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Abstract

This thesis is centered around extending families of representation theoretic objects correspond-
ing to finite rank GL to the setting of infinite rank GL. Specifically, we study representations of the
double affine Hecke algebras in type GL, the elliptic Hall algebra, and the double Dyck path alge-
bra. Throughout this thesis we will develop new methods for constructing representation theoretic
objects from families of finite rank classical objects and ways to understand these representations.

In the first chapter, we give an overview of the background information regarding Macdonald
theory and Cherednik theory and of recent results in the area including the Shuffle Theorem. This
chapter contains a review of the necessary algebraic, combinatorial, and representation theoretic
definitions which will be used throughout the thesis.

In Chapter 2, we investigate limits of non-symmetric Macdonald polynomials and their place in
the theory of almost symmetric functions. We will construct a basis of simultaneous eigenvectors
for the limit Cherednik operators of Ion-Wu and investigate many of their properties. Further, we
construct new operators on the space of almost symmetric functions generalizing the higher delta
operators in Macdonald theory. Lastly, we explicitly compute q,t specializations of this basis to find
a generalization of Schur functions to the almost symmetric functions with interesting combinatorial
and representation theoretic properties.

Chapter 3 revolves around a family of modules called the Murnaghan-type representations for
the elliptic Hall algebra generated using a stable-limit procedure from the vector-valued polyno-
mial DAHA representations of Dunkl-Luque. This family of modules is indexed by partitions and
generalizes the standard polynomial representation of EHA. We will construct a special family of
generalized symmetric Macdonald functions as simultaneous eigenvectors for a generalized Mac-
donald operator and investigate their properties.

Lastly, in Chapter 4 we will construct new representations of the double Dyck path algebra built
from compatible families of DAHA representations. We will use this general procedure to define

Murnaghan-type representations using the EHA representations in Chapter 2.
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CHAPTER 1

Introduction

1.1. Background

1.1.1. Background. Spaces of polynomials are a meeting ground for a wealth of interesting
combinatorics and representation theory. While we may first and foremost consider polynomial
spaces like Q[z1,...,xy,] to be rings with their own algebra structures, in fact many other inter-
esting algebras act on such spaces. For example the symmetric group algebra Q[&,,] will act on
Q[z1,...,xy] by permuting the variable indices. This action is central to the representation theory
of GL,, yielding a great deal of interesting combinatorics. Another more complicated family of
algebras which act on polynomials are the double affine Hecke algebras (DAHAs) of Chered-
nik [9]. Let us primarily focus on the DAHA corresponding to the Lie group GL,. In this case
the polynomial space is Q(q,t)[z1,...,x,] and the type GL,, DAHA acts by a combination of mul-
tiplication operators X;, Hecke operators T;, and what are known as Cherednik operators Y;
which are related to Dunkl operators. This action generalizes to all Lie types and has an impor-
tant place in modern representation theory. As it turns out, the Cherednik operators Y; commute
with each other and are simultaneously diagonalizable. Weight vectors for the Cherednik operators
are known as non-symmetric Macdonald polynomials E,,. These special polynomials satisfy
many exceptional combinatorial properties and can be viewed as an orthogonal basis with respect
to a natural inner product.

Often, mathematicians are most interested in the subspace of symmetric polynomials, as
there are fundamental links between the structure of symmetric polynomials and representation
theory/combinatorics. In this case, we have that the &,-invariants Q(q,t)[x1,...,2,]" are not
preserved by the DAHA action, but rather by DAHA’s spherical subalgebra. This algebra contains
the special element Y7 +...4Y,, which acts diagonally on symmetric polynomials via the finite vari-

able Macdonald operator. The normalized weight vectors for the action of Y7 +...4Y,, are known



as symmetric Macdonald polynomsials P, which generalize many other important symmetric
polynomials including Jack polynomials, Hall-Littlewood polynomials, and Schur polynomials.

In many instances, interesting actions on spaces of polynomials have geometric interpretations
allowing for a bridge between the purely algebraic properties of polynomials and certain proper-
ties of geometric objects. The Schur polynomials sy correspond both to irreducible characters of
G L, and to the cohomology classes of Schubert cells in Grassmanians. In recent decades a similar
picture has been built for the symmetric Macdonald polynomials Py. Consider the equivariant
K-theory of certain moduli spaces called the Hilbert schemes Hilb"(C?). Haiman, in his ground-
breaking work [23], showed that a certain transformation of the symmetric Macdonald polynomial
P, called the modified Macdonald polynomial H A, corresponds naturally to the torus fixed point
I of the Hilbert scheme Hilb™(C?). This correspondence constituted a significant development
in algebraic combinatorics, shedding light on both the combinatorics of the modified Macdonald
polynomials and on the structure of Hilbert schemes. Later works by Schiffmann-Vasserot [34]
and Carlsson-Gorsky-Mellit [7] built on this picture by directly linking the polynomials H, to the
torus-equivariant K-theory of the nested Hilbert schemes and of the parabolic flag Hilbert schemes,
respectively.

In recent years there has been a new type of action on polynomial spaces which has seen an
abundance of interest. The famous Shuffle Theorem of Carlsson-Mellit [8] resolved a long stand-
ing open problem in algebraic combinatorics regarding the modified Macdonald polynomials dating
back to the work of Haiman and many others. The proof of Carlsson-Mellit involved the construc-
tion and study of a quiver path algebra A, ; called the double Dyck path algebra which acts on
a family of spaces Vi, = Q(q, t)[z1, ..., 2k] ® A. Here A denotes the space of symmetric functions
which are infinite variable versions of symmetric polynomials. At first glance, the algebra A, ;
appears to be a limit of the type GL,, DAHAs. Ion and Wu showed in [26] that there is a direct
relation between the classical theory of Cherednik and A, ;. They introduced an algebra 77’ T called
the positive stable-limit DAHA along with an action of s#1 on the space of almost symmetric
functions 2}, := Q(q,t)[x1,72,...]® A. This action is generated by multiplication operators X;,
Hecke operators T;, and what are known as the limit Cherednik operators %;. These opera-
tors are the limits of certain deformations of the classical Cherednik operators Y;, defined using a

nontrivial notion of convergence for sequences of polynomials incorporating the t-adic topology of



the field Q(q,t). It was shown by Ion-Wu that the J#T action on £}, in a sense globalizes the
polynomial representation of A, as you can recover the action of A, ; on each space V}, by looking

locally at the 52 action on Q(q,t)[x1,..., 2] ® A C 271,

1.2. Thesis Overview

1.2.1. Stable-Limit Non-Symmetric Macdonald Functions. In Chapter 2 of this thesis
we will answer a question of Ion and Wu regarding the spectral theory of the limit Cherednik
operators %;. In the classical DAHA picture, the non-symmetric Macdonald polynomials are a
weight basis for the Cherednik operators. Ton-Wu conjectured the existence of a similar story for
their limit Cherednik operators, namely that there exists a % -weight basis for &2}.. By using
Ion and Wu’s new notion of convergence involving the t-adic topology from the field Q(q,t), we
show that the sequences E,, . ., om) converge to well defined elements E’M of 2}, . In the pro-
cess of this convergence proof we give an explicit combinatorial formula for the Eu similar to the
Haglund-Haiman-Loehr formula for the non-symmetric Macdonald polynomials. Importantly, using
a continuity-like argument, it is straightforward to prove that the Eu are in fact % -weight vectors.

However, these almost symmetric functions Eu do not span all of &2, . To find a basis of 2, we

(r)

will use Ion-Wu’s variant of the Jing vertex operators 9’ to construct partial symmetrizations of
the Eu- We call these functions E(u\ ) the stable-limit non-symmetric Macdonald functions
as they are the analogues of the classical non-symmetric Macdonald polynomials for the setting of
the stable-limit DAHA. It is perhaps also appropriate to refer to them as the almost symmet-
ric Macdonald functions. They are indexed by pairs (u|A) of (reduced) compositions p and
partitions .

In a significant deviation from classical Cherednik theory, the % -weight spaces of £, are all

infinite dimensional. Classically, the Macdonald operator A acts on symmetric functions A with

distinct spectrum and weight vectors given by the symmetric Macdonald functions Py. It is thus

+

as

natural to try to extend the Macdonald operator from A to &7 in a way that acts diagonally on
the E(ul ») basis. Constructing this operator required bringing in new ideas beyond the work of Ion
and Wu. We prove that there is a natural way to define an extended Macdonald operator, ¥,, , on
27} which dramatically refines the #/-weight spaces on &, to be 1-dimensional. That is to say, if

one considers any pair (u|)), then the weight of the operators (¥, , %1, %5,...) acting on E(M)\) is
3



distinct from any other (u/|\'). This operator U, is constructed as the limit of finite-rank DAHA
operators t"™ (Yl(m) +...+ Yn(lm)) from a nontrivial and technical convergence argument using the
stable-limit convergence of Ton and Wu. As a benefit of this limit construction one can prove that
VU, satisfies some interesting nontrivial algebraic relations. The refinement of the % -weight spaces
shows that, from the perspective of this new stable-limit DAHA theory, the E(#I ») are the unique
basis of 2/, generalizing the classical non-symmetric Macdonald polynomials.

In classical Macdonald theory, along with the Macdonald operator A there are higher delta
operators F[A] which in-part generate the action of the elliptic Hall algebra on symmetric func-
tions A. Using techniques developed to show that the operator ¥, on P exists we show similarly
that there are analogous operators Wy which generalize the classical higher delta operators. The
verification of this construction involves significantly more intricate calculations. This construction
hints at the existence of a larger family of algebras generalizing the elliptic Hall algebra which acts
naturally on &7, .

Lastly, we will investigate the ¢ = 0o, t = 0 specializations of the E(ul »)- For the finite rank non-
symmetric Macdonald polynomials Ion showed that this specialization yields the key polynomial
basis for polynomials. The key polynomials are notable as they interpolate between finite variable
Schur polynomials and monomials corresponding to partitions. They are in fact the characters of
Demazure modules for the group of upper triangular matrices as is shown by the famous Demazure
character formula. We will show that the ¢ = 0o, t = 0 specializations of the E(ul A) give a basis for
almost symmetric functions which interpolate between key polynomials and Schur functions. These
almost symmetric Schur functions are limits of characters of certain parabolic subgroups of
type GL and thus satisfy some interesting positivity properties. We will also give an explicit
combinatorial model for the almost symmetric Schur functions using the HHL-type formula for the

key polynomials.

1.2.2. Murnaghan-Type Representations for the Elliptic Hall Algebra. Dunkl and
Luque introduced symmetric and non-symmetric vector-valued (vv.) Macdonald polynomials. The
term vector-valued here refers to polynomial-like objects of the form ) co X® ® v, for some
scalars c,, monomials X%, and vectors v, lying in some Q(g, t)-vector space. The non-symmetric
vv. Macdonald polynomials are distinguished bases for certain DAHA representations built from

the irreducible representations of the finite Hecke algebras in type A. These DAHA representations
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are indexed by Young diagrams and exhibit interesting combinatorial properties relating to peri-
odic Young tableaux. The symmetric vv. Macdonald polynomials are distinguished bases for the
spherical (i.e. Hecke-invariant) subspaces of these DAHA representations. Naturally, the spherical
DAHA acts on this spherical subspace with the special element & + ...+ &, of spherical DAHA
acting diagonally on the symmetric vv. Macdonald polynomials.

Dunkl and Luque (and in later work of Colmenarejo, Dunkl, and Luque) only consider the finite
rank non-symmetric and symmetric vv. Macdonald polynomials. It is natural to ask if there
is an infinite-rank stable-limit construction using the symmetric vv. Macdonald polynomials to
give generalized symmetric Macdonald functions and an associated representation of the positive
elliptic Hall algebra & . In this chapter, we describe such a construction. We obtain a new family
of graded & -representations WA indexed by Young diagrams A and a natural generalization of the
symmetric Macdonald functions Pr indexed by certain labellings of infinite Young diagrams built
as limits of the symmetric vv. Macdonald polynomials.

For any A we consider the increasing chains of Young diagrams A(™) = (n — |[\|,\) for n >
IA| + A1 to build the representations WA. These special sequences of Young diagrams are central
to Murnaghan’s theorem regarding the reduced Kronecker coefficients. As such we refer to the
& T -representations WA as Murnaghan-type. For A = () we recover the &1 action on A and the
symmetric Macdonald functions P,[X;q,t].

