION 2.1.4. [60] The Temperley–Lieb category TL is a pivotal Z(q±)-linear category whose

object is a tuple of dots, and whose morphism is a linear combination of planar matchings between two

tuples of dots, modulo the tensor ideal generated by the following relation:

=−(q+q−1).

TL can be made into a Z(q± 1
2 )-linear braided tensor category by defining the braiding:

= q
1
2 +q−

1
2 .
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REMARK 2.1.1. The tensor product of objects in the Temperley–Lieb category TL is concatenation of

tuples of dots, for example: ⊗ = .

The tensor product of morphisms is horizontal concatenation. The composition of morphisms is vertical

stacking. For example, consider the following morphisms in the Temperley-Lieb category

f = ∈ EndTL(•⊗3) and g = ∈ HomTL(•⊗5,•⊗3),

we know that

f ⊗g = and f ◦g = = −(q+q−1) .

PROPOSITION 2.1.1. A link or knot K evaluated as a morphism in the Temperley–Lieb category from

the empty word to the empty word yields a scalar ⟨K ⟩TL. Let q = A2, ⟨K ⟩TL is related to the bracket

polynomial by the following relation

⟨K ⟩TL =−(q+q−1)⟨K ⟩.

PROOF. Set q = A2, then K is evaluated in the Temperley–Lieb category by the same skein relations as

the ones applied to compute the bracket polynomial, until the end where an unknot is evaluated as −(q+q−1)

in the Temperley-Lieb category whereas ⟨unknot⟩= 1. □

2.2. Type A quantum link invariant and skein category, and Hecke algebra

2.2.1. HOMFLY-PT polynomial. The Jones polynomial is the quantum invariant for links and knots

in the sl2 case. A generalization to the sln case is known as the HOMFLY-PT polynomial.

DEFINITION 2.2.1. [18, 49] The HOMFLY-PT polynomial Px,y,z(K ) associated to a link or knot K is

a Laurent polynomial in x, y, and z, satisfying the following relations:

Px,y,z

 = 1, x ·Px,y,z


+ y ·Px,y,z


+ z ·Px,y,z

 = 0.

REMARK 2.2.1. When x =−t−1, y = t, and z = t
1
2 − t−

1
2 , Px,y,z(K ) =Vt(K )
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2.2.2. HOMFLY-PT skein category. Using the language of category theory, one can take the skein

relations from the definition of HOMFLY-PT polynomial for knots and links to generate relations on tangles.

DEFINITION 2.2.2. [62] The HOMFLY-PT skein category OS(z, l) is a Z[z±, l±]-linear pivotal cate-

gory whose objects are generated by { ↑,↓ }, and whose morphism is a linear combination of matchings

(framed oriented tangles) between two words in the letters ↑ and ↓, modulo the tensor ideal generated by

the following relations:

= l · = , = = , = , = ,

= , − = z , =
l − l−1

z

REMARK 2.2.2. A link or knot K evaluated as a morphism in the HOMFLY-PT skein category from

the empty word to the empty word yields a scalar ⟨K ⟩A. ⟨K ⟩A is related to the HOMFLY-PT polynomial

by the following relation

l−wr(K )⟨K ⟩A =
l − l−1

z
Pl,−l−1,−z(K ).

2.2.3. Hecke algebra.

DEFINITION 2.2.1. The k-strand Hecke algebra of type A, denoted by Hk(q), is the unital associative

Z[q±]-algebra generated by Ti for 1 ≤ i ≤ k−1, with relations:

(1) T 2
i = (q−q−1) ·Ti +1,

(2) TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ k−2,

(3) TiTj = TjTi for |i− j|> 1.
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PROPOSITION 2.2.1. There is an isomorphism between the Hecke algebra and the endomorphism space

in the HOMFLY-PT skein category:

F : Hk(q)−→ EndOS(q−q−1,l)(↑⊗k)

Ti 7→

i−1 k− i−1

PROOF. One can verify that the relations in Definition 2.2.1 are satisfied by applying relations in Defi-

nition 2.2.2 when z = q−q−1. □

2.3. Type B,C, and D quantum link invariant and skein category, and BMW algebra

2.3.1. Kauffman polynomial. Further generalization of the Jones polynomial to the type B,C, and D

cases is known as the Kauffman polynomial.

DEFINITION 2.3.1. [29] The Kauffman polynomial Lr,z(K ) associated to a link or knot K is a rational

function in r and z, satisfying the following relations:

Lr,z


−Lr,z


= z ·Lr,z

 −

 ,

Lr,z


= r ·Lr,z


 , Lr,z

 = 1.

2.3.2. BMW category. Again, one can define a category whose morphisms are given by linear combi-

nations of tangles, which satisfy the skein relations from the Kauffman polynomial.

DEFINITION 2.3.2. Define the BMW skein category, BMW(r,z), to be the Z[r±,z±]-linear braided

pivotal category with generating object •, such that

− = z ·

 −


8



and

= r .

REMARK 2.3.1. A link or knot K evaluated as a morphism in the BMW skein category from the empty

word to the empty word yields a scalar ⟨K ⟩BCD. ⟨K ⟩BCD is related to the Kauffman polynomial by the

following relation

⟨K ⟩BCD =

(
1+

r− r−1

z

)
Lr,z(K ).

2.3.3. BMW algebra.

DEFINITION 2.3.1. [5, 45] The k-strand BMW algebra BMWk(r,z) is the unital associative Z[r±,z±]-

algebra generated by ei,gi,g−1
i for 1 ≤ i ≤ k−1, with relations:

(1) gi −g−1
i = z(1− ei), gig−1

i = 1 = g−1
i gi,

(2) e2
i =

(
1+ r−r−1

z

)
ei,

(3) gigi+1gi = gi+1gigi+1 for 1 ≤ i ≤ k−2,

(4) gig j = g jgi for |i− j|> 1,

(5) eiei+1ei = ei, ei+1eiei+1 = ei+1 for 1 ≤ i ≤ k−2,

(6) gigi+1ei = ei+1ei, gi+1giei+1 = eiei+1 for 1 ≤ i ≤ k−2,

(7) eigi = giei = r−1ei,

(8) eigi+1ei = rei, ei+1giei+1 = rei+1 for 1 ≤ i ≤ k−2.

PROPOSITION 2.3.1. There is an isomorphism between the BMW algebra and the endomorphism space

in the BMW skein category:

F : BMWk(r,z)−→ EndBMW(r,z)(•⊗k)

gi 7→

i−1 k− i−1

ei 7→
i−1 k− i−1

9



CHAPTER 3

Web categories

3.1. Quantum groups and their representation categories

We recall the definition of the quantized universal enveloping algebra Uq(g) for any simple Lie algebra

g, as well as the representation category and fundamental representation category of Uq(g).

DEFINITION 3.1.1. Define the quantum integer [n]v :=
vn − v−n

v− v−1 . Denote [n]v! := [1]v[2]v[3]v...[n]v. De-

note

n

k


v

:=
[n]v!

[k]v![n− k]v!
. When v = q, write [n] := [n]q.

DEFINITION 3.1.2. [23, Section 4.3]

Let g be a semisimple Lie algebra, over C, with associated root system Φ, viewed as a subset of the

weight lattice X. Fix a choice of simple roots Π ⊂ Φ. The Weyl group W acts on ZΦ. Write (−,−) to denote

the unique W invariant symmetric bilinear form on ZΦ, normalized such that (α,α) = 2 whenever α is a

short root. Write

α
∨ :=

2α

(α,α)
∈ X and qα := q(α,α)/2 ∈ C(q) for all α ∈ Π.

Define Uq(g) as the associative F-algebra generated by

Eα ,Fα ,K±1
α , α ∈ Π

subject to relations (R1)-(R6) [23, Section 4.3].

The algebra Uq(g) is a Hopf algebra with comultiplication ∆, antipode S, and counit ε defined on

generators as follows:

(3.1) ∆(Eα) = Eα ⊗1+Kα ⊗Eα , ∆(Fα) = 1⊗Fα +Fα ⊗K−1
α , ∆(Kα) = Kα ⊗Kα ,

(3.2) S(Eα) =−K−1
α Eα , S(Fα) =−FαKα , S(Kα) = K−1

α ,
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(3.3) ε(Eα) = 0, ε(Fα) = 0, and ε(Kα) = 1.

The irreducible, finite dimensional, type-1 representations of Uq(g) are in bijection with the finite dimen-

sional irreducible representations of g(C). The dominant weights, X+, are the Z≥0 span of the fundamental

weights ϖi. For each λ ∈ X+ we write V (λ ) for the Uq(g) module which corresponds to the g representation

with highest weight λ .

The algebra Uq(g) is a Hopf algebra, so its representation category is a monoidal category. We are

only interested in type-1 Uq(g) modules, that is modules such that {Kα : α ∈ Π} act diagonalizably with

eigenvalues in +qm for m ∈ Z. It is not hard to see that the condition of being type-1 is closed under taking

tensor product.

NOTATION 3.1.1. We write Rep(Uq(g)) for the monoidal category of finite dimensional type-1 Uq(g)

modules.

The category Rep(Uq(g)) is completely reducible [23, Theorem 5.17]. Moreover, we can determine

how a module in Rep(Uq(g)) decomposes by looking at its weight space decomposition.

The modules V (λ ) are type-1. Also, we have

V (λ )⊗V (µ)∼=
⊕

ν∈X+

V (ν)⊕mλ ,µ
ν ,

where the integers mλ ,µ
ν are the same as those describing the tensor product decomposition of the analogous

g(C) modules. So the tensor product of type-1 modules are also type-1.

DEFINITION 3.1.1 ( [23, Section 5.1]). A module W ∈ Rep(Uq(g)) decomposes as a direct sum

W =⊕µ∈XWµ ,

where

Wµ = {w ∈W | Kαw = q(α,µ)w,α ∈ Π}.

We will call this direct sum decomposition the weight space decomposition of W, say that Wµ is the µ

weight space of W, and call w ∈Wµ a weight vector of weight µ . We say that

wtW := {µ |Wµ ̸= 0}
11



is the set of weights of W.

NOTATION 3.1.2. Let W be a module in Rep(Uq(g)). For each λ ∈ X+ there are non-negative integers

mλ (W ) such that

W ∼=
⊕

λ∈X+

V (λ )⊕mλ (W ).

We write [W : V (λ )] := mλ (W ) in this case.

DEFINITION 3.1.2. The category of fundamental representations, Fund(Uq(g)) is the full monoidal

subcategory of Rep(Uq(g)) generated by the objects V (ϖi).

REMARK 3.1.1. The objects in the category Fund(Uq(g)) are all isomorphic to iterated tensor products

of fundamental representations. This includes the empty tensor product, which we take to be the trivial

module, denoted by 1. The category is C(q)-linear additive, but is not closed under taking direct summands.

3.2. Web categories for G2

We now recall the definition of the first web category Webq(g2), initially invented to compute the

quantum invariants for links and knots in the G2 case by introducing trivalent graphs [35].

3.2.1. Definition of g2 Webs.

DEFINITION 3.2.1. [35, 36] The category Webq(g2) is the strict pivotal C(q)-linear category, whose

objects are generated by self-dual objects ϖ1 and ϖ2, and whose morphisms are generated by the following

two trivalent vertices:

ϖ1

ϖ1 ϖ1

∈ HomWebq(g2)(ϖ1 ⊗ϖ1,ϖ1) and

ϖ2

ϖ1 ϖ1

∈ HomWebq(g2)(ϖ1 ⊗ϖ1,ϖ2),

modulo the tensor-ideal generated by the following relations:

(S1) =
[2][7][12]
[4][6]

, (S2) =
[7][8][15]
[3][4][5]

,

12



(S3) = 0 , (S4) = 0 , (S5) = 0 ,

(S6) =− [3][8]
[2][4]

, (S7) =−[2] ,

(S8) =
1
[2]

+ − 1
[3]

− [4][6]
[2]2[12]

.

The tensor product of objects in Webq(g2) is concatenation of words. Tensor product of morphisms is

horizontal concatenation. Composition of morphisms is vertical stacking.

EXAMPLE 3.2.1. Let

f = ∈ HomWebq(g2)(ϖ
⊗3
1 ,ϖ1 ⊗ϖ2), g = ∈ HomWebq(g2)(ϖ

⊗2
1 ,ϖ⊗3

1 ).

Then

f ⊗g = ∈ HomWebq(g2)(ϖ
⊗5
1 ,ϖ1 ⊗ϖ2 ⊗ϖ

⊗3
1 )

and

f ◦g = ∈ HomWebq(g2)(ϖ
⊗2
1 ,ϖ1 ⊗ϖ2).

LEMMA 3.2.1. The following relations follow from the skein relations given in Definition 3.2.1:

13



(S9) = 0 (S10) =− [3]
[2]

(S11) =
[6]
[2]2

(S12) =
1
[2]

+
1
[2]

(S13) =− [4]
[2]2

 +

+
[3]
[2]2

 +



(S14) =
1
[2]

 + + + +



− 1
[2]2

 + + + +



PROOF.

(S9) :
(S7)
====− 1

[2]
(S8)
====− 1

[2]


1
[3]

+
[4][6]
[2]2[12]

− 1
[2]

+



(S3) (S1) (S6)
=========− 1

[2]

(
[4][6]
[2]2[12]

[2][7][12]
[4][6]

− 1
[2]

− [3][8]
[2][4]

)
= 0

14



(S10) :
(S8)
====

1
[2]

+ − 1
[3]

− [4][6]
[2]2[12]

(S7) (S4) (S9)
=========

(
1
[2]

− [2]

)
=− [3]

[2]

(S11) :
(S8)
====

1
[2]

+ − 1
[3]

− [4][6]
[2]2[12]

(S4) (S6) (S3)
=========

(
1
[2]

+
1
[3]

[3][8]
[2][4]

)
=

[6]
[2]2

(S12) :
(S8)
====

1
[2]

+ − 1
[3]

− [4][6]
[2]2[12]

(S5) (S10) (S4)
==========

1
[2]

+
1
[3]

[3]
[2]

(S13) :
(S8)
====

1
[2]

+ − 1
[3]

− [4][6]
[2]2[12]

(S10) (S11) (S6)
===========

1
[2]

− [3]
[2]

− 1
[3]

[6]
[2]2

+
[4][6]
[2]2[12]

[3][8]
[2][4]

Then by (S8), we can replace the internal double edge and get (S13).

(S14) :
(S8)
====

1
[2]

+ − 1
[3]

− [4][6]
[2]2[12]
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(S12) (S13) (S11)
===========

1
[2]

+
1
[2]

+
1
[2]

+
1
[3]

[4]
[2]2

+
1
[3]

[4]
[2]2

− 1
[3]

[3]
[2]2

− 1
[3]

[3]
[2]2

− [4][6]
[2]2[12]

[6]
[2]2

Then use (S8) to get rid of the internal double edges, and we obtain (S14).

□

3.2.2. Equivalence between Kar(Webq(g2)) and Rep(Uq(g2)). We recall the results of [36] which

describe the relation between g2 webs and representations of the quantum group associated to g2. We will

only work over the field C(q) where q is either an indeterminant or a generic element of C×.

NOTATION 3.2.1. Let Φ be the root system of type g2 with Weyl group W and simple roots α1 and α2,

where α1 is the short root. It follows that the positive roots are

Φ+ = {α1,3α1 +α2,2α1 +α2,3α1 +2α2,α1 +α2,α2}.

Equip ZΦ with the W invariant symmetric form determined by

(α1,α1) = 2, (α1,α2) =−3 = (α2,α1), and (α2,α2) = 6.

We write X for the integral weight lattice and X+ for the dominant integral weights. The fundamental

weights are ϖ1 = 2α1+α2 and ϖ2 = 3α1+2α2. We may use the notation (a,b) for aϖ1+bϖ2, in particular

X+ = {(a,b) | a,b ≥ 0}.

DEFINITION 3.2.2. Let λ ,µ ∈ X+. We define µ ≤ λ if λ − µ is a non-negative linear combination of

positive roots. We also write µ < λ if µ ≤ λ and µ ̸= λ .

DEFINITION 3.2.3. Let w be an object in Webq(g2). Then w = w1w2 . . .wn for wi ∈ {ϖ1,ϖ2}. We define

V (w) :=V (w1)⊗V (w2)⊗ . . .⊗V (wn).
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REMARK 3.2.1. Note that

V (w)∼=
⊕

µ∈X+

V (µ)⊕mw
µ

.

The integers mw
µ := mµ(V (w)) = [V (w) : V (µ)] are the same as those describing the tensor product decom-

position of the analogous g2(C) modules.

NOTATION 3.2.2. Given an object w = w1w2 . . .wn, we write

wtw =
n

∑
i=1

wtwi.

Note that wtw ∈ X+ for all w.

THEOREM 3.2.1 ( [36, Theorem 5.1]). There is an essentially surjective monoidal functor

Φ : Webq(g2)→ Fund(Uq(g2))

such that Φ(ϖ) =V (ϖ) for ϖ ∈ {ϖ1,ϖ2}.

THEOREM 3.2.2 ( [36, Theorem 6.10]). Let w and u be objects in Webq(g2). Then

dimHomWebq(g2)(w,u) = dimHomFund(Uq(g2))(V (w),V (u)),

and it follows that the functor Φ is an equivalence of monoidal categories.

Recall that given a category C , the Karoubi envelope of C , is the category with objects: pairs (X ,e),

where X is an object in C and e ∈ EndC (X) is an idempotent, and morphisms: triples (e′, f ,e) : (X ,e) →

(Y,e′), where f : X → Y is a morphism in C so that e′ ◦ f ◦ e = f . Given a C(q)-linear category C , the

additive envelope of C is the category with objects formal direct sums of objects in C and morphisms

matrices of morphisms in C .

DEFINITION 3.2.4. Let C be a C(q)-linear category. Define the Karoubi completion of C to be the

additive envelope of the Karoubi envelope of C .

COROLLARY 3.2.1. The functor Φ induces an equivalence of monoidal categories

Kar(Webq(g2))→ Rep(Uq(g2))
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such that (w,e) 7→ imΦ(e) and (e′, f ,e) : (w,e)→ (w,e′) 7→ Φ(e′ ◦ f ◦ e).

PROOF. Since every object in Rep(Uq(g2)) is a direct sum of direct summands of objects in Fund(Uq(g2)),

this follows from Φ being an equivalence. □

3.3. Web categories in type A

DEFINITION 3.3.1. [11] Define the pivotal C(q)-linear category Webq(sln) whose objects are gener-

ated by the objects k±,k ∈ {1,2, ...,n−1}, and whose morphisms are generated by the following four types

of vertices:

k+ l

k l
∈ HomWebq(sln)(k⊗ l,k+ l),

k+ l

k l

∈ HomWebq(sln)(k+ l,k⊗ l),

k

n− k
∈ HomWebq(sln)(k,(n− k)−),

k

n− k
∈ HomWebq(sln)(k

−,n− k),

for k ∈ Z≥0, modulo the tensor ideal generated by the relations (2.3)-(2.10) from [11].

PROPOSITION 3.3.1. [11] The braiding β1,1 ∈ HomWebq(sln)(1⊗1,1⊗1) is given by the following

= q1− 1
n −q−

1
n 2 .

3.3.1. Functor from the type A web categories to the HOMFLY-PT skein category.

PROPOSITION 3.3.2. The assignments ↑ 7→ 1 and

7→ q
1
n

determines a pivotal braided monoidal functor

η : OS(q−q−1,qn)−→ Webq(sln).

The functor is full when we restrict Webq(sln) to its full subcategory whose objects are generated by 1.

PROOF. One can verify that the relations in Definition 2.2.2 are satisfied, by resolving crossings into

trivalent graphs using Proposition 3.3.1, and then apply relations in Definition 3.3.1. □
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3.3.2. Equivalence between the type A web categories and the representation categories of quan-

tum groups in type A.

THEOREM 3.3.2. [11] There is a functor

Φ : Webq(sln)→ Fund(Uq(sln))

sending k to Vωk , which is an equivalence of C(q)-linear pivotal categories.

REMARK 3.3.1. The composition of two functors Φ ◦η induces a full functor from OS(q− q−1,qn) to

Fund(Uq(sln)), which is not faithful.

3.4. Web categories in type C

DEFINITION 3.4.1. [8] Define the pivotal C(q)-linear category Webq(sp2n) whose objects are gener-

ated by the self-dual objects k ∈ {1,2, ...,n}, and whose morphisms are generated by the following trivalent

vertices:

k+1

1 k

∈ HomWebq(sp2n)
(1⊗ k,k+1) ,

k+1

k 1

∈ HomWebq(sp2n)
(k⊗1,k+1)

for k ∈ Z≥0, modulo the tensor ideal generated by idk for k > n, and the following relations.

(3.4a) 1 =− [n][2n+2]
[n+1]

, (3.4b)
2

1

= 0 , (3.4c)

k

k

1 k−1 = [k]

k

, (3.4d) k+1

k1 1

k+2

= k+1

k 11

k+2

(3.4e)

k

1 1

k

k+1 = 11

2

k k

1 1

k−1

− [n−k]
[n−k+1]

k

1 1

k

k−1 +
[n−k]
[n]

1

k

3.4.1. Functor from the type C web categories to the BMW category.
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DEFINITION 3.4.2. [8] The braiding β1,1 ∈ HomWebq(sp2n)
(1⊗1,1⊗1) is given by the following

:= q 1 1 −

1 1

11

2 +
q−n

[n]

1

1

.

PROPOSITION 3.4.1. [8] The assignments • 7→ 1 and

7→

determines a pivotal braided monoidal functor

η : BMW(−q2n+1,q−q−1)−→ Webq(sp2n).

The functor is full when we restrict Webq(sp2n) to its full subcategory whose objects are generated by 1.

3.4.2. Equivalence between the type C web categories and the representation categories of quan-

tum groups in type C.

THEOREM 3.4.3. [8] There is a functor

Φ : Webq(sp2n)→ Fund(Uq(sp2n))

sending k to Vωk , which is an equivalence of C(q)-linear pivotal categories.

REMARK 3.4.1. The composition of two functors Φ◦η induces a full functor from BMW(−q2n+1,q−

q−1) to Fund(Uq(sp2n)), which is not faithful.

3.5. Web categories for the quantum orthogonal group

3.5.1. Results and idea of the proof.

3.5.1.1. Results.

NOTATION 3.5.1. Let F := C(q) and A := C[q](q−1)C[q] ⊂ F. Note that C∼= A/(q−1)A.

REMARK 3.5.1. If v is a power of q, in particular if v = q or q2, then quantum integers [n]v :=
vn − v−n

v− v−1

and quantum binomials [n]v! := [1]v[2]v[3]v...[n]v lie in A. Therefore we can consider their image in C or
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F. We do not make new notation for this, but instead leave it up to context whether a particular expression

involving quantum integers is in F,A, or C.

DEFINITION 3.5.1. Let R ∈ {F,A,C}. Define the pivotal R-linear category WebR(O(m)) whose ob-

jects are generated by the self-dual objects n ∈ Z≥0, and whose morphisms are generated by the following

trivalent vertices:

k+1

1 k

∈ HomWebR(O(m))(1⊗ k,k+1) ,

k+1

k 1

∈ HomWebR(O(m))(k⊗1,k+1)

for k ∈ Z≥0, modulo the tensor ideal generated by idk for k > m, and the following relations.

(3.4a) 1 =
[2m−4][m]

[m−2][2]
, (3.4b)

2

1

= 0 , (3.4c)

k

k

1 k−1 =
[2k]
[2]

k

, (3.4d) k+1

k1 1

k+2

= k+1

k 11

k+2

(3.4)

(3.4e)

k

1 1

k

k+1 = 11

2

k k

1 1

k−1

− [2m−4k−4][m−2k]
[m−2k−2][2m−4k]

k

1 1

k

k−1 +
[2m−4k−4][m−2]
[m−2k−2][2m−4]

1

k

REMARK 3.5.2. We will use the convention that strands labelled zero can be erased and strands labelled

k < 0 are equal to zero.

REMARK 3.5.3. The presentation of WebR(O(m)) we give in Definition 3.5.1 is practically the same as

the presentation of Web(sp2n) in [8, Definition 1.1], but with different coefficients.

REMARK 3.5.4. When R = C, i.e. q = 1, the coefficients in Relation (3.4e) are all ±1.

There are also simplifications in the representation category when q = 1. For example, the braiding1

becomes symmetric, meaning it is equal to its own inverse. In the symmetric case, there is a standard defini-

tion of the exterior power of a representation. But in the braided case things become more complicated [3].

1This can be defined as the map P◦ f ◦Θ [23, Theorem 7.8], where P is the tensor flip map, f is as in [23, Section 7.9], and Θ is
the quasi-R matrix [23, Section 7.2].
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In Section 3.5.3.3 we carefully define the q-analogue of the exterior powers of the defining representa-

tion. Write Λk
C for the usual k-th exterior power of the defining representation and write Λk

F to denote

the q-analogue. For R ∈ {F,C}, the monoidal category Fund(UR(om)) is defined to be the full monoidal

subcategory of UR(om)-mod generated by Λk
R for k = 0, . . . ,m.

The main theorem of this article is the following.

THEOREM 3.5.2. Let R ∈ {C,F}. There is a functor

ΦR : WebR(O(m))→ Fund(UR(om))

sending k to Λk
R which is an equivalence of R-linear pivotal categories.

REMARK 3.5.5. Instead of working with O(m), we use UC(om)
2, which is a Z/2 extension of the uni-

versal enveloping algebra of som. Every O(m) representation can be made into a module for UC(om) and

vice-versa. Moreover, a C-linear map between such representations is an O(m) intertwinter if and only if

it is a UC(om) intertwiner. In particular, the category Fund(UC(om)) is isomorphic to the full monoidal

subcategory of Rep(O(m)) generated by the exterior powers of Cm. We choose to use UC(om), instead of

O(m), since it is easier to see how to relate its representations to those of UF(om).

REMARK 3.5.6. Let R ∈ {C,F}. Given an R-linear monoidal category C we can build an additive

monoidal category, denoted Add(C ), where the objects are formal direct sums of objects in the original

category and morphisms are matrices of morphisms in the original category. Given an R-linear additive

monoidal category A , we can build an additive monoidal category, called the Karoubi envelope of A and

denoted Kar(A ), which is closed under taking direct summands. Objects in Kar(A ) are pairs (X ,e), where

X is an object in A and e ∈ EndA (X) is an idempotent. Morphisms in Kar(A ) are defined by

HomKar(A )((X ,e),(Y, f )) := f HomA (X ,Y )e.

Finite dimensional representations of UR(om) are completely reducible. Moreover, every finite dimen-

sional irreducible type-1 representation of UR(om)) is a direct summand of some tensor product of Λk
R’s.

2This is just notation for an associative algebra which acts like the enveloping algebra of a non-existent om, and should not be taken
literally. The Lie algebra of O(m) is simply som.
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Thus, we have an equivalence of R-linear additive monoidal categories

Kar(Add(Fund(UR(om))))∼= Rep(UR(om)),

where by Rep(UR(om)) we mean the category of finite dimensional type-1 representations of UR(om). Since

Add and Kar are universal constructions, we can interpret Theorem 3.5.2 as a presentation of the monoidal

category Rep(UR(om)).

EXAMPLE 3.5.1. Let m = 1. Consider the one dimensional vector space VC, spanned by basis vector v

and equipped with symmetric form (v,v) = 1. We have O(1) ∼= Z/2, where the generator σ ∈ Z/2 acts as

σ(v) =−v. Since Λk(VC) = 0 for k > 1, we see that Fund(UC(o1)) is the monoidal category generated by

VC. Write C to denote the trivial O(1)-module. It is immediate that

V⊗d
C

∼=


VC if d is odd

C if d is even.
,

and the isomorphisms are induced by v⊗d 7→ v and v⊗d 7→ 1 respectively.

Since m = 1, we set idk = 0 in WebC(O(m)) for all k > 1. One easily checks that the only defining

relations which are not of the form 0 = 0 are Relation (3.4a), which says that the circle labelled 1 evaluates

to 1 ∈ C, and Relation (3.4e) which says that the identity of 1⊗1 is equal to the cup-cap.

The C-linear version of the n = 2 case of [27, Exercise 4.13(i)] says that if C is an C-linear additive

monoidal category which is closed under taking direct summands, then monoidal functors Rep(C[Z/2])→

C are in bijection with objects X ∈ C , equipped with an isomorphism α : X ⊗X → 1C , such that α ⊗ id =

id⊗α . We leave it as an exercise to prove the m = 1, R = C, case of Theorem 3.5.2 by hand, and then use

Remark 3.5.6 to deduce the universal property described above. Hint: for the deduction step, use the pivotal

structure on WebC(O(m)) to rewrite the identity equals cup-cap relation so it resembles α ⊗ id = id⊗α .

REMARK 3.5.7. What about the m = 1 case over F? It is easy to verify that F⊗WebC(O(1)) ∼=

WebF(O(1)). Since SO(1) ⊂ O(1) is the trivial group, so1 is the trivial Lie algebra. We are lead to de-

fine UF(so1)
3 = F and UF(o1) = F[Z/2]. The same analysis in Example 3.5.1 works here to show that there

is a monoidal equivalence WebF(O(1))∼= Fund(UF(o1)).
3Since Uq(g) is generated by Eα ,Fα , and K±1

α for α ∈ Π, and since there are no simple roots for so1, we think of UF(so1) as the
F-algebra with no generators.
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EXAMPLE 3.5.2. Let m = 2. In this case, the Lie algebra of SO(2) ∼= S1 is abelian and therefore is

not semisimple. In particular, its enveloping algebra does not have a Serre presentation which can be q-

deformed as usual. We take the following approach. We define UF(so2) := F[K±1] and VF := F ·a1 ⊕F ·b1,

with K ·a1 = q2a1 and K ·b1 = q−2b1. There is then an involutive algebra automorphism of UF(so2), denoted

σ , which acts by σ(K) = K−1. Defining σ(a1) = b1 and σ(b1) = a1 induces an action on VF by the algebra

UF(o2) := F[K±1]⟨σ | σ2 = 1, σK±1σ = σ(K±1)⟩. The UF(o2) module Λ2
F, which is spanned by a1b1,

has K±1 in its kernel and σ acts as −1. The category Fund(UF(o2)) is a q-analogue of the category of

representations of O(C2), generated by C2 and det. Similar to when m = 1, we have an equivalence of

pivotal F-linear categories WebF(O(2))∼= F⊗WebC(O(2)). However, the braiding on WebF(O(2)) is non-

trivial, so this is not an equivalence of braided categories.

REMARK 3.5.8. The m = 1,2 cases of our main theorem are somewhat hidden in the body of this paper.

We make a few comments along the way for how things change, but for the sake of readability we mostly

explain things when m≥ 3, so som is semisimple and therefore we have a more uniform notation. Regardless,

the main results still hold for m = 1,2, and the careful reader will be able to see what needs to be changed.

3.5.1.2. Idea of the proof. Citing classical results about invariant theory, Lehrer-Zhang prove [40, The-

orem 4.8] that there is an equivalence between the Brauer category [40, Definition 2.4], modulo the an-

tisymmetrizing idempotent on m+ 1 strands, and the full monoidal subcategory of Rep(O(Cm)) gener-

ated by Cm. Since Λk
C is a direct summand of (Cm)⊗k, for k = 0,1, . . . ,m, one might hope to reduce the

proof of our main theorem, when R = C, to a calculation verifying that the antisymmetrizing idempotent

1
(m+1)! ∑w∈Sm+1(−1)ℓ(w)w is zero in WebC(O(m)). We carry out this calculation in Proposition 3.5.12.

The idea of the proof of Theorem 3.5.2 is roughly as follows. First prove the result for R = C, using

the ideas outlined above. Then, using the well-known result that the braiding endomorphism for the tensor

square of the vector representation generates the endomorphism rings of arbitrary tensor powers of the

vector representation, we prove that ΦF is full. Finally, we carefully argue that everything we defined

actually makes sense over the ring A. The A versions of our categories and functors can then be specialized

to C or F. Since A is a local ring and a principal ideal domain, basic facts about finitely generated modules

over a PID allow us to deduce our functor is faithful when R = F from knowing it is full over F and an

equivalence over C.
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Let us comment on why we do not just prove Theorem 3.5.2 directly for F the same way we do for C.

There is a q-analogue of Lehrer-Zhang’s result [40, Theorem 8.2], in which the Brauer category is replaced

with the BMW category. However, just as the definition of the q-analogue of the exterior powers is not

trivial, it is not so easy to explicitly describe the q-analogue of the antisymmetrizer in the BMW category.

Lehrer-Zhang only discuss it abstractly [40, Theorem 8.2(iii)], using the theory of cellular algebras. The

abstract description is sufficient to prove their result, but several years earlier Tuba-Wenzl gave a recursive

formula for this idempotent by relating it to the q-antisymmetrizer in the Hecke algebra [61, Equation 7.12].

There is also work on explicitly describing the q-antisymmetrizer in the BMW category: when m = 3

in [39, Equation 7.8], and for all m ≥ 1 in [15, 21, 22]. These descriptions are not very easy to compute

with. An instance of this is that we have not yet found how to use the relations in WebF(O(m)) to show

the q-antisymmetrizer on m+1 strands is zero in the web category for O(m), even though this is implied by

Theorem 3.5.2.

3.5.2. Web category for quantum orthogonal group. In this section we will use the generators and

relations for WebR(O(m)) to derive some further relations and to establish a connection to the Birman-

Mirakami-Wenzl algebras.

3.5.2.1. Further relations.

LEMMA 3.5.1.

k

k

1 k+1 =
[2m−2k][2m−4k−4][m−2k]

[2][m−2k−2][2m−4k]
k

(3.5)

PROOF.

1

k k

k+1
(3.4e)
=

1

11

2

k k
k−1

− [2m−4k−4][m−2k]
[m−2k−2][2m−4k]

1

k k

k−1 +
[2m−4k−4][m−2]
[m−2k−2][2m−4]

1

k

(3.4b)
(3.4c)
(3.4a)
= − [2m−4k−4][m−2k]

[m−2k−2][2m−4k]
[2k]
[2]

k

+
[2m−4k−4][m−2]
[m−2k−2][2m−4]

[2m−4][m]

[m−2][2]

k

□
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REMARK 3.5.9. When R = C, the coefficient in Equation (3.5) becomes (m− k).

Using the previous Lemma, it is not hard to derive the following relation generalizing Equation (3.4a)

LEMMA 3.5.2.

(3.6) k =
[2m−4k][m]

[m−2k][2m]

m

k


q2

PROOF. We prove the claim by induction on k. The base case, k = 1, follows from Equation (3.4a) .

Assuming Equation (3.6) holds for k, we find

k+1
(3.4c)
=

[2]
[2k+2]

k+1 1 k
(3.5)
=

[2]
[2k+2]

[2m−2k][2m−4k−4][m−2k]
[2][m−2k−2][2m−4k]

k

(3.6)
=

[2]
[2k+2]

[2m−2k][2m−4k−4][m−2k]
[2][m−2k−2][2m−4k]

[2m−4k][m]

[m−2k][2m]

m

k


q2

=
[2m−2k][2m−4k−4][m]

[2k+2][m−2k−2][2m]

m

k


q2

=
[2m−4(k+1)][m]

[m−2(k+1)][2m]

 m

k+1


q2

.

□

REMARK 3.5.10. When R = C, the coefficient in Equation (3.6) becomes
(m

k

)
.

REMARK 3.5.11. Note that [2m− 4k]/[m− 2k] = [2]qm−2k . Therefore, if m = 2k, then [2m− 4k]/[m−

2k] = 2.

The following relations are a simplification of Equation (3.4e) when k = m.

LEMMA 3.5.3.

m

11

2

m

m−1
= 0 and

m

1 1

m

m−1
=

[m−2][2m]

[2m−4][m]

1

m
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PROOF. When k = m, the left hand side of Equation (3.4e) is zero, since a strand carries the label m+1.

Now, postcompose Equation (3.4e), when k = m, with a trivalent vertex 1⊗ 1 → 2 and then simplify to

derive the triangle equals 0 relation. This triangle is a subdiagram of the first term on the right hand side of

Equation (3.4e), so that term is also zero. It is then easy to derive the identity equals merge-split relation in

the statement of the Lemma. □

3.5.2.2. The braiding.

DEFINITION 3.5.3. Let R ∈ {C,A,F}. We define Rβ 1,1 ∈ HomWebR(O(m))(1⊗1,1⊗1) as

:= q2 1 1 −

1 1

11

2 − [m−2]
[2m−4]

(q2 −q−2) ·q−m+2

1

1

(3.7)

NOTATION 3.5.2. We will write the 90 degree rotation of Rβ 1,1 diagrammatically as follows.

PROPOSITION 3.5.1.

= q−2 1 1 −

1 1

11

2 +
[m−2]
[2m−4]

(q2 −q−2) ·qm−2

1

1

(3.8)

− = (q2 −q−2) ·

 1 1 −

1

1

(3.9)

PROOF. Equation (3.8) follows from rotating the diagrams on both sides of Equation (3.7), and then

apply Equation (3.4e) when k=1. Equation (3.9) follows from Equation (3.7) and Equation (3.8). □

REMARK 3.5.12. We have the identities

−
[m−2]

[2m−4]
(q2 −q−2) ·q−m+2 = q−2 −

[2m−8][m−2]

[m−4][2m−4]
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and
[m−2]

[2m−4]
(q2 −q−2) ·qm−2 = q2 −

[2m−8][m−2]

[m−4][2m−4]
.

PROPOSITION 3.5.2. The following relations hold in WebR(O(m)).

= q2m−2 , = q2−2m(3.10)

2

11

= −q−2

11

2

,

2

1 1

= −q2

11

2

(3.11)

= 1 1 , = 1 1(3.12)

=(3.13)

PROOF.

(3.7)
= q2 1 1 − 1

1

1

2 − [m−2]
[2m−4]

(q2 −q−2) ·q−m+2

1

(3.4a)
(3.5)
=

(
q2 [2m−4][m]

[m−2][2]
− [2m−2][2m−8][m−2]

[2][m−4][2m−4]
− [m−2]

[2m−4]
(q2 −q−2) ·q−m+2

)
2

11

(3.7)
= q2

11

2

−

2

2

− [m−2]
[2m−4]

(q2 −q−2) ·q−m+2

2 (3.4c)
(3.4b)
=

(
q2 − [4]

[2]

)
11

2
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(3.8)
= q−2 −

2

11

+
[m−2]
[2m−4]

(q2 −q−2) ·qm−2

1

(3.7)
(3.11)
(3.10)
= q−2

q2 1 1 −

1 1

11

2 − [m−2]
[2m−4]

(q2 −q−2) ·q−m+2

1

1



+q−2

1 1

11

2 +
[m−2]
[2m−4]

(q2 −q−2) ·qm−2q2−2m

1

1

The same argument to verify the Reidemeister III braid relation in the proof of [8, Proposition 5.7] also

works in WebR(O(m)), so we leave the verification of Equation (3.13) as an exercise. □

COROLLARY 3.5.4.

= 1 1 + (q2 −q−2) − (q2 −q−2) ·q−2m+2

1

1

PROOF. Compose Equation (3.9) with the braiding Rβ 1,1, then apply Equations (3.10) and (3.12). □

NOTATION 3.5.3. As noted in Remark 3.5.4, Remark 3.5.9, and Remark 3.5.10, upon specialization to

C there is a drastic simplification in the coefficients of the defining relations. In order to make clear to

the reader which calculations hold for any R ∈ {F,A,C} and which are special to WebC(O(m)), we will

color the diagrams in WebC(O(m)) green. Thus, a blue diagram is interpreted in WebR(O(m)) for some

R ∈ {F,A,C}, depending on context, while a green diagram is always interpreted in WebC(O(m)).

NOTATION 3.5.4. When R = C, Equation (3.9) implies Rβ 1,1 =
Rβ

−1
1,1, so in our green diagrammatic

calculus for WebC(O(m)) we do not distinguish between the over-crossing and the under-crossing. Thus,
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the formula for the braiding becomes

(3.14) := 1 1 −

1 1

11

2 .

LEMMA 3.5.4. When R = C, we have

(3.15)

k

1 1

k

k+1 =

1

k

−

11

k−1
kk

.

PROOF. This follows from

11

k−1
kk

(3.14)
=

k

1 1

k

k−1 − 11

2

k k

1 1

k−1

(3.4e)
=

1

k

−

k

1 1

k

k+1 .

□

3.5.2.3. Finite generation. In order to make certain arguments relating the O(m) web category over F

and over C, we will need to know that the homomorphism spaces in WebA(O(m)) are finitely generated.

We first show that the webs with all boundary labels 1 can be rewritten in terms of the braiding along with

cups and caps.

DEFINITION 3.5.5. Define the standard web category StdWebR(O(m)) as the full monoidal subcategory

of WebR(O(m)) generated by the object 1.

DEFINITION 3.5.6. Define the braiding standard web category StdWebβ

R(O(m)) as the pivotal subcat-

egory of WebR(O(m)), where the objects in StdWebβ

R(O(m)) are tensor products of the self-dual object 1,

and morphisms in StdWebβ

R(O(m)) are generated by the braiding Rβ 1,1.

REMARK 3.5.7. Let a,b ∈ Z≥0, and write w0 for the longest element in the symmetric group Sa+b.

Define β1⊗a,1⊗b to be the diagram in StdWebβ

R(O(m)) which is the positive braid lift of the minimal length
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element in the coset w0 · (Sa×Sb) ∈ Sa+b/(Sa×Sb). Using that StdWebβ

R(O(m)) is pivotal, Equation (3.12),

and Equation (3.13), a standard argument shows that this family of maps satisfy naturality and the hexagon

axioms, see e.g. [26, Example 2.1], and thus make the category StdWebβ

R(O(m)) a braided category.

PROPOSITION 3.5.3. StdWebR(O(m)) = StdWebβ

R(O(m))

PROOF. We need to show that any morphism in StdWebR(O(m)) is also a morphism in StdWebβ

R(O(m)).

We will prove this for web diagrams in StdWebR(O(m)). Then the desired result is immediate for linear

combinations of web diagrams. By Equation (3.7), we have

Span


1 1

11

2 ,

1

1

, 1 1

= Span

 ,

1

1

, 1 1

 ,

so it suffices to show that an arbitrary web diagram in StdWebR(O(m)) can be rewritten as a linear combi-

nation of diagrams with strands only labelled 1 and 2.

Fix a diagram f in StdWebR(O(m)). Suppose that the largest label on a strand in f is l. If l ≥m+1, then

f = 0, and if l ≤ 2, then we are done. Assume that 3≤ l ≤m. Fix a point in this l labelled strand, then choose

a direction and traverse the strand away from this point in that direction. Since f is in StdWebR(O(m)), the l

labelled strand cannot extend to the boundary. So either we return to this point, or we meet a trivalent vertex.

Since l is the largest label of a strand in f , and the trivalent vertex must be a generator from Definition 3.5.1,

this trivalent vertex has labels 1, l −1, and l.

If we meet a trivalent vertex, then traversing the l labelled strand in the other direction we also meet

a trivalent vertex with labels 1, l − 1, and l. On the other hand, if the strand is closed, then we can use

Equation (3.4c), with k = l, to introduce two trivalent vertices with labels 1, l −1, and l, up to an invertible

scalar in A. In either case, the l labelled strand is a segment between two trivalent vertices with labels

1, l −1, and l.

We can either apply Equation (3.4e), with k+1 = l, or apply the following relation

l −1

1 l −1

1

l

(3.4c)
=

[2]
[2l −2]

l −1

l −1

1

1

l

1 l −2

l −1

(3.4d)
=

[2]
[2l −2]

1

l −1

l

1

l −1

l −1

1

l −2
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and then apply Equation (3.4e), with k + 1 = l. Thus, we can write f as a linear combination of web

diagrams, each of which has one fewer strand with label l. By induction, we can remove all strands with label

l, so f is a linear combination of diagrams with largest strand label less than or equal to l−1. Using induction

again, we find that f is a linear combination of web diagrams with only 1 and 2 labelled strands. □

DEFINITION 3.5.1. Define the BMW category, BMWR(O(m)), to be the free R-linear braided pivotal

category4 with generating object • which is self-dual of dimension [2m−4][m]
[m−2][2] such that

− = (q2 −q−2) ·

 −


and

= q2m−2 .

PROPOSITION 3.5.4. The assignments • 7→ 1 and

7→

determines a full pivotal braided monoidal functor

ηR : BMWR(O(m))−→ StdWebR(O(m)) .

PROOF. It is clear that 1 is self dual with dimension [2m−4][m]
[m−2][2] . Combining Remark 3.5.7 with Lemma

3.5.3 we also see that StdWebR(O(m)) is braided. Thanks to Equation (3.9) and Equation (3.10), the claim

follows from the universal mapping property of BMWR(O(m)). The image of ηR is StdWebβ

R(O(m)) =

StdWebR(O(m)), so ηR is full. □

LEMMA 3.5.5. Homomorphism spaces in BMWA(O(m)) are finitely generated A-modules.

PROOF. This is standard, for example see [44, Theorem 3]. □

4This means we can draw positive crossings to represent the braiding of • with itself, as well as draw cups and caps coming from
pivotal structure.
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PROPOSITION 3.5.5. Homomorphism spaces in StdWebA(O(m)) are finitely generated A-modules.

PROOF. Since ηA is full, this follows from Lemma 3.5.5. □

3.5.3. Representation theory of the quantum orthogonal group.

3.5.3.1. Quantum orthogonal algebra. Write X(som) ⊂ ⊕n
i=1Z

εi
2 for the weight lattice of som, where

m = 2n if m is even, and m = 2n+1 if m is odd. We enumerate the simple roots for so2n (i.e. type Dn) as

Π = {α1 = ε1 − ε2, . . . ,αn−1 = εn−1 − εn,αn = εn−1 + εn},

and for so2n+1 (i.e. type Bn) as

Π = {α1 = ε1 − ε2, . . . ,αn−1 = εn−1 − εn,αn = εn}.

The pairing (−,−) for so2n is defined as (εi,ε j) = δi, j and for so2n+1 is defined as (εi,ε j) = 2δi, j. The

fundamental weights for som are:

ϖ1 = ε1,ϖ2 = ε1 + ε2, . . . ,ϖn−2 = ε1 + · · ·+ εn−2,

ϖn−1 =
ε1 + · · ·+ εn−1 − εn

2
, and ϖn =

ε1 + · · ·+ εn−1 + εn

2
,

if m = 2n, and

ϖ1 = ε1,ϖ2 = ε1 + ε2, . . . ,ϖn−1 = ε1 + · · ·+ εn−1,

and

ϖn =
ε1 + · · ·+ εn−1 + εn

2
,

if m = 2n+1. The dominant weights, X+(som), are the Z≥0 span of the fundamental weights.

NOTATION 3.5.5. In order to make the statements of our results uniform, we need to compensate for the

different conventions for (−,−) if m is even or odd. To this end, we will write

UF(som) :=


Uq(som), if m is odd, and

Uq2(som), if m is even.
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DEFINITION 3.5.2. For a ∈ X(som) and V ∈UF(som)-mod, we set

V [a] := {v ∈V | Kαv = q(α
∨,a)

α v, for all α ∈ Π}.

If v ∈V [a], then we say that v is a weight vector of weight a.

DEFINITION 3.5.3. Suppose that V is a finite dimensional UF(som)-module such that

V =⊕a∈X(som)V [a],

then we say that V is a type-1 UF(som)-module.

For each a∈ X+(som), there is an irreducible type-1 UF(som)-module with highest weight a, and highest

weight vector v+a , which we will denote by LF(a). Moreover, each finite dimensional irreducible type-1

UF(som)-module is isomorphic to LF(a) for some a ∈ X+(som) [23, Theorem 5.10].

DEFINITION 3.5.4. We define Lusztig’s divided powers algebra, denoted UA(g), as the A-subalgebra in

Uq(g) generated by K±1
α , E(n)

α := En
α/[n]qα

!, and F(n)
α := Fn

α/[n]qα
!, for all α ∈ Π and n ∈ Z≥0.

DEFINITION 3.5.5. Suppose that V is a free finitely generate A-module with an action of UA(som) such

that the Kα action on V is diagonalizable over A with all eigenvalues positive powers of q, for all α ∈ Π.

Then we say that V is a type-1 UA(som)-module.

NOTATION 3.5.6. Let UC(som) denote the usual enveloping algebra of som. Upon specialization to

C, we have instead to consider the elements hα in the Cartan subalgebra. For V ∈ UC(som)-mod and

a ∈ X(som) we have

V [a] := {v ∈V | hαv = a(hα)v, for all α ∈ Π}.

This is the classical notion of weight vector. For convenience, we will refer to finite dimensional UC(som)-

modules as type-1 modules.

NOTATION 3.5.7. Let R ∈ {C,A,F}. Suppose that V is a type-1 UR(som)-module. If V [a] ̸= 0, then we

say that a is a weight of V .
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DEFINITION 3.5.6. Let R ∈ {C,A,F}. Write χ(som) for the free Z-module with basis {ea}a∈X(som). The

formal character of a type-1 representation V is the expression

ch(V ) := ∑
a∈X(som)

dimRV [a] · ea ∈ χ(som).

For each a∈X+(som) there is an irreducible UC(som)-module with highest weight a, and highest weight

vector v+a , which we denote by LC(a). Each finite dimensional irreducible representation of UC(som) is

isomorphic to LC(a) for some a ∈ X+(som).

LEMMA 3.5.6. Let R ∈ {C,F}. The characters {ch(LR(a))}a∈X+(som) are a basis for the span of formal

characters of all type-1 representations.

PROOF. Use that if LR(a)[b] ̸= 0, then (a−b) ∈ Z≥0Φ+. □

LEMMA 3.5.7. Let R ∈ {C,F}. Every type-1 UR(som)-module is completely reducible.

PROOF. This is Weyl’s theorem on complete reducibility, when R = C, and [23, Theorem 5.17], when

R = F □

LEMMA 3.5.8. If V is a type-1 UA(som)-module, then

C⊗V ∼=
⊕

a∈X+(som)

LC(a)⊕ma , F⊗V ∼=
⊕

a∈X+(som)

LF(a)⊕na , and ma = na.

PROOF. Follows from Lemma 3.5.7, Lemma 3.5.6, and that dimC LC(a)[b] = dimF LF(a)[b] for all a ∈

X+(som) and b ∈ X(som) [23, Theorem 5.15]. □

LEMMA 3.5.9. Let R ∈ {C,F}. If a,b ∈ X+(som), then HomUR(som)(LR(a),LR(b)) = 0 if a ̸= b, and

EndUR(som)(LR(a)) = R · idLR(a).

PROOF. Follows from Schur’s lemma and standard theory about highest weight vectors. □

When m = 2n there is an order 2 automorphism σ of the Dynkin diagram, swapping the simple roots

αn−1 = εn−1 − εn and αn = εn−1 + εn. This induces an automorphism of UF(som) such that

σ(Eαn−1) = Eαn , σ(Fαn−1) = Fαn , σ(Kαn−1) = Kαn ,
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σ(Eαn) = Eαn−1 , σ(Fαn) = Fαn−1 , σ(Kαn) = Kαn−1 ,

and σ fixes all the other generators for UF(som).

If m = 2n+ 1, there are no Dynkin diagram automorphisms. In this case we write σ to denote the

identity automorphism of UF(som).

DEFINITION 3.5.8. [38, Section 8.1.2] Let UF(om) be the associative algebra generated by UF(som)

and σ , such that σ2 = 1 and σXσ−1 = σ(X), for X ∈UF(som).

The algebra UF(om) is a Hopf algebra with ∆,S,ε defined on elements of UF(som) as in Definition 3.1.2,

along with

∆(σ) = σ ⊗σ , S(σ) = σ
−1, and ε(σ) = 1.

The automorphism σ preserves UA(som)⊂UF(som), so we define UA(om) as the algebra generated by

UA(som) and σ , such that σXσ−1 = σ(X), for X ∈UA(som). Note that UA(om) is the unital A subalgebra

of UK(om) generated by σ , K±1
α , E(n)

α , and F(n)
α , for all n ∈ Z≥0, α ∈ Π.

DEFINITION 3.5.9. Define UC(om) as the universal enveloping algebra of som(C), denoted U(som(C)),

augmented by the algebra automorphism, which we will denote by σ , determined by the non-trivial Dynkin

diagram automorphism when m is even, and the identity automorphism when m is odd.

For any UR(om)-module which restricts to a type-1 UR(som)-module, we can use the same notion of

weight spaces as in Definition 3.5.3 and Notation 3.5.6, and such a module will be a direct sum of its weight

spaces. Note that the equation σKασ−1 = σ(Kα) implies that σ acts on weight spaces. The induced action

on weights is such that σ acts on X(som) trivially if m = 2n+1, and σ swaps ϖn−1 and ϖn if m = 2n.

REMARK 3.5.13. Any finite dimensional representation of O(Cm) is a finite dimensional representation

of UC(om) such that the weights are contained in ⊕n
i=1Zεi, and vice-versa. Moreover, a linear map between

such representations commutes with the actions of O(Cm) if and only if the map commutes with UC(om).

Such representations are exactly the O(Cm) modules which occur as submodules of (Cm)⊗d for some d ≥ 0.

DEFINITION 3.5.7. Let R ∈ {C,A,F}. A UR(om)-module such that its restriction to UR(som) is type-1

with weights contained in ⊕n
i=1Zεi, will be referred to as a type-1 UR(om)-module5.

5An example of a UC(om)-module which is not of this form would be the induction, from UC(so2n+1), of the irreducible spinor
module V (ϖk), i.e. UC(o2n+1)⊗UC(so2n+1)V (ϖn).
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DEFINITION 3.5.8. Let R[Z/2] denote the group algebra of Z/2 over R. There is an algebra homomor-

phism

UR(om)→ R[Z/2]

with UR(som) in the kernel and such that σ 7→ −1 ∈ Z/2. Composing this homomorphism with the sign

representation of Z/2, we obtain a one dimensional UR(om)-module, denoted detR.

REMARK 3.5.14. The module detR restricts to the trivial UR(som) module, and therefore is a type-1

UR(om)-module.

There is a classification of finite dimensional irreducible type-1 UR(om)-modules. If a ∈ ⊕n
i=1Zεi ∩

X+(som), then a = ∑
n
i=1 ai εi such that a1 ≥ ·· · ≥ an−1 ≥ |an |, and an = |an | if m = 2n+1, while an is any

integer if m = 2n. For such an a, we obtain a representation LR(a) of UR(som), which we can then induce

to UR(om). The induced module UR(om)⊗UR(som) LR(a) is isomorphic to LR(a)⊕LR(σ(a)) as UR(som)-

modules, by the map 1⊗ ℓ 7→ (ℓ,0) and σ ⊗ ℓ 7→ (0, ℓ). The action of UR(om) is determined by

σ · (ℓ,ℓ′) = (ℓ′, ℓ) and X · (ℓ,ℓ′) = (X · ℓ,σ(X) · ℓ′).

If m = 2n+ 1, or m = 2n and an = 0, then the induced module decomposes into a direct sum of two ir-

reducible UR(om)-modules corresponding to the +1 and −1 eigenspaces of σ . We write LR(a,+1) and

LR(a,−1) for these representations. If m = 2n and an ̸= 0, then the induced module is irreducible and is

isomorphic to UR(om)⊗UR(som) L(a1, . . . ,an−1,−an).

PROPOSITION 3.5.6. Let R ∈ {C,F}. The following is a complete and irredundant list of irreducible

type-1 representations of UR(om). For m = 2n+1:

LR(a,+1) and LR(a,−1), such that a1 ≥ ·· · ≥ an ≥ 0,

and for m = 2n:

UR(om)⊗UR(som) L(a) such that a1 ≥ ·· · ≥ an > 0,

LR(a,+1) and LR(a,−1), such that a1 ≥ ·· · ≥ an = 0.
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PROOF. Use that σ is central when m = 2n+1. For m = 2n, observe that σ preserves the space of vec-

tors annihilated by Eα ’s and acts on weights by (a1, . . . ,an−1,an) 7→ (a1, . . . ,an−1,−an). For more details,

see [20, Section 5.5.5]. □

LEMMA 3.5.10. Let R ∈ {C,F}. If S and T are two irreducible type-1 UR(om)-modules from the list of

irreducibles in Proposition 3.5.6, then

HomUR(om)(S,T ) =


0 if S ̸= T , and

R · idS if S = T .

PROOF. This follows by looking first at HomUR(som)(Res(S),Res(T )), then analyzing which of these

maps commute with σ . We leave it to the reader to complete the case-by-case analysis. □

If W is a type-1 UR(om)-module, then W ∗ := HomR(W,R) is an UR(om)-module via the antipode,

denoted S in Definition 3.5.8. We say W is self-dual if W ∼=W ∗ as UR(om)-modules.

LEMMA 3.5.11. The type-1 irreducible representations of UR(om) are self-dual.

PROOF. The irreducible representations of UR(som) are self-dual. We leave it as an exercise to the

reader to verify that inducing a self-dual module from UR(som) to UR(om) results in a self-dual module.

Since a direct summand of a self-dual module is self-dual, the claim follows from Proposition 3.5.6. □

LEMMA 3.5.12. Let R ∈ {C,F}. Every type-1 UR(om)-module is completely reducible.

PROOF. Let W be a type-1 UR(om)-module and let S ⊂W be a UR(om)-submodule, it suffices to show

that S is a direct summand of W . We adapt the argument in [2, Theorems 3.1, 9.2]. By Lemma 3.5.7 there is

an idempotent eS ∈ EndUR(som)(W ) with image S. Note that σ induces a linear endomorphism of W which

preserves S. One can check that e′S := 1
2(eS +σ ◦ eS ◦σ) is an endomorphism of W which commutes with

UR(om), has image contained in S, and acts as the identity on S. Thus, e′S ∈ EndUR(om)(W ) is an idempotent

with image S. □

REMARK 3.5.15. It now follows that every irreducible type-1 UR(om)-module is self-dual.
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Let R ∈ {C,A,F}. For a type-1 UR(om)-module W , we can restrict to obtain a type-1 UR(som)-module.

In particular, for a ∈ X(som), we have W [a]. For ε ∈ {±1} and a ∈ X(som) such that σ(a) = a, define

W [a,ε] := {w ∈W [a] | σ(w) = ε ·w}.

Note that if σ(a) ̸= a, then σ acts on W [a]⊕W [σ(a)] as dimW [a] copies of the regular representation of

⟨σ⟩ ∼= Z/2.

DEFINITION 3.5.9. Let χ(O(m)) denote the free Z-module with basis {e(a,ε)}a∈X(om),ε=±1
σ(a)=a

∪{ea}a∈X(om)
σ(a)̸=a

.

We define the formal character of W to be the expressions

ch(W ) := ∑
a∈X(som)
σ(a)=a

dimW [a,ε]e(a,ε)+ ∑
a∈X(som)
σ(a)̸=a

dimW [a]ea ∈ χ(O(m)).

LEMMA 3.5.13. Let R∈ {C,F}. The formal characters of the irreducible representations in Proposition

3.5.6 form a basis for the span of formal characters of all type-1 representations.

PROOF. Use Lemma 3.5.6 and keep track of ±1 eigenspaces of σ . □

PROPOSITION 3.5.7. Let R ∈ {C,F}. The character of a type-1 UR(om)-module determines the isomor-

phism class of the representation.

PROOF. Use Proposition 3.5.6, Lemma 3.5.13, and Lemma 3.5.12. □

LEMMA 3.5.14. Suppose that V,W are type-1 UA(om)-modules. Then

dimC HomUC(om)(C⊗V,C⊗W ) = dimF HomUF(om)(F⊗V,F⊗W ).

PROOF. If U is a type-1 UA(om)-module and a ∈ X(som) such that σ(a) = a, then

dimCC⊗U [a,ε] = rkAU [a,ε] = dimFF⊗U [a,ε].