We obtain a Pieri rule for the action of the multiplication operators e? on the generalized
symmetric Macdonald function basis 4. After studying the particular case of the e;-Pieri coeffi-
cients we will show that the modules W)\ are cyclic generated by their unique elements of minimal
degree mT;:nin . Lastly, we show that these Murnaghan-type representations WN/A are mutually non-
isomorphic. At the end of Chapter 3 we will look at a family of product-sum formulas which follow
naturally using the results described thus far and a bit of simple analysis. These formulas relate
certain (g, t) statistics on special infinite diagrams and appear to give rational formulas for certain

sums of hyper-geometric series.

1.2.3. Double Dyck Path Algebra Representations From DAHA. In this chapter we
develop a method for constructing modules for the double Dyck path algebra B,; directly from

the representation theory of DAHA in type GL. The algebra B,; is a highly related geometric
5



version of the Carlsson-Mellit algebra A,;. We show that given any 2" module V we may con-
struct an action of the subalgebra IB%E;? on the space Lo(V) defined by Le(V) = Do<i<y Li(V) 1=
@ogkgn X1+ Xpep(V). Here € are the partial trivial idempotents of the finite Hecke algebra.
Each space may be considered as a module for the partially symmetrized positive DAHA, ¢, 2! €.
We show that in the case of the polynomial representations Vp(gl) of DAHA that L.(Vp(:l)) is a
)

B _module quotient of the restriction of the polynomial representation of B, ; to IBB((IZ .

q,t
(n)

Afterwards, we use stable-limits of the representations Le(V) of B, ;

to build representations
of By ;. This construction requires the input of an infinite family of representations of DAHAs,
(V("))nzno, along with some connecting maps, II(" : V() () gatisfying some special
assumptions. Most interestingly, we require that the following relations holds: M gt —
7(MWII™ | This is the same relation used by Ion-Wu in their construction of the limit Cherednik
operators and is related to certain natural embeddings of the extended affine symmetric groups
Sy < Gny1. We call such families C' = (V> (TTM™),,5,) compatible and construct spaces
£(C) given by £5(C) := lim,_ Ly(V(™). These are the stable-limits of the spaces Lj(V™) with
respect to the maps II(™). Finally, we package together these spaces to form £4(C) given as £4(C) :=

D10 ££(C) which may be also thought of as the stable-limit of the IB%((:t) modules Lo(V (™). We
(n)

q,¢ module structures on
I’

show that there is a natural action of B, on £(C) determined by the B
Le(V™). This construction is also functorial.

Lastly, we use this construction of the functor C' — £4(C') to define a large family of B, ; modules,
£4(Ind(Cl)), indexed by partitions A. These representations in a sense extend the Murnaghan-type

representations of the positive elliptic Hall algebra.

1.3. Polynomials and Symmetric Functions

1.3.1. Basic Combinatorics.

DEFINITION 1.3.1. In this paper, a composition will refer to a finite tuple p = (1, ..., tn) of
non-negative integers. We allow for the empty composition () with no parts. We will let Comp
denote the set of all compositions. The length of a composition = (u1,...,uy) is £(p) = n and
the size of the composition is |u| = p1+ ...+ pn. As a convention we will set ¢(() =0 and |0| = 0.
We say that a composition i is reduced if ;1 =0 or py,y # 0. We will let Comp™® denote the set

of all reduced compositions. Given two compositions = (pi1, ..., ) and = (S1,...,0m), define
6



wx = (1, tin,B1y--.,0Bm). A partition is a composition X = (A\1,...,\) with Ay > ... >
An > 1. Note that vacuously we allow for the empty partition ). We denote the set of all partitions
by Y. We denote by ¥ the set of all pairs (p|\) with p € Comp™® and A € Y |

We denote by sort(u) the partition obtained by ordering the monzero elements of p in weakly
decreasing order. We define rev(p) to be the composition obtained by reversing the order of the
elements of . The dominance ordering for partitions is defined by A < v if for allt > 1, A1 +...+
Ai < v+ ...+ v where we set A; = 0 whenever i > £(X) and similarly for v. If X Qv and \ # v.
we will write A 4v.

We will in a few instances use the notation 1(p) to denote the value 1 if the statement p is true

and 0 otherwise.

DEFINITION 1.3.2. The symmetric group &, is defined as the set of bijective mapso : {1,...,n} —
{1,...,n} with multiplication given by function composition. For 1 < i <n—1 we will write s; for
the transposition swapping i,i+ 1 and fizing everything else. For any p = (1, ..., ty) with p; > 1
and pu1 + ... + p, = n we define the Young subgroup &, to be the group generated by the s; for
te{m+...+pj+1. o1+ py) for some 0 <5 <.

We have the following alternative presentation of the symmetric group &,,.

PRrROPOSITION 1.3.3 (Coxeter Presentation). The symmetric group &,, is generated by elements

S1,--.,8n—1 subject to the relations:

os?zl

® S5iSi+18; = Si+15iSi+1

o sis; = s;js; for |i — j| > 1.

DEFINITION 1.3.4. For o € &,, the length of o, {(0), is defined to be the minimal number of

s; required to express o, i.e. 0 = S; ---8;.. We will denote by w[()n) the unique element of G, of
mazximal length E(w(()n)) = (g) given by

w(()n)(i) =n—1i+ 1L

REMARK 1. We may also express w(()n) using the Cozeter presentation as

,w(()”) = (sp—1---81)(Sp—1""" 82) o (8n—15n-2)Sn—1.

7



In line with the conventions in [19] we define the Bruhat order on the type GL,, weight lattice

7" as follows.

DEFINITION 1.3.5. Let ey, ...,e, be the standard basis of Z™ and let o € Z"™. We define the
Bruhat ordering on 7", written simply by <, by first defining cover relations for the ordering
and then taking their transitive closure. If i < j such that oy < a; then we say o > (ij)(«) and
additionally if o — o; > 1 then (ij)(a) > a+e; — e; where (ij) denotes the transposition swapping

i and j.

It is important to note that with respect to the Bruhat order any weakly decreasing vector v € Z"

is the minimal element in its permutation orbit &,.v.

1.3.2. Polynomials. Throughout this thesis the variables ¢ and ¢ are assumed to be commut-

ing free variables.

DEFINITION 1.3.6. Define 2, := Q(q,t)[zi,..., Y] for the space of Laurent polynomials in
n variables over Q(q,t) and define 2 := Q(q,t)[x1,...,zy] for the subspace of polynomials. We

define algebra homomorphisms = : ‘@:{H — P by

=@ ) = Lanin = O)aft - -al.
The symmetric group &, acts naturally on &2, by algebra automorphisms via

O'(f(afl, ey xn)) = f(a:a(l), e 7x0(n))'

1.3.3. Symmetric Functions.

DEFINITION 1.3.7. Define the ring of symmetric functions A to be the subalgebra of the
inverse limit of the symmetric polynomial rings Q(q,t)[z1,...,2,]%" with respect to the quotient
maps sending x, — 0 consisting of those elements with bounded x-degree. For i > 1 define the i-th

power sum symmetric function by

pi:as’i+x§—|—....
8



It is a classical result that A is isomorphic to Q(q,t)[p1,p2,...]. For any expression G = a;g" +
asgh? + ... with rational scalars a; € Q and distinct monomials g"t in a set of algebraically inde-
pendent commuting free variables {g1, g2, ...} the plethystic evaluation of p; at the expression
G is defined to be
iG] := a9t + agg™? + .. ..

Note that g; are allowed to be q ort. Here we are using the convention that ip = (ip1, ..., iu,) for
w=(u1,---, pur). The definition of plethystic evaluation on power sum symmetric functions extends
to all symmetric functions F' € A by requiring F — F[G] be a Q(q,t)-algebra homomorphism. Note
that for F € A, F = Fx1+x2+...] and so we will often write F = F[X]| where X := x1+xz2+. ...

For a partition A define the monomial symmetric function my by

my = Zaz“
I

where we range over all distinct monomials x# such that o(u) = X for some permutation o. For

n > 0 define the complete homogeneous symmetric function h, by
hy, = Z my.
|Al=n

Equivalently,

hy, = E Tiy - T, -

For n > 1 define the elementary symmetric function e, by

€n = Z 0 SRR 7 e

11 <...<lp

We can extend plethysm to Q(q,t)[[p1,p2,--.]]. The plethystic exponential is defined to be the
element of Q(q,t)[[p1,p2,-..]] given by

Exp[X] =) hn[X].

n>0
Here we list some notable properties of the plethystic exponential which will be used later in this

thesis.

e Exp[0] =1



e Exp[X + Y] = Exp[X] Exp[Y]
e Explzi +z2+...] =[[2,; (1_1%)
e Exp[(1—t)(z1+ax2+...)] =112, (llitil)

EXAMPLE. Here we give a few examples of plethystic evaluation.
o p3[l + 5t + qt?] = 1+ 53 4 ¢316
o 5[(1—1)X] = (P2+2p1,1 (1 —t)X] = (1—t2)P2[X]+2(1—t)2P1,1[X]

o Exp[t5] = [[h2) (%)

DEFINITION 1.3.8. [20] Define the (q,t)-Hall inner product on A by
1— g
<p)\7pu>q,t = 5A,MZA H (1—t)‘1>
1<i<e())

where

Zy = H (imk(i)!mA(i)Q .

%

Further, define the t-Hall inner product and classical Hall inner product respectively by
o (o, 0), := (o 0),
o (o 0):= (o @)
DEFINITION 1.3.9. [320] Define the symmetric Macdonald functions P\[X;q,t] for A € Y to
be the unique symmetric functions satisfying the conditions:

e P\[X;q,t] =my+ Z;m)\ cumy, for some coefficients ¢, € Q(q,t)
i <P/\[X7q7t]7P,LL[Xa Q7t]>q,t =0 fOT' A 7& K.

Define the symmetric Hall-Littlewood functions Py[X;t] by
Py\[X;t] := P)[X;0,1]
and the Schur functions s)[X] by
sx[X] = P,\[X;0,0].

PROPOSITION 1.3.10. [30] The following sets are all Q(gq,t)-bases for A :

o {sx[X]}rey
10



o {P\[X;t]}rey
o {P\[X;q,t]}rev.

It will be convenient in Chapter 2 to use a variant of the Hall-Littlewood functions Py[X;].

DEFINITION 1.3.11. For n > 0 define the Jing vertex operator %, € Endgyq(A) by
B, |F) := (z")F[X — 27 Exp[(1 — t)2X].

Here (2™) denotes the operator which extracts the coefficient of 2" of any formal series in z. For a

partition X = (A1, ..., \;) define the dual Hall-Littlewood symmetric function, Py, by
P =B, - B, (1).

Note that the operator %, is homogeneous with degree n. As we will see later in Proposition
2.4.20 the P,[X] are the same as the dual Hall-Littlewood symmetric functions Q,[X;t] defined by

Macdonald [30]. These symmetric functions have the following useful properties.

e P, is homogeneous with degree |\
o Piy[X] = hl(1 — H)X]

o If n > \; then B, (Py) = Prr

o By(Py) = té(A)P)\

1.3.4. Almost Symmetric Functions.

DEFINITION 1.3.12. [26] Let 2%, denote the inverse limit of the rings t@,j with respect to the
homomorphisms Zj, : QZ:H — WZF which send ziy1 to 0 at each step. We can naturally extend
Ek to a map PL — Py which will be given the same name. Let 2(k)t := Q(q,t)[z1,..., 21 ®
Alzgyr +xp12+..]. Define the ring of almost symmetric functions by 2} = ;5o (k)"
Note ), C PL. Define p : P, — 1122, to be the linear map defined by p(x]* - - x&r Flxy, +
Tmt1 +...]) = L(ag > 0)aft -+ 29 Flxy, + &my1 + ... for F € A. Note that p restricts to maps

P, — 11 P, which are compatible with the quotient maps m,.

The ring &/, is a free graded A-module with homogeneous basis given simply by the set of
monomials ## with u reduced. Therefore, 22, has the homogeneous Q(q,t) basis given by all

x#my[X] ranging over all reduced compositions p and partitions A. Further, the dimension of the

11



homogeneous degree d part of (k)" is equal to the number of pairs (u, A) of reduced compositions

p and partitions A with |u| 4+ |A| = d and £(p) < k.

1.4. Hecke Algebras in Type GL

1.4.1. Finite Hecke Algebra.

DEFINITION 1.4.1. Define the finite Hecke algebra €, to be the Q(q,t)-algebra generated by the
elements Ty, ...,T,—1 subject to the relations
o (T, —1)(T;+t)=0for1<i<n-—1
o IiTi 1Ty =T, 1 TiTiq for1<i<n—2
o I,T; = T;T; for |i — j| > 1.
We define the Jucys-Murphy elements 01,...,0, € S, by 01 := 1 and 0,41 := tT, '0;T; ' for
1 <i<n—1. Further, define @y,...,Bp_1 by @; := (tT, )0; —0;(tT, '). For a permutation o € &,

and a reduced expression o = S;, -+ 8;, we write Ty, :=T;, - T;

T r*

REMARK 2. There are natural algebra inclusions 7, — 7€ p+1 given by T; — T; for1 < i <n—1.
Under this embedding 0; — 0; for 1 < i < n so we can naturally identify the copies of 0; in both
Fn and Hpi1.

We require the following list of relations.

PROPOSITION 1.4.2. The following relations hold:

‘éz‘Zti_lﬂ__ll”-Tl_lTl_L"'Z}__ll for1<i<n
o?@:?-@forlgi,jgn
o T,0; = 0,T; for j ¢ {i,i+1}

.Gi_tT (9_01+1) (t—l) H_1f07’1<z<n—1

® 0;Pit1Pi = Piy1PiPiy1 Jor 1 <i<mn—1
® p;p; =0;p; for|i—j|>1

o*ﬁj:H (HPi for1<i<n—1land1<j<n
t0;

° ¢22 = ( — 914_1)(7591_,_1 g )

ProOOF. This result follows directly from using the map p, defined in Definition 1.4.6 and

Proposition 1.4.5 which will be independently proven later. ([l
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1.4.2. Affine Hecke Algebra. Throughout this thesis will use two equivalent presentations

for the affine Hecke algebras in type GL,.

DEFINITION 1.4.3. Define the affine Hecke algebra <f y, to be the Q(q,t)-algebra generated by the
elements T1,...,Th_1 and Ylil, ., Y EL subject to the relations
e Ti,..., T, 1 generate I,
o VY, =YY, forall1 <i,j<n
o Vi1 =t 'IYT, for1<i<n-—1
o TiY; = YjT; for j ¢ {i,i+1}
We will refer to the Y; as the Cherednik elements of of,,. Define the special elements m, and
Plyevvy P11 of A, by
o m,:=Y1T1--- T4
o ¢ :=T1T;Y; — YiT;.

We will denote by Y™ the commutative subalgebra of <, generated by Yl(n), . ,Yé”).
We will also use the following alternative presentation of <7, .

DEFINITION 1.4.4. Define the affine Hecke algebra <f y, to be the Q(q,t)-algebra generated by the

elements 11, ...,T,_1 and Hfd, .., 01 subject to the relations

e Ti,...,T,_1 generate I,
o 0,0, =0;0; forall1 <i,5 <n
® 01 =T 10, T, for1<i<n—1
o Ti0; = 0;T; for j & {i,i+ 1}
We will refer to the Y; as the re-oriented Cherednik elements of <f,. Define the special
elements m, and @1,...,pn_1 of oy by
o m, ="l T T Y
o i = ()0 — 6,017,

We will denote by 0 the commutative subalgebra of o, generated by QYL), ey an).

It is important to note that when converting between the AHA conventions in this paper and those
in Dunkl-Luque [12] the standard Cherednik elements Y; of Dunkl-Luque do not align with the

f; above. In particular, after the appropriate translation into our conventions we have that Y; are

13



given by V; =t~ Ty - - Tym, T7Y -~ T,7! as opposed to 6; = t~ =077 .77 e Ty - T3
The distinction between the standard Cherednik elements Y; and the reversed orientation Cherednik
elements ; will be important in Chapter 3 since the latter will yield operators with additional

stability properties which the Y; do not satisfy.

REMARK 3. We will use the notation Yi(n) and Yi(m) to differentiate between the copies of Y; in

Ay and o o, for n £ m. We will do similarly for 02(").

The following proposition is standard in AHA theory and will be required at many points through-
out this paper. We include the proofs of these relations for completeness and to emphasize that
we may use intertwiner theory for AHA with the 0; elements instead of the standard Y; with only

slight differences.

PRrROPOSITION 1.4.5. The following relations hold:

¢ i =T;(Y;i —Yir) +(t—1)Yip1 = (Yig1 V)T + (1 = )Y;qq for 1 <i<n—1

o 0Y; =Y, o for1<i<n—1land1<j<n

o ¢? = (Y; — tYip1)(Yip1 — tY5)

® $idir10i = Pit10ipit1 for 1 <i<n—2

Gidj = ¢ for |i —j| > 1

@i =T, (0 — Oi1) + (t — 1)0ip1 = (0i01 — OT, P+ (1= )01 for 1 <i<n—1

it =0s,;ypi for1<i<n—1land1<j<n
07 = (t0; — Oiy1)(t0;11 — 0;)

® ViYit1p; = Pir1Pipit1 for 1 <i<n —2

ip; = @i for|i —j| > 1.

PRrROOF. The proofs of the correctness of the above relations are standard but we include them
for completeness. We will only give the proofs for the #-version of the above relations since the
Y -version is more standard.

We will proceed by proving each of these relations in the order in which they appear above.
14



Let 1 <i<n—1. Then

i =t 0 — O, (1)
=tT,'0; — T,0i41
=T, 0; — (tT, " + 1 — )01

=T, H(0; — 0i11) + (t — 1)041.

By a similar calculation we also get
Y; = <9i+1 — Hi)tTl-_l + (1 — t)9i+1.
This can also be written as
©i = (0i1 — 0;)T; + (1 —1)6;
which we will need later in this proof.
Now we see
@il = tT; 1 (0; — 0;41)0; + (t — 1)0;110;
= tT; '0;(0; — 0501) + (t — 1)0i410;
=01 Ti(0; — Oi1) + (L — 1)0;416;
= Oip1 (Ti(0; — 0i41) + (t — 1)0;)
= 0i+1 ((tTi_l +1-— t)(@l — 9i+1) + (t — 1)91)
= 01 (FT71(0; — Oi31) + (£ — 1)0i41)

=0it10i

and

15



@ilir1 = tT; 1 (0; — 0i41)0i1 + (£ — 1)07,
= (T; +t — 1)0;31(0; — 0iy1) + (t — 1)67,,
=Tii11(0; — Oi1) + (t — 1) (Bir1 (6 — Oig1) + 67,)
= t0;T; " (0; — Oiy1) + (t — 1)0:0;41
= 0; (tT; (05 — Oi1) + (t — 1) 11)

= 0;p;.

For any j ¢ {i,i 4 1} it follows since §; commutes with both 6; and T; that

pitly = 0pi.
Thus for any 1 < j <n
@iblj = Os,(j)Pi-

Now we have that

07 = (1T 10; — 64T ')
= 2T 0,170, — T 10271 — 20,1720, + 20,1, 10,1
= t0;110; — 10,1 T,0, T — 10;(1 + (t — V)T, 1)0; + t0;0;41
= 200,0;11 — t0; 1 (1T, + 1 — )0, T, 1 — 107 + (1 — )0, T, 0,
= 200,0;11 — 20, 1T, 10, T, +t(t — 1)0:0;1 T, — 107 + (1 — £)0,0;11T;
= 2t0;0;41 — t07,, — t07 + (1 — )0;0,41(T; — tT; ")
= 210,041 — 107, — t07 + (1 — 1)%0,0;11
= (1+t%)0;0,41 — t07,, — t07

= (t0; — 0;11)(t0i41 — 0;).

16



Now suppose 1 < i < n — 2. By expanding each of the ¢; from right to left using ¢; = (641 —

0;)T; + (1 —t)0; and repeatedly applying the relation ¢;0; = 0, x)p; we find

©iiv19i = (Oiya — 0i41)(Oiya — 0:)(0ip1 — 0:) LT3 T + (1 — 1)0;(Oi2 — 0i1) (Oig2 — 0;) 11 T
+ (1= )01 (0i2 — 0:) (0i41 — 0:) T3 Tis1 + (1 — £)20:0i11 (0502 — 6:)T;
+ (1= )20;0i11 (032 — 0:)Ti1

+ (t(l — t)@i(91'+2 — 9¢+1)(¢9¢+1 — 91) + (1 — t)39§0i+1) .

Using the same method we also see that

Pit1PiPit1

= (Oir1 — 0:)(Oir2 — 0;)(0iy2 — Oi1) Ti 1 TiTi 1 + (1 — )05 1 (0541 — 0:)(0ig2 — 0:) T3 T4 1
+ (1= 1)0;(0iy2 — 0:)(Oi2 — 0i1) T T; + (1 — £)%0;0i01 (0542 — 0;) T

+ (1= 4)%0;0;:41 (0502 — )T

+ (t(l — t)9i(9,~+1 — 91‘)(91‘—&-2 — 9i+1) + (1 — t)30i29i+1) .

From here we may use the braid relation T;7T;117; = T;+17;T;+1 and some rearrangement of terms
to see YiPit1Pi = Pit1PiPi+1-
Lastly, consider |i — j| > 1. Since T;T; = T;T;, T;0; = 6,T;, and 0;0; = 6;0; we readily find that
Pip; = Pipi- .
In Chapter 3 we will be interested in AHA modules which are pulled back from irreducible finite
Hecke representations. To do this we need to define algebra surjections <7, — ¢, . There are

many such choices for these maps but we choose the maps p, defined below carefully so that the

AHA modules we consider in this paper satisfy nontrivial stability conditions.

DEFINITION 1.4.6. Define the Q(q,t)-algebra homomorphism py, : o/ p — .y by

e (1) =T, for1 <i<n-1
17



e pn(61) = 1.
For a A,,-module V' we will denote by pi (V) the < ,-module with action defined for v € V' and
X ey, by X(v) = pp(X)(v).

REMARK 4. Note that p,(7,) = 15"*1T1_1 . 'Tn__ll and for all 1 <i <mn, p,(6;) = 0;.
1.4.3. Double Affine Hecke Algebras.

DEFINITION 1.4.7. Define the double affine Hecke algebra 2, to be the Q(q,t)-algebra gen-
erated by Ty, ...,T,_1, de, o, XEL and Ylﬂ, .., Y XL with the following relations:

n 7’

(1) (T; = 1)(T; + ) = 0, (3) TY:T; = tYis1,
T Ty = Ti T T4, T,Y; = YiT;, j ¢ {i,i+1},
TT; =T,T5, i — j| > 1, YiYj =Y}V,

(2) T, X T = t71 X, (4) N"T1 X, = XoV1 Ty,
TiX; = X;T;, j ¢ {i,i+ 1}, (5) Xy - Xy = q¢X1--- X, 11
XiX; = X;X;,

Further, define the special element 7, by

T = XTI Tt

n—1-

DEFINITION 1.4.8. We define the positive double affine Hecke algebra in type GL,, 9.},
to be the subalgebra of 9, generated by the elements Ty, ..., Tn_1,X1,..., X, and 77%1.

DEFINITION 1.4.9. Let €™ € 2, denote the (normalized) trivial idempotent given by

P

|
[n]t‘ 0'6671

where [n];! := H?Zl(ll_j ). The positive spherical double affine Hecke algebra 2P" is the non-unital

subalgebra of ;7 giwen by 2" .= ) gt ),

n
2

The element €™ := ﬁ > ves, # )4(‘7)T0 € €y, is uniquely determined by the following prop-

erties:

18



e (™ +£ 0 (non-zero)
o (¢1)2 = ¢ (idempotent)
o T, =T;e™ forall 1 <i <n—1 (central)

o Te™ = €™ (trivial-like).

We will use without proof that €™ as defined in Definition 1.4.9 satisfies these properties but
it is straightforward to check this using the defining relations of .77, . Since (e("))2 = €™ we see
that .@flph is a unital algebra with unit e™. The algebra @th contains both of the subalgebras
Qg t)[X1, ..., X,]% €™ and Q(q, t)[@fl, o, B Gnem)

We may use €™ to generate modules for the spherical DAHA. Given any Z,-module V the space
¢ (V) is naturally a Z5P"-module. In the standard picture of Cherednik theory the standard poly-
nomial representation of 2,7 on Q(g,t)[x1,...,z,] is symmetrized using €™ to yield the standard

symmetric polynomial representation of _@%ph on Q(q,t)[z1,...,x,]%".