The result then follows from Proposition 3.5.7 and Lemma 3.5.10 □

LEMMA 3.5.15.

C⊗UA(om)/(Kα −1,α ∈ Π)∼=UC(om) and F⊗UA(om)∼=UF(om).
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PROOF. The first isomorphism follows from [12, Proposition 9.2.3]. The second isomorphism is clear.

□

LEMMA 3.5.16. Let R ∈ {C,F}. If V and W are type-1 representations, then

HomR⊗UA(om)(R⊗V,R⊗W ) = HomUR(om)(R⊗V,R⊗W ).

PROOF. The action of C⊗UA(om) on V and W factors through UC(om)∼=C⊗UA(om)/(Kα −1,α ∈ Π).

The claim then follows from Lemma 3.5.15 □

LEMMA 3.5.17. Suppose that V,W are type-1 UA(om)-modules. Let R ∈ {C,F}. Then there is an

R-linear map

bR : R⊗HomUA(om)(V,W )→ HomUR(om)(R⊗AV,R⊗AW ),

1⊗ f 7→
(
1⊗ v 7→ 1⊗ f (v)

)
.

PROOF. Since V and W are finitely generated free A-modules, so is HomA(V,W ). Therefore,

R⊗HomA(V,W )∼= HomR⊗A(R⊗V,R⊗W ).

We obtain a map

BR : R⊗HomUA(om)(V,W )→ R⊗HomA(V,W )
∼=−→ HomR⊗A(R⊗V,R⊗W ),

and it is routine to verify that the image is contained in HomR⊗UA(om)(R⊗V,R⊗W ). The claim then follows

from Lemma 3.5.16. □

REMARK 3.5.16. In general, if f : Am →An is injective, then F⊗ f : F⊗Am → F⊗An is also injective.

However, this may fail for C⊗A(−). For example the endomorphism of A given by multiplication by q−1

is injective, but becomes zero after applying the functor C⊗A(−).

3.5.3.2. Quantum vector representation. The natural vector representation of the orthogonal group has

a type-1 q-analogue.

NOTATION 3.5.8. Fix m ∈ Z≥1. Let n be such that m = 2n, if m is even, and m = 2n+1, if m is odd.
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DEFINITION 3.5.10. Let VF be the UF(som)-module with basis:
a1,a2, . . . ,an,u,bn, . . . ,b2,b1 if m = 2n+1

a1,a2, . . . ,an,bn, . . . ,b2,b1 if m = 2n,

such that for i = 1, . . . ,n−1

Fi ·ai = ai+1, Fi ·bi+1 = bi,

Ei ·ai+1 = ai, Ei ·bi = bi+1,
Fn ·an = u, Fn ·u = (q+q−1)bn, En ·u = (q+q−1)an, En ·bn = u, if m = 2n+1,

Fn ·an = bn, En ·bn = an, if m = 2n,

and

Kαv = (q2)(α,wtv), where wt(ai) = εi, wt(u) = 0, and wt(bi) =−εi.

NOTATION 3.5.9. Write VA to denote the A span of the given basis for VF. This is a free A-module of

rank m.

LEMMA 3.5.18. The algebra UA(som) preserves the A-module VA.

PROOF. All the higher divided power operators: E(d)
k and F(d)

k , for k = 1, . . . ,n, and d ≥ 2, act as zero

on VF, except if m = 2n+1, when F(2)
n an = bn and E(2)

n bn = an. □

REMARK 3.5.17. The algebra UC(som)∼= C⊗UA(som)/(Kα −1) acts on VC := C⊗VA.

REMARK 3.5.18. In the notation of Section 3.1.2, we have VR ∼= LR(ϖ1), for R ∈ {C,F}.

LEMMA 3.5.19. Setting σ ·a1 = (−1)ma1, induces an action of UR(om) on VR, for R ∈ {C,A,F}.

PROOF. Let v∈VR. Then there is Xv ∈UR(som) such that v=Xv ·a1. Define σ ·v=σ(Xv) ·(σ ·a1). This

determines a well-defined UR(om) action if σ ·(σ ·v) = v and σ ·(X ·(σ ·v)) = σ(X) ·v, for all X ∈UR(som)

and v ∈VR. We check the first equality:

σ · (σ · v) = σ · (σ(Xv) · (σ ·a1)) = (−1)m
σ · (σ(Xv) ·a1) = (−1)m

σ(σ(Xv)) · (σ ·a1) = Xv ·a1 = v,
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and the second equality:

σ · (X · (σ · v)) = σ · (X · (σ(Xv) · (σ ·a1))) = (−1)m
σ · (X · (σ(Xv) ·a1))

= (−1)m
σ · (σ2(X) · (σ(Xv) ·a1)) = (−1)m

σ · ((σ2(X)σ(Xv)) ·a1)

= (−1)m
σ · (σ

(
σ(X)Xv

)
·a1) = (−1)m((σ(X)Xv) · (σ ·a1))

= (σ(X)Xv) ·a1 = σ(X) · (Xv ·a1) = σ(X) · v.

□

REMARK 3.5.19. We have the following explicit description of σ ’s action on VR.
σ ·ai =−ai, for i ≤ n, σ ·u =−u, and σ ·bi =−bi, for i ≤ n, if m = 2n+1,

σ ·ai = ai, for i < n, σ ·an = bn, σ ·bn = an, and σ ·bi = bi, for i < n, if m = 2n.

REMARK 3.5.20. In the notation of Proposition 3.5.6, the representation VR is isomorphic to LR(ϖ1,−1),

if m is odd, and LR(ϖ1,+1), if m is even. The reason for the choice of sign becomes apparent in the next

section. It is to ensure that UR(om) acts on the exterior algebra by algebra automorphisms, making the

algebra structure maps UR(om)-module homomorphisms, and that UR(om) acts on the top exterior power as

detR.

3.5.3.3. Quantum exterior algebra. The usual exterior algebra Λ•(VC) is defined as the quotient of the

tensor algebra of VC by the two sided ideal generated by the symmetric tensors S2(VC). As a module over the

special orthogonal group SO(VC), we find that S2(VC) contains a copy of the trivial module, corresponding to

the symmetric form preserved by SO(VC). The complement of the trivial module in S2(VC) is the irreducible

module LC(2ϖ1).

From this perspective, we see that to define a q-analogue of the exterior algebra, we first need to find

the q-analogue of the symmetric square. Moreover, this can be done by decomposing V⊗2
F into irreducible

submodules and defining the symmetric square to be the submodule LF(2ϖ1)⊕LF(0).

LEMMA 3.5.20. The F-span of

ai ⊗ai, bi ⊗bi,

ai ⊗a j +q−2a j ⊗ai i < j,
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b j ⊗bi +q−2bi ⊗b j i < j,

ai ⊗b j +q−2b j ⊗ai i ̸= j,

ai ⊗u+q−2u⊗ai, u⊗bi +q−2bi ⊗u,

ai ⊗bi +q−2bi+1 ⊗ai+1 +q−2ai+1 ⊗bi+1 +q−4bi ⊗ai i < n,

an ⊗bn +q−4bn ⊗an +q−1u⊗u if m is odd,

is the UF(om) submodule of V⊗2
F generated by a1 ⊗a1.

The F-span of

(−q2)n

q+q−1 u⊗u+
n

∑
i=1

(
(−q2)i−1ai ⊗bi − (−q2)2n−ibi ⊗ai

)
if m is odd,

or
n

∑
i=1

(
(−q2)i−1ai ⊗bi +(−q2)2n−i−1bi ⊗ai

)
if m is even.

is the unique copy of the trivial submodule of V⊗2
F .

Thus, the F-span of these vectors taken together is

LF(2ϖ1)⊕LF(0).

PROOF. We leave it to the reader to use Definition 3.5.10 and Equation (3.1) to check this claim. □

REMARK 3.5.21. The braiding endomorphism of V⊗2
F acts on LF(2ϖ1) as q2, on LF(0) as q2−2m, and

on LF(ϖ2) as −q−2 [38, Equation 6.12]. It follows that LF(2)⊕LF(0) is equal to the subspace of “positive”

eigenvectors for the braiding. This subspace is also referred to as S2
q, in [3].

DEFINITION 3.5.11. Define Λ•
A to be the associative A-algebra generated by the elements

a1, . . . ,an,u,bn, . . . ,b1

subject to the following relations:

a2
i = 0 b2

i = 0,

a jai =−q2aia j i < j,

bib j =−q2b jbi i < j,
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b jai =−q2aib j i ̸= j,

uai =−q2aiu, biu =−q2ubi,

bi+1ai+1 =−ai+1bi+1 −
(
q−2biai +q2aibi

)
i < n,

bnan =−q4anbn −q3u2 if m is odd,

u = 0 if m is even,

(−q2)n

q+q−1 u2 +
n

∑
i=1

(
(−q2)i−1aibi − (−q2)2n−ibiai

)
= 0 if m is odd,

and
n

∑
i=1

(
(−q2)i−1aibi +(−q2)2n−i−1biai

)
= 0 if m is even.

Let Λk
A be the A submodule spanned by monomials of degree k.

LEMMA 3.5.21. If m = 2n is even, then the relations

biai =−aibi −
i−1

∑
k=1

(−q2)−k+1(q2 −q−2)ai−kbi−k i=1, . . . , n,

are equivalent to the relations

bi+1ai+1 =−ai+1bi+1 −
(
q−2biai +q2aibi

)
i = 1, . . . ,n−1

and
n

∑
i=1

(
(−q2)i−1aibi +(−q2)2n−i−1biai

)
= 0.

If m = 2n+1 is odd, then the relations

biai =−aibi −
i−1

∑
k=1

(−q2)−k+1(q2 −q−2)ai−kbi−k i=1, . . . , n

and

u2 = q
n

∑
k=1

(−q2)−k(q2 −q−2)an+1−kbn+1−k,

are equivalent to the relations

(−q2)n

q+q−1 u2 +
n

∑
i=1

(
(−q2)i−1aibi − (−q2)2n−ibiai

)
= 0,
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bi+1ai+1 =−ai+1bi+1 −
(
q−2biai +q2aibi

)
i = 1, . . . ,n−1,

and

bnan =−q4anbn −q3u2.

PROOF. We provide an example calculation in each case. Generalizing these to the general case is left

to the reader.

Suppose m = 2 ·2. We are tasked with showing that

(3.16) b1a1 =−a1b1 and b2a2 =−a2b2 − (q2 −q−2)a1b1

is equivalent to

(3.17) b2a2 =−a2b2 − (q−2b1a1 +q2a1b1) and a1b1 +q4b1a1 −q2a2b2 −q2b2a2 = 0.

Assume Equation (3.16), then

b2a2 +a2b2 +q−2b1a1 +q2a1b1 =−a2b2 − (q2 −q−2)a1b1 +a2b2 −q−2a1b1 +q2a1b1 = 0

and

a1b1 +q4b1a1 −q2a2b2 −q2b2a2 = a1b1 −q4a1b1 −q2a2b2 −q2 (−a2b2 − (q2 −q−2)a1b1
)
.

Assume Equation (3.17). First, we rewrite the second relation as

b1a1 =−q−4a1b1 +q−2a2b2 +q−2b2a2,

so the first relation becomes

b2a2 =−a2b2 − (q−2b1a1 +q2a1b1) =−a2b2 −q−2 (−q−4a1b1 +q−2a2b2 +q−2b2a2
)
−q2a1b1

which we rewrite as

q−2(q2 +q−2)b2a2 =−q−2(q2 +q−2)a2b2 −q−2(q4 −q−4)a1b1.
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Since q2 +q−2 ∈ A× and q2 +q−2 = (q4 −q−4)/(q2 −q−2), this implies

b2a2 =−a2b2 − (q2 −q−2)a1b1.

Now, rewriting the second relation in Equation (3.17) again we find

b1a1 =−q−4a1b1 +q−2a2b2 +q−2 (−a2b2 − (q2 −q−2)a1b1
)
=−a1b1.

Suppose m = 2 ·1+1. We need to show that

(3.18) b1a1 =−a1b1 and u2 =−q−1(q2 −q−2)a1b1

is equivalent to

(3.19)
−q2

q+q−1 u2 +a1b1 +q2b1a1 = 0 and b1a1 =−q4a1b1 −q3u2.

Assume Equation (3.18). Then

−q2

q+q−1 u2 +a1b1 +q2b1a1 =
−q2

q+q−1

(
−q−1(q2 −q−2)a1b1

)
+a1b1 −q2a1b1

= q(q−q−1)a1b1 +a1b1 −q2a1b1 = 0

and

b1a1 +q4a1b1 +q3u2 =−a1b1 +q4a1b1 +q3 (−q−1(q2 −q−2)a1b1
)
= 0.

Assume Equation (3.19). Then we can rewrite the first relation as

u2 = q−2(q+q−1)a1b1 +(q+q−1)b1a1

so the second relation becomes

b1a1 =−q4a1b1 −q3u2 =−q4a1b1 −q3 (q−2(q+q−1)a1b1 +(q+q−1)b1a1
)

which we can rewrite as

(q4 +q2 +1)b1a1 = (−q4 −q2 −1)a1b1.

46



Since q4+q2+1∈A×, it follows that b1a1 =−a1b1. Thus, we can rewrite the first relation in Equation (3.19)

again as

u2 = q−2(q+q−1)a1b1 − (q+q−1)a1b1 =−q−1(q2 −q−2)a1b1.

□

COROLLARY 3.5.1. The algebra Λ•
A is the associative A-algebra generated by the elements

a1, . . . ,an,u,bn, . . . ,b1

subject to the following relations:

a2
i = 0 b2

i = 0,

a jai =−q2aia j i < j,

bib j =−q2b jbi i < j,

b jai =−q2aib j i ̸= j,

uai =−q2aiu, biu =−q2ubi,

biai =−aibi −
i−1

∑
k=1

(−q2)−k+1(q2 −q−2)ai−kbi−k,

u = 0 if m is even,

u2 = q
n

∑
k=1

(−q2)−k(q2 −q−2)an+1−kbn+1−k if m is odd.

PROOF. This follows immediately from Definition 3.5.11 and Lemma 3.5.21. □

DEFINITION 3.5.12. It will be convenient to write the vectors in VA as follows:

vi := ai, for i = 1, . . . ,n,

vm−i+1 := bi, for i = 1, . . . ,n,

and if m = 2n+1, then

vn+1 := u.
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There is an involution of {1, . . . ,m} defined by i 7→ i′ := m− i+ 1. We will write vi′ := vm−i+1. Let S ⊂

{1, . . . ,m}. If S = {s1, . . . ,sk} such that s1 < .. . < sk, set vS := vs1 · · ·vsk . We extend the involution i 7→ i′ to

the set of subsets of {1, . . . ,m} by S 7→ S′ := {s′1, . . . ,s
′
k}. Note that vS′ := vs′k

· · ·vs′1
.

THEOREM 3.5.10. The set {vS}S⊂{1,...,m} forms a basis of Λ•
A. In particular, {vS}S⊂{1,...,m}

|S|=k
forms a basis

of Λk
A.

PROOF. This is a standard application of Bergman’s diamond lemma [4, Theorem 1.2]. Note that if

1 < · · ·< m, then the lexicographic order on monomials in vi satisfies the hypotheses of the diamond lemma,

and the irreducible monomials are the elements of {vS}S⊂{1,...,m}. Therefore, it suffices to show that all the

ambiguities in the defining relations are resolvable.

The following are all the overlap ambiguities in the defining relations of Λ•
A:

axaxax, a ja jai, bxbxbx, bibib j, bxbxay, bxbxu, a jaiai, a jaiak,

bib jb j, bib jai, bib ju, bib ja j, bxayay, bxayaz,

uaxax, ua jai, bxuay, bxuax, bxuu, bxaxax, b ja jai, uuax, and uuu,

where 1 ≤ x,y,z, i, j,k ≤ n, x ̸= y, z < y, and k < i < j.

We provide an example calculation to verify the resolution of an ambiguity, and leave the rest as an

exercise. To simplify notation, write ξ := (q2 −q−2). On the one hand, we have

(uu)ai = q
n

∑
k=1

(−q2)−(n−k+1)
ξ akbkai

= q ∑
1≤k<i

(−q2)−n+k
ξ akaibk −q ∑

1≤k<i
(−q2)−n+k+1

ξ
2akaibk +q ∑

i<k≤n
(−q2)−n+k+1

ξ aiakbk

= q ∑
1≤k<i

(−q2)−n+k
ξ
(
1− (−q2)ξ

)
akaibk +q ∑

i<k≤n
(−q2)−n+k+1

ξ aiakbk

= q ∑
1≤k<i

(−q2)−n+k+2
ξ akaibk +q ∑

i<k≤n
(−q2)−n+k+1

ξ aiakbk,
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and on the other

u(uai) = (−q2)uaiu(−q2)2aiu2 = q
n

∑
k=1

(−q2)−n+k+1
ξ aiakbk

= q ∑
1≤k<i

(−q2)−n+k+2
ξ akaibk +q ∑

i<k≤n
(−q2)−n+k+1

ξ aiakbk.

□

REMARK 3.5.22. Write Λ•
R to denote the associative R-algebra with generators and relations as in Def-

inition 3.5.11. The basis {vS}S⊂{1,...,m} of Λ•
A is also a basis for Λ•

R, when R ∈ {C,F}. Define isomorphism

ιk : Λk
R → R⊗Λk

A by vS 7→ 1⊗ vS.

3.5.3.4. Fundamental category for orthogonal groups. For simple Lie algebras, the fundamental cate-

gory is the monoidal category generated by irreducible representations with highest weight a fundamental

weight. We define an analogue of this category for UR(om), when R ∈ {F,A,C}. The first step is to show

that for k = 0,1, . . . ,m, Λk
R are non-isomorphic, irreducible, self-dual UR(om)-modules.

LEMMA 3.5.22. The action of UF(som) on the tensor algebra of VF descends to an action of UF(som)

on Λ•
F. Moreover, the multiplication for Λ•

F is UF(som) equivariant.

PROOF. This follows from observing that UF(som) preserves the defining relations. See the discussion

in [37, Sections 3.2, 4.1] for the symmetric analogue. □

DEFINITION 3.5.13. Let wtvS :=∑i∈S wtvi, where wtvi is as defined in Definition 3.5.10. Then Kα ·vS =

(q2)(α,wtvS).

REMARK 3.5.23. The modules Λk
F are finite dimensional type-1 representations of UF(som), in partic-

ular we have

Λ
k
F =

⊕
a∈X(som)

Λ
k
F[a].

In fact, this remains true over A, since Λ•
A is spanned by {vS}S⊂{1,...,m} and each vS is a weight vector.

LEMMA 3.5.23. We have the following equality of formal characters:

∑
a∈X(som)

dimΛ
k
F[a]e

a = ∑
a∈X(som)

dimΛ
k
C[a]e

a.
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PROOF. Follows from observing that vS ∈ Λ
|S|
R [wtvS] for R ∈ {C,F}. □

LEMMA 3.5.24. Let R ∈ {C,F}. We have the following isomorphisms of UR(som)-modules.

If m = 2n+1, then

Λ
1
R
∼= LR(ϖ1), Λ

2
R
∼= LR(ϖ2), . . . , Λ

n−1
R

∼= LR(ϖn−1),

and Λ
n
R
∼= LR(2ϖn).

If m = 2n, then

Λ
1
R
∼= LR(ϖ1), Λ

2
R
∼= LR(ϖ2), . . . , Λ

n−2
R

∼= LR(ϖn−2),

Λ
n−1
R

∼= LR(ϖn−1 +ϖn), and Λ
n
R
∼= LR(2ϖn−1)⊕LR(2ϖn).

In either case Λm
R
∼= LR(0)

PROOF. Thanks to Lemma 3.5.7, it suffices to compute characters, and the result follows for R = C

from [19, Sections 19.2, 19.4], and then for R = F, from Lemma 3.5.23. □

LEMMA 3.5.25. The algebra UA(som) preserves the lattice Λ•
A ⊂ Λ•

F.

PROOF. Since UA(som) preserves V⊗d
A ⊂V⊗d

F for all d ≥ 0, it suffices to show that UA(som) preserves

the A-span of the defining relations for Λ•
A. This then immediately reduces to verifying that E(2)

α and F(2)
α

preserve the A-span of the defining relations. For example, using that ∆(F) = 1⊗F +F ⊗K−1, we find:

F(2)
1 ·a1 ⊗a1 =

1
q2 +q−2 F1 · (a1 ⊗a2 +q−2a2 ⊗a1) =

1
q2 +q−2 (q

2a2 ⊗a2 +q−2a2 ⊗a2) = a2 ⊗a2.

The remaining calculations we leave to the reader. □

LEMMA 3.5.26. Let R ∈ {C,A,F}. The operator σ ∈ UR(om) acts via the coproduct on V⊗d
R , for all

d ≥ 0, and preserves the defining relations of Λ•
R. Thus, there is an action of UR(om) on Λ•

R, and the algebra

structure maps are UR(om) equivariant.

PROOF. Use the description of σ ’s action on VR in Remark 3.5.19 to verify that σ preserves the relations

in Definition 3.5.11 of Λ•
R. □
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PROPOSITION 3.5.8. Let R ∈ {C,F}. The UR(om)-module Λk
R is self-dual and irreducible for k =

0, . . . ,m, if Λi
R
∼= Λ

j
R, then i = j, we have the following isomorphisms of UR(om)-modules6.

If m = 2n+1, then

Λ
i
R
∼= LR(ϖi,(−1)i), Λ

m−i
R

∼= LR(ϖi,−(−1)i), for i = 0,1, . . . ,n−1,

Λ
n
R
∼= LR(2ϖn,(−1)n), and Λ

n+1
R

∼= LR(2ϖn,−(−1)n).

If m = 2n, then

Λ
i
R
∼= LR(ϖi,+1), Λ

m−i
R

∼= LR(ϖi,−1), for i = 0,1, . . . ,n−2,

Λ
n−1
R

∼= LR(ϖn−1 +ϖn,+1), Λ
n+1
R

∼= LR(ϖn−1 +ϖn,−1), and

Λ
n
R
∼=UR(om)⊗UR(som) LR(2ϖn−1).

PROOF. Self duality is from Lemma 3.5.11. Thanks to Proposition 3.5.7, and Lemma 3.5.24, the re-

maining claims follow once we show that σ acts on v1v1 . . .vi by the prescribed eigenvalue in the statement

of the Proposition. We will argue this for v1v2 . . .vm, where σ always acts by −1, leaving the other cases to

the reader. Using the coproduct from Definition 3.5.8, we find σ(v1 . . .vm) = σ(v1) . . .σ(vm). From Remark

3.5.19 we see that for m = 2n+1,

σ(v1v2 . . .vm) = (−v1)(−v2) . . .(−vm) =−v1v2 . . .vm.

For m = 2n,

σ(v1v2 . . .vm) = v1 . . .vn−1vn+1vnvn+2 . . .v2n =−v1v2 . . .vm,

where the last equality follows from Lemma 3.5.21 and the defining relations of Λ•
R. □

REMARK 3.5.24. Let R ∈ {C,F}. There is an isomorphism of UR(om)-modules Λm
R
∼= detR, and isomor-

phisms of UR(om)-modules Λi
R
∼= detR⊗Λ

m−i
R .

REMARK 3.5.25. Since A is not a field, it does not make sense to ask for Λi
A to be irreducible. However,

we will show, in Lemma 3.5.32, that Λi
A is a self-dual UA(om)-module, essentially by proving that there is

an isomorphism Λi
F → (Λi

F)
∗ which preserves Λi

A and (Λi
A)

∗.
6In the notation of Proposition 3.5.6. Writing ϖ0 = 0.
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LEMMA 3.5.27. Let R ∈ {C,F}, then we have the following tensor product decompositions.

Λ
k
R ⊗VR ∼=


LR(ϖ1 +ϖk,+1)⊕Λ

k+1
R ⊕Λ

k−1
R , if k ≤ m−1, and

Λ
m−1
R , if k = m.

PROOF. Standard result (up to tensoring with detR). See [34] and [61, Equation 6.1]. □

DEFINITION 3.5.14. Let R ∈ {F,A,C}. Define the monoidal category Fund(UR(om)) to be the full

monoidal subcategory of UR(om)-modules generated by Λk
R for k = 0, . . . ,m. Define StdFund(UR(om)) as

the full monoidal subcategory of UR(om)-modules generated by Λ1
R =VR.

Let γ = (γ1, . . . ,γs), such that 0 ≤ γ i ≤ m, for i = 1, . . . ,s. We write Λ
γ

R := Λ
γ1
R ⊗·· ·⊗Λ

γs
R . Objects in

Fund(UR(om)) are all of the form Λ
γ

R for some γ .

PROPOSITION 3.5.9. Let γ = (γ1, . . . ,γs) and δ = (δ 1, . . . ,δ t) such that 0 ≤ γ i ≤ m, for i = 1, . . . ,s, and

0 ≤ δ j ≤ m, for j = 1, . . . , t. Then dimC HomUC(om)(Λ
γ

C,Λ
δ
C) = dimF HomUF(om)(Λ

γ

F,Λ
δ
F).

PROOF. The UR(om)-module Λk
A is type-1, for k = 0, . . . ,m, see Definition 3.5.7 and Remark 3.5.23.

Tensor products of type-1 modules are type 1, so Λ
γ

A is a type-1 UA(om)-module for all γ . The result then

follows from Lemma 3.5.14. □

LEMMA 3.5.28. Homomorphism spaces in Fund(UA(om)) are free and finitely generated A-modules.

PROOF. Since Λ
γ

A and Λδ
A are both free and finitely generated A-modules, see Theorem 3.5.10, the

A-module HomA(Λ
γ

A,Λ
δ
A) is free and finitely generated over A. Since A is a PID, the claim follows from

observing that HomUA(om)(Λ
γ

A,Λ
δ
A)⊂ HomA(Λ

γ

A,Λ
δ
A). □

We also define an auxiliary R-linear monoidal category R⊗Fund(UA(om)), which has the same objects

as Fund(UA(om)), but with morphisms

HomR⊗Fund(UA(om))(Λ
γ

A,Λ
δ
A) := R⊗HomFund(UA(om))(Λ

γ

A,Λ
δ
A).

We have identifications ιγ := ιγ1
⊗·· ·⊗ ιγs

: Λ
γ

R → R⊗Λ
γ

A, see Remark 3.5.22. Using bR from Lemma

3.5.17, we define a monoidal functor

BR : R⊗Fund(UA(om))→ Fund(UR(om)),
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on objects as Λ
γ

A 7→ Λ
γ

R, and on morphisms by sending r⊗ f ∈ HomR⊗Fund(UA(om))(Λ
γ

A,Λ
δ
A) to

ι
−1
δ

◦bR(r⊗ f )◦ ιγ ∈ HomFund(UR(om))(Λ
γ

R,Λ
δ
R).

REMARK 3.5.26. The notation makes BR appear more complicated than it is. Let R ∈ {C,A,F}. The

{vS} basis for Λ•
R gives rise to a basis for Λ

γ

R, for all γ , and therefore a basis for HomR(Λ
γ

R,Λ
δ
R) for all γ,δ .

For f ∈ HomFund(UA(om))(Λ
γ

A,Λ
δ
A), we can use this basis to view f as a matrix with entries in A. Then for

R ∈ {C,F}, BR(1⊗ f ) is the same matrix, but with the entries interpreted as elements of R.

One of our main goals is to derive various relations among morphisms in Fund(UA(om)). However, it

will be easier to work in Fund(UF(om)), so the following lemma is useful.

LEMMA 3.5.29. The functor BF is faithful.

PROOF. Follows from injectivity of bF, see Remark 3.5.16. □

3.5.3.5. Generating intertwiners for tensor products of exterior powers.

DEFINITION 3.5.15. Let R ∈ {C,A,F} and define

Rm
i+ j
i, j : Λ

i
R ⊗Λ

j
R −→ Λ

i+ j
R

by x⊗ y 7→ xy.

REMARK 3.5.27. The map Rmi+ j
i, j is a UR(om)-linear transformation such that

v{1,...,i}⊗ v{i+1,...,i+ j} 7→ v{1,...,i,i+1,...,i+ j}.

In particular, when i+ j ≤ m, the map is non-zero and therefore is surjective. Moreover, BR(
Ami+ j

i, j ) =

Rmi+ j
i, j .

Let R ∈ {C,A,F} and let X be a free R-module with basis BX = {b1, . . . ,bd}. Then X∗ := HomR(X ,R)

has basis {b∗1, . . . ,b
∗
d}, where b∗i (b j) = δi, j. Consider the elements C ∈ X ⊗X∗ defined by

C =
d

∑
i=1

bi ⊗b∗i .
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There are R-linear maps

coev : R → X ⊗X∗, 1 7→C, and ev : X∗⊗X → R, f ⊗ x 7→ f (x).

It is easy to verify that

(3.20) (idX ⊗ev)◦ (coev⊗ idX) = idX and (ev⊗ idX∗)◦ (idX∗ ⊗coev) = idX∗ .

REMARK 3.5.28. We can regard R as the trivial UR(om)-module via the counit, denoted ε in Definition

3.5.8. Also, If X is a UR(om)-module, which is free over R, then X∗ is as well, via the antipode, denoted S in

Definition 3.5.8. One easily checks that the maps ev and coev are UR(om)-module maps, where UR(om) acts

on X ⊗X∗ via the coproduct.

DEFINITION 3.5.16. Let R ∈ {C,A,F}. Define

R
ϕ1 : VR −→ (VR)

∗

to be the unique UR(om)-linear map such that

v1 7→ v∗m.

This is easily seen to be an isomorphism of R-modules. Also, we have BR(
Aϕ1) =

Rϕ1.

We define

Re1 : VR ⊗VR −→ R by ev◦ (R
ϕ1 ⊗ id),

and

Rc1 : R −→VR ⊗VR by (id⊗(R
ϕ1)

−1)◦ coev.

Note that for R ∈ {C,A,F}, we have BR(
Ack) =

Rck and BR(
Aek) =

Rek.