REMARK 5. We will use without proof the standard result that 9, is a free right <7, module with
basis {X*}nezn. This follows from the standard PBW-type result for DAHA. Importantly, for our

purposes, this implies that for any <7 ,-module V with Q(q,t)-basis {v; }icr, the induced module
Indf/; Vi=9,04,V

has Q(q,t)-basis {X* ® vi|a € Z",i € I}. Similarly, if we consider induction from </, to D
instead then we find that

md%' V= 9} @,V

has Q(q,t)-basis {X* @ v;|a € 25,1 € I}

DEFINITION 1.4.10. The standard representation of 7, is given by the following action on

P,:

o Tif(x1,...,xn) =sif(x1,...,2n) + (1 — t)a:izil_;‘zlf(xl, ey X))
o Xif(x1,..,xn) =xif(x1,...,2)
o Tof(x1,...,xpn) = f(x2,23,...,2Tpn,qx1).
Under this action the T; operators are known as the Demazure-Lusztig operators. The action

of the elements Y1,...,Y, € 9, are called Cherednik operators.
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REMARK 6. For q,t generic &, is known to be a faithful representation of Z,. It is straightfor-
ward to check that 22} is a D -submodule of &,. Further, we may identify the P,-module &,
with

Pn = Indp (1,67t (7D)
where (1,t71,. .. ,t_(”_l)) s the 1-dimensional < ,,-module determined by
o T, —1
o Y; — it
Similarly,

P =madZ (1, ),

As it turns out, the polynomial representation &, of DAHA admits a basis of simultaneous

(n)

eigenvectors for the Cherednik operators Y, .

DEFINITION 1.4.11. The non-symmetric Macdonald polynomials (for GL,,) are a family of
Laurent polynomials E,, € &7, for p € Z" uniquely determined by the following:
o Triangularity: FEach E, has a monomial expansion of the form E, = zH + z>\<u ayaz

o Weight Vector: Each E,, is a weight vector for the operators Yl(n), . ,Yn(n) € J,.

Importantly, the set {E,|u € Z"} is a basis for &2, with distinct Y (™) weights. For p € Z", E,

is homogeneous with degree p1 + ... 4 py,. Further, the set of E,, corresponding to p € Z2 gives

a basis for 2.

REMARK 7. Given a family of commuting operators {y; : i € I} and a weight vector v we denote
its weight by the function o : I — Q(q,t) such that y;v = a(i)v. We sometimes denote o as

(041, a9, .. )

For u € Z" we will write o, := (a,(1),...,a,(n)) for the Y weight of E,. We have the

following explicit combinatorial description for the a,,:
PROPOSITION 1.4.12. For 1 <i<mn and u € Z"
}/;(n)Ey — qmtl_ﬁ”(i)Eu

where

Bu(t) =#{j:1<j<i,p <pt+#{j:i<j<n,w>p}
20



PRrROOF. [19] O

In practice one may generate the non-symmetric Macdonald polynomials recursively using the

Knop-Sahi Relations.

PROPOSITION 1.4.13. For p € Z™ we have the following relations:

° E( =q Fraoym By

1+anﬂ1w~aﬂn—1)
o If si(p) > p

1— t)ay(i+1 1t
Esi(u)=<Ti+( Jou(i + )>EH: T | B

ay (1) —au(i+1) ajé(fl)

PrOOF. [19] O

EXAMPLE. Beginning with E o) = 1 we may use the Knop-Sahi relations iteratively to construct
E20,0)- We start with
E10,0 = z1m3E(0,00) = 1.
Now we use the T; operators:
® Foi1,0 = (T1 - qtt 2) 1 =22+ 11(]%29561
® o1 = (T2 W) (962 + 1t2$1> =3+ %(961 + x2).
Lastly, we find

_ 1—1t . 1-—t
E2,00 =4 Loy <$3 + m(l’l + $2)> = 55% +4q lmﬁl(@ + x3).

The weights of these non-symmetric Macdonald polynomials are given as

® (0,0,0) =

® ®(1,00) =

1.5. Elliptic Hall Algebra

Here we recall some basic facts about the elliptic Hall algebra which we will need in chapter 3.

DEFINITION 1.5.1. For £ € Z\ {0}, r > 0 define the special elements Po(z),Pr(fol) € PPh by
21



o B = (0, 6) )
o Py =g (S, X]) el

THEOREM 1.5.2. [3/] The elements Pé Z), ;,7(1)) for £ € Z\{0}, 7 > 0 generate P as a Q(q,t)-

algebra. There is a unique Z>o X Z grading on @th determined by

There is a graded algebra surjection ‘@n—i—l — PP determined for £ € 7.\ {0}, r > 0 by P(n+1)

Py and PG — P%).

The existence of the Z>¢ x Z-graded algebra surjections @fﬁl:l — @Sph allows for the following

definition.

DEFINITION 1.5.3. [3/] The positive elliptic Hall algebra & is the stable limit of the Z>o X Z-
graded algebras PP with respect to the maps @fﬁl — PP For £ € 7\ {0}, © > 0 define the

special elements of &, Py := lim, PO(Z) and P, = lim,, PT(B).

The positive elliptic Hall algebra contains elements P, ;) for (a,b) € N x Z which may be defined
using repeated commutators of the elements Fyy, Pro. For example, P(; ) = [P(O,l),P(l,O)]. We
will not require an explicit description of these elements for the purposes of this paper. Further,
we will not require knowledge of the full elliptic Hall algebra £ which is obtained as the Drinfeld
double of £T with respect to a certain Hopf pairing. In the standard Macdonald theory picture,
we can realize the action of the full EHA on the ring of symmetric functions A using multiplication
operators p?, skewing operators p-, and Macdonald operators py[A] roughly corresponding to the

elements P, oy, P(_r0), P(0,¢) Tespectively.

REMARK 8. We will be considering the Z>o-grading on ET obtained by the specialization (a,b) —

a i.e forr>0andleZ\{0}

e deg(Py) =0
e deg(P,p)

)

r.

When we refer to a ET-module V' as graded we are referring to the Z>o-grading on ET.
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1.6. Double Dyck Path Algebra

The Double Dyck Path Algebra A, introduced by Carlsson and Mellit [8], is a quiver path

algebra with vertices indexed by non-negative integers with the following edge operators:

edy di:k—k+1
o I,. T, 1:k—k
ed_:k+1—k.

The full set of relations for A, ; are omitted here because they will not be required but they can
be found in [8]. In order to match the parameter conventions in Ion and Wu’s work [26] we will
often consider A, as opposed to A, formed by simply swapping ¢ and ¢ in the defining relations
of A, ;. Here we highlight a few notable relations of A;, which will be required later:

e The loops 11, ...,T_1 at vertex k > 2 generate a type A finite Hecke algebra 7,
o d’T,_ = d? starting at vertex k > 2
o Tid_=d_T; at vertex kfor 1 <3<k —2
o zid_ = d_z at vertex k for 1 < 7 < k — 1 where z; = f—ft[di,d_]T,;_ll---Tfl and
Zig1 =t T2 T
Although we did not give a full description of A,; we will require in Chapter 4 a detailed

description of the relations of the highly related algebra B, ;.

DEFINITION 1.6.1. [7] The algebra B, is generated by a collection of orthogonal idempotents

labelled by Z>q, generators di, d_, T;, and z; modulo relations:

(T; =1)(Ti+9) =0 Tyd% = d2

LT Ty = T T diT; =Tipdy for1<i<k—1

T.Ty = T;T; if [i — j| > 1 qpd— = d_¢pTy_y for k > 2

ﬂ_lelTi_l =qlz for1<i<k-1 Tvpdy = qdy for k> 1

2Ty =Tjz if i ¢ {j,5 + 1} zid_ =d_z;

zizj = zjz; for 1 <, 5 <k dyzi = zip1d+

d>Ty—1 =d> fork>2 z1(qdyd— — d_dy) = qt(ded— — d_di)z for
d_-T;,=Tid_ for1 <i<k—2 k>1

where ¢ := q%l[dJr, d_].

We will consider By as a graded algebra with grading determined by
23



o deg(T;) = deg(z;) = deg(d-) =0
e deg(dy) = 1.
Forn > 0 define IB%((]Z) to be the subalgebra of By given by only considering T;, z;, d_, dy between
the idempotents labelled by {0,...,n}.

(n)

REMARK 9. The graded algebras B, ;

naturally form a directed system with

(n)

Byt = limB, .
(Lt N (],t

DEFINITION 1.6.2. [7] Let V& = Di>o Vk,p01 = D0 Qg )[y1, - -, yk] ® A. Define an action

on VP! by the following operators given for F € Vkp01 by

o T,F = (qfl)yi+1lz/:r+(f/izlifqyi)8¢(F) for1<i<k—1
o dyF:=-T - TpF[X + (¢ — 1)yr11]
o d_F = F[X — (¢~ 1)y Exp[-y ' X]| -

o 5 F =T, 1 - TiF[X + (1 —q)ty1 — (¢ — Du,y2, - ., Y, u] Explu=ty; — u=1X]|,0

e 2 = q_lTl-_leﬂTL._l for1<i<k-—1
where ’yk—l represents taking the coefficient of yk_l. Here we are using plethystic notation. This
representation V& of B, is called the polynomial representation.

Note that the signs +1 of the operators d_,d are reversed in [7]. This choice is made to align

with the conventions in [26] and [31] and does not make a substantial difference in the underlying

representation.

REMARK 10. Carlsson-Gorsky-Mellit also construct an action of B, ; on the larger space Wbl .=
Drco(yr-- -yk)*lvkp‘ﬂ. The space V.po1 is isomorphic to the equivariant K-theory of the parabolic
flag Hilbert schemes of points in C? and the larger space wrel s defined in order to relate the
original Ay polynomial representation as defined by Carlsson-Mellit [8] to the Ay; polynomial
representation constructed in [7]. We will use the space wre! briefly to relate the B,; action on

VPl 4o the work of Ton-Wu.

1.7. Stable-Limits

1.7.1. Classical Stability. We will write deg(v),deg(r) for the degree of either a homoge-

neous vector v in a graded vector space or a homogeneous element r of a graded ring. For the
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following definitions for a graded vector space V we will write V (d) for the degree d > 0 homoge-
neous component of V. If R is a graded ring then we will write R—Mod for the category of consisting
of graded left R modules as the objects and with degree-preserving homomorphisms (homogeneous
maps) as the morphisms.

We now review some formalities regarding stable-limits of spaces and modules.

DEFINITION 1.7.1. Let (V(”))nzn0 be a sequence of graded vector spaces and suppose (H(”) :
vt V(”))nznO is a family of degree preserving maps. The stable-limit of the spaces
(V(n))nZno with respect to the maps (H(”))nz,m is the graded vector space Vo= lim. V™ con-

structed as follows: For each d > 0 we define

V(d) = {(va)nzno € [] V(@) | T (0p11) = va}

n>ng

and set

LEMMA 1.7.2. Let (R(”))nzn0 be a sequence of graded rings with injective graded ring homomor-
phisms (L™ : R™ — ROHD) o We will identify R™ with its image t,(R™) c R"D. We
write R = lim_, R(™ for the direct limit of the rings R™. Suppose (V(”))nzno s a sequence of
graded vector spaces with each V™ a graded R™ module and (1™ : v+ V("))nzno a se-
quence of degree-preserving maps with each I o graded R™ module homomorphism. Then the
following defines a graded R module structure on V := lim. V™: Forr € R and v € V with

r € Ry and v = (vp)n>n,, define r(v) € V by

r(v) = (H(”O) TNV (on), - TV (on), 7(on ), (0N 1), (0N 2), - ) .

REMARK 11. It is a straightforward exercise to check that the action defined above actually yields a
graded R module structure on lim. V. We leave this to the reader. We call lim. V™ the stable-
limit module corresponding to the sequence (V™),>pn, and the maps (II™),>,,. Notice that this
construction is functorial. Suppose (W(”))nz,m is another sequence of graded vector spaces with
each W™ q graded R™ module and (\I’(”) Wt W("))nzno a sequence of degree-preserving

maps with each ¥ a graded R™ module homomorphism and ¢ = ((ﬁ("))nzno is a family of graded
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R™ module maps ¢ : V) — W™ such that for all n > nyg

MM = g gntl)

Then ¢ determines a graded R module homomorphism q~5: lim, V™ — lim, W™ given by
$(v) 1= (6™ (1n)Jnzno-
REMARK 12. The stable-limit spaces V= lime V™ may be zero even if each V™ is nonzero.

However, if each V" is nonzero and the maps II™ are surjective then V is nonzero.

1.7.2. Ion-Wu Stability. Ion-Wu define the following generalization of classical stable-limits

by utilizing the t-adic topology on Q(g,t).

DEFINITION 1.7.3.  [26] Let (fm)m>1 be a sequence of polynomials with f,, € ;.. Then the
sequence (fm)m>1 is convergent if there exist some N and auxiliary sequences (hp)m>1, (gﬁ,?)mzl,
and (a%))mzl for 1 <i < N with hm,g%) e Pt aq(fz) € Q(q,t) with the following properties:

e Forallm, fm = hpy + sz\il a%)g,(??.

o The sequences (hm)m>1, (gq(viz))mzl for 1 < i < N converge in PL with limits h, g
respectively. That is to say, Zm(hm+1) = hm and Em(gfﬁlrl) = g,(f;b) forall1 <i< N and
m > 1. Further, we require ¢ € 2.

o The sequences ag,? for 1 < i < N converge with respect to the t-adic topology on Q(q,t)

with limits a® which are required to be in Q(q,1).