REMARK 3.5.29. Let R ∈ {C,A,F}. Recall that VR is generated over UR(som)
<0 by a1 while V ∗

R is

similarly generated by b∗1. It then follows from explicit calculation using: UR(om) equivariance of Rϕ1, the

formulas for the antipode in Definition 3.1.2, and the description of the action on VR in Definition 3.5.10,

that if m = 2n+1 is odd, then

R
ϕ1(ai) = (−q2)i−1b∗i ,

R
ϕ1(u) = (−q2)n−1[2]qu∗, and R

ϕ1(bi) = (−q2)m−ia∗i ,
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and if m = 2n is even, then

R
ϕ1(ai) = (−q2)i−1b∗i and R

ϕ1(bi) = (−q2)m−i−1a∗i .

DEFINITION 3.5.17. Let R ∈ {C,A,F}. Define Rck ∈ HomUR(om)(R,Λ
k
R ⊗Λk

R) inductively by

Rck :=
[2]
[2k]

· (Rmk
k−1,1 ⊗Rmk

1,k−1)◦ (idΛ
k−1
R

⊗Rc1 ⊗ id
Λ

k−1
R

)◦Rck−1.

LEMMA 3.5.30. Let R ∈ {C,A,F}. Then Rck ̸= 0.

PROOF. Since Rck =BR(
Ack) for R ∈ {C,F}, it suffices to show Cck ̸= 0.

Let πk ∈ HomC(Λ
k
C ⊗ Λk

C,C) be the projection to v1 . . .vk ⊗ vm−k+1 . . .vm, with respect to the basis

{vS ⊗ vT}S,T⊂{1,...,m}
|S|=|T |=k

. It suffices to show that πk ◦Cck ̸= 0.

Write (Cϕ1)
−1(v∗j) = t jv j′ , where j′ = m− k+1. Note that t j ∈ C× for j = 1, . . . ,m. Then

πk ◦Cck(1) =
1
k! ∑

w∈Sk

πk

(
vw(1) . . .vw(k)⊗C

ϕ
−1
1 (vw(k)) . . .

C
ϕ
−1
1 (vw(1))

)
=

t1 . . . tk
k!

· ∑
w∈Sk

πk
(
vw(1) . . .vw(k)⊗ vw(k)′ . . .vw(1)′

)
=

t1 . . . tk
k!

· ∑
w∈Sk

πk

(
(−1)ℓ(w)v1 . . .vk ⊗ (−1)ℓ(w)vm−k−1 . . .vm

)
= t1 . . . tk ̸= 0.

□

DEFINITION 3.5.18. Let

R
ψk := (ev⊗ id

Λk
R
)◦ (id(Λk

R)
∗ ⊗Rck)

Since ev ∈ HomUR(om)((Λ
k
R)

∗⊗Λk
R,R), it follows that Rψk ∈ HomUR(om)((Λ

k
R)

∗,Λk
R).

LEMMA 3.5.31. We have the following equality in HomUR(om)(R,Λ
k
R ⊗Λk

R)

Rck = (id
Λk

R
⊗R

ψk)◦ coev

PROOF. Follows from Equation 3.20. □

LEMMA 3.5.32. Let R ∈ {C,A,F}. Then Rψk is an isomorphism.
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PROOF. Thanks to Proposition 3.5.8, for R ∈ {C,F}, Rψk is an isomorphism if and only if Rψk ̸= 0.

We know from weight considerations that Aψk(v∗{m−k+1,...,m}) = ξk · v{1,...,k} for some ξk ∈ A, and Aψk is an

isomorphism if and only if ξk ∈ A× if and only if ξk does not map to zero under A→ C. Since BR(
Aψk) =

Rψk and BF is faithful, the claim will follow if we show Cψk ̸= 0. This follows from Lemma 3.5.30 and

Equation 3.20. □

DEFINITION 3.5.11. Let R ∈ {C,A,F}. Define Rϕk := (Rψk)
−1 and

Rek := ev◦ (R
ϕk ⊗ id

Λk
R
) ∈ HomUR(om)(Λ

k
R ⊗Λ

k
R,R).

REMARK 3.5.30. When k = 1, the previous definition agrees with Definition 3.5.16.

LEMMA 3.5.33. Let R ∈ {C,A,F}. The following equality of morphisms holds.

(id
Λk

R
⊗Rek)◦ (Rck ⊗ id

Λk
R
) = id

Λk
R

and (Rek ⊗ id
Λk

R
)◦ (id

Λk
R
⊗Rck) = id

Λk
R
.

PROOF. Using Equation (3.20) this follows from the definition of Rek and Rck along with the interchange

law for monoidal categories7 □

PROPOSITION 3.5.10. The category Fund(UA(om)) can be described by a planar diagrammatic cal-

culus with unoriented strands such that isotopic diagrams represent equal morphisms, and the unoriented

cups and caps labelled by k are equal to Ack and Aek respectively.

PROOF. Using the pivotal structure from [59], which is such that the Frobenius-Schur indicator of each

irreducible is +1, it is known that Fund(UF(som)) can be described by an unoriented diagrammatic calcu-

lus [58]. For more details, see the discussion in [8, Section 2.2 and Theorem 5.1]. Viewing Fund(UF(om))

as a subcategory of Fund(UF(som)), it follows that Fund(UF(om)) can be described by an unoriented dia-

grammatic calculus with respect to some cups and caps

cupk ∈ HomUF(om)(F,Λ
k
F⊗Λ

k
F) and capk ∈ HomUF(om)(Λ

k
F⊗Λ

k
F,F).

Note that we can re-scale cupk by any λk ∈ F× as long as we also re-scale capk by λ
−1
k .

7If C is a monoidal category, then for α ∈ HomC (X ,Y ) and α ′ ∈ HomC (X ′,Y ′), we have (α ⊗ idY ′) ◦ (idX ⊗α ′) = (idY ⊗α ′) ◦
(α ⊗ idX ′).
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We know that HomUF(om)(F,Λ
k
F⊗Λk

F) is one dimensional. Also, both cupk and Fck are non-zero elements

of HomUF(om)(F,Λ
k
F⊗Λk

F). Therefore, there is λk ∈ F× such that Fck = λk · cupk. Using the hypothesis that

we can describe Fund(UF(om)) graphically with cupk and capk, and Lemma 3.5.33 we find

Fek =
Fek ◦

(
id

Λk
F
⊗
(
(id

Λk
F
⊗λ

−1
k · capk)◦ (λk · cupk ⊗ id

Λk
F
)
))

= λ
−1
k · capk ◦

((
(Fek ⊗ id

Λk
F
)◦ (id

Λk
F
⊗λk · cupk)

)
⊗ id

Λk
F

)
= λ

−1
k · capk ◦

((
(Fek ⊗ id

Λk
F
)◦ (id

Λk
F
⊗Fck)

)
⊗ id

Λk
F

)
= λ

−1
k · capk.

So without loss of generality we may assume that capk =
Fek and cupk =

Fck.

Note that,

BF(
Aek) =

Fek and BF(
Ack) =

Fck.

Given any graphical equation involving coupons labelled by morphisms in Fund(UA(om)), cups, and caps,

we can then apply BF(−) and deduce, from the above discussion, an equation of morphisms in Fund(UF(om)).

It follows from Lemma 3.5.29 that this equation of morphisms is true in Fund(UA(om)).

□

DEFINITION 3.5.19. Define Ami, j
i+ j using the graphical calculus for morphisms as the 180 degree ro-

tation of Ami+ j
j,i . For R ∈ {C,F}, define Rmi, j

i+ j := BR(
Ami, j

i+ j). By Proposition 3.5.10 it does not matter

whether we rotate clockwise or counterclockwise.

LEMMA 3.5.34. Let R ∈ {C,A,F}. For k = 1, . . . ,m,

Rm
k
1,k−1 ◦Rm

1,k−1
k =

[2k]
[2]

id
Λk

R
.

PROOF. For R = A, this follows by using the graphical calculus for Fund(UA(om)) and Definition

3.5.17. Then applying BR yields the result for R ∈ {C,F}. □
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LEMMA 3.5.35. Let R ∈ {C,A,F}. For k = 1, . . . ,m,

Rek ◦Rck =
[2m−4k][m]

[m−2k][2m]

m

k


q2

· id
Λ0

R
.

PROOF. We give a sketch, for more details see [8, Section 2.2].

First, we observe that EndA(Λ0
A) = A · id

Λ0
A
, and every A-linear endomorphism of the trivial module

commutes with UA(om), so EndUA(om)(Λ
0
A) = A · id

Λ0
A
. It follows that Aek ◦ Ack = dk(m) · id

Λ0
A
, for some

dk(m) ∈ A. Thus,

Cek ◦Cck = dk(m) · id
Λ0
C

and Fek ◦ Fck = dk(m) · id
Λ0
F
,

where dk(m) denotes the image of dk(m) under A→ C. So it suffices to show the claim for R = F.

Taking the trace of the identity of an object, with respect to our chosen pivotal structure, gives the

quantum dimension. The quantum Weyl dimension formula states that for our chosen pivotal structure on

Rep(Uq(som))

qdim(LF(a)) := traceq
(
idLF(a)

)
= (−1)(ρ

∨,2a)
∏

α∈Φ+

[(α∨,a+ρ)]vα

[(α∨,a)]vα

,

where v = q, if m is odd, and v = q2, if m is even. On the other hand, the trace of id
Λk
F
, with respect to our

chosen pivotal structure, is exactly the coefficient dk(m).

We leave it as an exercise to use the quantum dimension formula, along with Remark 3.5.11, to derive

the dimension formula in the statement of the Lemma. For a hint, look at proof of [8, Proposition 2.2]. □

The last intertwiner we will consider is the braiding isomorphism βVF,VF : VF ⊗VF → VF ⊗VF. To

this end, we observe that VF ⊗VF is a direct sum of three non-isomorphic irreducible representations8:

LF(2ϖ1,+1), which is characterized as containing v1 ⊗ v1, LF(ϖ2,+1), which is isomorphic to Λ2
F, and

VF(0,+1), the trivial module. Write π(2), π(1,1), and π0 for the projections in EndUF(om)(V
⊗2
F ) with image

LF(2ϖ1,+1), LF(ϖ2,+1), and LF(0,+1) respectively. Then it follows from [38, Equation 6.12] that

βVF,VF = q2
π(2)−q−2

π(1,1)+q2−2m
π(0) and β

-1
VF,VF

= q−2
π(2)−q2

π(1,1)+q−2+2m
π(0).

8Except when m = 1, and we have VF(2) = 0 =VF(1,1). In this case v1 ⊗ v1 generates VF(0).
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LEMMA 3.5.36. We can express the braiding and its inverse in terms of our previously defined mor-

phisms as

βVF,VF = q2 · idVF⊗VF −
Fm

1,1
2 ◦ Fm

2
1,1 −

[m−2]
[2m−4]

(q2 −q−2)q−m+2 · Fc1 ◦ Fe1

and

β
-1

VF,VF
= q−2 · idVF⊗VF −

Fm
1,1
2 ◦ Fm

2
1,1 +

[m−2]
[2m−4]

(q2 −q−2)qm−2 · Fc1 ◦ Fe1.

PROOF. First, we note that

π(1,1) =
[2]
[4]

· Fm
1,1
2 ◦ Fm

2
1,1 and π(0) =

[m−2][2m]

[2m−4][m][m]q2
· Fc1 ◦ Fe1.

Since idVF⊗VF = π(2)+π(1,1)+π0, it follows that

π(2) = idVF⊗VF −
[2]
[4]

· Fm
1,1
2 ◦ Fm

2
1,1 −

[m−2][2m]

[2m−4][m][m]q2
· Fc1 ◦ Fe1.

Thus,

βVF,VF = q2 idVF⊗VF +

(
−q2 [2]

[4]
−q−2 [2]

[4]

)
· Fm

1,1
2 ◦ Fm

2
1,1

+

(
−q2 [m−2][2m]

[2m−4][m][m]q2
+q2−2m [m−2][2m]

[2m−4][m][m]q2

)
· Fc1 ◦ Fe1

= q2 · idVF⊗VF −
Fm

1,1
2 ◦ Fm

2
1,1 −

[m−2]
[2m−4]

(q2 −q−2)q−m+2 · Fc1 ◦ Fe1.

The same argument is used to derive the formula for β -1
VF,VF

. □

DEFINITION 3.5.20. Let R ∈ {C,A,F}, we define

βVR,VR := q2 · idVR⊗VR −Rm
1,1
2 ◦Rm

2
1,1 −

[m−2]
[2m−4]

(q2 −q−2)q−m+2 ·Rc1 ◦Re1

and

β
-1

VR,VR
:= q−2 · idVR⊗VR −Rm

1,1
2 ◦Rm

2
1,1 +

[m−2]
[2m−4]

(q2 −q−2)qm−2 ·Rc1 ◦Re1.

LEMMA 3.5.37. Let R ∈ {C,A,F}. The 90 degree rotation of βVR,VR is β -1
VR,VR

.

PROOF. The claim is equivalent to

(idVR ⊗Re1)◦ (βVR,VR ⊗ idVR)◦ (idVR ⊗βVR,VR) = (Re1 ⊗ idVR).
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By Lemma 3.5.29 it suffices to show this is true for βVF,VF . The Hexagon equation implies that

βVF⊗VF,VF = (βVF,VF ⊗ idVF) ◦ (idVF ⊗βVF,VF). Since we are in a strict braided monoidal category, we also

have βF,VF = idVF . Also, by naturality of the braiding we have (idVF ⊗ Fe1)◦βVF⊗VF,VF = βF,VF ◦ (Fe1 ⊗ idVF).

Thus,

(idVF ⊗
Fe1)◦ (βVF,VF ⊗ idVF)◦ (idVF ⊗βVF,VF) = (idVF ⊗

Fe1)◦βVF⊗VF,VF

= βF,VF ◦ (
Fe1 ⊗ idVF)

= idVF ◦(
Fe1 ⊗ idVF)

= (Fe1 ⊗ idVF).

□

Unsurprisingly, the braiding when q = 1 is just the tensor flip map.

LEMMA 3.5.38. The map βVC,VC acts on V⊗2
C by v⊗w 7→ w⊗ v.

PROOF. Let s denote the tensor flip map. Since q−1= 0 in C, we see that Definition 3.5.20 simplifies to

βVC,VC = idVC⊗VC −Rm1,1
2 ◦Rm2

1,1. Since Cm1,1
2 ◦Cm2

1,1 factors through Λ2
C and squares to 2, we have 1

2
Cm1,1

2 ◦
Cm2

1,1 =
1
2 (idVC⊗VC −s), the anti-symmetrizing idempotent. Thus, βVC,VC = idVC⊗VC −(idVC⊗VC −s) = s. □

3.5.4. Existence of the functor. Let R ∈ {F,A,C}. We will prove that there is a pivotal functor ΦR :

WebR(O(m))−→ Fund(UR(om)). Since WebR(O(m)) is a generators and relations category, it suffices to

define where generators go and check relations. Thus, the majority of this section is devoted to deriving

various relations among morphisms in Fund(UR(om)). For later arguments, it is important for us to have

canonical identifications between R⊗ΦA and ΦR. To make this precise, we construct ΦA first, then define

ΦR :=BR ◦(R⊗ΦA).

3.5.4.1. Deriving relations. In this section, all graphical calculations are in the category Fund(UR(om)),

as opposed to WebR(O(m)), and trivalent graphs represent the multiplication maps Λi
R ⊗Λ

j
R → Λ

i+ j
R . That

this is valid for R ∈ {C,A,F} is justified by Proposition 3.5.10. To make this clear, we will use grey dia-

grams in this section. We also assume that we are working in Fund(UA(om)), unless we explicitly say that

we are working over F or C.

First, since Λ•
A is an associative graded algebra, we have the following.
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(3.21) k+ l

k lm

k+ l +m

= k+m

km l

k+ l +m

.

Lemma 3.5.35 says that

(3.22) k =
[2m−4k][m]

[m−2k][2m]

m

k


q2

,

and from Lemma 3.5.34 we find,

(3.23)

k

k

1 k−1 =
[2k]
[2]

k

.

Since HomUA(om)(Λ
k+2
A ,Λk

A) = 0, we also have

(3.24)

k

k+2

1 k+1 = 0.

Let k = 0 in Equation (3.24), we have

(3.25)
2

1

= 0.

LEMMA 3.5.39.

k

k

1 k+1 =
[2m−2k][2m−4k−4][m−2k]

[2][m−2k−2][2m−4k]
k

(3.26)
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PROOF. We temporarily work over F. Since HomUF(om)(Λ
k
F,Λ

k
F) is 1-dimensional, there exists α ∈ F

such that
k

k

1 k+1 = α

k

.

If we show Equation (3.26) is true over F, then in particular α ∈ A, so Lemma 3.5.29 implies the equation

also holds in Fund(UA(om)).

Observe that

k 1 k+1 = α

k

= α
[2m−4k][m]

[m−2k][2m]

m

k


q2

.

On the other hand,

k 1 k+1 =
[2k+2]

[2]

k+1

=
[2k+2]

[2]
[2m−4k−4][m]

[m−2k−2][2m]

 m

k+1


q2

.

Thus,

α
[2m−4k][m]

[m−2k][2m]

m

k


q2

· id
Λ0
F
=

[2k+2]
[2]

[2m−4k−4][m]

[m−2k−2][2m]

 m

k+1


q2

· id
Λ0
F
,

and since id
Λ0
F
̸= 0, we can compare coefficients and solve for α from

α
[2m−4k][m]

[m−2k][2m]

m

k


q2

=
[2k+2]

[2]
[2m−4k−4][m]

[m−2k−2][2m]

 m

k+1


q2

.

□

LEMMA 3.5.40.

1 1

11

2 +
[2m−8][m−2]
[m−4][2m−4]

1

1

=

1

1 1

1

2 +
[2m−8][m−2]
[m−4][2m−4]

1 1(3.27)
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PROOF. By Definition 3.5.20 and Lemma 3.5.37, we know that the 90 degree rotation of βVR,VR is the

same as β -1
VR,VR

, so

q2

1

1

−

1

1 1

1

2 − [m−2]
[2m−4]

(q2 −q−2) ·q−m+2 1 1

= q−2 1 1 −

1 1

11

2 +
[m−2]
[2m−4]

(q2 −q−2) ·qm−2

1

1

.

We obtain Equation (3.27) by combining terms and using the identities in Remark 3.5.12. □

LEMMA 3.5.41.

11

2

1 1
2

=
[2m][m−2]
[m][2m−4]

11

2

(3.28)

PROOF. This is immediate from Equation (3.27), Equation (3.23), and Equation (3.25). □

LEMMA 3.5.42.

(3.29) 11

2

k+1

1

k

1

k+1

k+2

=
[2k+2][2m][m−2]

[2][m][2m−4]

1

k+1

k+2
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PROOF.

2 1

1
k

k+1

k+2

1 k+1

1

(3.21)
=

2 1

1

2
k

k+2

1 k+1

1

(3.28)
=

[2m][m−2]
[m][2m−4]

1

2 k

k+2

1 k+1

(3.21)
=

[2m][m−2]
[m][2m−4]

1

1

k+2

k

k+1

k+1

(3.23)
=

[2k+2][2m][m−2]
[2][m][2m−4]

1k+1

k+2

□

LEMMA 3.5.43. For k+1 < m,

k+1

11

2

k+1

k
̸= 0.

PROOF. Since this triangle is part of the left hand side of Equation (3.29), and the right hand side of

Equation (3.29) is a non-zero scalar multiple of the map mk+2
1,k+1, which, as long as k+2 ≤ m, is non-zero by

Remark 3.5.27. □

LEMMA 3.5.44.

(3.30)

m

11

2

m

m−1
= 0

PROOF. We know that Λm
F ⊗Λm

F
∼= detF⊗detF ∼= Λ0

F. Also, Proposition 3.5.8 implies that

dimF HomUF(om)(Λ
0
F,Λ

2
F) = 0.

This means that Equation (3.30) holds after applying BF, and the claim follows from Lemma 3.5.29. □
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PROPOSITION 3.5.11. Suppose that k ≤ m. Then the following equation holds in Fund(UA(om)).

11

2

k k

1 1

k−1

=

k

1 1

k

k+1 +
[2m−4k−4][m−2k]
[m−2k−2][2m−4k]

k

1 1

k

k−1 − [2m−4k−4][m−2]
[m−2k−2][2m−4]

1

k

(3.31)

PROOF. We prove Equation (3.31) by induction. We verified the base case, that Equation (3.31) holds

when k = 1, in Lemma 3.27. Suppose Equation (3.31) holds in Fund(UA(om)) for k ≥ 1, then we will

show that it is true for k + 1. Since Λ
k+1
A = 0 when k + 1 > m, we may assume k + 1 ≤ m, in order for

Equation (3.31) to be non-trivial in Fund(UA(om)). Suppose that k+1 < m. We temporarily work over F.

It follows from Lemma 3.5.27 that Λ
k+1
F ⊗VF ∼= Λ

k+2
F ⊕Λk

F⊕LF(ϖ1 +ϖk,+1). Therefore, the merge-split

to k+ 2, the merge-split to k, and id
Λ

k+1
F ⊗VF

form a basis for EndUF(om)(Λ
i
F⊗VF). In particular, there are

x,y,z ∈ F such that

(3.32)
1

1
2

k+1

k+1

1

1

k = x

k+1 1

1k+1

k+2 + y

k+1 1

1k+1

k + z

1k+1

.

Now, in order to find a linear system of equations about x,y,z, we first attach caps or trivalent vertices, in

three different ways, to each term of Equation (3.32).

1

11

2

k+1 k+1
k

= x

1

k+1 k+1

k+2 + y

1

k+1 k+1

k + z

1

k+1

1 1
2

11

2

k+1 k+1
k

= x
11

2

k+1 k+1

k+2
+ y

k+1

11

2

k+1

k
+ z 1

2

k+1

11

2

k+1

1

k

1

k+1

k+2

= x

1

k+1

k+2

k+1

1

k+2
+ y

1

k+1

k+2

k+1

1

k
+ z

k+1

1

k+2
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In order to simplify the second equation, we need to relate the two triangles on the right hand side. Using

results in [34], one can check that since k+1<m, dimF HomUF(om)(Λ
k+1
F ⊗Λ2

F,Λ
k+1
F )= 1. By Lemma 3.5.43

k+1

11

2

k+1

k
̸= 0 .

So there exists τ ∈ F such that

11

2

k+1 k+1

k+2
= τ

k+1

11

2

k+1

k
.(3.33)

On one hand, we know:

k+1

11

k+2

2

k+1
k+1

11

k
(3.29)
=

[2k+2][2m][m−2]
[2][m][2m−4]

k+1 k+1

k+2

1

(3.26)
=

[2k+2][2m][m−2][2m−2k−2][2m−4k−8][m−2k−2]
[2][m][2m−4][2][m−2k−4][2m−4k−4]

k+1

On the other hand, we know that

k+1

11

k

2

k+1
k+1

11

k
(3.27)
= − [2m−8][m−2]

[m−4][2m−4]
k+1

1

k
k+1

k+1

1

k +

k+1

k
k+1

k+1

k

1 1
2

1 1

+
[2m−8][m−2]
[m−4][2m−4]

k+1

k
k+1

k+1

k

1

1

,

where

k+1

1

k
k+1

k+1

1

k
(3.23)
=

(
[2k+2]

[2]

)2 k+1

,
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k+1

k
k+1

k+1

k

1

1 (3.26)
(3.23)
=

[2m−2k][2m−4k−4][m−2k]
[2][m−2k−2][2m−4k]

[2k+2]
[2]

k+1

.

By the inductive hypothesis,

k+1

k
k+1

k+1

k

1 1
2

1 1 (3.31)
=

k+1

k
k−1

k+1

k

1 1

2
1 1
2

1 1 − [2m−4k−4][m−2k]
[m−2k−2][2m−4k]

k+1

k
k−1

k+1

k

1 1
2

1 1
+

[2m−4k−4][m−2]
[m−2k−2][2m−4]

k+1

k

k+1

1 1
1

2

(3.23)
(3.25)
=

[2m−4k+4][m−2k]
[m−2k+2][2m−4k]

k+1

k
k−1

k+1

k

1 1
2

1 1 (3.21)
=

[2m−4k+4][m−2k]
[m−2k+2][2m−4k]

k+1

k−1
2

k+1

k

1 1
21

1

(3.28)
=

[2m−4k+4][m−2k]
[m−2k+2][2m−4k]

[2m][m−2]
[m][2m−4]

k+1

k−1
2

k+1

k

1

1
(3.21)
=

[2m−4k+4][m−2k][2m][m−2]
[m−2k+2][2m−4k][m][2m−4]

k+1

k−1k

k+1

k

1

1

(3.23)
=

[2m−4k+4][m−2k][2m][m−2]
[m−2k+2][2m−4k][m][2m−4]

[2k]
[2]

[2k+2]
[2]

k+1

.

In conclusion,

τ =
[2m−4k][m−2k−2]
[m−2k][2m−4k−4]

.

So by applying Equations (3.22), (3.23), (3.24), (3.25), (3.26), (3.29), and (3.33), we have the following

system of linear equations.

0 =
[2m−2k−2][2m−4k−8][m−2k−2]

[2][m−2k−4][2m−4k−4]
x+

[2k+2]
[2]

y+
[2m−4][m]

[m−2][2]
z,

[4]
[2]

=
[2m−4k][m−2k−2]
[m−2k][2m−4k−4]

x+ y, and

[2k+2][2m][m−2]
[2][m][2m−4]

=
[2k+4]

[2]
x+ z.
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The values

x = 1

y =
[2m−4k−8][m−2k−2]
[m−2k−4][2m−4k−4]

z =− [2m−4k−8][m−2]
[m−2k−4][2m−4]

satisfy the equations, and therefore are a unique set of solutions. Since x,y,z ∈ A, it follows from Lemma

3.5.29 that Equation (3.31) holds in Fund(UA(om)) when k+1 < m.

Now, suppose that k+1 = m. Lemma 3.5.27 implies that Λ
k+1
F ⊗VF ∼= Λk

F. Thus, there exists γ ∈ F such

that

(3.34)

1k+1

= γ

k+1 1

1k+1

k ,

so

1

k+1

= γ 1

k+1

k+1

k .

Using Equations (3.22) and (3.23), we get
[2m−4][m]

[m−2][2]
· id

Λ
k+1
F

= γ ·
[2k+2]

[2]
· id

Λ
k+1
F

, so γ =
[2m−4][m]

[m−2][2m]
∈A.

It follows from Lemma 3.5.29 that Equation (3.34) also holds in Fund(UA(om)).

On the other hand, consider Equation (3.31) when k = m. Lemma 3.5.44 implies that the left hand side

of Equation (3.31) is zero. Also, the first term on the right hand side of Equation (3.31) has a label m+1, so

is also zero. Thus, Equation (3.31) becomes

0 = 0+
[2m−4m−4][m−2m]

[m−2m−2][2m−4m]
m

1 1

m

m−1
− [2m−4m−4][m−2]

[m−2m−2][2m−4]

1

m

,

which agrees with Equation (3.34). □
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THEOREM 3.5.12. Let R ∈ {C,A,F}. There is a pivotal functor ΦR : WebR(O(m))→ Fund(UR(om))

such that,
i+1

i 1

7→ Rm
i+1
i,1 ,

i+1

1 i

7→ Rm
i+1
1,i , and ΦR(

R
β 1,1) = βVR,VR

Moreover, we have canonical identifications ΦR =BR ◦(R⊗ΦA).

PROOF. Suppose we have ΦA as in the statement of the theorem. Then for R ∈ {C,F}, we define ΦR

as the composition

WebR(O(m)) = R⊗WebA(O(m))
R⊗ΦA−−−→ R⊗Fund(UA(om))

BR−−→ Fund(UR(om)) .

It is then easy to see that it suffices to prove the result over A. To this end, we just need to check the

defining relations in WebA(O(m)), see Equation (3.4), are satisfied in Fund(UA(om)). This follows from

Equations (3.22), (3.23), (3.25), (3.21), and (3.31).

Having established everything else in the statement of the theorem, the equality ΦR(
Rβ 1,1) = βVR,VR

follows from comparing Definition 3.5.20 and Definition 3.5.3. □

3.5.4.2. Compatability with classical invariant theory. Let Cm be a vector space with basis {v1, . . . ,vm}

and bilinear form (vi,v j) = δi, j. We write O(Cm) for the subgroup of GL(Cm) preserving (−,−).

We want to identify StdFund(UC(om)) with the full monoidal subcategory of Rep(O(Cm)) generated

by Cm. To this end, consider the C-basis for VC:
(
√
−1)i−1

(
ai+bi

2

)
, (

√
−1)i−1

(
ai−bi

2

)
, i = 1, . . . ,n, if m = 2n

(
√
−1)i−1

(
ai+bi

2

)
, (

√
−1)n−1 u√

2
, and (

√
−1)i−1

(
ai−bi

2

)
, i = 1, . . . ,n, if m = 2n+1.

This basis gives an identification Cm =VC under which the form (vi,v j) = δi, j on Cm agrees with the form

(v,w) = Ce1(v⊗w) on VC.

Let B(m) be the Brauer category as defined in [40, Definition 2.4 and Theorem 2,6]. Lehrer-Zhang

prove there is a unique monoidal functor F : B(m)→ Rep(O(Cm)) = Rep(UC(om)) such that the crossing

diagram maps to the tensor flip map, and the cup and cap diagrams map to the natural homomorphisms

constructed with (−,−) [40, Theorem 3.4].
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On the other hand, we have constructed a monoidal functor ΦC|StdWebC(O(m)) : StdWebC(O(m)) →

StdFund(UC(om)). Using the canonical identification BMWC(O(m)) = B(m), Proposition 3.5.4 gives

a monoidal functor ηC : B(m) → StdWebC(O(m)). By definition, F ◦ηC sends Cβ 1,1 to the tensor flip

map, and by Lemma 3.5.38 ΦC acts the same way. Thus, after identifying StdFund(UC(om)) with the full

monoidal subcategory of Rep(O(Cm)) generated by VC, we have F = ΦC|StdWebC(O(m)) ◦ηC.