The sequence is said to have a limit given by lim,, f,, = h + Zf;l a® g,

This definition of convergence is a mix of both the stronger topology arising from the inverse
system given by the maps Z,, and the t-adic topology arising from the ring Q(q, t). It is important
to note that part of the above definition requires convergent sequences to always be written as a
finite sum of fixed length with terms that converge independently.

Here we list a few instructive examples of convergent sequences and their limits:

e lim,,t" =0

o limp 1+...+1" =1
o limy, ot (@f + ... +a2,) = ¢ 2pafwg+...].

q
26



REMARK 13. In this thesis we will be entirely concerned with convergent sequences (fm)m>1 with
almost symmetric limits lim,, f,, € Z1,. In this case it follows readily from definition that each of

these convergent sequences necessarily will have the form
al (%)
f(x1, . o) = chm)x” Filx1 + ...+ zp)]
i=1

where N > 1 is fixed, cgm) are convergent sequences of scalars with lim,, cl(m) € Q(q,t), F; are
symmetric functions, and p'9 are compositions. Here we will consider 24 =0 in P whenever

(@) > m.

DEFINITION 1.7.4. [26] For m > 1 suppose A, is an operator on 2, . The sequence (Apm)m>1 of
operators is said to converge if for every f € P, the sequence (Ap(Zm(f)))m>1 converges to an
element of 2}.. From [26] the corresponding operator on 22, given by A(f) := lim,, Ay (Em(f))
is well defined and said to be the limit of the sequence (Apm)m>1. In this case we will simply write

A =lim,, A,,.

There are two important examples of convergent operator sequences which will be relevant for

the rest of this paper. For all ¢ > 1 and m > 1 let X (m) denote the operator on & given by 0 if

i

m < i and by Xi(m)f =x; f if i < m. Similarly for ¢ > 1 and m > 1 let Ti(m) denote the operator on

Pt givenby 0if m—1<iand by T;f = s;f + (1 —t)x; fﬁiif if i <m—1. Then for all i > 1 it is

Ti—Tit1
(m

immediate from definition that the sequences (X,

; ))m21 and (Ti(m))mzl converge to operators X;

and T; respectively on &2, Further, their corresponding actions are given for f € 22} simply by
o Xi(f) =aif
« T(f) = sif + (1= twig=3

€Ty .
txi—mit1

The following important technical proposition of Ion and Wu will be used repeatedly in this

paper.

ProposITION 1.7.5 (Prop. 6.21 [26]). If A = lim,, A, and f = lim,, f, are limit operators and

limit functions respectively then A(f) = limy,, Ap(fin)-

This is a sort of continuity statement for convergent sequences of operators. The utility of the
above proposition is that for an operator arising as the limit of finite variable operators, A =

lim,,, A, say, we can use any sequence (fm)m>1 converging to f € 2} in order to calculate A(f).
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It is easy to verify the following proposition using Proposition 1.7.5.
ProposITION 1.7.6. [26] If A = lim,, A,,, and B = lim,, By, then AB = lim,,, A, B,.

PROOF. Let f € 2}, Then (By(Zm(f)))m>1 converges to B(f) and thus

Therefore, AB = lim,, A, By..
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CHAPTER 2

Stable-Limit Non-Symmetric Macdonald Functions

2.1. Introduction

The Shuffle Conjecture [20], now the Shuffle Theorem [8], is a combinatorial statement regard-
ing the Frobenius character, Fg, , of the diagonal coinvariant algebra R,, which generalizes the
coinvariant algebra arising from the geometry of flag varieties. The conjecture built on the work
of many people during the 1990s, including but not limited to Bergeron, Garsia, Haiman, and

Tesler [4] [16] [5]. The following explicit formula is due to Haiman [24]
Fr,(X5¢,1) = (=1)"Ven[X]

where the operator V is a diagonalizable operator on symmetric functions prescribed by its action

on the modified Macdonald symmetric functions H u as

The original conjecture of Haglund, Haiman, Loehr, Remmel, and Ulyanov [20] states the following:

THEOREM 2.1.1 (Shuffle Theorem). /8]

(_Unven[X] _ Z Z tarea(ﬂ)qdinv(ﬂ,w)xw'

T weWP,

In the above, 7 ranges over the set of Dyck paths of length n and WP, is the set of word parking
functions corresponding to w. The values area(r) and dinv (7, w) are certain statistics corresponding
to m and w € WP,.

In [8], Carlsson and Mellit prove the Compositional Shuffle Conjecture of Haglund, Morse, and
Zabrocki [21], a generalization of the original Shuffle Conjecture. Carlsson and Mellit construct
and investigate a quiver path algebra called the Double Dyck Path algebra A,;. They construct

a representation of A4, called the standard representation, built on certain mixed symmetric and
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non-symmetric polynomial algebras with actions from Demazure-Lusztig operators, Hall-Littlewood
creation operators, and plethysms. The Compositional Shuffle Theorem falls out after a rich un-
derstanding of the standard representation is developed. Later analysis done by Carlsson, Gorsky,
and Mellit [7] showed that in fact A,; occurs naturally in the context of equivariant cohomology
of Hilbert schemes.

Recent work by Ion and Wu [26] has solidified the links between the work of Carlsson and Mellit
on A, ; and the representation theory of double affine Hecke algebras. Ion and Wu introduce the

Tstable-limit double affine Hecke algebra # ' along with a representation of T on the space
+

of almost-symmetric functions, Z,

from which one can recover the standard A,; representation.
The main obstruction in making a stable-limit theory for the double affine Hecke algebras is the
lack of an inverse/directed-limit system of the double affine Hecke algebras in the traditional sense.
Ion and Wu get around this obstruction by introducing a new notion of convergence (Defn. 1.3.12)
for sequences of polynomials with increasing numbers of variables along with limit versions of the
standard Cherednik operators defined by this convergence.

Central to the study of the standard Cherednik operators are the non-symmetric Macdonald
polynomials. The non-symmetric Macdonald polynomials in full generality were introduced first
by Cherednik [9] in the context of proving the Macdonald constant-term conjecture. The introduc-
tion of the double affine Hecke algebra, along with the non-symmetric Macdonald polynomials by
Cherednik, constituted a significant development in representation theory. They serve as a non-
symmetric counterpart to the symmetric Macdonald polynomials introduced by Macdonald as a
q, t-analog of Schur functions. Further, they give an orthogonal basis of the polynomial representa-
tion consisting of weight vectors for the Cherednik operators. The spectral theory of non-symmetric
Macdonald polynomials is well understood using the combinatorics of affine Weyl groups. The cor-
rect choice of symmetrization applied to a non-symmetric Macdonald polynomial will yield their
symmetric counterpart. The type A symmetric Macdonald polynomials are a remarkable basis for
symmetric polynomials simultaneously generalizing many other well studied bases which can be
recovered by appropriate specializations of values for ¢ and ¢. The aforementioned modified Mac-
donald functions H, . can be obtained via a plethystic transformation from the symmetric Macdonald

polynomials in sufficiently many variables.
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It is natural to seek a stable-limit extension for the non-symmetric Macdonald polynomials fol-
lowing the methods of Ton and Wu. In particular, does the standard " representation £, have
a basis of weight vectors for the limit Cherednik operators #%;7 The first main theorem of this
chapter (Theorem 4.2.12) answers this question in the affirmative. In the second main theorem of
this chapter (Theorem 2.6.5) we use a new operator ¥, , which commutes with the limit Cherednik
operators, to distinguish between % -weight vectors with the same % -weight. The operator ¥, is
up to a change of variables an extension of Haiman’s operator A’ [22] from A to &2, (Remark 14).
The operator ¥, is a limit of operators from finite variable DAHAs.

At the end of this chapter we will investigate further properties of the stable-limit non-symmetric
Macdonald functions. We will construct higher delta operators generalizing ¥, which act diag-
onally on the stable-limit non-symmetric Macdonald function basis and satisfy many other inter-
esting properties. Lastly, we will give a detailed analysis of the ¢ = 0o, t = 0 specialization of the
stable-limit non-symmetric Macdonald functions which give an almost symmetric analogue of the
Schur functions. We will find an explicit combinatorial expansion of these almost symmetric Schur
functions and prove some positivity properties. In the process in proving these positivity results
we will develop a representation theoretic interpretation of the almost symmetric Schur functions

realizing them as limits of characters of representations certain parabolic subgroups of GL,,.

2.1.1. Stable-Limit DAHA of Ion and Wu. As the index n varies, the standard .74, repre-
sentations, &7, fail to form a direct/inverse system of compatible /%, representations. However, as
the authors Ton and Wu investigate in [26], this sequence of representations is compatible enough to
allow for the construction of a limiting representation for a new algebra resembling a direct limit of

the double affine Hecke algebras of type GL. We will start by giving the definition of this algebra.

DEFINITION 2.1.2. [26] The T stable-limit double affine Hecke algebra of lon and Wu, 7T,
is the algebra generated over Q(q,t) by the elements T;, X;,Y; for i > 1 satisfying the following

relations:

e The generators T;, X; for i € N satisfy (1) and (2) of Defn. 1.4.7.
e The generators T;,Y; fori € N satisfy (1) and (3) of Defn. 1.4.7.
o YT X1 = XoY1Th.
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Ton and Wu begin their construction of the standard representation of .7 by noting the following

key fact.
PROPOSITION 2.1.3. [26] Forn > 1
anltnyl(n)Xl = tn_lyvl(nil)Xlﬂ'nfl.

In other words, the action of the operators t”Yl(n) and t”_lYl(nfl) are compatible on z142,. As
such there exists a limit operator Yl(oo) s 11 PL = 11 P% such that WnYl(OO) = t”Yl(n). A crucial

)

idea of Ion and Wu is to extend the action of the operators t"Yl(n on x1%, to all of &, using the

previously defined projection p : &, — r1%,.

DEFINITION 2.1.4. [26] Define the operator ?l(n) ‘=po t”Yl(n). For 2 < i < n define i(n) by
requiTINg 172-(”) = tilﬂ,lz(ﬂﬂ,l.

A direct check shows that ﬁ(n)Xl = t"Yl(n)X 1 so that 171(”) extends the action of t”Yl(n) on 1%,

as desired. The main utility of this specific choice of definition is the following theorem.

THEOREM 2.1.5. [26] The sequence (Yl(m))mzl converges to an operator %4 on P},. Define the
operators % fori > 2 by % =t 'T;_1%_1T;_1. The operators %; along with the Demazure-Lusztig

action of the T;’s and multiplication by the X;’s generate an £ action on Z}..

In particular, the authors Ion and Wu show that despite the fact that for 1 < i # j < n,

}Z(")?j(") #* }7].(") 171.(”) the limit Cherednik operators commute:

The action of the % operators respect the canonical filtration of 2}, = (J;~o Z(k)*. For all
n > 0, the operators {#4, ..., %} restrict to operators on the space &(n)" whereas the operators
{%+1, % t2,...} annihilate 22 (n)". Note that for n = 0, 2(0)* = A so all of the operators %;

annihilate A.

2.1.2. Double Dyck Path Algebra. The Double Dyck Path Algebra A,;, introduced
by Carlsson and Mellit [8], is a quiver path algebra with vertices indexed by non-negative integers

with the following edge operators:
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o di df k—k+1
o T,. Ty 1:k—k
ed_:k+1—k.

The full set of relations for A, are omitted here but can be found in [8]. In order to match the
parameter conventions in Ion and Wu’s work [26] we will consider A; , as opposed to A, ; formed by
simply swapping ¢ and t in the defining relations of A, ;. Here we highlight a few notable relations

of Ay, which will be required later:

e The loops T4, ...,T;,_1 at vertex k > 2 generate a type A finite Hecke algebra
o d’T,_, = d* starting at vertex k > 2
o Tid_=d_T; at vertex k for 1 <7 <k —2
o z;d_ = d_z at vertex k for 1 < ¢ < k — 1 where 21 := %[d’j_,d,]Tg_ll---Tfl and
zip1 =t 2T
2.1.2.1. The Standard A, Representation and the +Stable-Limit DAHA. Vital to the proof of

the Compositional Shuffle Conjecture by Carlsson and Mellit [8] is their construction of a particular

representation of A ,.

DEFINITION 2.1.6. [8] For k > 0 let Vi, = Q(q,t)[y1,--.,yk] ® A be associated to the vertex k

and denote by Ve be the system of spaces Vi,. Let (i, denote the algebra homomorphism

Cef iy Yk—1,uk) = f(Y2, - Uk Q).