3.5.5. Proof of the equivalence.

3.5.5.1. Reduction to standard subcategories. Let R = F or C. In Theorem 3.5.12 we showed the

existence of a pivotal functor ΦR : WebR(O(m)) → Fund(UR(om)). Our goal is to show that the functor

ΦR is an equivalence. Essential sujectivity is immediate from the definitions, but we need to work to show

ΦR is full and faithful. The first step is to reduce to showing that ΦR|StdWebR(O(m)) : StdWebR(O(m)) →

StdFund(UR(om)) is full and faithful.

LEMMA 3.5.45. Let R ∈ {C,F}. If ΦR|StdWebR(O(m)) is full, then ΦR is full. If ΦR|StdWebR(O(m)) is faithful,

then ΦR is faithful.

PROOF. Using the merge and split trivalent vertices, it is easy to see that each generating object k in

WebR(O(m)) is a direct summand of 1⊗k. The claim then follows from [8, Lemma 5.5]. □

3.5.5.2. Fullness. It is well known that if R = C or F, then the Brauer algebra, respectively the BMW

algebra, is Schur-Weyl dual to UR(om) acting on tensor powers of VR. An adjunction argument, see [8,

Theorem 5.8], then yields fullness of ΦR|StdWebR(O(m)). We give precise citations in the proof below.

THEOREM 3.5.13. Let R ∈ {C,F}. The functor ΦR|StdWebR(O(m)) is full.

PROOF. We first argue for R=C. We know that F is full [40, Theorem 4.8]. Also, F =ΦC|StdWebC(O(m))◦

ηC, so it follows that ΦC|StdWebC(O(m)) is full.

Suppose R = F. Then by [38, Theorem 8.5] the operators id⊗βVF,VF ⊗ id generate EndUF(om)(V
⊗d
R ), for

all d ∈ Z≥0. Since ΦF is monoidal and ΦF(
Fβ 1,1) = βVF,VF , it follows that the map

ΦF : EndStdWebF(O(m))(1
⊗d)→ EndUF(om)(V

⊗d
F )
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is surjective for all d ∈Z≥0. Since ΦF is pivotal, we can use adjunction in StdWebF(O(m)) and StdFund(UF(om))

to deduce that

ΦF : HomStdWebF(O(m))(1
⊗b,1⊗c)→ HomUF(om)(V

⊗b
F ,V⊗c

F )

is surjective for all b,c ∈ Z≥0 such that b+ c is even. Since the homomorphism spaces are zero when b+ c

is odd, it follows that ΦF|StdWebF(O(m)) is full. □

3.5.5.3. Faithfulness. Our goal is to show that a functor is faithful, so we will necessarily have to

analyze the kernel of a functor. The kernel of a monoidal functor is a monoidal ideal, so we recall some

Lemmas about the interactions between monoidal functors and monoidal ideals.

NOTATION 3.5.10. Let C be an R-linear monoidal category and let x be a homomorphism in C . Write

⟨x⟩ to denote the monoidal ideal generated by x in C . Given a morphism y ∈ HomC (X ,Y ), we write y ∈ ⟨x⟩

if y ∈ Hom⟨x⟩(X ,Y ).

LEMMA 3.5.46. Suppose that G : C → D is an R-linear monoidal functor and x is a morphism in C .

Then if y ∈ ⟨x⟩, then G(y) ∈ ⟨G(x)⟩.

PROOF. Follows from observing that G preserves linear combinations, tensor products, and composi-

tions of morphisms. □

Classical invariant theory gives us a description of the kernel of the functor F : B(m)→ Rep(O(Cm)).

DEFINITION 3.5.14. Given an element w ∈ Sk, we naturally get an element w ∈ EndB(m)(1⊗k). Let

ak := 1
k! ∑w∈Sk

(−1)ℓ(w)w ∈ EndB(m)(1⊗k). We will represent the elements ak and ηC(ak) graphically by a

box labelled by k.

THEOREM 3.5.15. The kernel of the functor

F : B(m)−→ StdFund(UC(om))

is the monoidal ideal generated by am+1.

PROOF. This is [40, Theorem 4.8(ii)]. □

LEMMA 3.5.47. The kernel of the functor ΦC|StdWebC(O(m)) is the monoidal ideal of StdWebC(O(m))

generated by ηC(am+1).
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PROOF. Since ΦC(ηC(am+1)) = F(am+1) = 0, we have ⟨ηC(am+1)⟩ ⊂ kerΦC. To show the reverse

inclusion, let f ∈ kerΦC. Since ηC is full, see Proposition 3.5.4, there is some f̃ in B(m) such that ηC( f̃ ) =

f . Thus, F( f̃ ) = ΦC ◦ηC( f̃ ) = ΦC( f ) = 0, so f̃ is in the kernel of F . Theorem 3.5.15 implies f̃ ∈ ⟨am+1⟩,

and by Lemma 3.5.46 we have f = ηC( f̃ ) ∈ ⟨ηC(am+1)⟩. □

We will show that ΦC|StdWebC(O(m)) is faithful. Since this is equivalent to the kernel of ΦC being ⟨0⟩, we

want to argue that ηC(am+1) is already equal to zero in StdWebC(O(m)). This is implied by a diagrammatic

calculation in WebC(O(m)), which relies on the following Lemma.

LEMMA 3.5.48. The following equation holds in StdWebC(O(m)).

(3.35)

1 1 1

1 1 1

k+1 =

1

1 1 1

1 1 1

k − 1
(k−1)!

1 1 1 1

1 1 1 1 1

1

k

k

PROOF. Apply ηC to the analogous equation in B(m), which holds by [40, Lemma 2.11(1)]. □

Next, we perform the calculation in WebC(O(m)) required to deduce ηC(am+1) = 0.

PROPOSITION 3.5.12. Let k ∈ Z≥0. The following equality holds in StdWebC(O(m)).

1 1 1

1 1 1

k =

k−1

1

k−2

1

3
2

1 11

k

k−1

1

k−2

1

3
2

1 11

(3.36)

72



PROOF. We use proof by induction. The base case, k = 1, is trivial. Suppose (3.36) holds for k ∈ Z≥1.

The following graphical calculation proves that Equation (3.36) holds for k+1.

1 1 1

1 1 1

k+1
(3.35)
=

1

1 1 1

1 1 1

k − 1
(k−1)!

1 1 1 1

1 1 1 1 1

1

k

k

(3.36)
=

k−1

1

k−2

1

3
2

1 11

k

k−1

1

k−2

1

3
2

1 11

− 1
(k−1)!

k−1

1

k−2

1

3
2

1 11

k

k−1

1

k−2

1

3
2

1 11

k−1

1

k−2

3
2

k

k−1

1

k−2

1

3
2

1 11

(3.4c)
= ...

(3.4c)
=

k−1

1

k−2

1

3
2

1 11

k

k−1

1

k−2

1

3
2

1 11

− (k−1)!
(k−1)!

k−1

1

k−2

1

3
2

1 11

k

k−1

1

1

k

k−1

1

k−2

1

3
2

1 11

(3.15)
=

k−1

1

k−2

1

k

k

1

1

k+1

3
2

1 11

k−1

1

k−2

1

3
2

1 11

□
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COROLLARY 3.5.2. The functor

ΦC|StdWebC(O(m)) : StdWebC(O(m))−→ StdFund(UC(om))

is faithful.

PROOF. Since strands labelled by m+ 1 are equal to zero in StdWebC(O(m)), Proposition 3.5.12 im-

plies that ηC(am+1) = 0. We then deduce from Lemma 3.5.47 that kerΦC = ⟨0⟩, i.e. ΦC is faithful. □

Before we prove that ΦF|StdWebF(O(m)) is faithful, we state two technical lemmas.

LEMMA 3.5.49. Let W,F be A-modules and assume that W is finitely generated over A. Let f : W −→F

be an A-module homomorphism. Suppose that R⊗ f : R⊗W −→ R⊗F is surjective for R ∈ {F,C}, and

that dimC(C⊗F) = dimF(F⊗F). If C⊗ f is injective, then F⊗ f is injective.

PROOF. Since A is a principal ideal domain and W is finitely generated, it follows that W ∼=AdimF(F⊗W )⊕T

where F⊗T = 0. Since A is also a local ring with residue field C, it follows that there are r1, . . . ,rd ∈ Z≥1

such that T ∼=⊕d
i=1(A/Mri) and d = dimC(C⊗W )−dimF(F⊗W ). In particular,

dimC(C⊗W )−dimF(F⊗W )≥ 0.

Suppose C⊗ f is injective. Then C⊗ f is an isomorphism, so

dimC(C⊗W ) = dimC(C⊗F),

and F⊗ f is surjective, so

dimF(F⊗W )≥ dimF(F⊗F).

We further assumed that dimC(C⊗F) = dimF(F⊗F). It follows that

dimC(C⊗W )−dimF(F⊗W )≤ dimC(C⊗F)−dimF(F⊗F) = 0.

Hence,

dimF(F⊗W ) = dimC(C⊗W ) = dimC(C⊗F) = dimF(F⊗F).

Surjectivity of F⊗ f implies that F⊗ f is an isomorphism. □
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LEMMA 3.5.50. Let W,F be A-modules and assume that W is finitely generated over A and F is free

and finitely generated over A. Let f : W → F be an A-module homomorphism. Assume further that for

R ∈ {C,F}, there are vector spaces FR and linear maps bR : R⊗F → FR, such that bF is injective. Suppose

that bR ◦ (R⊗ f ) : R⊗W → FR is surjective for R ∈ {C,F}, and that dimC FC = dimF FF. If bC ◦ (C⊗ f ) is

injective, then bF ◦ (F⊗ f ) is injective.

PROOF. Let R ∈ {C,F}. Since bR ◦ (R⊗ f ) is surjective, it follows that bR is surjective so dimR FR ≤

dimR(R⊗F). Since bF is injective, it follows that dimF(F⊗F)≤ dimF FF. Thus, bF is an isomorphism and

dimF(F⊗F) = dimF FF.

Using that F is free over A, we find

dimC(C⊗F) = rkA F = dimF(F⊗F) = dimF FF = dimC FC.

Thus, surjectivity of bC implies bC is an isomorphism.

Suppose bC ◦ (C⊗ f ) is injective. Since bR is an isomorphism for R ∈ {C,F}, the claim follows from

Lemma 3.5.49. □

THEOREM 3.5.16. The functor

ΦF|StdWebF(O(m)) : StdWebF(O(m))−→ StdFund(UF(om))

is faithful.

PROOF. For R ∈ {C,F} and d,e ∈ Z≥0 we have induced maps

ΦR : HomStdWebR(O(m))(1
⊗d ,1⊗e)→ HomStdFund(UR(om))(V

⊗d
R ,V⊗e

R ).

It suffices to show that ΦF is injective for all d,e ∈ Z≥0. Recall from Theorem 3.5.12 that ΦR =BR ◦(R⊗

ΦA). So we will use Lemma 3.5.50 when W =HomStdWebA(O(m))(1⊗d ,1⊗e), F =HomStdFund(UA(om))(V
⊗d
A ,V⊗e

A ),

f = ΦA, FR = HomStdFund(UR(om))(V
⊗d
R ,V⊗e

R ), and bR =BR.

Proposition 3.5.5 says that HomStdWebA(O(m))(1⊗d ,1⊗e) is a finitely generated A-module, and Lemma

3.5.28 implies that HomStdFund(UA(om))(V
⊗d
A ,V⊗e

A ) is a free and finitely generated A-module. Lemma 3.5.29

implies that BF is injective.
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Theorem 3.5.13 implies that ΦR =BR ◦(R⊗ΦA) is surjective for R ∈ {C,F}. Proposition 3.5.9 says

that dimF HomStdFund(UF(om))(V
⊗d
F ,V⊗e

F ) = dimC HomStdFund(UC(om))(V
⊗d
C ,V⊗e

C ).

By Corollary 3.5.2 we know that ΦC is injective. Thus, Lemma 3.5.50 implies that ΦF is injective. □

3.5.5.4. Main theorem. We now prove Theorem 3.5.2

PROOF. Thanks to Lemma 3.5.45, it follows from Theorem 3.5.13, Corollary 3.5.2, and Theorem

3.5.16 that ΦR is full and faithful. Since the objects of Fund(UR(om)) are tensor products of Λk
R, for

k ∈ {0,1, . . . ,m}, and ΦR(k) = Λk
R, it follows that ΦR is essentially surjective. Hence, ΦR is an equivalence

of R-linear pivotal categories. □

REMARK 3.5.31. Since Fund(UR(om)) is a ribbon category, with braiding βVR,VR , we can use the

equivalence ΦR to define a braiding on WebR(O(m)). We know that ΦR(
Rβ 1,1) = βVR,VR and ΦR(

Rβ
-1
1,1) =

β -1
VR,VR

. Naturality of the braiding on Fund(UR(om)) allows us to define a braiding on WebR(O(m)), as

in [8, Section 5.9]. The functor ΦR can then be treated as an equivalence of braided pivotal (in fact ribbon)

categories.
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CHAPTER 4

Clasps

4.1. Introduction and history of highest weight projectors

4.1.1. History of Clasp Formulas. Let V ∈Rep(Uq(sl2)) denote the q-analogue of the vector represen-

tation of SL2(C). For each n ∈ Z≥0, there is an irreducible representation V (n), which is a direct summand

of V⊗n and which is not a direct summand of V⊗m for m < n. Note that V (1)∼=V . So for each n, there is an

idempotent in the Temperley-Lieb category which can be viewed as the idempotent in EndUq(sl2)(V
⊗n) with

image V (n). The condition that V (n) is not a summand of V⊗m for m < n implies that composing a projector

with any cap diagram will result in zero.

These idempotents are usually called Jones-Wenzl projectors, as they were first considered by Jones [24,

Section 4.2], and the following explicit inductive formula was first given by Wenzl [63].

(4.1)

n

n

n =

n−1

n−1

n−1 +
[n−1]
[n]

n−1

n−1

n−2

n−1

n−1

Here we use the notation [m] to denote the quantum integer [m]q := qm−q−m

q−q−1 , for each m ∈ Z. Our convention

is that a red box with label n is the morphism in the Temperley-Lieb category which corresponds to the

idempotent with image V (n).

The Jones-Wenzl projectors and the recursive formula in Equation (4.1) describing them have been

proven useful in link homology [13], Soergel bimodules [16], and the theory of subfactors and planar alge-

bras [48]. The present work is concerned with generalizing Equation (4.1) from sl2 to the Lie algebra g2.

However, many things we say in the introduction make sense for all semisimple Lie algebras.

Fix a finite dimensional semisimple Lie algebra g. There is an associated quantum enveloping algebra

Uq(g), which is a C(q) algebra defined by generators and relations which “quantize” the Serre presentation
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of the usual enveloping algebra [23, Chapter 4]. The finite dimensional irreducible type-1 representations1

are in bijection with the finite dimensional irreducible representations of g, i.e. for each dominant integral

weight λ there is a finite dimensional irreducible module of Uq(g), which we denote by V (λ ). We will

abuse notation and write Rep(Uq(g)) to refer to the category of finite dimensional type-1 representations

of Uq(g). The algebra Uq(g) is a Hopf algebra [23, Section 4.8], and it turns out that Rep(Uq(g)) is closed

under taking tensor products. Furthermore, since we are working over C(q), where q is an indeterminant or

a generic element of C, the category Rep(Uq(g)) is a semisimple tensor category, and the Grothendieck ring

of Rep(Uq(g)) is isomorphic to the Grothendieck ring of the category of finite dimensional representations

of g.

The recursion in Equation (4.1) is expressed in terms of the Temperley-Lieb category, which describes

the full monoidal subcategory of Rep(Uq(sl2)) generated by V . The generalization of this subcategory to

arbitrary quantum groups is Fund(g) in Definition 3.1.2.

We denote the set of fundamental weights of g by {ϖi}. Let λ be a dominant integral weight. Then we

can write λ = ∑niϖi, where ni ∈ Z≥0. There is a partial order on all weights, where µ ≤ λ when λ −µ is

a Z≥0-linear combination of positive roots. With respect to this partial order, the irreducible representation

V (λ ) has highest weight λ . Also, V (λ ) is a direct summand of the tensor product
⊗

iV (ϖi)
⊗ni . Thus,

there are projection and inclusion maps
⊗

iV (ϖi)
⊗ni → V (λ )→

⊗
iV (ϖi)

⊗ni such that the composition is

an idempotent Cλ in Fund(Uq(g)). We are interested in finding explicit descriptions of these idempotents,

generalizing Formula (4.1).

Unless λ is a fundamental weight or zero, V (λ ) will not be an object in Fund(Uq(g)). However, Cλ

is a morphism in Fund(Uq(g)) and we think of it as a replacement for V (λ ). Analogous to how V (λ ) is

characterized as the irreducible representation with highest weight λ , the morphism Cλ is characterized as

the non-zero idempotent endomorphism of
⊗

iV (ϖi)
⊗ni such that if f :

⊗
iV (ϖi)

⊗ni →V (ϖi1)⊗·· ·⊗V (ϖir)

is a morphism in Fund(Uq(g)), and ∑
r
k=1 ϖik < λ , then f ◦Cλ = 0.

Kuperberg [36] introduced the terminology clasp to refer to an idempotent projecting to the highest

weight irreducible summand of a tensor product of fundamental representations, viewed as a morphism in

Webq(g). If the highest weight of this irreducible summand is λ , then we will call this idempotent a λ -clasp.

1This means that for all simple roots α , the element Kα acts on the µ weight space of any representation by +q(α,µ) [23, Section
5.2]. We will only consider type-1 representations in this paper.
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To generalize the Jones-Wenzl recursion, a first step is to find recursive formulas of clasps in the rank two

cases.

In the sl3 case, a recursive formula was given by Ohtsuki and Yamada [46, Definition 2.4], where they

called a clasp a “magic element”. Later, Dongseok Kim found other recursive formulas for the sl3 case as

well [32, Theorem 3.3].

In [17, Conjecture 3.16], Elias made his type A clasp conjecture, which implies a recursive description

of each sln clasp using the language of sln webs. Also, [17, Theorem 2.57] provides a basis for all homo-

morphism spaces between fundamental representations for sln. These bases have a particularly nice form

which reduces the validity of the type A clasp conjecture to an explicit calculation, which is hard to carry out

for an arbitrarily large n. In [43], Martin and Spencer proved the type A clasp conjecture with cell modules.

Since sp4 is rank two, there are two simple roots: one short α1 and one long α2. We write ϖ1 and

ϖ2 for the corresponding fundamental weights. In the sp4 case, Kim gave recursive clasp formulas for the

aϖ1-clasp [32, Corollary 4.3] and the bϖ2-clasp [32, Corollary 4.5]. However, an inductive formula for the

sp4 aϖ1 +bϖ2-clasp remained unknown until recently, when Bodish derived formulas generalizing Elias’s

type A clasp conjecture to type C2 [6, Theorem 1.5].

In the g2 case, little was known before the present work. Attempts at getting the g2-clasp formulas

have been made, including a few base-case calculations by Sakamoto and Yonezawa [57, Section 5]. In this

paper, we give triple clasp expansions for the g2 λ -clasps for all dominant integral weights λ . Our results

are summarized in the following theorem.

THEOREM 4.1.1. Let λ be a dominant integral weight for g2. Then the λ +ϖ clasp is given by the

following recursive formula.

λ +ϖ

λ +ϖ

λ +ϖ

= λ

λ

λ

ϖ − ∑
µ∈V (ϖ)\{ϖ}

((
pℓt

µ

λ ,ϖ

)−1
)

i j
· λ +µ

D(iELLλ+µ

λ ,ϖ )

jELLλ+µ

λ ,ϖ

λ

λ

λ +µ

λ +µ

λ

λ

λ

λ

ϖ

ϖ
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Here a red box labelled by χ denotes the χ-clasp, i.e. the morphism in Webq(g2) which corresponds to

the idempotent with image V (χ). The diagrams D(iELLλ+µ

λ ,ϖ ) and jELLλ+µ

λ ,ϖ are given explicitly in Formula

(4.6) and Formula (4.7) in Section 4.3.1. The coefficients pℓtµ

λ ,ϖ are given explicitly by Equation (4.8) to

Equation (4.29) in Section 4.3.1 and Equation (A.1) to Equation (A.3) in Appendix A.1.

4.1.2. Connection to the Clasp Conjecture. Let F be a field. Consider objects X and S in an addi-

tive F-linear Karoubian category with duality D, i.e. a contravariant endofunctor with D2 ∼= id, such that

End(S) = F · idS, D(X) = X , and D(S) = S. Given π : X → S, we obtain a map ι = D(π) : S → X and

π ◦ ι = κ idS,

for some κ ∈ F. If κ ̸= 0, then S is isomorphic to the image of the idempotent

e =
1
κ

ι ◦π.

In [17, Definition 3.8], the coefficient κ , computed in the sln web category, is called a local intersection

form. We carry out analogous calculations in the g2 web category and find an analogue of Elias’s clasp

conjecture holds for G2.

In fact, we expect that something in general will hold. Let g be a simple Lie algebra and let Uq(g)

be the associated quantum group. Let W denote the Weyl group associated to g. For V ∈ Rep(Uq(g)) we

will write wtV to denote the set of all weights µ such that the µ weight space of V is non-zero. Fix a

fundamental weight ϖ . For each µ ∈ wtV (ϖ), such that µ is in the same W orbit as ϖ , there should be a

clasped elementary light ladder map2

LLλ+µ

λ ,ϖ : V (λ )⊗V (ϖ)→V (λ +µ).

DEFINITION 4.1.1. For an extremal weight µ in a fundamental representation (i.e. a weight in the W

orbit of ϖi for some i) we write dµ to denote the minimal length element w ∈ W so that w(µ) is dominant.

We also define Φµ to be the set of positive roots which are sent to negative roots by dµ .

2In examples, this is most easily defined using web categories. But with some care should make sense in general, even without
having a generators and relations presentation of Fund(g). The main feature should be that the map is the composition of projectors
and neutral maps with some fixed map from V (λmin)⊗V (ϖ)→ V (λmin + µ), where λmin is the smallest dominant weight so that
V (λ )⊗V (ϖ) contains a copy of V (λ +µ).
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CONJECTURE 4.1.1. If we denote by D the duality3 on Fund(g), and write

LLλ+µ

λ ,ϖ ◦D(LLλ+µ

λ ,ϖ ) = κ
µ

λ ,ϖ idV (λ+µ),

then

(4.2) κ
µ

λ ,ϖ =± ∏
α∈Φµ

[(α∨,λ +ρ)]qℓ(α)

[(α∨,λ +µ +ρ)]qℓ(α)

.

Here ρ is the sum of the fundamental weights and l(α) = (α,α)/2.

REMARK 4.1.1. The conjecture is proven to be true in types An [43] and in type C2 [6].

The following Proposition is an elementary consequence of our main theorem.

PROPOSITION 4.1.1. The conjecture is true for g2.

PROOF. See Corollary 4.3.1. □

REMARK 4.1.2. We also expect there to be a more general form of the conjecture which describes what

happens for µ ∈V (ϖ) which are not in the extremal Weyl orbit. The work in this paper and [6] could give

enough data to guess the answer when V (ϖ)µ is one dimensional, but we have not yet carried this out.

We also hope the general form of the conjecture will give rise to a product formula which computes the

elementary divisors of the matrix of local intersection forms when dimV (ϖ)µ > 1.

4.1.3. Witten-Reshetikhin-Turaev invariants via skein-theory. Let g be a simple Lie algebra over C.

In order to define an analogue of the Jones polynomial for g, Reshetikhin and Turaev defined a link invariant

using the category Rep(Uq(g)) [53]. Their construction gives a knot invariant for every type-1 representation

of Uq(g). More generally, one can label each component of a link with an object in Rep(Uq(g)) and their

construction gives the colored quantum link invariant.

Kuperberg’s original motivation for studying Webq(g2) was to compute the quantum link invariant

associated to g2. Originally, he gave a diagrammatic method to compute the g2 link invariant when each

component is colored by the first fundamental representation [35]. Soon after, using Webq(g2), he gave

diagrammatic tools for computing the g2 link invariant colored by both fundamental representations [36,

3Again, this is most easily defined in terms of webs, in which case it is just flipping the diagram upside down.
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Section 4]. In this paper, we give explicit formulas for idempotents projecting to each irreducible Uq(g2)

module. Combined with Kuperberg’s earlier work this gives a diagrammatic approach to computing the

quantum invariant of a link with components colored by any irreducible.

Reshetikhin-Turaev’s paper about their link invariant was intended as a prequel to their work which gave

an associated 3-manifold invariant [52]. The first step one takes to make sense of their 3-manifold invariant

is to leave behind representation theory of Uq(g) for generic q and work instead with q specialized to a root

of unity.

Let UZ[q,q−1](g2) be the Z[q,q−1]-subalgebra of Uq(g2) generated by E(a)
α

[a]
qℓ(α) ! ,

F(a)
α

[a]
qℓ(α) ! , and K±1

α , for all

simple roots α , and all a ∈ Z≥0. When ξ is a root of unity in C, we can study the relation between

C⊗q=ξ Webq(g2), and the category of tilting modules of C⊗q=ξ UZ[q,q−1](g2). It is possible to adapt the

approach from [7], which itself is based on [17], to prove that the Karoubi envelope of C⊗q=ξ Webq(g2) is

equivalent to the category of tilting modules as long as [2]ξ , [3]ξ ̸= 0. The same result is work in progress of

Victor Ostrik and Noah Snyder, but they propose a slightly different approach.

When ξ is a root of unity of order greater than 5, the generators of the negligible ideal in the category

of Uξ (g2) tilting modules are (identity morphisms of) certain irreducible tilting modules with quantum

dimension zero. Irreducible tilting modules are also Weyl modules, so these generating objects correspond

to clasps in Webq(g2). Moreover, the objects which survive in the negligible quotient are the irreducible

Weyl modules with non-zero quantum dimension. Once the equivalence between the web category and

the category of tilting modules is established, one can give a generators and relations presentation of the

associated modular tensor category4 using the g2 triple clasp formulas for the negligible clasps. Combined

with our description of the clasps corresponding to the irreducible Weyl modules with non-zero dimension,

this gives an explicit way to compute the quantum g2 3-manifold invariant [52].

On the other hand, topologists have tried to understand the quantum 3-manifold invariants with graphical

categories. A construction of the quantum sl2 3-manifold invariant using the Temperley-Lieb category was

given by Lickorish [41]. This work was generalized to the sl3 case by Ohtsuki and Yamada [46] with sl3

webs. A self-contained proof of invariance under Kirby moves [33] using the graphical category was given

in both cases. One can now give similar constructions and proofs in the g2 case by using our clasp formulas.

4In the case that ξ is a root of unity that actually gives rise to a modular category as the negligible quotient [55].
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4.2. Clasps and light ladders for G2

4.2.1. Definition of clasps.

LEMMA 4.2.1. Let D ∈ EndWebq(g2)(w) such that Φ(D) acts as zero on V (wtw)
⊕
⊂V (w). Then we can

write D as linear combination

D = ∑
i

Ai ◦Bi,

where Bi ∈ HomWebq(g2)(w,ui) and Ai ∈ HomWebq(g2)(ui,w) for some ui with wtui < wtw.

PROOF. Since

V (w) =V (wtw)
⊕

µ<wtw
V (µ)⊕mw

µ ,

our hypothesis on Φ(D) implies that we can write Φ(D) = ∑i ιi ◦πi, where for each i there is some µi < wtw

such that πi is a projection V (w)→V (µi) and ιi is an inclusion V (µi)→V (w).

For each µi fix an object ui in Webq(g2) with wtui = µi. There is a projection γi : V (ui)→ V (µi) and

inclusion γ i : V (µi)→V (ui) so that γi ◦ γ i = idV (µi). Then we can write

ιi ◦πi = ιi ◦ idV (µi) ◦πi = ιi ◦ γi ◦ γ
i ◦πi.

Thus, ιi ◦γi ∈ HomUq(g2)(V (ui),V (w)) and γ i ◦πi ∈ HomUq(g2)(V (w),V (ui)). The desired result now follows

from Φ being an equivalence. □

DEFINITION 4.2.1. The neutral coefficient of a diagram D ∈ End(w) is the scalar by which Φ(D) acts

on the one dimensional weight space V (w)wtw. We write Φ(D)|V (w)wtw = ND · id.

LEMMA 4.2.2. Let D ∈ EndWebq(g2)(w). Then we can express D as a linear combination of diagrams

D = ND · idw+∑
i

Ai ◦Bi,

where Bi ∈ HomWebq(g2)(w,ui) and Ai ∈ HomWebq(g2)(ui,w) for some ui with wtui < wtw.

PROOF. Consider Φ(D)−ND idV (w) ∈ End(V (w)). This endomorphism has V (w)wtw in its kernel and

therefore also acts as zero on V (wtw)
⊕
⊂V (w). The desired result now follows from Lemma 4.2.1. □
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DEFINITION 4.2.2. Let w ∈ Webq(g2). A diagrammatic w-clasp is a morphism Cw ∈ EndWebq(g2)(w)

which satisfies the following conditions:

(1) Cw ̸= 0,

(2) Cw ◦Cw =Cw, and

(3) If D ∈ HomWebq(g2)(w,u) and wtu < wtw, then D◦Cw = 0.

REMARK 4.2.1. Note that we only use the terminology clasp to refer to idempotents. This is consistent

with Kuperberg’s original use of the term [36], but less general than Elias’s [17, Definition 1.12]. In Section

4.2.2, we will define generalized clasps, which will agree with Elias’s notion of clasp.

LEMMA 4.2.3. If the w clasp exists, then it is unique and NCw = 1.

PROOF. Suppose Cw and C′
w are both w-clasps. By Lemma 4.2.2 we can write Cw = NCw id+∑i Ai ◦Bi

and C′
w = NC′

w
id+∑i A′

i ◦B′
i. As a consequence of the definition of clasps, we find

Cw =Cw ◦Cw =
(
NCw id+∑

i
Ai ◦Bi

)
◦Cw = NCwCw

and

C′
w =C′

w ◦C′
w =

(
NC′

w
id+∑

i
A′

i ◦B′
i
)
◦C′

w = NC′
w
C′

w.

Since w-clasps are non-zero elements of the vector space EndWebq(g2)(w), it follows that NCw = 1 = NC′
w
.

Thus,

C′
w = NCwC′

w =
(
NCw id+∑

i
Ai ◦Bi

)
◦C′

w =Cw ◦C′
w

=Cw ◦
(
NC′

w
id+∑

i
A′

i ◦B′
i
)
= NC′

w
Cw =Cw.

□

DEFINITION 4.2.3. Let πw ∈ EndUq(g2)(V (w)) be the idempotent endomorphism with image V (wtw).

The endomorphism Φ−1(πw) in EndWebq(g2)(w) is the algebraic w-clasp.

LEMMA 4.2.4. The algebraic clasp is a clasp, and Φ−1(πw) =Cw.

PROOF. Since the algebraic clasp is non-zero and idempotent, we just need to argue that the alge-

braic clasp satisfies the third condition in the definition of clasp. Fix u such that wtu < wtw and let

84



D ∈ HomWebq(g2)(w,u). The module V (wtw) is not isomorphic to any summand of V (u), so we know

that HomUq(g2)(V (wtw),V (u)) = 0. Therefore, Φ(D)◦πw = 0, and by Theorem 3.2.2 we may conclude that

D◦
(
Φ−1(πw)

)
= 0. □

LEMMA 4.2.5. Let w be an object in Webq(g2), then there is a unique diagrammatic w-clasp Cw and

Φ(Cw) is an idempotent endomorphism of V (w) projecting to V (wtw).

PROOF. From Lemma 4.2.4 we see that clasps exist and map under Φ to the projector for V (wtw).

Uniqueness follows from Lemma 4.2.3. □

LEMMA 4.2.6. Let E ∈ EndWebq(g2)(w) be a non-zero endomorphism so that E2 = E. If Cu ◦D◦E = 0

for all D ∈ HomWebq(g2)(w,u) such that wtu < wtw, then E =Cw.

PROOF. Since we assume E is non-zero and idempotent, we just need to show that E satisfies the

third condition in Definition 4.2.2. Fix u such that wtu < wtw. Suppose inductively that B ◦E = 0 for all

B ∈ HomWebq(g2)(w,v) where wtv < wtu. By Lemma 4.2.2 we can write Cu = id+∑i Ai ◦Bi where each Ai

has domain vi such that wtvi < wtu. If D ∈ HomWebq(g2)(w,u), then

(4.3) D◦E = id◦D◦E =Cu ◦D◦E −∑
i

Ai ◦Bi ◦D◦E =−∑
i

Ai ◦Bi ◦D◦E.

Since Bi ∈ HomWebq(g2)(u,vi) and D ∈ HomWebq(g2)(w,u), we have Bi ◦D ∈ HomWebq(g2)(w,vi). The induc-

tion hypothesis applies, so (Bi ◦D)◦E = 0, and Equation 4.3 implies D◦E = 0. □

LEMMA 4.2.7 (Clasp Schur’s Lemma). Let u,v ∈ Webq(g2) and let D ∈ HomWebq(g2)(u,v).

(1) If wtu ̸= wtv, then Cv ◦D◦Cu = 0.

(2) If u = v, then Cv ◦D◦Cu = ND ·Cu.

PROOF. By Corollary 3.2.1, we find: dimHomKarWebq(g2)(Cu,Cv) = δwtu,wtv. Thus, we can deduce the

following.

(1) If wtu ̸= wtv, then HomKarWebq(g2)(Cu,Cv) = 0.

(2) If u = v, then HomKarWebq(g2)(Cu,Cv) = C(q) ·Cu.

□
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LEMMA 4.2.8. Let w,u, and v ∈ Webq(g2). If V (wtv) is not a direct summand of V (wtw)⊗V (wtu),

then

Cv ◦D◦ (Cw ⊗Cu) = 0

for all D ∈ HomWebq(g2)(w⊗u,v).

PROOF. Corollary 3.2.1 implies that dimHomKar(Webq(g2))(Cw⊗Cu,Cv)= 0, when V (wtv) is not a direct

summand of V (wtw)⊗V (wtu). □

LEMMA 4.2.9 (Clasp absorption). Let w = x⊗y⊗z in Webq(g2), then

(idx⊗Cy ⊗ idz)◦Cw =Cw =Cw ◦ (idx⊗Cy ⊗ idz).

PROOF. Since V (wtw) appears with multiplicity one in V (w), it follows that πw is a central idempo-

tent in EndUq(g2)(V (w)). Therefore, (idx⊗Cy ⊗ idz) ◦Cw = Cw ◦ (idx⊗Cy ⊗ idz) is also an idempotent and

Cu ◦D ◦ (idx⊗Cy ⊗ idz) ◦Cw = 0 for all D ∈ HomWebq(g2)(w,u) such that wtu < wtw. Thus, by Lemma

4.2.6 it suffices to show that (idx⊗Cy ⊗ idz) ◦Cw ̸= 0. This is deduced from observing that the morphism

Φ((idx⊗Cy ⊗ idz)◦Cw) acts on V (w)wtw as multiplication by 1. □

4.2.2. Neutral diagrams and generalized clasps.

DEFINITION 4.2.4. We will write Hϖ2ϖ1
ϖ1ϖ2

:= and Hϖ1ϖ2
ϖ2ϖ1

:= . These are the basic neutral dia-

grams.

LEMMA 4.2.10 (Neutral absorption). If w = w1 ϖ1ϖ2 w2 and w′ = w1 ϖ2ϖ1 w2, then

(idw1
⊗Hϖ2ϖ1

ϖ1ϖ2
⊗ idw2

)◦Cw ◦ (idw1
⊗Hϖ1ϖ2

ϖ2ϖ1
⊗ idw2

) =Cw′

in EndWebq(g2)(w
′).

PROOF. Write Hw′
w := idw1

⊗Hϖ2ϖ1
ϖ1ϖ2

⊗ idw2
and Hw

w′ := idw1
⊗Hϖ1ϖ2

ϖ2ϖ1
⊗ idw2

. By Lemma 4.2.3 we only

need to show that (Hw′
w )◦Cw ◦ (Hw

w′) satisfies the defining properties of a clasp.

Let D ∈ HomWebq(g2)(w
′,u) where wtu < wtw′. Then D◦Hw′

w ∈ HomWebq(g2)(w,u) and wtw = wtw′ >

wtu, so D◦Hw′
w ◦Cw = 0. So Hw′

w ◦Cw ◦Hw
w′ satisfies the third condition in the definition of clasps.
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The following calculation shows that Hw
w′ ◦Hw′

w ◦Cw =Cw.

Cw
=

1
[3] Cw

+
[4][6]
[2]2[12] Cw

+ Cw
(4.4)

− 1
[2] Cw

=− 1
[2] Cw

= Cw

So we have

(Hw′
w ◦Cw ◦Hw

w′)◦ (Hw′
w ◦Cw ◦Hw

w′) = Hw′
w ◦Cw ◦ (Hw

w′ ◦Hw′
w ◦Cw)◦Hw

w′

= Hw′
w ◦Cw ◦Cw ◦Hw

w′ = Hw′
w ◦Cw ◦Hw

w′ .

This tells us that Hw′
w ◦Cw ◦Hw

w′ satisfies the second condition in the definition of clasps.

What’s more, Hw′
w ◦Cw ◦Hw

w′ ̸= 0. Otherwise Cw = Hw
w′ ◦ (Hw′

w ◦Cw ◦Hw
w′)◦Hw′

w = 0, which is a contra-

diction. □

DEFINITION 4.2.5. A neutral diagram Nw′
w ∈ HomWebq(g2)(w,w′) is a composition of tensor products of

identity diagrams and basic neutral diagrams. A reduced neutral diagram, is a neutral diagram such that

Hϖ1ϖ2
ϖ2ϖ1

◦Hϖ2ϖ1
ϖ1ϖ2

or Hϖ2ϖ1
ϖ1ϖ2

◦Hϖ1ϖ2
ϖ2ϖ1

do not occur as subdiagrams of Nw′
w .

LEMMA 4.2.11. Fix w and w′.

(1) There is a neutral diagram Nw′
w if and only if wtw = wtw′.

(2) If wtw = wtw′, then there is a reduced neutral diagram in HomWebq(g2)(w,w′).

(3) Reduced neutral diagrams are unique.

(4) Suppose 1N
w′

w and 2N
w′

w are two neutral diagrams. Then 1N
w′

w ◦Cw = 2N
w′

w ◦Cw.

PROOF. Omitted. □

NOTATION 4.2.1. Suppose wtw = wtw′, then we will write Hw′
w for the reduced neutral diagram in

HomWebq(g2)(w,w′).
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EXAMPLE 4.2.1. Consider w = ϖ2ϖ1ϖ2ϖ1ϖ1 , w′ = ϖ1ϖ1ϖ2ϖ1ϖ2. We know that wtw = wtw′ =

(3,2). The reduced neutral diagram is Hw′
w = .

DEFINITION 4.2.6. Given a diagram D in Webq(g2) we will write D(D) for the diagram obtained by

flipping D upside down. Note that D
(
Hw′

w
)
= Hw

w′ .

DEFINITION 4.2.7. Given x,y so that wtx = wtw = wty, we define the generalized clasp C
y
x := H

y
w ◦

Cw◦Hw
x . From Lemma 4.2.11 it follows that if N

y
w and Nw

x are any neutral diagrams, then C
y
x =N

y
w◦Cw◦Nw

x .

PROPOSITION 4.2.1. The generalized clasps satisfy the following properties:

(1) Cx
x =Cx,

(2) C
y
x ◦Hx

z =C
y
z ,

(3) Hz
y ◦C

y
x =Cz

x,

(4) Cz
y ◦C

y
x =Cz

x, and

(5) D(Cy
x) =Cx

y .

PROOF. Exercise for the reader. For hints, see [17, Proposition 3.2]. □

4.2.3. Elementary Light Ladders.

NOTATION 4.2.2. We write f (k)1 :=
f k
1

[k]q!
and f (k)2 :=

f k
2

[k]q3!
, where [k]q! := [k][k−1] . . . [2][1] and [k]q3! :=

[k]q3 [k−1]q3 . . . [2]q3 [1]q3 . Note that [k]q3 =
[3k]
[3] .

For each fundamental weight ϖ ∈{ϖ1,ϖ2} we choose a basis {ivµ,ϖ}i=1,...,dimV (ϖ)µ
for all weight spaces

V (ϖ)µ . Our convention will be to not record the superscript i in ivµ,ϖ when the weight space is multiplicity

one. Explicitly, we choose the following basis of V (ϖ1):

v(1,0),ϖ1 = v1, v(−1,1),ϖ1 = f1v1, v(2,−1),ϖ1 = f2 f1v1, v(0,0),ϖ1 = f1 f2 f1v1,

v(−2,1),ϖ1 = f (2)1 f2 f1v1, v(1,−1),ϖ1 = f2 f (2)1 f2 f1v1, and v(−1,0),ϖ1 = f1 f2 f (2)1 f2 f1v1,

and the following basis of V (ϖ2):

v(0,1),ϖ2 = v2, v(3,−1),ϖ2 = f2v2, v(1,0),ϖ2 = f1 f2v2, v(−1,1),ϖ2 = f (2)1 f2 f1v2,
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v(2,−1),ϖ2 = f2 f (2)1 f2v2, v(−3,2),ϖ2 = f (3)1 f2v2,

1v(0,0),ϖ2 = f1 f2 f (2)1 f2v2,
2v(0,0),ϖ2 = f2 f (3)1 f2v2,

v(3,−2),ϖ2 = f (2)2 f (3)1 f2v2, v(−2,1),ϖ2 = f (2)1 f2 f (2)1 f2v2

v(1,−1),ϖ2 = f1 f (2)2 f (3)1 f2v2, v(−1,0),ϖ2 = f (2)1 f (2)2 f (3)1 f2v2,

v(−3,1),ϖ2 = f (3)1 f (2)2 f (3)1 f2v2, and v(0,−1),ϖ2 = f2 f (3)1 f (2)2 f (3)1 f2v2.

REMARK 4.2.2. The following relation holds in V (ϖ2):

f1 f (2)2 f (3)1 f2v2 = f2 f (2)1 f2 f (2)1 f2v2.

Thus, there are two ways to present the vector v(1,−1),ϖ2 .

DEFINITION 4.2.8. For each vector ivµ,ϖ ∈V (ϖ), we associate a diagram in Webq(g2) denoted iLµ,ϖ .

Our convention will be to not record the superscript i in iLµ,ϖ when the weight space is multiplicity one.

L(1,0),ϖ1 := L(−1,1),ϖ1 := L(2,−1),ϖ1 := L(0,0),ϖ1 :=

L(−2,1),ϖ1 := L(1,−1),ϖ1 := L(−1,0),ϖ1 :=

L(0,1),ϖ2 := L(3,−1),ϖ2 := L(1,0),ϖ2 := L(−1,1),ϖ2 :=

L(2,−1),ϖ2 := L(−3,2),ϖ2 := 1L(0,0),ϖ2 := 2L(0,0),ϖ2 :=

L(3,−2),ϖ2 := L(−2,1),ϖ2 := L(1,−1),ϖ2 := L(−1,0),ϖ2 :=

L(−3,1),ϖ2 := L(0,−1),ϖ2 :=

The diagram iLµ,ϖ is a morphism from i xµ,ϖ ⊗ϖ →i y
µ,ϖ

. We will refer to i xµ,ϖ as the in strand of

iLµ,ϖ and i y
µ,ϖ

as the out strand of iLµ,ϖ . Note that µ = wt(iy
µ,ϖ

)−wt(ixµ,ϖ).

EXAMPLE 4.2.2. For L(−2,1),ϖ2 := , we have x(−2,1),ϖ2
= ϖ1ϖ1 , y

(−2,1),ϖ2
= ϖ2 , and (−2,1) =

wt(y
(−2,1),ϖ2

)−wt(x(−2,1),ϖ2
).
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NOTATION 4.2.3. If W is a subspace of a Uq(g2) module, we will write

Ker(a,b)(W ) := {w ∈W : ea+1
1 w = 0 = eb+1

2 w}.

LEMMA 4.2.12. Let a,b ∈ Z≥0. Fix a fundamental weight ϖ and let µ ∈ wtV (ϖ). Then

(4.5) [V (a,b)⊗V (ϖ) : V ((a,b)+µ)] = dimKer(a,b)(V (ϖ)µ).

PROOF. Follows from [47, Theorem 2.1]. □

LEMMA 4.2.13. The following are equivalent:

(1) ivµ,ϖ ∈ Ker(a,b)(V (ϖ)µ), and

(2) There is (c,d) ∈ N×N such that wt(ixµ,ϖ)+(c,d) = (a,b).

PROOF. The lemma can be deduced from the following claim: the weight of the in strand for iLµ,ϖ ,

wt(ixµ,ϖ), is equal to the minimal (a,b) so that ivµ,ϖ ∈ Ker(a,b)(V (ϖ)µ). The claim is verified from the

vector to diagram correspondence ivµ,ϖ 7→ iLµ,ϖ , along with Equation (4.5), and the description of action of

e1 and e2 on the vectors in each fundamental representation. Computing ek · ivµ,ϖ is left as an exercise, the

most interesting case is the zero weight space for the second fundamental representation. □

EXAMPLE 4.2.3. When a ≥ 3 and b ≥ 2 , [V (a,b)⊗V (ϖ2) : V ((a,b)+ µ)] = 1 when µ ̸= (0,0), and

[V (a,b)⊗V (ϖ2) : V (a,b)] = 2. The reader should compare this with the observation that for each iLµ,ϖ2

the number of ϖ1 colored in strands is less than or equal to 3 and the number of ϖ2 colored in strands is

less than or equal to 2.

For each dominant integral weight λ = aϖ1+bϖ2 ∈X+, we choose a distinguished object uλ ∈Webq(g2)

such that wtuλ = λ .

EXAMPLE 4.2.4. We must have u(2,0) = ϖ1ϖ1 and for u(1,1) we choose one of ϖ1ϖ2 or ϖ2ϖ1.

DEFINITION 4.2.9. Let w be an object in Webq(g2) and let λ =wtw. Suppose that ivµ,ϖ ∈Kerλ (V (ϖ)µ),

so in particular λ +µ ∈ X+. Let (c,d) := λ −wt(ixµ,ϖ), then by Lemma 4.2.13 we have (c,d) ∈ N×N, so

there is a reduced neutral diagram

H
s(c,d)⊗(ixµ,ϖ )
w : w → s(c,d)⊗(ixµ,ϖ).
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Since (c,d)+wt(iy
µ,ϖ

) = λ +µ , there is also a reduced neutral diagram

H
uλ+µ

s(c,d)⊗(iy
µ,ϖ

)
: s(c,d)⊗(iy

µ,ϖ
)→ uλ+µ .

We define the elementary light ladder diagram to be

iELL
uλ+µ

w,ϖ := H
uλ+µ

s(c,d)⊗(iy
µ,ϖ

)
◦
(
(ids(c,d))⊗

iLµ,ϖ

)
◦
(
H

s(c,d)⊗(ixµ,ϖ )
w ⊗ idϖ

)
.

EXAMPLE 4.2.5. Consider w = ϖ1ϖ2ϖ1ϖ1 and ϖ = ϖ2. We know that λ = wtw = (3,1). When

µ = (−2,1), so λ +µ = (1,2), choose uλ+µ = ϖ1ϖ2ϖ2. Then

1ELL
uλ+µ

w,ϖ = .

When µ = (0,0), λ +µ = (3,1), choose uλ+µ = ϖ1ϖ1ϖ1ϖ2. Then

1ELL
uλ+µ

w,ϖ = and 2ELL
uλ+µ

w,ϖ = .

DEFINITION 4.2.10. Let w ∈ Webq(g2). Write λ = wtw, and suppose that ivµ,ϖ ∈ Kerλ (V (ϖ)µ). We

define the (clasped) light ladder diagram to be the following diagram:

iLL
uλ+µ

w,ϖ :=Cuλ+µ
◦ (iELL

uλ+µ

w,ϖ )◦ (Cw ⊗ idϖ).

LEMMA 4.2.14. Let Nw′
w : w → w′ be a neutral diagram. Then

iLL
uλ+µ

w′,ϖ ◦ (Nw′
w ⊗ idϖ)◦Cw⊗ idϖ = iLL

uλ+µ

w,ϖ .

PROOF. Follows from Lemma 4.2.11. □

DEFINITION 4.2.11. Suppose that ivµ,ϖ ,
j vµ,ϖ ∈ Kerwtw(V (ϖ)µ) (we allow for i = j). We define the

(clasped) double ladder diagram to be the following diagram in EndWebq(g2)(w⊗ϖ):

i jLLuλ+µ

w,ϖ := (D(iLL
uλ+µ

w,ϖ ))◦ ( jLL
uλ+µ

w,ϖ ).

In the case that V (ϖ)µ is one dimensional, we will drop the superscripts i j in double ladders and drop

superscript i in (clasped) light ladders.
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EXAMPLE 4.2.6. Consider w = ϖ1ϖ2ϖ1ϖ1, ϖ = ϖ2. When µ = (−2,1) , choose uλ+µ = ϖ1ϖ2ϖ2,

then

LL
uλ+µ

w,ϖ =

Cw

Cuλ+µ

and LLuλ+µ

w,ϖ =

Cw

Cw

Cuλ+µ .

REMARK 4.2.3. Using the definition of the elementary light ladder, and basic properties of clasps, we

can expand the clasped light ladder:

iLL
uλ+µ

w,ϖ : =Cuλ+µ
◦ (iELL

uλ+µ

w,ϖ )◦ (Cw ⊗ idϖ)

=C
uλ+µ

s(c,d)⊗(iy
µ,ϖ

)
◦
(
(ids(c,d))⊗

iLµ,ϖ

)
◦
(

C
s(c,d)⊗(ixµ,ϖ )
w ⊗ idϖ

)
.

We can similarly expand the clasped double ladder:

i jLLuλ+µ

w,ϖ : = (D(iLL
uλ+µ

w,ϖ ))◦ ( jLL
uλ+µ

w,ϖ )

= (Cw⊗ idϖ)◦ (D(iELL
uλ+µ

w,ϖ ))◦Cuλ+µ
◦ ( jELL

uλ+µ

w,ϖ )◦ (Cw⊗ idϖ)

=
(

Cw
s(c,d)⊗(ixµ,ϖ )

⊗ idϖ

)
◦
(
(ids(c,d))⊗D(iLµ,ϖ)

)
◦C

s(c,d)⊗(iy
µ,ϖ

)

s(e, f )⊗( jy
µ,ϖ

)

◦
(
(ids(e, f ))⊗

jLµ,ϖ

)
◦
(

C
s(e, f )⊗( jxµ,ϖ )
w ⊗ idϖ

)
.

This more complicated looking expanded formula, is actually simpler when viewed in terms of the graphical

calculus, as we illustrate in Example 4.2.7.

NOTATION 4.2.4. When wtx = wty = (a,b), we will use an (a,b) labelled box in HomWebq(g2)(x,y) to

denote C
y
x .
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EXAMPLE 4.2.7. Let w = ϖ1ϖ2ϖ1ϖ1,ϖ = ϖ2. When µ = (0,0), choose uλ+µ = ϖ1ϖ1ϖ1ϖ2, then

(using Lemma 4.2.10) we have

1LL
uλ+µ

w,ϖ =

Cw

Cuλ+µ

= (2,1)

(3,1)

(3,1)

, 2LL
uλ+µ

w,ϖ =

Cw

Cuλ+µ

= (3,0)

(3,1)

(3,1)

,

1,1LLuλ+µ

w,ϖ =

Cw

Cuλ+µ

Cw

=

(2,1)

(2,1)

(3,1)

(3,1)

(3,1)

, 1,2LLuλ+µ

w,ϖ =

Cw

Cuλ+µ

Cw

=

(3,0)

(2,1)

(3,1)

(3,1)

(3,1)

,

2,1LLuλ+µ

w,ϖ =

Cw

Cuλ+µ

Cw

=

(3,0)

(2,1)

(3,1)

(3,1)

(3,1)

,and 2,2LLuλ+µ

w,ϖ =

Cw

Cuλ+µ

Cw

=

(3,0)

(3,0)

(3,1)

(3,1)

(3,1)

.

REMARK 4.2.4. As (a,b) varies, so does Ker(a,b)(V (ϖ)). However, the vector vϖ = vϖ ,1 is always

contained in Ker(a,b)(V (ϖ)). Moreover, the associated elementary light ladder is just a composition of

neutral diagrams, so the associated (clasped) double ladder can be simplified to

LLuλ+ϖ

w,ϖ =Cw⊗ϖ .

Thus, the (clasped) double ladder associated to the highest weight vector in V (ϖ) is itself a clasp.
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4.3. Triple Clasp Formula for G2

4.3.1. Formulas.

(a,b)

(a,b)

(a,b) =
1

t(1,0)(a,b),ϖ1

(a,b)

(a,b)

(a,b)

(a,b)

(a+1,b)

(a,b)

(a,b)

+
1

t(−1,1)
(a,b),ϖ1

(a,b)

(a−1,b)

(a,b)

(a−1,b)

(a−1,b+1)

(a,b)

(a,b)

+
1

t(2,−1)
(a,b),ϖ1

(a,b)

(a,b−1)

(a,b)

(a,b−1)

(a+2,b−1)

(a,b)

(a,b)

(4.6)

+
1

t(0,0)(a,b),ϖ1

(a,b)

(a−1,b)

(a,b)

(a−1,b)

(a,b)

(a,b)

(a,b)

+
1

t(−2,1)
(a,b),ϖ1

(a,b)

(a−2,b)

(a,b)

(a−2,b)

(a−2,b+1)

(a,b)

(a,b)

+
1

t(1,−1)
(a,b),ϖ1

(a,b)

(a,b−1)

(a,b)

(a,b−1)

(a+1,b−1)

(a,b)

(a,b)

+
1

t(−1,0)
(a,b),ϖ1

(a,b)

(a−1,b)

(a,b)

(a−1,b)

(a−1,b)

(a,b)

(a,b)

(a,b)

(a,b)

(a,b) =
1

t(0,1)(a,b),ϖ2

(a,b)

(a,b)

(a,b)

(a,b)

(a,b+1)

(a,b)

(a,b)

+
1

t(3,−1)
(a,b),ϖ2

(a,b)

(a,b−1)

(a,b)

(a,b−1)

(a+3,b−1)

(a,b)

(a,b)

+
1

t(1,0)(a,b),ϖ2

(a,b)

(a−1,b)

(a,b)

(a−1,b)

(a+1,b)

(a,b)

(a,b)

+
1

t(−1,1)
(a,b),ϖ2

(a,b)

(a−2,b)

(a,b)

(a−2,b)

(a−1,b+1)

(a,b)

(a,b)

(4.7)

+
1

t(2,−1)
(a,b),ϖ2

(a,b)

(a,b−1)

(a,b)

(a,b−1)

(a+2,b−1)

(a,b)

(a,b)

+
1

t(−3,2)
(a,b),ϖ2

(a,b)

(a−3,b)

(a,b)

(a−3,b)

(a−3,b+2)

(a,b)

(a,b)

+

2,2t(0,0)(a,b),ϖ2

D(a,b)

(a,b)

(a−1,b)

(a,b)

(a−1,b)

(a,b)

(a,b)

(a,b)

−
1,2t(0,0)(a,b),ϖ2

D(a,b)

(a,b)

(a−1,b)

(a,b)

(a,b−1)

(a,b)

(a,b)

(a,b)

−
2,1t(0,0)(a,b),ϖ2

D(a,b)

(a,b)

(a,b−1)

(a,b)

(a−1,b)

(a,b)

(a,b)

(a,b)

+

1,1t(0,0)(a,b),ϖ2

D(a,b)

(a,b)

(a,b−1)

(a,b)

(a,b−1)

(a,b)

(a,b)

(a,b)

+
1

t(3,−2)
(a,b),ϖ2

(a,b)

(a,b−2)

(a,b)

(a,b−2)

(a+3,b−2)

(a,b)

(a,b)

+
1

t(−2,1)
(a,b),ϖ2

(a,b)

(a−2,b)

(a,b)

(a−2,b)

(a−2,b+1)

(a,b)

(a,b)
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+
1

t(1,−1)
(a,b),ϖ2

(a,b)

(a−1,b−1)

(a,b)

(a−1,b−1)

(a+1,b−1)

(a,b)

(a,b)

+
1

t(−1,0)
(a,b),ϖ2

(a,b)

(a−2,b)

(a,b)

(a−2,b)

(a−1,b)

(a,b)

(a,b)

+
1

t(−3,1)
(a,b),ϖ2

(a,b)

(a−3,b)

(a,b)

(a−3,b)

(a−3,b+1)

(a,b)

(a,b)

+
1

t(0,−1)
(a,b),ϖ2

(a,b)

(a,b−1)

(a,b)

(a,b−1)

(a,b−1)

(a,b)

(a,b)

t(1,0)(a,b),ϖ1
= 1(4.8)

t(−1,1)
(a,b),ϖ1

=− [a+1]
[a]

(4.9)

t(2,−1)
(a,b),ϖ1

=
[3b+3][a+3b+4]
[3b][a+3b+3]

(4.10)

t(0,0)(a,b),ϖ1
=− [a+2][a+3b+5][2a+3b+6]

[2][a][a+3b+3][2a+3b+4]
(4.11)

t(−2,1)
(a,b),ϖ1

=
[a+1][2a+3b+5][3a+3b+6]
[a−1][2a+3b+4][3a+3b+3]

(4.12)

t(1,−1)
(a,b),ϖ1

=− [3b+3][a+3b+4][2a+3b+5][3a+6b+9]
[3b][a+3b+2][2a+3b+4][3a+6b+6]

(4.13)

t(−1,0)
(a,b),ϖ1

=
[a+1][a+3b+4][2a+3b+5][3a+3b+6][3a+6b+9]
[a][a+3b+3][2a+3b+3][3a+3b+3][3a+6b+6]

(4.14)

t(0,1)(a,b),ϖ2
= 1(4.15)

t(3,−1)
(a,b),ϖ2

=− [3b+3]
[3b]

(4.16)

t(1,0)(a,b),ϖ2
=

[a+3][a+3b+6]
[3][a][a+3b+3]

(4.17)

t(−1,1)
(a,b),ϖ2

=− [a+1][a+2][2a+3b+7]
[3][a−1][a][2a+3b+4]

(4.18)

t(2,−1)
(a,b),ϖ2

=
[3b+3][a+3b+4][a+3b+5][2a+3b+7]
[3][3b][a+3b+2][a+3b+3][2a+3b+4]

(4.19)

t(−3,2)
(a,b),ϖ2

=
[a+1][3a+3b+6]
[a−2][3a+3b+3]
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t(3,−2)
(a,b),ϖ2

=
[3b+3][a+3b+4][3a+6b+9]
[3b−3][a+3b+1][3a+6b+6]

(4.20)

t(−2,1)
(a,b),ϖ2

=
[a+1][a+3b+6][2a+3b+5][2a+3b+6][3a+3b+6]

[3][a−1][a+3b+3][2a+3b+3][2a+3b+4][3a+3b+3]
(4.21)

t(1,−1)
(a,b),ϖ2

=− [a+3][3b+3][a+3b+4][2a+3b+5][2a+3b+6][3a+6b+9]
[3][a][3b][a+3b+2][2a+3b+3][2a+3b+4][3a+6b+6]

(4.22)

t(−1,0)
(a,b),ϖ2

=
[a+1][a+2][a+3b+4][a+3b+5][2a+3b+5][3a+3b+6][3a+6b+9]
[3][a−1][a][a+3b+2][a+3b+3][2a+3b+3][3a+3b+3][3a+6b+6]

(4.23)

t(−3,1)
(a,b),ϖ2

=− [a+1][2a+3b+5][3a+3b+6][3a+6b+9]
[a−2][2a+3b+2][3a+3b][3a+6b+6]

(4.24)

t(0,−1)
(a,b),ϖ2

=
[3b+3][a+3b+4][2a+3b+5][3a+3b+6][3a+6b+9]
[3b][a+3b+1][2a+3b+2][3a+3b+3][3a+6b+3]

(4.25)

(
p,ℓt(0,0)(a,b),ϖ2

)
=

 1,1t(0,0)(a,b),ϖ2

1,2t(0,0)(a,b),ϖ2

2,1t(0,0)(a,b),ϖ2

2,2t(0,0)(a,b),ϖ2

(4.26)

D(a,b) : = det
(

p,ℓt(0,0)(a,b),ϖ2

)
(4.27)

Moreover,

1,2t(0,0)(a,b),ϖ2
= 2,1t(0,0)(a,b),ϖ2

,(4.28)

D(a,b) =
[4][6][a+2][3b+6][a+3b+5][2a+3b+6][3a+3b+9][3a+6b+12]

[2][3][12][a][3b][a+3b+3][2a+3b+4][3a+3b+3][3a+6b+6]
,(4.29)

and the entries of the matrix can be computed from the relations in Appendix A.1.