If f is a formal series with respect to the variable y with coefficients in some ring R denote by
¢y(f) € R the constant term of f i.e. the coefficient of y° in f. Note that each &}, acts on Vj, by

permuting the variables y1, ..., yx. Define the following operators:

o TiF = siF + (1~ )yiy =t
o d_F = ¢, (FIX — (t — 1)y Exp[—y; ' X))
o diF =T Ty(yps1 FIX + (t — Dypp1])

o &' F = GF[X + (t — )yps1]-
THEOREM 2.1.7. [8] The above operators define a representation of Ay 4 on V.

+

Ton and Wu use their construction of the standard #* representation 22, to recover the stan-

dard A, representation V.
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THEOREM 2.1.8. [26] There exists an A4 representation structure on Po = (P (k)" )k>0 iso-
morphic to the standard representation Vo such that at each vertex k, z; acts by %; and y; acts by

X;. Further, according to this isomorphism P (k)" is identified with Vj via the map

X
ot P Flog + .. =yt kaF[m]

2.2. Combinatorial Formula for Non-symmetric Macdonald Polynomials

Note that the ¢,¢ conventions in [19] differ from those appearing in this thesis. In the below
theorem the appropriate translation ¢ — ¢~ has been made.

In [19], Haglund, Haiman, and Loehr give an explicit monomial expansion formula for the non-
symmetric Macdonald polynomials in terms of the combinatorics of non-attacking labellings of

certain box diagrams corresponding to compositions which we will now review.
DEFINITION 2.2.1. [19] For a composition p = (1, ..., ) define the column diagram of p as
dg'(p) = {(i,7) e N*: 1 <i <m, 1 <5< ).

This is represented by a collection of boxes in positions given by dg'(n). The augmented diagram
of 1 is given by
dg(p) :=dg'(n) U{(i,0): 1 <i < n}.

Visually, to get @(u) we are adding a bottom row of boxes on length n below the diagram dg'(u).
Given u = (i,7) € dg'(n) define the following:
o leg(u) = {(i, 1) € dg'(1) : §' > j}
A (u) = {(7, ) € dg/ (u) : 7 < i jy < i}
arm 8 (u) == {(i',j — 1) € dg(p) : i’ > i, prr < pi}

e arm(u) := arm'*® (u) U arm™&h (v)

lg(u) := [leg(u)| = pi —j

e a(u) := |arm(u)|.
A filling of 1 is a function o : dg'(n) — {1,...,n} and given a filling there is an associated augmented
filling & : @(u) — {1,...,n} extending o with the additional bottom row boxes filled according to
7((4,0)) = j for j =1,...,n. Distinct lattice squares u,v € N? are said to attack each other if one

of the following is true:
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e u and v are in the same row
e u and v are in consecutive rows and the box in the lower row is to the right of the box in
the upper row.
A filling o : dg'(n) — {1,...,n} is non-attacking if o(u) # o(v) for every pair of attacking bozes
u,v € Zl;(,u) For a box w = (i,7) let d(u) = (i, — 1) denote the box just below u. Given a filling
o:dg'(u) = {1,...,n}, a descent of o is a box u € dg'(p) such that o(u) > o(d(u)). Set Des(a) to
be the set of descents of & and define

maj(@) = Y (lg(u)+1).

u€Des(7)

The reading order on the diagram @(u) is the total ordering on the boxes of @(,u,) row by row,
from top to bottom, and from right to left within each row. If o : dg’'(n) — {1,...,n} is a filling,
an inversion of o is a pair of attacking bozes u,v € @(,u) such that w < v in reading order and

o(u) > o(v). Set Inv(a) to be the set of inversions of o. Define the statistics

o iv(3) = [Tv(@)] — [{i < J + 15 < 15} ~ Tuepess) al)
e coinv(o) := (Zuedg’(u) a(u)) — inv (o).
Lastly, for a filling o : dg’(p) — {1,...,n} set

A OB L Ol

€T n

The combinatorial formula for non-symmetric Macdonald polynomials can now be stated.

THEOREM 2.2.2. [19] For a composition p with £(i) = n the following holds:

o 1-1¢
_ o —maj(d) coinv(c)
E,= Y 2% ¢ I1 (1 _ q—(lg(u)-i-l)t(a(u)—i-l)) :
o:p—[n] u€dg’ (1)
non-attacking o(u)#o(d(u))

We may better understand the statistic coinv through the next definition.

DEFINITION 2.2.3. [19] Let 0 : u — [n] be a non-attacking labelling. A co-inversion triple is

a triple of boxes (u,v,w) in the diagram dg ) of one of the following two types

Type 1: Type 2: - l
alio

that satisfy the following criteria:
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e in Type 1 the column containing v and w is strictly taller than the column containing v
o in Type 2 the column containing u and w is weakly taller than the column containing v
e in either Type 1 or Type 2 5(u) < o(v) < o(w) or d(v) < g(w) < a(u) or g(w) < o(u) <
a(v).
Informally, in Type 1 we require the entries to strictly increase clockwise and in Type 2 we require

the entries to strictly increase counterclockwise.

Co-inversion triples are important because they have the same count as the complicated coinv

statistic from Definition 2.2.1.

LEMMA 2.2.4. [19] For a non-attacking labelling o : p — [n], coinv(d) equals the number of

co-inversion triples of .

ExamMpPLE. We finish this subsection with a visual example of a non-attacking filling and its
associated statistics. Below is the augmented filling & of a non-attacking filling o : (3,2,0,1,0,0) —

[6] pictured as labels inside the boxes of @(3, 2,0,1,0,0).

6
4 11
1| 2 3

11213145 ]|6

Let u be the column 1 box of @(3, 2,0,1,0,0) filled with a 4 in the above diagram. Notice that u
is a descent box of ¢ as 4 is larger than the label 1 of the box d(u) just below u. Further, we see that
a(u) = 2 and 1g(u) = 1. Considering the diagram as a whole now we see that ¥° = ¥2xT9137476,
maj(c) = 3, |Inv(d)| = 21, inv(c) = 14, and coinv(c) = 1. The contribution of this non-attacking

labelling to the HHL formula for E320.1,0,0) € ,@g 1

o g 1=t 1t 1t 1t
1222324764 1—g13) \1—g2)\1-g2)\1—¢g122)

2.3. Stable-Limits of Non-symmetric Macdonald Polynomials

We start by investigating the properties of certain sequences of non-symmetric Macdonald poly-
nomials. We will find that if we fix any composition p and consider the sequence of compositions

(e % 0™)>0 the corresponding sequence of non-symmetric Macdonald polynomials (E,«om )m>0
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will converge in the sense of Definition 1.7.3. It is important to note that in most cases the se-
quence (E,.om)m>0 will not converge with respect to the inverse system (Zj : Ppi1 = Pi)r>1-
This should be expected because the spectra of the Cherednik operators acting on &y are in-
compatible with the spectra from the Cherednik operators acting on ;. However, by using the
HHL explicit combinatorial formula for the non-symmetric Macdonald polynomials we show that
the combinatorics of non-attacking labellings underlying the sequence (E,.om)m>0 converge in a
certain sense. The weaker convergence notion introduced by Ion and Wu is consistent with these
combinatorics. For our purposes later in this chapter we will heavily rely on the convergence of these
sequences as a bridge between the limit Cherednik operators %; and their classical counterparts.
We now show the convergence of the sequence (E,«om)m>0. First, we describe a convenient

rearrangement of the monomials in each E).om.

THEOREM 2.3.1. Let 1 be a composition with {(u) =n and m > 0. Then E, .om has the explicit

expression given by

By — Z A [Tmst + -+ Trsm] Z x|10*1(1)\ ) ..x\g_l(nﬂr(m)(&)
A partition o108 S Ino(\
A< p] unon—att_;[ck;g( )
Vi=1,...,0(\)
Xi=|o ™ (n+i)]
where
rm () =
o 1—¢ 1—t¢
— maj(0) pcoinv (o)
q ¢ H (1 _ q(lg(u)+1)t(a(u)+1)> H <1 — q(lg(U)+1)t(a(U)+m+1)> '
uedg’ (ux0tAN) u€dg’ (ux0tM)
a(u)zsa(d(u))l ﬁ(u)#&(d(li))

PROOF. First, start with directly applying the HHL formula (2.2.2):

e 1—-t¢
f— o ,— maj(c) rcoinv(c)
Epuno >, % t 11 <1 - q—<1g(u>+1)t(a<u>+1>> '
o:ux0™ —[n+m] uedg’ (pu*0™)
non-attacking o(u)#o(d(u))
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We know that E,.om is symmetric in the variables 41, ..., Tnim [9] so it follows that the coef-
ficient (as a polynomial in Q(g,t)[z1, ..., z,]) of each monomial in zy41, ..., Tpym is independent of

the ordering of the latter variables. Hence, we find that by grouping these monomials by symmetry

o1 - —maj(c inv(c
E om = ZmA[$n+1 + oot Tpgm) Z :17'1 @, . 35‘7;7 1(n)\q aj(d) yeoinv (@)

A o:px0™ —[n+m)|
non-attacking
Vi Ai=|o "1 (n+i)|

( o )
1 — o~ (g +D¢la(w)+1) )
u€dg’ (p) q

o(u)#0(d(u))
Note that by degree considerations the only possible partitions A that have a nonzero contribution

to the above sum have |A| < |u| and hence we can rewrite the above sums as

> - T 5

o: 0™ — [n+m] A partition o: 0™ — [n+£(N)]
non-attacking A< | non-attacking
Vi Ni=|o 1 (n+i)| Vi Ni=|o = (n+i)|

In the latter sum above we have written each o as a non-attacking labelling o : p* 0™ — [n+ £(\)]
to emphasize that the numbers occurring in this labelling are contained in the set [n + ¢(\)] which
is independent of m. However, these are still considered labellings of the diagram corresponding to
% 0™ and hence we calculate the corresponding ¢, t coefficients in the HHL formula accordingly.
We must now understand the dependence on m of the statistics maj, coinv, lg, and a in each
of the non-attacking labellings o : p* 0™ — [n 4+ ¢(\)] as m varies. Fix a non-attacking labelling

o : pu*0F = [n+ k| for some k < m and let o, be the associated labelling of z % 0™. Recall that

maj@) = Y (g(u)+1)

u€Des(3)
and similarly for maj(c,,). The only descent boxes of 7,, occur in the diagram dg’(u) itself and
lg(u) for these boxes will not depend on m. Therefore, maj(a,,) = maj(a). For u € dg’(u * 0™)
clearly u € dg’(p) and by direct computation we see that when u is not in row 1 then a(u) does
not depend on m. However, for u in row 1 a(u) when calculated in the diagram @(,u) increases to

a(u) + m when calculated in the diagram @(,u * 0™). This comes from counting the extra row 0
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boxes for each box in row 1. Also note that in any non-attacking labelling there cannot be descent

boxes in row 1. Now from careful counting we get the following:

o | I0v(Gm)| = | Inv(3)| + (n+ k)(m — k) + ()

o [{i <j:(ux0m)i < (px0m);5}]

= [{i <j: (px0")i < (ux0°);} + (#{i: i = 0} + k) (m — k) + (m;k>

® ZueDes(ﬁm) a(u) = zueDes(E) a(u)

By using the above calculations and cancelling out terms we get

v (G) = [Ty @) — [0 <51 (s 0™ < (ux0™)} = 3 alw)
u€Des(m)
= [Inv(@)] = [{i < j: (ux0%); < (ux 05} = Y alu) + (n—#{i: pi = 0})(m — k)
u€Des(7)

=inv(o) + #{i : p; # 0}(m — k).

Further, from the prior observation about how arm, a(u), changes with m we see that
S alw) = #{im A m B+ Y a(w)
u€dg’ (ux0m) u€dg’ (u*0k)

where arm has been calculated in the corresponding diagrams.
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We then have

coinv(a,,) = Z a(u) | —inv(om)

u€dg’ (ux0m)

— i A0 m—k)+ 3 au) | - (v(@) + #{i s # 0} (m — k)

u€dg’ (ux0%)

= > au) | - inv(3)

u€dg’ (ux0F)

= coinv (7).