4.3.2. Verifying the clasp conjecture. Before proving our main theorem, we will prove the following,

which implies the clasp conjecture in type G2.

COROLLARY 4.3.1. Fix λ = aϖ1 + bϖ2 with a,b ∈ Z≥0. Let ϖ ∈ {ϖ1,ϖ2} be a fundamental weight,

and let µ ∈W ·ϖ be a weight in the Weyl group orbit of ϖ . Then

tµ

λ ,ϖ =± ∏
α∈Φµ

[(α∨,λ +ρ)]ℓℓ(α)

[(α∨,λ +ϖ +ρ)]ℓℓ(α)

.
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PROOF. In type G2, The W invariant bilinear pairing on ZΦ is determined by (α1,α1)= 2 and (α2,α2)=

6. In particular, l(α1) = 1 and l(α2) = 3. We set α∨ = 2α/(α,α). The positive roots are

(4.30) α1,3α1 +α2,2α1 +α2,3α1 +2α2,α1 +α2,α2,

the corresponding coroots are

(4.31) α
∨
1 ,α

∨
1 +α

∨
2 ,2α

∨
1 +3α

∨
2 ,α

∨
1 +2α

∨
2 ,α

∨
1 +3α

∨
2 ,α

∨
2 .

To simplify notation, we will write si := sαi . It is not hard to see that

(4.32) d(1,0) = 1, d(0,1) = 1, d(−2,1) = s1s2s1, d(3,−2) = s2s1s2,

(4.33) d(−1,1) = s1, d(3,−1) = s2, d(1,−1) = s1s2s1s2, d(−3,1) = s2s1s2s1,

(4.34) d(2,−1) = s1s2, d(−3,2) = s2s1, d(−1,0) = s1s2s1s2s1, and d(0,−1) = s2s1s2s1s2.

The claim then follows from the formulas for tµ

λ ,ϖ in Section 4.3.1. One verifies this by using that if

w = sβ1sβ2 . . .sβn , then

{α ∈ Φ+ : wα ∈ Φ−}= {βn,sβn(βn−1),sβnsβn−1(βn−2), . . .sβnsβn−1 . . .sβ2(β1)},

along with the quantum number identity [n]q3 = [3n]/[3]. □

4.3.3. Proof of Triple Clasp Formula. Suppose that V (wtu) is a summand of V (wtw)⊗V (ϖ), and

that (a,b) = λ = wtw and (m,n) = µ = wtu−wtw. Then we will write

pℓt
u
w,ϖ := pℓt

(m,n)
(a,b),ϖ .

Our convention is that the pℓ superscript is neglected when dimV (ϖ)µ = 1. By definition the elements

pℓtu
w,ϖ only depend on the weights wtw and wtu, not the words w and u.

We will write (pℓtu
w,ϖ) to denote the matrix of scalars pℓtu

w,ϖ , for vp,vℓ ∈ Kerwtw(V (ϖ)µ).

LEMMA 4.3.1. The matrix (pℓtu
w,ϖ) is invertible over C(q).
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PROOF. From Section 4.3.1, using Equation (4.8) to Equation (4.25), and Equation (4.29), one can

check that the determinant of this matrix is invertible in C(q). □

DEFINITION 4.3.1. Let w ∈ Webq(g2), write λ = wtw, and let ϖ ∈ {ϖ1,ϖ2}. We define the triple clasp

to be the following inductively defined diagram:

Tw⊗ϖ := Tw ⊗ idϖ − ∑
µ∈wtV (ϖ)\{ϖ}

vi,v j∈Kerwtw(V (ϖ)µ )

((pℓt
uλ+µ

w,ϖ )−1)i j · i jTTuλ+µ

w,ϖ ,

where

i jTTuλ+µ

w,ϖ := (Tw⊗ idϖ)◦ (D(iELL
uλ+µ

w,ϖ ))◦Tuλ+µ
◦ ( jELL

uλ+µ

w,ϖ )◦ (Tw⊗ idϖ).

DEFINITION 4.3.2. By Lemma 4.2.7 there is a scalar pℓκ
uλ+µ

w,ϖ such that

pLL
uλ+µ

w,ϖ ◦D(ℓLL
uλ+µ

w,ϖ ) = pℓ
κ

uλ+µ

w,ϖ ·Cuλ+µ
.

We call the matrix

(pℓ
κ

uλ+µ

w,ϖ ),

such that vp,vℓ ∈ Kerwtw(V (ϖ)µ), a local intersection form matrix.

LEMMA 4.3.2. If wtw = wtw′, then

pℓ
κ

uλ+µ

w,ϖ = pℓ
κ

uλ+µ

w′,ϖ .

PROOF. First observe that

pℓ
κ

uλ+µ

w,ϖ ·Cuλ+µ
= pLL

uλ+µ

w,ϖ ◦D(ℓLL
uλ+µ

w,ϖ )

= pLL
uλ+µ

w,ϖ ◦ (Cw⊗ idϖ)◦D(ℓLL
uλ+µ

w,ϖ )

= pLL
uλ+µ

w,ϖ ◦ (Hw
w′ ⊗ idϖ)◦ (Cw′ ⊗ idϖ)◦ (Hw′

w ⊗ idϖ)◦D(ℓLL
uλ+µ

w,ϖ )

= pLL
uλ+µ

w′,ϖ ◦ (Cw′ ⊗ idϖ)◦D(ℓLL
uλ+µ

w′,ϖ )

= pLL
uλ+µ

w′,ϖ ◦D(ℓLL
uλ+µ

w′,ϖ )

= pℓ
κ

uλ+µ

w′,ϖ ·Cuλ+µ
.

The claim follows from comparing neutral coefficients. □
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NOTATION 4.3.1. We will write

pℓ
κ

µ

λ ,ϖ := pℓ
κ

uλ+µ

w,ϖ ,

where wtw = (a,b).

EXAMPLE 4.3.1. Consider w = ϖ1ϖ2ϖ1ϖ1 and ϖ = ϖ2. When µ = (−2,1), choose uλ+µ = ϖ1ϖ2ϖ2.

Then

1,1
κ

uλ+µ

w,ϖ
Cuλ+µ =

Cuλ+µ

Cuλ+µ

Cw =

(1,1)

(1,2)

(1,1)

(1,2)

(1,2)

(1,2)

(3,1) .

When µ = (0,0), choose uλ+µ = ϖ1ϖ1ϖ1ϖ2. Then we have the following:

1,2
κ

uλ+µ

w,ϖ
Cuλ+µ =

Cuλ+µ

Cw

Cuλ+µ

=

(3,1)

(3,0)

(3,1)

(2,1)

(3,1)

(3,1)

(3,1)

, 2,1
κ

uλ+µ

w,ϖ
Cuλ+µ =

Cuλ+µ

Cw

Cuλ+µ

=

(3,1)

(3,0)

(3,1)

(2,1)

(3,1)

(3,1)

(3,1)

.

REMARK 4.3.1. When µ = (0,0), by taking the quantum trace, we know that 1,2κ
uλ+µ

w,ϖ = 2,1κ
uλ+µ

w,ϖ . So

the local intersection form matrix
(pℓ

κ
uλ+µ

w,ϖ

)
is symmetric.

NOTATION 4.3.2. Fix the following set of formal variables

X :=
{

x(c,d)(a,b),ϖ | a,b,c,d ∈ Z≥0 and ϖ ∈ {ϖ1,ϖ2}
}
.

We will consider elements in the ring A := C(q)[x±1 | x ∈ X ].

99



Suppose that (a,b) = λ = wtw and (m,n) = µ = wtuλ+µ −wtw, then we will write

pℓ
ρ

uλ+µ

w,ϖ := pℓ
ρ
(m,n)
(a,b),ϖ ∈ A ,

where pℓρ
(m,n)
(a,b),ϖ is the recursive relation described by Equation (A.4) to Equation (A.25), in Appendix A.2.

We also write pℓρ
(m,n)
(a,b),ϖ(κ) to denote the right hand side of the recursive relation with each pℓxµ

λ ,ϖ

replaced with pℓκ
µ

λ ,ϖ . Similarly, we write pℓρ
(m,n)
(a,b),ϖ(t) to denote the right hand side of the recursive relation

with each pℓxµ

λ ,ϖ replaced by pℓtµ

λ ,ϖ .

Our convention is that the pℓ superscript is neglected when dimV (ϖ)µ = 1.

EXAMPLE 4.3.2. Consider w and uλ+µ in Webq(g2) such that wtw = (a,b) and wtuλ+µ = (a+1,b).

Also, let ϖ = ϖ2. By Equation (A.13):

ρ
uλ+µ

w,ϖ2
= ρ

(1,0)
(a,b),ϖ2

=
[7]
[3]

− 1

x(−1,1)
(a−1,b),ϖ1

x(3,−1)
(a−2,b+1),ϖ2

− 1

x(2,−1)
(a−1,b),ϖ1

.

REMARK 4.3.2. Since the recursive relations in Appendix A.2 are elements of A , there is no question

whether a particular element in X appearing in a relation is invertible or not. Thanks to Lemma 4.3.1 the

elements pℓρ
(m,n)
(a,b),ϖ(t) are also always well defined. This is not obviously true for pℓρ

(m,n)
(a,b),ϖ(κ). However we

will prove that κ
uλ+µ

w,ϖ = t
uλ+µ

w,ϖ .

THEOREM 4.3.1. If w ∈ Webq(g2), λ = wtw, and ϖ ∈ {1,2}, then

Tw =Cw and κ
uλ+µ

w,ϖ = t
uλ+µ

w,ϖ .

We will prove Theorem 4.3.1 by induction. To simplify the arguments, we will break the various steps

of the proof into smaller lemmas about the following statements. In what follows we write λ = wtw.

S1(w) : =
(

Tw =Cw

)
S′1(w,ϖ) : =

(
pℓ

κ
uλ+µ

w,ϖ = pℓt
uλ+µ

w,ϖ , for all µ ∈ wtV (ϖ) and for all vµ,p,vµ,ℓ ∈ Kerλ (V (ϖ)µ)

)
S2(w,ϖ) : =

(
Cw ⊗ idϖ ∈ span

⋃
µ∈wtV (ϖ)

vp,vℓ∈Kerλ (V (ϖ)µ )

{pℓLLuλ+µ

w,ϖ }
)
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S′2(w,ϖ) : =
(
{pLL

uλ+µ

w,ϖ }vp∈Kerλ (V (ϖ)µ ) is a linearly independent set, for all µ ∈ wtV (ϖ)

)
S3(w,ϖ) : =

(
{pLL

uλ+µ

w,ϖ }vp∈Kerλ (V (ϖ)µ ) is a basis for HomKarWebq(g2)(Cw ⊗ idϖ ,Cuλ+µ
),

for all µ ∈ wtV (ϖ)

)
S4(w,ϖ) : =

(
pℓ

κ
uλ+µ

w,ϖ = pℓ
ρ

uλ+µ

w,ϖ (κ), for all µ ∈ wtV (ϖ)

)
S5(w,ϖ) : =

(
Tw⊗ϖ =Cw ⊗ idϖ − ∑

µ∈wtV (ϖ)\{ϖ}
vi,v j∈Kerλ (V (ϖ)µ )

(pℓ
κ

uλ+µ

w,ϖ )−1
i j · i jLLuλ+µ

w,ϖ

)

S6(w) : =
(

T 2
w = Tw

)
S′6(w,ϖ) : =

(
Cu ◦D◦Tw⊗ϖ = 0, for u such that (wtu−λ ) ∈ wtV (ϖ)\{ϖ} and for all possible diagram D

)
LEMMA 4.3.3. If V (λ +µ) is a summand of V (λ )⊗V (ϖ), then λ +µ ≤ λ +ϖ .

PROOF. Suppose V (λ + µ) is a summand of V (λ )⊗V (ϖ). Then V (ϖ)µ ̸= 0. It follows that µ ∈

ϖ +Z≤0Φ+, so ϖ −µ ≥ 0. □

LEMMA 4.3.4. If S1(x) for all x such that wtx ≤ wt(w⊗ϖ), then S2(w,ϖ).

PROOF. Write λ = wtw. Since Tw⊗ϖ =Cw⊗ϖ ,

Cw⊗ϖ = Tw⊗ϖ = Tw ⊗ idϖ − ∑
µ∈wtV (ϖ)\{ϖ}

vi,v j∈Kerλ (V (ϖ)µ )

(pℓt
uλ+µ

w,ϖ )−1
i j · i jTTuλ+µ

w,ϖ .

Also, we have wtw < wt(w⊗ϖ) and wtuλ+µ ≤ wt(w⊗ϖ), for all µ such that V (λ +µ) is a summand of

V (λ )⊗V (ϖ), so Tw =Cw and Tuλ+µ
=Cuλ+µ

. Therefore,

i jTTuλ+µ

w,ϖ := (Tw⊗ idϖ)◦ (D(iELL
uλ+µ

w,ϖ ))◦Tuλ+µ
◦ ( jELL

uλ+µ

w,ϖ )◦ (Tw⊗ idϖ)

= (Cw⊗ idϖ)◦ (D(iELL
uλ+µ

w,ϖ ))◦Cuλ+µ
◦ ( jELL

uλ+µ

w,ϖ )◦ (Cw⊗ idϖ)

= i jLLuλ+µ

w,ϖ .
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The claim follows from observing that Cw⊗ϖ =LLuλ+ϖ

w,ϖ , which is a consequence of Lemmas 4.2.9 and 4.2.10

(i.e. clasp absorption and neutral absorption).

□

LEMMA 4.3.5. If S′1(w,ϖ), then S′2(w,ϖ).

PROOF. Write λ = wtw. For each µ such that V (λ + µ) is a summand of V (λ )⊗V (ϖ), consider the

linear relation

∑
p

ξp · pLL
uλ+µ

w,ϖ = 0.

We can precompose the relation with D(ℓLL
uλ+µ

w,ϖ ) for all vℓ ∈ Kerλ (V (ϖ)µ) to obtain a family of relations

∑
p

ξp · pℓ
κ

uλ+µ

w,ϖ = 0.

By our hypothesis, we obtain

∑
p

ξp · pℓt
uλ+µ

w,ϖ = 0,

and it follows from Lemma 4.3.1 that each ξp = 0. □

LEMMA 4.3.6. If S′2(w,ϖ), then S3(w,ϖ).

PROOF. Let µ = wtu−wtw. By combining Corollary 3.2.1 with Equation (4.5), we may deduce the

following

dimHomKarWebq(g2)(Cw ⊗ idϖ ,Cu) = dimHomUq(g2)(V (wtw)⊗V (ϖ),V (wtu))

= dimKerwtw(V (ϖ)µ).

The claim follows by observing that a linearly independent set with cardinality equal to the dimension of

the vector space must be a spanning set. □

LEMMA 4.3.7. If S4(w,ϖ), and S′1(x,ψ) whenever wt(x⊗ψ)≤ wtw, then S′1(w,ϖ).

PROOF. The right hand side of the equation pℓκ
u
w,ϖ = pℓρ

u
w,ϖ(κ) only involves terms i jκ

y
x,ψ such that

wt(x⊗ψ) ≤ wtw. If we write pℓρ
u
w,ϖ(t) to denote the same formula with each i jκ

y
x,ψ replaced by i jt

y
x,ψ ,

then our hypotheses imply that

pℓ
κ

u
w,ϖ = pℓ

ρ
u
w,ϖ(t).
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Thus, to show that S′1(w,ϖ) holds we must verify the following equality of rational functions in C(q):

pℓt
u
w,ϖ = pℓ

ρ
u
w,ϖ(t),

which we verified using the SAGE code included with the source file of the arXiv version of [9]. □

EXAMPLE 4.3.3. We take verification of Equation (A.13) as an example. In order to verify that

t(1,0)(a,b),ϖ2
= ρ

(1,0)
(a,b),ϖ2

(t) =
[7]
[3]

− 1

t(−1,1)
(a−1,b),ϖ1

t(3,−1)
(a−2,b+1),ϖ2

− 1

t(2,−1)
(a−1,b),ϖ1

,

we first write the t(s,t)(x,y),ϖ ’s explicitly using Equations (4.17), (4.9), (4.16), and (4.10) to obtain

[a+3][a+3b+6]
[3][a][a+3b+3]

=
[7]
[3]

− 1(
− [a]

[a−1]

)(− [3b+6]
[3b+3]

)
− 1

[3b+3][a+3b+3]
[3b][a+3b+2]

.

We can rewrite this as:

(qa+3 −q−a−3)(qa+3b+6 −q−a−3b−6)(q−q−1)

(q3 −q−3)(qa −q−a)(qa+3b+3 −q−a−3b−3)
=(4.35)

q7 −q−7

q3 −q−3 −
(qa−1 −q−a+1)(q3b+6 −q−3b−6)

(qa −q−a)(q(3b+3)−q−3b−3
)

− (q3b −q−3b)(qa+3b+2 −q−a−3b−2)

(q3b+3 −q−3b−3)(qa+3b+3 −q−a−3b−3)
.(4.36)

Making the substitutions A = qa and B = qb, we obtain:

(Aq3 −A−1q−3)(AB3q6 −A−1B−3q−6)(q−q−1)

(q3 −q−3)(A−A−1)(AB3q3 −A−1B−3q−3)
=(4.37)

q7 −q−7

q3 −q−3 −
(Aq−1 −A−1q)(B3q6 −B−3q−6)

(A−A−1)(B3q3 −B−3q−3)
− (B3 −B−3)(AB3q2 −A−1B−3q−2)

(B3q3 −B−3q−3)(AB3q3 −A−1B−3q−3)
.(4.38)

Then we can use .simplify full() in SAGE to simplify the rational function of A, B, and q, which is given by

the difference of the left hand side and right hand side of the above equation. The result computed by SAGE

is equal to 0, which tells us that Equation (A.13) holds.

LEMMA 4.3.8. If S1(x) for all x such that wtx < wt(w⊗ϖ), and S′1(w,ϖ), then S5(w,ϖ).
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PROOF. By the definition of Tw⊗ϖ we find

Tw⊗ϖ := Tw ⊗ idϖ − ∑
µ∈wtV (ϖ)\{ϖ}

vi,v j∈Kerwtw(V (ϖ)µ )

(pℓt
uwtw+µ

w,ϖ )−1
i j · i jTTuwtw+µ

w,ϖ .

Then by our hypotheses, we deduce that

Tw⊗ϖ =Cw ⊗ idϖ − ∑
µ∈wtV (ϖ)\{ϖ}

vi,v j∈Kerwtw(V (ϖ)µ )

(pℓ
κ

uwtw+µ

w,ϖ )−1
i j · i jLLuwtw+µ

w,ϖ .

□

LEMMA 4.3.9. If S5(w,ϖ), then S6(w⊗ϖ).

PROOF. By Lemma 4.2.7 we deduce the following multiplication formula for double ladders:

pℓLLu
w,ϖ ◦ rsLLv

w,ϖ = δwtu,wtv
ℓr

κ
u
w,ϖ · psLLu

w,ϖ .

Using the expression for Tw⊗ϖ from S5(w,ϖ) and the above formula, one can explicitly compute to verify

that Tw,ϖ is idempotent.

□

LEMMA 4.3.10. If S5(w,ϖ) and S3(w,ϖ), then S′6(w,ϖ).

PROOF. Write λ = wtw. Let µ ∈ wtV (ϖ)\{ϖ} and let u ∈ Webq(g2) such that wtu = λ + µ . Let

D ∈ HomWebq(g2)(w⊗ϖ ,u). Consider the neutral diagram H
uλ+µ

u : u → uλ+µ and write D′ = H
uλ+µ

u ◦Cu ◦D.

Combining that clasps are idempotent with Lemma 4.2.7 we find

Cuλ+µ
◦D′ ◦ i jLLuλ+ν

w,ϖ = δµ,ν ·Cuλ+µ
◦D′ ◦ (Cw ⊗ idϖ)◦ i jLLuλ+µ

w,ϖ .

By S3(w,ϖ) there are scalars ξk such that

Cuλ+µ
◦D′ ◦ (Cw ⊗ idϖ) = ∑

vk∈Kerwtw(V (ϖ)µ )

ξk · kLL
uλ+µ

w,ϖ .
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Thus, using S5(w,ϖ) we can rewrite Cuλ+µ
◦D′ ◦Tw⊗ϖ as

Cuλ+µ
◦D′ ◦ (Cw ⊗ idϖ)−

∑
vi,v j∈Kerλ (V (ϖ)µ )

(pℓ
κ

uλ+µ

w,ϖ )−1
i j ·Cuλ+µ

◦D′ ◦ (Cw ⊗ idϖ)◦ i jLLuλ+µ

w,ϖ

=Cuλ+µ
◦D′ ◦ (Cw ⊗ idϖ)− ∑

vi,v j∈Kerwtw(V (ϖ)µ )
∑
k
(pℓ

κ
uλ+µ

w,ϖ )−1
i j ξk · kLL

uλ+µ

w,ϖ ◦ i jLLuλ+µ

w,ϖ

=Cuλ+µ
◦D′ ◦ (Cw ⊗ idϖ)− ∑

vi,v j∈Kerwtw(V (ϖ)µ )
∑
k
(pℓ

κ
uλ+µ

w,ϖ )−1
i j ξk

ki
κ

uλ+µ

w,ϖ · jLL
uλ+µ

w,ϖ

=Cuλ+µ
◦D′ ◦ (Cw ⊗ idϖ)− ∑

v j∈Kerwtw(V (ϖ)µ )
∑
k

ξkδk, j · jLL
uλ+µ

w,ϖ

=Cuλ+µ
◦D′ ◦ (Cw ⊗ idϖ)− ∑

v j∈Kerwtw(V (ϖ)µ )

ξ j · jLL
uλ+µ

w,ϖ

= 0.

Using Lemmas 4.2.9 and 4.2.10 it is not hard to see that Cu ◦Hu
uλ+µ

◦Cuλ+µ
◦D′ =Cu ◦D, and it follows

that Cu ◦D◦Tw⊗ϖ = 0. □

LEMMA 4.3.11. Let w ∈ Webq(g2) and let ϖ be a fundamental weight. If S2(x,ψ) and S′2(x,ψ) when-

ever wt(x⊗ψ)≤ wtw, then S4(w,ϖ).

PROOF. Consider x,ψ such that wt(x⊗ψ)≤ wtw. By S2(x,ψ) we obtain the following.

Cx ⊗ idψ = ∑
µ∈wtV (ψ)

vi,v j∈Kerwtx(V (ψ)µ )

i j
ξ

uwtx+µ

x,ψ · i jLLuwtx+µ

x,ψ

Postcomposing with pLL
uwtx+µ

x,ψ and using Lemma 4.2.7 results in the next sequence of equalities.

pLL
uwtx+µ

x,ψ = ∑
vi,v j∈Kerwtx(V (ψ)µ )

i j
ξ

uwtx+µ

x,ψ · pLL
uwtx+µ

x,ψ ◦ i jLLuwtx+µ

x,ψ

= ∑
vi,v j∈Kerwtx(V (ψ)µ )

i j
ξ

uwtx+µ

x,ψ · pi
κ

uwtx+µ

x,ψ · jLL
uwtx+µ

x,ψ

By S′2(x,ψ) it follows that

∑
vi∈Kerwtx(V (ψ)µ )

i j
ξ

uwtx+µ

x,ψ · pi
κ

uwtx+µ

x,ψ = δ jp.
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From Definition 4.2.10, we can use that clasps are idempotent to write

LL
uwtx+ψ

x,ψ ◦D(LL
uwtx+ψ

x,ψ ) =Cuwtx+ψ
◦ELL

uwtx+ψ

x,ψ ◦ (Cx ⊗ idψ)◦D(ELL
uwtx+ψ

x,ψ )◦Cuwtx+ψ
.

By Definition 4.2.9, ELL
uwtx+ψ

x,ψ is a neutral map. Therefore, Lemma 4.2.11, Lemma 4.2.10, and Lemma

4.2.9, along with clasps being idempotent, implies

LL
uwtx+ψ

x,ψ ◦D(LL
uwtx+ψ

x,ψ ) =Cuwtx+ψ
.

It follows that κ
uwtx+ψ

x,ψ = 1. Thus, ξ
uwtx+ψ

x,ψ = 1 and

(4.39) Cx⊗ψ =Cx ⊗ idψ − ∑
µ∈wtV (ψ)\{ψ}

vi,v j∈Kerwtx(V (ψ)µ )

(pℓ
κ

uwtx+µ

x,ψ )−1
i j · i jLLuwtx+µ

x,ψ .

Observe that

pℓ
κ

u
w,ϖCu =

pLLu
w,ϖ ◦D(ℓLL

u
w,ϖ)

=Cu ◦ pELLu
w,ϖ ◦ (Cw ⊗ idϖ)◦D(ℓELL

u
w,ϖ)◦Cu.

Then use Equation (4.39) for w = x⊗ψ to rewrite the Cw term on the right hand side. This new sum will

reduce to a scalar multiple of Cu by repeatedly applying graphical reductions or by replacing another clasp,

necessarily of the form Cy⊗ϖ for some y,ϖ such that wt(y⊗ϖ) ≤ wtw, using Equation (4.39). The exact

form of the coefficient is determined via the calculations in Appendix A.4 of the arXiv version of [9], where

it is shown to be equal to pℓρ
u
w,ϖ(κ). Therefore, pℓκ

u
w,ϖCu =

pℓρ
u
w,ϖ

(κ)Cu and the desired result follows

from looking at the neutral coefficient of each map. □

EXAMPLE 4.3.4. The above argument is best illustrated by example. Consider w with wtw = (a,b) and

assume S2(x,ψ) and S′2(x,ψ) whenever wt(x⊗ψ)≤ wtw. Note that

ρ
(−1,1)
(a,b),ϖ1

:=−[2]− 1

x(−1,1)
(a−1,b),ϖ1

.

We will show that κ
u(a−1,b+1)
w,ϖ1

= ρ
(−1,1)
(a,b),ϖ1

(κ). Let wt(v⊗ϖ1) = wtw. It follows from Lemma 4.3.2 that

κ
u(a−1,b+1)
w,ϖ1

= κ
u(a−1,b+1)
v⊗ϖ1,ϖ1

. By definition we have that κ
u(a−1,b+1)
v⊗ϖ1,ϖ1

Cu(a−1,b+1)
is equal to
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Cu(a−1,b+1)
◦ELL

u(a−1,b+1)
v⊗ϖ1,ϖ1

◦
(
Cv⊗ϖ1 ⊗ idϖ1

)
◦D(ELL

u(a−1,b+1)
v⊗ϖ1,ϖ1

)◦Cu(a−1,b+1)
.

As in the first half of the proof of Lemma 4.3.11, our hypotheses allow us to write

Cv⊗ϖ1 =Cv ⊗ idϖ1 − ∑
µ∈wtV (ϖ1)\{ϖ1}

vi,v j∈Kerwtv(V (ϖ1)µ )

(pℓ
κ

uwtv+µ

v,ϖ1
)−1

i j · i jLLuwtv+µ

v,ϖ1
.

Using Lemma 4.2.8, we observe that if µ ̸= (−1,1), then

Cu(a−1,b+1)
◦ELL

u(a−1,b+1)
v⊗ϖ1,ϖ1

◦
(
(pℓ

κ
uwtv+µ

v,ϖ1
)−1

i j · i jLLuwtv+µ

v,ϖ1
⊗ idϖ1

)
◦D(ELL

u(a−1,b+1)
v⊗ϖ1,ϖ1

)◦Cu(a−1,b+1)

is zero. Finally, applying web relations (and properties of clasps) we find

κ
(−1,1)
(a,b),ϖ1

Cu(a−1,b+1)
=

(
− [2]− 1

κ
(−1,1)
(a−1,b),ϖ1

)
Cu(a−1,b+1)

.

We conclude with a schematic of the graphical calculations involved.

(a−1,b+1)

(a−1,b+1)

(a−1,b)

(a−1,b)

(a,b)

(a−1,b+1)

(a−1,b+1)

=

(a−1,b+1)

(a−1,b+1)

(a−1,b)

(a−1,b)

− 1

κ
(−1,1)
(a−1,b),ϖ1

(a−1,b+1)

(a−1,b+1)

(a−1,b)

(a−1,b)

(a−2,b)

(a−2,b)
=

(a−1,b+1)

(a−1,b+1)

(a−1,b) − 1

κ
(−1,1)
(a−1,b),ϖ1

(a−1,b+1)

(a−1,b+1)

(a−2,b)

(a−2,b)

=−[2]

(a−1,b+1)

(a−1,b+1)

(a−1,b) − 1

κ
(−1,1)
(a−1,b),ϖ1

(a−1,b+1)

(a−1,b+1)

(a−2,b)

(a−2,b)

= (−[2]− 1

κ
(−1,1)
(a−1,b),ϖ1

)

(a−1,b+1)

(a−1,b+1)

Finally, we combine the previous lemmas to deduce the result of our main theorem.
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PROOF OF THEOREM 4.3.1. We will prove the result by induction on wtw with respect to ≤. The base

case follows from observing that T/0 is 1 times the empty diagram, which agrees with C/0. Assume that S1(x)

holds for all x such that wtx < wtw and assume that S′1(y,ψ) holds for all y,ψ such that wt(y⊗ψ)< wtw.

We will show S1(w) and S′1(w
′,ϖ), where w = w′⊗ϖ .

Consider y,ψ such that wt(y⊗ψ)< wtw. Then S1(x) holds whenever wtx ≤ wt(y⊗ψ), and by Lemma

4.3.4 we deduce S2(y,ψ). Thus, S2(y,ψ) holds for all y,ψ such that wt(y⊗ψ)< wtw.

If y,ψ is such that wt(y⊗ψ)< wtw, then our inductive hypothesis also says that S′1(y,ψ) holds. Along

with Lemmas 4.3.5 and 4.3.6, this implies S′2(y,ψ) and S3(y,ψ). Hence, S′2(y,ψ) and S3(y,ψ) holds for all

y,ψ such that wt(y⊗ψ)< wtw.

For x such that wtx < wtw, we have S2(y,ψ) and S′2(y,ψ) whenever wt(y⊗ψ)≤ wtx. So from Lemma

4.3.11 we deduce S4(x,ϖ) for all x such that wtx < wtw and for arbitrary ϖ .

If w = w′⊗ϖ , then wtw′ < wtw, so S4(w′,ϖ). Also, if wt(y⊗ψ) ≤ wtw′, then wt(y⊗ψ) < wtw so

S′1(y,ψ) holds whenever wt(y⊗ψ)≤ wtw′. Thus, Lemma 4.3.7 implies S′1(w
′,ϖ).

At this point, we know that S1(x) whenever wtx < wt(w′⊗ϖ) and that S′1(w
′,ϖ) holds. Therefore,

Lemma 4.3.8 implies that S5(w′,ϖ) holds too. Then from Lemma 4.3.9 we deduce S6(w′⊗ϖ) is true.

Moreover, since S′1(w
′,ϖ) is true, Lemmas 4.3.5 and 4.3.6 together imply S3(w′,ϖ). Therefore, we can

use Lemma 4.3.10 to deduce S′6(w
′,ϖ).

If we show that Tw′⊗ϖ ̸= 0, then Definition 4.2.2 and Lemma 4.2.3 will tell us that S6(w′⊗ϖ) and

S′6(w
′,ϖ) imply S1(w′⊗ϖ), so we are then done by induction. To see that Tw′⊗ϖ is not 0, we apply Φ

from Theorem 3.2.1 and evaluate on a weight vector in V (w′⊗ϖ)wtw′+ϖ . Using S5(w′,ϖ), along with the

observations that for all u such that wtu−wtw′ = µ ∈ wtV (ϖ)\{ϖ}, the map Φ
(

i jLLu
w′,ϖ

)
acts as zero on

V (w′⊗ϖ)wtw′+ϖ (since these maps factor through representations which do not have wtw′+ϖ as a weight)

and Φ
(
Cw′ ⊗ idϖ

)
acts on V (w′⊗ϖ)wtw′+ϖ as multiplication by 1, we deduce that Tw′⊗ϖ is non-zero. □
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APPENDIX A

Appendix for G2 clasp expansions

A.1. Relations for computing the pℓt(0,0)(a,b),ϖ2
coefficients

1
[2]

2,2t(0,0)(a,b),ϖ2
+ 1,2t(0,0)(a,b),ϖ2

=− [3][a+2][3a+6b+9]
[2][3b][a+3b+3][2a+3b+4][3a+3b+3][3a+6b+6]

·

(A.1)

(
[3a+3b+6][2a+3b+5]+ [a+3b+4][3b+3]+

[3a+3b+6][3b+3][2]2

[3]
+ [a+4]− [a−2]

)

1,1t(0,0)(a,b),ϖ2
=− [6][8][15]

[3][5][12]
+

[2][a+2][a+3b+5][2a+3b+2]
[3][a+1][a+3b+4][2a+3b+4]

+
[a−2][3b+6][2a+3b+2][3a+3b]
[a][3b+3][2a+3b+3][3a+3b+3]

(A.2)

+
[a−1][3b+6][a+3b+5][a+3b+6][2a+3b+6]
[3][a][3b+3][a+3b+3][a+3b+4][2a+3b+3]

+
[3b][a+3b+1][2a+3b+2][3a+6b+3]

[3b+3][a+3b+3][2a+3b+3][3a+6b+6]

+
[a+2][a+3][3b][a+3b+2][2a+3b+6]

[3][a][a+1][3b+3][a+3b+3][2a+3b+3]

2,2t(0,0)(a,b),ϖ2

D(a,b)

(
[4][6]2

[2][3]2[12]

)2

+2 ·
1,2t(0,0)(a,b),ϖ2

D(a,b)

[4]2[6]3

[2]2[3]2[12]2
+

1,1t(0,0)(a,b),ϖ2

D(a,b)

(
[4][6]
[2][12]

)2

(A.3)

=− [6][8][15]
[3][5][12]

+
[a+3][3b][a+3b+2][a+3b+3][2a+3b+4]

[3][a+2][3b+3][a+3b+4][a+3b+5][2a+3b+7]

+
[a−1][a][3b+6][a+3b+6][2a+3b+4]

[3][a+1][a+2][3b+3][a+3b+5][2a+3b+7]
+

[2][a][a+3b+3][2a+3b+8]
[3][a+1][a+3b+4][2a+3b+6]

+
[a+4][3b][2a+3b+8][3a+3b+12]

[a+2][3b+3][2a+3b+7][3a+3b+9]
+

[3b+6][a+3b+7][2a+3b+8][3a+6b+15]
[3b+3][a+3b+5][2a+3b+7][3a+6b+12]
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A.2. Recursions for the coefficients

We write x(c,d)(a,b) := x(c,d)(a,b),ϖ1
and y(c,d)(a,b) := x(c,d)(a,b),ϖ2

.

ρ
(1,0)
(a,b),ϖ1

= 1(A.4)

ρ
(−1,1)
(a,b),ϖ1

=−[2]− 1

x(−1,1)
(a−1,b)

(A.5)

ρ
(2,−1)
(a,b),ϖ1

=
[7]
[3]

− 1

y(3,−1)
(a,b−1)

x(−1,1)
(a+3,b−2)−

1

y(1,0)(a,b−1)

1

[3]2
(A.6)

ρ
(0,0)
(a,b),ϖ1

=− [3][8]
[2][4]

−
x(2,−1)
(a−2,b+1)

x(−1,1)
(a−1,b)

−
x(−1,1)
(a+1,b−1)

x(2,−1)
(a−1,b)

− 1

[2]2x(0,0)(a−1,b)

(A.7)

ρ
(−2,1)
(a,b),ϖ1

=− [3][8]
[2][4]

x(−1,1)
(a−1,b)−

1

x(−1,1)
(a−1,b)

 1

x(−1,1)
(a−2,b)

2

x(0,0)(a−2,b+1)−
1

x(0,0)(a−1,b)

 [3]
[2]

+
1

x(−1,1)
(a−2,b)

2

x(−1,1)
(a−1,b)(A.8)

− 1

x(−2,1)
(a−1,b)

− [3]
[2]

+
1

x(−1,1)
(a−2,b)

1

x(−1,1)
(a−3,b)

1
[2]

2

ρ
(1,−1)
(a,b),ϖ1

=− [6][8][15]
[3][5][12]

− 1

y(3,−1)
(a,b−1)

x(−2,1)
(a+3,b−2)−

1

y(1,0)(a,b−1)

(
[2]
[3]

)2

x(0,0)(a+1,b−1)−
1

y(2,−1)
(a,b−1)

(
1
[3]

)2

x(−1,1)
(a+2,b−2)(A.9)

− 1

y(−1,1)
(a,b−1)

(
1
[3]

)2

x(2,−1)
(a−1,b)−

1
1,1y(0,0)(a,b−1)

(
[4][6]2

[2][3]2[12]

)2

− 1
2,2y(0,0)(a,b−1)

(
[4][6]
[2][12]

)2

+

(
1

1,2y(0,0)(a,b−1)

+
1

2,1y(0,0)(a,b−1)

)
[4][6]2

[2][3]2[12]

[4][6]
[2][12]

ρ
(−1,0)
(a,b),ϖ1

=
[2][7][12]
[4][6]

− 1

x(−1,1)
(a−1,b)

x(1,−1)
(a−2,b+1)−

1

x(2,−1)
(a−1,b)

x(−2,1)
(a+1,b−1)−1− 1

x(−2,1)
(a−1,b)

x(2,−1)
(a−3,b+1)(A.10)

− 1

x(1,−1)
(a−1,b)

x(−1,1)
(a,b−1)−

1

x(−1,0)
(a−1,b)
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ρ
(0,1)
(a,b),ϖ2

= 1(A.11)

ρ
(3,−1)
(a,b),ϖ2

=− [6]
[3]

− 1

y(3,−1)
(a,b−1)

(A.12)

ρ
(1,0)
(a,b),ϖ2

=
[7]
[3]

− 1

x(−1,1)
(a−1,b)

y(3,−1)
(a−2,b+1)−

1

x(2,−1)
(a−1,b)

(A.13)

ρ
(−1,1)
(a,b),ϖ2

=− [7]
[2]

− 1

x(−1,1)
(a−2,b)

[7]
[3]

− 1

x(−1,1)
(a−1,b)

(
1

x(−1,1)
(a−2,b)

)2

y(1,0)(a−2,b+1)−
1

x(0,0)(a−1,b)

(
[3]
[2]

+
1

x(−1,1)
(a−2,b)

)2

(A.14)

ρ
(2,−1)
(a,b),ϖ2

=
[8][10]

[3]2[5]
− 1

y(3,−1)
(a,b−1)

y(−1,1)
(a+3,b−2)−

1

y(1,0)(a,b−1)

[2]2

[3]2
y(1,0)(a+1,b−1)−

1

y(−1,1)
(a,b−1)

1

[3]2
y(3,−1)
(a−1,b)−

1

y(2,−1)
(a,b−1)

1

[3]2

(A.15)

ρ
(−3,2)
(a,b),ϖ2

=
[7]
[3]

(
− [3]

[2]
x(−1,1)
(a−2,b)+

1

x(−1,1)
(a−2,b)

(
x(−1,1)
(a−3,b)

)2

(
[3]
[2]

+
1

x(−1,1)
(a−4,b+1)

))
−

y(−1,1)
(a−2,b+1)

x(−1,1)
(a−1,b)

(
x(−1,1)
(a−2,b)x

(−1,1)
(a−3,b)

)2

(A.16)

− 1

x(−2,1)
(a−1,b)

(
− [3]

[2]
x(−1,1)
(a−2,b)+

1

x(−1,1)
(a−2,b)

(
1

x(−1,1)
(a−3,b)

)2(
[3]
[2]

+
1

x(−1,1)
(a−4,b+1)

))2

1,1
ρ
(0,0)
(a,b),ϖ2

=− [6][8][15]
[3][5][12]

− 1

x(−1,1)
(a−1,b)

y(2,−1)
(a−2,b+1)−

1

x(2,−1)
(a−1,b)

y(−1,1)
(a+1,b−1)−

1

x(0,0)(a−1,b)

y(1,0)(a−1,b)−
1

x(−2,1)
(a−1,b)

y(3,−1)
(a−3,b+1)−

1

x(1,−1)
(a−1,b)

(A.17)

2,2
ρ
(0,0)
(a,b),ϖ2

=− [4][6]2[18]
[3][9][12]

− 1

y(3,−1)
(a,b−1)

y(−3,2)
(a+3,b−2)−

1

y(1,0)(a,b−1)

y(−1,1)
(a+1,b−1)−

1

y(−1,1)
(a,b−1)

y(1,0)(a−1,b)−
1

y(−3,2)
(a,b−1)

y(3,−1)
(a−3,b+1)

(A.18)

−
2,2y(0,0)(a,b−1)

D(a,b−1)

(
[4][6]
[2][12]

)2

−

( 1,2y(0,0)(a,b−1)

D(a,b−1)
+

2,1y(0,0)(a,b−1)

D(a,b−1)

)
[4]2[6]2

[2][12]2
−

1,1y(0,0)(a,b−1)

D(a,b−1)

(
[4][6]
[12]

)2
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1,2
ρ
(0,0)
(a,b),ϖ2

=
[4][6]2[18]
[2][3][9][12]

+
y(−1,1)
(a+1,b−1)

y(1,0)(a,b−1)

(
[4]
[3]

+
1

x(−1,1)
(a−1,b−1)

)
+

y(1,0)(a−1,b)

y(−1,1)
(a,b−1)

(
[4]
[3]

− [2]

[3]x(−1,1)
(a−1,b−1)x

(−1,1)
(a−2,b−1)

)(A.19)

+
y(3,−1)
(a−3,b+1)

y(−3,2)
(a,b−1)

(
[4]
[3]

+
1

[3]x(−1,1)
(a−1,b−1)x

(−1,1)
(a−2,b−1)x

(−1,1)
(a−3,b−1)

)
+

2,1y(0,0)(a,b−1)

D(a,b−1)

(
[4][6]
[2][12]

)2

+

1,1y(0,0)(a,b−1)

D(a,b−1)

[4]2[6]2

[2][12]2

−
2,2y(0,0)(a,b−1)

D(a,b−1)

[4][6]
[2][12]

(
1
[2]

+
1

[3]x(−1,1)
(a−1,b−1)

− [4][6]

[2]2[12]

)
−

1,2y(0,0)(a,b−1)

D(a,b−1)

[4][6]
[12]

(
1
[2]

+
1

[3]x(−1,1)
(a−1,b−1)

− [4][6]

[2]2[12]

)

ρ
(3,−2)
(a,b),ϖ2

=− [4][6]2[18]
[3][9][12]

y(3,−1)
(a,b−1)−

1

y(3,−1)
(a,b−1)

(
[3]2 1,1y(0,0)(a+3,b−2)−

2 · [3]
y(3,−1)
(a,b−2)

1,2y(0,0)(a+3,b−2)+

2,2y(0,0)(a+3,b−2)(
y(3,−1)
(a,b−2)

)2

)(A.20)

− 1

y(1,0)(a,b−1)

y(2,−1)
(a+1,b−1)−

1

y(2,−1)
(a,b−1)

(
y(3,−1)
(a,b−1)

)2

y(1,0)(a+2,b−2)−
2,2y(0,0)(a,b−1)

D(a,b−1)

(
[4][6]
[2][12]

)2

y(3,−1)
(a,b−1)

−2 ·
1,2y(0,0)(a,b−1)

D(a,b−1)

[4][6]
[2][12]

(
[4][6]
[12]

+ y(3,−1)
(a,b−1)

)
y(3,−1)
(a,b−1)−

1,1y(0,0)(a,b−1)

D(a,b−1)

(
[4][6]
[12]

+ y(3,−1)
(a,b−1)

)2

y(3,−1)
(a,b−1)

− 1

y(3,−2)
(a,b−1)

(
[4][6]
[12]

− [6]
[3]

+
1

y(3,−1)
(a,b−2)

(
[4][6]2

[3][12]
−1+

1

y(3,−1)
(a,b−3)

[4][6]
[12]

))2

ρ
(−2,1)
(a,b),ϖ2

=− [6][8][15]
[3][5][12]

x(−1,1)
(a−1,b)−

1

x(−1,1)
(a−1,b)

( 1,1y(0,0)(a−2,b+1)(
x(−1,1)
(a−2,b)

)2 −
2 ·
(

1,2y(0,0)(a−2,b+1)

)
x(−1,1)
(a−2,b)

+ 2,2y(0,0)(a−2,b+1)

)(A.21)

− 1

x(2,−1)
(a−1,b)

y(−3,2)
(a+1,b−1)−

1

x(0,0)(a−1,b)

y(−1,1)
(a−1,b)(

x(−1,1)
(a−2,b)

)2 −
1

x(−2,1)
(a−1,b)

y(1,0)(a−3,b+1)(
x(−1,1)
(a−2,b)x

(−1,1)
(a−3,b)

)2 −
1

x(−1,0)
(a−1,b)

(
x(−1,1)
(a−1,b)

)2
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ρ
(1,−1)
(a,b),ϖ2

=− [6][8][15]
[3][5][12]

x(2,−1)
(a−1,b)−

1

x(−1,1)
(a−1,b)

y(3,−2)
(a−2,b+1)

(A.22)

− 1

x(2,−1)
(a−1,b)

((
[2]2

[3]
− 1

y(1,0)(a−1,b−1)

1

[3]2
+

1

y(3,−1)
(a−1,b−1)

1

x(−1,1)
(a+1,b−2)

)2
1,1y(0,0)(a+1,b−1)+

(
1

y(3,−1)
(a−1,b−1)

)2
2,2y(0,0)(a+1,b−1)

−2 ·

(
[2]2

[3]
− 1

y(1,0)(a−1,b−1)

1

[3]2
+

1

y(3,−1)
(a−1,b−1)

1

x(−1,1)
(a+1,b−2)

)
1

y(3,−1)
(a−1,b−1)

1,2y(0,0)(a+1,b−1)

)

− 1

x(0,0)(a−1,b)

(
[2]
[3]

+
1

y(3,−1)
(a−1,b−1)

1

x(−1,1)
(a+1,b−2)

(
1
[2]

+
1

x(−1,1)
(a,b−2)

1

x(−1,1)
(a−1,b−2)

(
− [3]

[2]
− 1

x(−1,1)
(a−2,b−1)

))

− 1

y(1,0)(a−1,b−1)

1
[3]

(
1

[2][3]
− [3]

[2]
− 1

x(−1,1)
(a−2,b−1)

))2

y(2,−1)
(a−1,b)

− 1

x(1,−1)
(a−1,b)

(
− [4]

[3]
− 1

y(3,−1)
(a−1,b−1)

1

x(−1,1)
(a+1,b−2)

1

x(−1,1)
(a,b−2)

− 1

y(1,0)(a−1,b−1)

[2]

[3]2

)2

y(1,0)(a,b−1)

− 1

x(−1,0)
(a−1,b)

(
− [4]

[3]
− 1

y(3,−1)
(a−1,b−1)

(
1
[3]

+
1

x(−1,1)
(a+1,b−2)

1

x(−1,1)
(a,b−2)

1

x(−1,1)
(a−1,b−2)

(
[4]
[3]

+
1

x(−1,1)
(a−2,b−1)

))

+
1

y(1,0)(a−1,b−1)

1
[3]

(
[4]
[3]

+
1

x(−1,1)
(a−2,b−1)

))2

y(3,−1)
(a−2,b)

ρ
(−1,0)
(a,b),ϖ2

=− [6][8][15]
[3][5][12]

x(0,0)(a−1,b) − 1

x(−1,1)
(a−1,b)

1(
x(−1,1)
(a−2,b)

)2 y(1,−1)
(a−2,b+1) − 1

x(2,−1)
(a−1,b)

(
1
[2]

+
1

x(2,−1)
(a−2,b)

(
[5]

[2][3]

(A.23)

+
1

y(3,−1)
(a−2,b−1)

(
1

[2]2
+

1

[2]2x(−1,1)
(a,b−2)x

(−1,1)
(a−1,b−2)

)
+

1

[2][3]2y(1,0)(a−2,b−1)

))2

y(−2,1)
(a+1,b−1) − 1

x(0,0)(a−1,b)

{(
− [3]

[2]

− 1

x(−1,1)
(a−2,b)

(
[2]2

[3]
− 1

[3]2y(1,0)(a−3,b)

)
− 1

x(−1,1)
(a−1,b−1)

(
1

x(−1,1)
(a−2,b)y

(3,−1)
(a−3,b)

− 1

x(2,−1)
(a−2,b)

)
− 1

[2]2x(0,0)(a−2,b)

)2
1,1y(0,0)(a−1,b)
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+2 ·

(
− [3]

[2]
− 1

x(−1,1)
(a−2,b)

(
[2]2

[3]
− 1

[3]2y(1,0)(a−3,b)

)
− 1

x(−1,1)
(a−1,b−1)

(
1

x(−1,1)
(a−2,b)y

(3,−1)
(a−3,b)

− 1

x(2,−1)
(a−2,b)

)
− 1

[2]2x(0,0)(a−2,b)

)
·

(
1

x(−1,1)
(a−2,b)y

(3,−1)
(a−3,b)

− 1

x(2,−1)
(a−2,b)

)
1,2y(0,0)(a−1,b)+

(
1

x(−1,1)
(a−2,b)y

(3,−1)
(a−3,b)

− 1

x(2,−1)
(a−2,b)

)2
2,2y(0,0)(a−1,b)

}
− 1

x(−2,1)
(a−1,b)

(
[3]
[2]

−

1

x(−1,1)
(a−2,b)

(
[2]

[3]x(−1,1)
(a−3,b)

+
1

[3]y(1,0)(a−3,b)x
(−1,1)
(a−3,b)

(
[4]
[3]

+
1

x(−1,1)
(a−4,b)

))
− 1

[2]x(0,0)(a−2,b)

(
[3]
[2]

+
1

x(−1,1)
(a−3,b)

))2

y(2,−1)
(a−3,b+1)

− 1

x(1,−1)
(a−1,b)

(
− [3]

[2]
+

1

x(2,−1)
(a−2,b)

(
[5]

[2][3]
+

1

y(3,−1)
(a−2,b−1)x

(−1,1)
(a,b−2)x

(−1,1)
(a−1,b−2)

+
[2]

[3]2y(1,0)(a−2,b−1)

)
+

(
1

[2]x(0,0)(a−2,b)

+
1

x(2,−1)
(a−2,b)x

(−1,1)
(a−1,b−1)x

(−1,1)
(a−2,b−1)

)(
[4]

[2]2
− 1

x(2,−1)
(a−3,b)

(
[5]

[2][3]
+

1

y(3,−1)
(a−3,b−1)

(
1

[2]2
+

1

[2]2x(−1,1)
(a−1,b−2)x

(−1,1)
(a−2,b−2)

)

+
1

[2][3]2y(1,0)(a−3,b−1)

)))2

y(−1,1)
(a,b−1) − 1

x(−1,0)
(a−1,b)

(
1

x(−1,1)
(a−2,b)

(
[4]
[3]

+
[2]

[3]2y(1,0)(a−3,b)

)
+

(
1

x(−1,1)
(a−2,b)y

(3,−1)
(a−3,b)

− 1

x(2,−1)
(a−2,b)

)
1

x(−1,1)
(a−1,b−1)x

(−1,1)
(a−2,b−1)

− 1

[2]x(0,0)(a−2,b)

)2

y(1,0)(a−2,b)

ρ
(−3,1)
(a,b),ϖ2

=− [6][8][15]
[3][5][12]

x(−2,1)
(a−1,b)−

1

x(−1,1)
(a−1,b)

y(−1,0)
(a−2,b+1)(

x(−1,1)
(a−2,b)x

(−1,1)
(a−3,b)

)2 −
1

x(0,0)(a−1,b)

(
− [3]

[2]
(A.24)

+
1

x(−1,1)
(a−2,b)x

(−1,1)
(a−3,b)

(
[2]
[3]

+
1

[3]y(1,0)(a−3,b)

(
[4]
[3]

+
1

x(−1,1)
(a−4,b)

))
+

1

[2]x(0,0)(a−2,b)

(
[3]
[2]

+
1

x(−1,1)
(a−3,b)

))2

y(−2,1)
(a−1,b)

− 1

x(−2,1)
(a−1,b)

{(
[3]

[2]x(−1,1)
(a−3,b)

− 1

x(−1,1)
(a−2,b)

(
x(−1,1)
(a−3,b)

)2

(
− [3]

[2]
− 1

x(−1,1)
(a−4,b+1)

(
[2]2

[3]
+

1

y(3,−1)
(a−5,b+1)x

(−1,1)
(a−3,b)

− 1

[3]2y(1,0)(a−5,b+1)

)
+

1

x(2,−1)
(a−4,b+1)x

(−1,1)
(a−3,b)

− 1

[2]2x(0,0)(a−4,b+1)

)
+

1

x(0,0)(a−2,b)

(
[3]
[2]

+
1

x(−1,1)
(a−3,b)

)2
1

x(−1,1)
(a−3,b)

− 1

x(−2,1)
(a−2,b)

(
[3]
[2]

− 1

[2]x(−1,1)
(a−3,b)x

(−1,1)
(a−4,b)

)2)2
1,1y(0,0)(a−3,b+1) + 2 ·

(
− [3]

[2]
− 1

x(−1,1)
(a−2,b)

(
x(−1,1)
(a−3,b)

)2 ·
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(
1

x(−1,1)
(a−4,b+1)y

(3,−1)
(a−5,b+1)

− 1

x(2,−1)
(a−4,b+1)

)
− 1

x(0,0)(a−2,b)

(
[3]
[2]

+
1

x(−1,1)
(a−3,b)

)2)
·

(
[3]

[2]x(−1,1)
(a−3,b)

− 1

x(−1,1)
(a−2,b)

(
x(−1,1)
(a−3,b)

)2 ·

(
− [3]

[2]
− 1

x(−1,1)
(a−4,b+1)

(
[2]2

[3]
+

1

y(3,−1)
(a−5,b+1)x

(−1,1)
(a−3,b)

− 1

[3]2y(1,0)(a−5,b+1)

)
+

1

x(2,−1)
(a−4,b+1)x

(−1,1)
(a−3,b)

− 1

[2]2x(0,0)(a−4,b+1)

)

+
1

x(0,0)(a−2,b)

(
[3]
[2]

+
1

x(−1,1)
(a−3,b)

)2
1

x(−1,1)
(a−3,b)

− 1

x(−2,1)
(a−2,b)

(
[3]
[2]

− 1

[2]x(−1,1)
(a−3,b)x

(−1,1)
(a−4,b)

)2)
1,2y(0,0)(a−3,b+1) +

(
− [3]

[2]
−

1

x(−1,1)
(a−2,b)

(
x(−1,1)
(a−3,b)

)2

(
1

x(−1,1)
(a−4,b+1)y

(3,−1)
(a−5,b+1)

− 1

x(2,−1)
(a−4,b+1)

)
− 1

x(0,0)(a−2,b)

(
[3]
[2]

+
1

x(−1,1)
(a−3,b)

)2)2
2,2y(0,0)(a−3,b+1)

}

− 1

x(1,−1)
(a−1,b)

(
[3]
[2]

+
1

x(0,0)(a−2,b)

(
[3]
[2]

+
1

x(−1,1)
(a−3,b)

)(
[4]

[2]2
− 1

x(2,−1)
(a−3,b)

(
[5]

[2][3]
− 1

[2]y(3,−1)
(a−3,b−1)x

(−1,1)
(a−1,b−2)

+
1

[2][3]2y(1,0)(a−3,b−1)

)))2

y(−3,2)
(a,b−1)−

1

x(−1,0)
(a−1,b)

(
1

x(−1,1)
(a−2,b)

1

x(−1,1)
(a−3,b)

(
− [3]

[2]
+

1

x(2,−1)
(a−4,b+1)x

(−1,1)
(a−3,b)

(
− [5]

[3]

+
1

y(3,−1)
(a−4,b)x

(−1,1)
(a−2,b−1)

− 1

[3]2y(1,0)(a−4,b)

)
+

1

[2]x(0,0)(a−4,b+1)

(
[4]

[2]2
− 1

x(2,−1)
(a−5,b+1)

(
[5]

[2][3]
− 1

[2]y(3,−1)
(a−5,b)x

(−1,1)
(a−3,b−1)

+

1

[2][3]2y(1,0)(a−5,b)

)))
− 1

x(0,0)(a−2,b)

(
[3]
[2]

+
1

x(−1,1)
(a−3,b)

)
1

x(−1,1)
(a−3,b)

+
1

x(−2,1)
(a−2,b)

(
[3]
[2]

− 1

[2]x(−1,1)
(a−3,b)x

(−1,1)
(a−4,b)

))2

y(−1,1)
(a−2,b)

ρ
(0,−1)
(a,b),ϖ2

=
[7][8][15]
[3][4][5]

− 1

y(3,−1)
(a,b−1)

y(−3,1)
(a+3,b−2)−

1

y(1,0)(a,b−1)

y(−1,0)
(a+1,b−1)−

1

y(−1,1)
(a,b−1)

y(1,−1)
(a−1,b)(A.25)

− 1

y(2,−1)
(a,b−1)

y(−2,1)
(a+2,b−2)−

1

y(−3,2)
(a,b−1)

y(3,−2)
(a−3,b+1)−

2,2y(0,0)(a,b−1)

D(a,b−1)

1,1y(0,0)(a,b−1)+

1,2y(0,0)(a,b−1)

D(a,b−1)

1,2y(0,0)(a,b−1)

+

2,1y(0,0)(a,b−1)

D(a,b−1)

2,1y(0,0)(a,b−1)−
1,1y(0,0)(a,b−1)

D(a,b−1)

2,2y(0,0)(a,b−1)−
1

y(3,−2)
(a,b−1)

y(−3,2)
(a+3,b−3)−

1

y(−2,1)
(a,b−1)

y(2,−1)
(a−2,b)

− 1

y(1,−1)
(a,b−1)

y(−1,1)
(a+1,b−2)−

1

y(−1,0)
(a,b−1)

y(1,0)(a−1,b−1)−
1

y(−3,1)
(a,b−1)

y(3,−1)
(a−3,b)−

1

y(0,−1)
(a,b−1)

y(0,1)(a,b−2)
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groups and quantum groups, vol. 284 of Progr. Math., Birkhäuser/Springer, New York”, 2010, pp. 155–190. arXiv:0806.0687.

117



[40] G. I. LEHRER AND R. B. ZHANG, The Brauer category and invariant theory, J. Eur. Math. Soc. (JEMS), 17 (2015), pp. 2311–

2351. arXiv:1207.5889.

[41] W. B. R. LICKORISH, The skein method for three-manifold invariants, J. Knot Theory Ramifications, 2 (1993), pp. 171–194.
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