Thus maj(d,,) = maj(c) and coinv(d,,) = coinv(a).
Lastly, we return to the expansion of E,.om we found above. For each partition A with [A| < |pu]

we now see that

o=t (D) .. o7 ()|, — maj(G) pcoinv(F) 1-1
) 1 Tn q t 11 1 — ¢~ g+ a@+1)

0™ — [n+-L(N)] u€edg’ (k)
non-attacking o (u)#0(d(u))
Vi Ai=|o "1 (n+4)]|

_ Z x|10—*1(1)\ gl mIpm) 5y,

o:ux0f ) s [nL(N)]
non-attacking
Vi Ai=|o 1 (n41)]|

where
M (3) :=
RO 1—¢ 1t
— maj(d)pcoinv(c)
a ! 11 <1 - q—<1g<u>+1>t<a(u>+1>) 11 (1 . q—(lg(u)+1)t(a(u)+m+1)) '
uedg’ (ur0t™) uedg’ (ux0*™)
0 (u)#0 (d(u)) & (u)#0(d(u))
% not in row 1 u in row 1

and we calculate all of the associated statistics in their respective diagrams.
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Now that we have conveniently rearranged the monomial terms of each F,,o» and identified the
dependence of the coefficients on the parameter m we can give a simple proof that the sequence

(Euxom)m>0 converges.

COROLLARY /DEFINITION 2.3.2. Let i1 be a composition with £(j1) = n. The sequence (Eusom )m>1

converges to an almost symmetric function E# = limy, B wom € D@L given explicitly by

- o~ 1(1 -1 PN
E,= Z my[Tnt1 + .. Z x'l Wl 2l T (5)
A partition o:ux0t ) 5 [nL(N)]
RN non-attacking
Vi=1,...,¢(\)
Xi=|o " (n+i)|

where

(o : m) (& —maj(d) ycoinv(c 1-1
I'(@) = 1%}}11“( /(6) = ¢~ geom@ T <1 - q(lg(u)+1)t(a(u)+1)> II a-».

uedg’ (ux0°N) uedg’ (ux0*N)
7 (u)#0(d(u)) o (u)#0(d(u))

u not in row 1 u in row 1
PRrOOF. Note that the formula in Theorem 2.3.1 is a fixed size finite sum where the only
dependence on m is in the m, symmetric function terms and the ™ occurring in the '™ terms.
Thus in the sense of Ion and Wu, see Definition 1.7.3, this sequence converges to a well defined
element of 2/,. In particular, each my[zn41 + ... + Tnim] converges to my[rn1 + ... and t™
converges to 0 in the I-term. Simplifying gives the formula above.

O

It follows from Corollary 2.3.2 that the almost symmetric functions E,L are homogeneous of degree
|pe| and Eu € Z(l(n))*. Note importantly, that for any composition p (not necessarily reduced)

and any n > 0, by shifting the terms of the sequence (E,.om)m>0 we see that EM*On = Eu‘

COROLLARY 2.3.3. Let A be a partition with {(\) = n and |\| = N. Then Ej is determined by

Ey.on € @ZJFN. That is to say, if

(1) (k)
Eyon (21, oy @ngn) = 12 "myo [Tng1 + oo+ Tpgn] o+t mym [Tagr o+ Tpgn]

then

= (€] (k)
E\ =ciz* m,(1) [xn+1 + ] + ..+ gt m,,(k) [.%'n_H + ]
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PROOF. As ) is a partition, row 1 of any non-attacking labelling of A must be 1,2,,...,¢(\). Thus
no boxes of d¢g’(\) in row 1 will have 7(u) # d(d(u)) and so there will be no contributions from

any of the terms of the form

H 11—t
1 — g~ Us(w+D¢(a(u)+m+1) |-

uedg’ (N\)
7 (u)#0 (d(u))

w Tow 1
Further, from Corollary 2.3.2 it is clear that these are the only coeflicients that depend on m in
the limit. Also it follows that each term of the form x#m,[x,+1 + ...] that occurs in the expansion
of By appears at least by the m = N step of the limit. From these two facts it follows that the
expansion of E) will match that of E\.on (21, ..., ZnyN) up to truncating each m,[z,+1 + ...] to

my[Tpi1 + ... + Tpyn] using =4 N

2.4. %-Weight Basis of &2

2.4.1. The Eﬂ are % -Weight Vectors. In what follows, the classical spectral theory for
non-symmetric Macdonald polynomials is used to demonstrate that the limit functions Eu are %/ -
weight vectors. The below lemma is a simple application of this classical theory and basic properties

of the t-adic topology on Q(q,t).

LEMMA 2.4.1. For a composition p with ¢(u) = n define a&m) to be the Y ") weight of E,.om.
Then in the t-adic topology on Q(q,t) the sequence (t”+magm)(i))m20 converges in m to some
a,(i) € Q(q,t). In particular, &, (i) = 0 for i > n and for 1 <i <n we have that o, (i) = 0 ezactly

when p; = 0.

ProoF. Take p = (p1,...,pu,). From classical double affine Hecke algebra theory [9] we have

a&o) (i) = gt =P where

Bu@) =#{j: 1< <i,py <y +#5 0 <j <n i > py}

If we calculate f3,4om (i) directly it follows then that
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qﬂit"+m+1_(ﬁu(i)+m1(ﬂi7ﬁ0)) = tnag]) (1,) 1 <n i 75 0

t"+ma£m) (i) = § grigntmtl=(Bu(@)+ml(1i#0)) — t”+ma£0) (i) i <n,pi=0
grtml=(#{g:py= 0} +i—n) — #{j:n;# 0Obymtl—(i—n) ;5
Lastly, by taking the limit m — oo we get the result. ([l

For a composition p define the weight &, using the formula in Lemma 2.4.1 for the list of scalars

a, (i) for i € N.

LEMMA 2.4.2. For a composition . = (ji1, ..., fn) with p; #0 for 1 <i <n, Eu is a % -weight

vector with weight .

ProoF. Fix any r € N. We start by rewriting the operator %, explicitly in terms of the limit
definition of %4.

@, = t*(?”*l)Tr_1 TV Ty
=ty ...y 111?1 tkpﬁle;_ll .. -Tl_lTl T 1B,
=limt"T ;- Tipt~ " Vm LT E,
= h}cn T - 'Tlprl .. .Trillt*(rfl)Tr_l . T17Tka__11 cTE,

T

= hlgn .- 'Tlprl .. 'Tr_,ler(k)Eh

Applying %, to Eu we see by taking k = n +m > n and shifting the indices that

%(Eu) = lUm¢"*"T_y - 'TlpTl_l e 'Tr:11yr(n+m)(Eu*0m)

m

=lmT,_y - TipTy - T4 al™ (r) Eppom
m

r—
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and by Lemma 2.4.1 this converges to

%(Eu) = &#(T)(Tr—l e 'TIPT1_1 e 'Tr_—ll)Eu'

Importantly, we have implicitly used the fact that both of the sequences (E,«om )m and (ozl(lm) (r)m
converge, that the operator T,_1 --- T pT| L. Tr__l1 commutes with the quotient maps Ey, : P11 —
Py for k > r, and Proposition 6.21 in [26]. We will show that the right side is &M(T)EM. As

a,(r) =0 for r > n by Lemma 2.4.1 we reduce to the sub case r < n. Fix r < n. If we could show

that x1 divides T Lo TT__IIE# then we would have
P(Tfl e 'Tr:11Eu) = Tfl e 'T;—11Eu
implying that

Y (Ey) = Qu(r)(Toa -+ TupTy - T4 E,

r—1

= au(T)Tr—l T TlTl_l e 'Tr:l1)Eu

as desired. To show that x|} L. r_—11EM it suffices to show that for all m > 0, z; divides

Tfl . 'Tf,-illE/,L*Om- To this end fix m > 0. We have that

o™ (1) Bpom = Y, (Epom)

"
— gntmor+lp T17Tn+mT{+1m_1 .. ‘Tr_lEu*ow
Since a&m) (r) # 0 we can have ﬁ()Tfl ---T:~Y act on both sides of the above to get
Qyy T

. L thrmfrJrl 1 1
Tl e TT—IE/J*Om = Tﬂ'n+an+m_l v Tr E“*Om.
m r

44



By HHL any non-attacking labelling of p % 0™ will have row 1 diagram labels given by {1,2,...,n}

so in particular x, divides E.om for all m > 0. Lastly,

tf(nerfr)X

-1 -1
Tn+mdpym—1 """ Tr X, = Tn+m ntmIntm—1-- Ty

= qti(nerir)XlTrn-l—an—i-m—l T

Thus x1 divides T} L.t rillEﬂ*Om for all m > 0 showing the result.

Now we consider the general situation where the composition p can have some parts which are
0. We can extend the above result, Lemma 2.4.2, by a straight-forward argument using intertwiner

theory from the study of affine Hecke algebras.

THEOREM 2.4.3. For all compositions p, E,, is a % -weight vector with weight c,.

PROOF. Lemma 2.4.2 shows that this statement holds for any composition with all parts
nonzero. Fix a composition g with length n. We know that by sorting in decreasing order that u
can be written as a permutation of a composition of the form v x 0™ for a partition v and some
m > 0. From the definition of Bruhat order it follows that v * 0™ will be the minimal element out
of all of its distinct permutations, including u. Necessarily, this finite subposet generated by the
permutations of v % 0™ is isomorphic to the Bruhat ordering on the coset space &,,/&, where &,
is the Young subgroup of &,, corresponding to the stabilizer of v x 0”. Hence, it suffices to show
inductively that for any composition § with v+0™ < 8 < s;(5) < u, if Eg satisfies the theorem then
so will Esi(ﬁ)' As p is finitely many covering elements away in Bruhat from v % 0™ this induction
will indeed terminate after finitely many steps.

Using the intertwiner operators from affine Hecke algebra theory, given by ¢; = T;%; — %;T; in

this context, we only need to show that for any composition 8 with v« 0™ < 5 < s;(5) < p,

¢iEg = (@p(i) — (i + 1)) Ey ).
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Suppose the theorem holds for some § with v % 0™ < 8 < s;(8) < p. Then we have the following:

$iBs = (Ti(% — 1) + (1 - )%41) Eg
= (@p(i) — ap(i + 1) TiBp + (1 — t)as(i+ 1)
= (""" (0) = """ (i + D)L Bgaon + (1= " "o (i + 1) Eguon

_ hnrln(tn-i-ma(ﬁm) (i) — tn-&—ma(ﬁm) (i + 1))E8i(5)*0m

= (ap(i) — agli + 1)) Eqy, ).

As an immediate consequence of the proof of Theorem 2.4.3 we have the following.

COROLLARY 2.4.4. Let p be a composition and i > 1 such that s;(u) > p. Then

= A=Dau(i+1) )
Egw) = (Tz + 8,00) — i + 1)> E,.

We have shown in Theorem 2.4.3 there is an explicit collection of % -weight vectors E“ in 2}
arising as the limits of non-symmetric Macdonald polynomials E,.o=. Unfortunately, these Eu do
not span Z2}.. To see this note that one cannot write a non-constant symmetric function as a linear

combination of the Eu- However, in the below work we build a full Z-weight basis of Z/,.

2.4.2. Constructing a Full %'-Weight Basis.

2.4.2.1. Defining the Stable-Limit Non-symmetric Macdonald Functions. To complete our con-
struction of a full weight basis of 22}, we will need the aﬁ’“’ operators from Ion and Wu. These
operators are, up to a change of variables and plethysm, the d_ operators from Carlsson and Mellit’s

standard A;, representation.

DEFINITION 2.4.5. [26] Define the operator " . P(k)yT = P(k —1)" to be the P, | -linear

map which acts on elements of the form x}F|zii1 + xpyo+...] for F € A andn >0 as

O (21 Flapsr + 2ira + ...]) = Bo(F) |z + Tpsr + .. ).
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Here the A, are the Jing operators which serve as creation operators for Hall-Littlewood symmetric

functions Py given explicitly by the following plethystic formula:

B(F)IX] = (z")FIX — = Exp[(1 - 1)2X].

(k)

Importantly, the o operators do not come from the #* action itself. Note that the O

operators are homogeneous by construction.

o

We will require the useful alternative expression for the 9" operators which can be found in [26].

Recall the notation ¢, from Definition 2.1.6.

LEMMA 2.4.6. Let 1, denote the alphabet shift X, — Xi_1 acting on symmetric functions where

X, =xi1 +xiso+ ... Then for f € Py and F € A
W (f(21,... 2k) FIXR]) = Ty f(21, .o, 2x) F[Xg — 2] Bxp[—(t — D)ay Xy,

ProoOF. [26]. O

(k)

As an immediate consequence of this explicit description of the action of the 02"’ operator we get

the following required lemmas.

LEMMA 2.4.7. [26] The map 0% : 2(k)* — 2(k—1)* is a projection onto P(k—1)T i.e. for
fe2Pk-1)" c 2(k)" we have that 8_k)(f) = f.

PrROOF. Fix F € A. It suffices to show that 0% (F[Xk—-1]) = F[Xk—1]. By using the coproduct

on A we can expand F[Xj_1] = Flzy + Xi] in powers of z¢ with some coefficients F; € A as
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Flog + X =350 z, F;[X)]. From Lemma 2.4.6 we have

O (Fx-1]) = 0™ (Flay + %)

=W (3" ai Fi[xy))

120

= TkCs, (Z 2}, Fy [ Xy, — i) Exp[—(t — 1)%136/%])
>0

= ThCa, F[ Xk — 2 + o) Exp[—(t — 1)a ' %]

= Theu, F[X4]) Bxp[—(t — 1)z} %)

= 75 F[Xk]cs,, Exp[—(t — 1)z} ' Xy]

= 1, F[Xg]

= F[Xs_1].

(k)

We will need the following lemma showing that the maps 0 are Alzy + 241 + .. .]-module

maps.

LEMMA 2.4.8. For all G € A and g(z) € (k)"
O™ (Glay + w1 + .. J9(2)) = Glag + ap 1 + ... ]0% (g()).

PrOOF. It suffices to take g(z) € Z(k)* to be of the form g(z) = f(z1,...,x,)F[Xk] with

fe @,‘: and F € A. From Lemma 2.4.6 we get the following:
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O™ (Gl + 2ps1 + - . g(@)) = 0N (G[Xk_1]g(x))
= Thy, G[ X1 — i) f (@1, ..., 2) F[ X — 5] Exp[—(t — )2, ' X4
= Tita, G[X1] f (21, .., 2x) F[Xy — 2] Exp[—(t — D)2 Xy
= 7k G[Xkca, f(@1, ..., 2) F[ Xy — 2] Exp[—(t — )2, ' X
= G[Xp-1]TkCa, f (21, ., k) F[X), — 23] Exp[—(t — 1)z} ' X]
= G 0™ (f (21, ., 2p) FIXR))

=GRk (g(x)).

COROLLARY 2.4.9. For G € A and g(z) € 2(k)*

PROOF. Take G € A and g(z) € £(k)*. Expand G[X] as a finite sum of terms of the form
fi(z1, ... xp—1)Filxg + .. .], where f; € P,y and F; € A so

GIX] = Zfi(xl, w1 Eyrg 4.

By Lemma 2.4.8 and the fact that o™ is a ,@,":_l—linear map from Definition 2.4.5 we now see that

0B (G1X)g(x)) = 3 0Y (fier, s apmn) Filey + - Jo(a)
=3 filwr sz B+ 100 (g(a))

= G1X]0™ (g(x)).
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We can now construct a full #-weight basis of 22;},. We parameterize this basis by pairs (u|\) € 3.
Combinatorially, this is reasonable because, as already mentioned, the monomial basis for 2,

{zFmy | (p|A) € £}, is indexed by X.

DEFINITION 2.4.10. For (u|)\) € ¥ define the stable-limit non-symmetric Macdonald func-

tion corresponding to (u|\) as

_ a(f(u)ﬂ) 9T

B * - N

For a partition A define
(2.1) Ay = Eg)y) € A

Later in Theorem 4.2.12, we will show that the collection {E(M)\) | (1|A) € X} is a #'-weight basis
for 27, .

REMARK. Note importantly that E(uIA) € P(u)*" and E(ulk) is homogeneous of degree |p|+|\|.
Further, we have E(MW)) = E# and E(@IA) = A,. Notice that in Definition 2.4.10 it makes sense
to consider E(MA) when p is not necessarily reduced. However, it is a montrivial consequence of
Theorem 2.6.5 that an analogously defined E(#*op\) s a monzero scalar multiple of E(HP\)' Thus there
is no need to consider the case of i non-reduced when building a basis of 27, .

There is another basis of P/, given by Ion and Wu in their unpublished work [27] which is
equipped with a natural ordering with respect to which the limit Cherednik operators are triangular.
It follows then that after we show in Corollary 2.4.12 that the E(m,\) are % -weight vectors that each

E(MA) has a triangular expansion in Ion and Wu’s basis.

REMARK. The stable-limit non-symmetric Macdonald functions E’(M)\) as defined in this chapter
are distinct from the stable-limits of non-symmetric Macdonald polynomials occurring in [19]. In
their paper Haglund, Haiman, and Loehr investigate stable-limits of the form (Eomyu)m>0 where
w is a composition. Their analysis does not require the convergence definition of Ion and Wu as
the sequences (Egmy,)m>0 have stable limits in the traditional sense. Further, the limits of the
(Eomsp)m>0 sequences are symmetric functions whereas, as we will see soon, the E’(ulx\) are not

fully symmetric in general.
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The following simple lemma will be used to show that since the Eu* » are & -weight vectors the
stable-limit non-symmetric Macdonald functions E(ul ) are &/-weight vectors as well. We describe

their weights in Corollary 2.4.12.

LEMMA 2.4.11. Suppose f € P(k)*" is a ¥ -weight vector with weight (a1, ..., a,0,0,...). Then
8(_k)f € P(k—1)T is a % -weight vector with weight (a1, ...,a,_1,0,0,...).

PrOOF. We know that from [26] for ¢ € P(k)* and 1 < i < k — 1, %8@9 = 8@%9 so
@/i@(_k)f = 8(_k)%f = ai(‘)(_k)f. From [26] we have that if i > k then % annihilates & (k — 1). Since
oW fePk—1)* foralli >k, %0™ f =o0.

0

EXAMPLE. Here we give a few basic examples of stable-limit non-symmetric Macdonald functions
expanded in the Hall-Littlewood basis Py and their corresponding weights.

-1

~ q o~
. E(@|2) = 732[1‘1 +.. ] + 1_7(1_11573171[11,‘1 + .. .]; weight Qg2) = (0, 0,.. )
-1
° E(Qm) = LL“% + mﬂflpl [x2 +...]; weight Q(2)p) = (q2t, 0,...)
J E(1,1,1|@) = X1T2T3; weight &1 119y = (qt®, qt*, qt,0,...)
o E(1,1|1) = mxoPifrs + .. ] weight a1y = (qt°, qt*,0,...)
o E(1|1,1) =mPrafre + - ; weight a)1,1) = (qt°,0,...)

As an immediate result of Lemma 2.4.11 we have the following:

COROLLARY 2.4.12. For (ul\) € %, E(M)\) € P, is a W -weight vector with weight Quln) given

explicitly by

. Ay (i) = gt EHNFI=00a @4 < 0(p), i # 0
A(uin (4) =
0 otherwise.

PROOF. By Definition 2.4.10 we have that

— oWm+D) a(f(u)ﬁ(/\))gu*)\

LOPINE
51



From Theorem 2.4.3 we know that E#* A Is a #-weight vector with weight a,,. Recall that from
Lemma 2.4.1 that &, (i) = ¢ Nt N+H1=8ual) for < ¢(1 % \) and equals 0 for 4 > £(u % \).
Using Lemma 2.4.11 inductively now shows that E(u\k) is a % -weight vector with weight &,y

given by the expression given in the statement of this corollary. (Il

By using the HHL-type formula we proved for the functions Eu in Corollary 2.3.2, we readily

find a similar formula for the full set of stable-limit non-symmetric Macdonald functions.

COROLLARY 2.4.13. For (u|\) € ¥ we have that

~ B =iay o) o1 (e(w))
Ewpy =D, ) L@)ar 7wy X
v partition g s \x0¢¥) —[0( 1) +L(\)+£(v
|| < ]+ A : non?a[tt(cif:)king(] Sl
Vi=1,...,.0(v)

vi=|o ™! () +E(N)+i)]

Blo=1(0(u)+1)| "+ Blo=1(0)+e0)) | (M) [Xe(u)+e0)]

where

~ o 1-t¢
~\ .__ —maj(c)coinv(c) o
[(3) := g~ mi@geon 11 (1 - q—(lg(u)+1)t(a(u)+1)> 11 (1-1).

u€dg’ (urAx00™)) u€dg’ (uxxx0°))
& (u)#0 (d(u)) o(u)#0 (d(u))

u not in row 1 u in row 1
Unfortunately, this formula is not nearly as elegant or useful as the HHL formula (2.2.2). The
main obstruction comes from not having a full understanding of the action of the Jing operators
A, on the monomial symmetric functions. If one were to find an explicit expansion of elements
like Ay, - - - Ba,(my) into another suitable basis of A (possibly the P, basis) one would be able to
give a much more elegant description of these functions. Likely there is a nice way to do this that

has eluded this author.

2.4.3. A, Basis for A and Symmetrization via the Trivial Hecke Idempotent. Lemma

2.4.7 shows that the following operator is well defined on 22}, i.e. independent of k.

DEFINITION 2.4.14. For f € 2(k)" C 2}, define

(2.2) 5(f)=0Y...oW .
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Then & defines an operator 2}, — A which we call the stable-limit symmetrization operator.
REMARK. Note that 7(E)) = Ay and 5(E(,n) = (Epu)-

DEFINITION 2.4.15. For all 0 < k < n define the operator e,(gn) c P — P oas

(m)py._ L ") —t(o)
(2.3) e (f) = [”"ﬂt!ge%: k)t( )=4T ().

Here &1k 5,y s the Young subgroup of &, corresponding to the composition (1F,n — k), T, =

T. is a reduced word representing o, and [m];! := Hﬁl(%

Sil

- Ty, whenever o = s, -+ -5 ) is

r

the t-factorial. We will simply write €™ for eé”) .

For n > 1 define the rational function

(2.4) Q) = Qulr, .y aait) =[] (B

1<i<j<n

).

xi—ay

We will need the following technical result relating the action of €™ on polynomials to a Weyl

character type sum involving £2,,.

PROPOSITION 2.4.16. For f(x) € 22}

(2:5) @) = o X @),
oSG

[l

PROOF. See Remark 4.17 in [33]. After translating the finite Hecke algebra quadratic relations
in [33] to match those occurring in this chapter the formula matches. 0

From the formula above in Proposition 2.4.16 we can show that the sequence of trivial idempotents

(€)1 converges in the sense of [26].

PROPOSITION 2.4.17. The sequence of operators (e("))nzl converges to an idempotent operator

€: P — A such that for alli > 1, €T; = e.

S

ProOF. From [30] in Chapter 3 and Proposition 2.4.16 we see that for all partitions A with
¢(\) = k and n > k that

(2.6) ™ () = [n[;ﬁ]t!w(t)P,\[xl o st
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where P)[X;t] is the Hall-Littlewood symmetric function defined by Macdonald (not to be confused
with PA[X] seen previously in this thesis) and vx(t) := [[;51 ([mi(A)]e!) where m;()) is the number

of i ’s in A = 11 (M2m2(N) ... Now we note that with respect to the t-adic topology,

_ |
[n k;]t _ (1 _ t)k:
so that

lim €™ (2}) = vy (¢)(1 — £)* N Py [ X 1]

and hence (¢ (2})),>1 converges. Note that following Macdonald’s definitions,
(@)1 = )V PX: 1) = Qi X; 1]

Since €™ T; = €™ for 1 <i < n—1 it follows that for all compositions x, the sequence (¢™ (2#)),>1
is convergent. Clearly from definition we have that for all symmetric functions F' € A and f(z) €
Pt

€M (Flay + ...+ 2] f(2) = Flz1 + ... + 2™ (f ().

It follows now from a straightforward convergence argument using Remark 13 that for all g € &7,
the sequence (¢ (Z,(g)))n>1 converges. The resulting operator e := lim,, ¢™ o Z,, is evidently
idempotent as its codomain is A and certainly € acts as the identity on symmetric functions.
Further, for all ¢ € N we have

el; = qurln ™ o=, T,

and since =,, commutes with T; for n > 7 + 1 we see that

hgle(") 0 =,T; = lim T o=, = lim o=, =

COROLLARY 2.4.18. For all k > 0 the sequence (el(gn))n>k converges to an idempotent operator

€ P — P(k)T such that for alli > k+ 1, e,T; = e

S

Proor. This follows immediately from Proposition 2.4.17 after shifting indices and noting that

the operators eén) commute with multiplication by x1,...,xg. ]

54



Now we will extend our definition of the stable-limit symmetrization operator ¢ to partial sym-

metrization operators in the natural way.

DEFINITION 2.4.19. For k >0 let 6y, : 21, — 2(k)T be defined on g € P(n)T forn >k by

(2.7) Gilg) = 0%V 0 (g).

REMARK. The operators o, are well defined by Lemma 2.4.7. In particular, if g € P(L)T for
0< €<k then 2(t)* C 2(k)™ and there is no ambiguity in defining 5,(g) = 0™ .. 0" (g) as

above. Note that oo = . Further, for all (u|\) € ¥ we see that in this new terminology

Eun) = o) (Epuea)-

Further, if k < £ then 0,0y = 0.

We will now show that as operators on 2/, ¢, = oy for all £ > 0.

as?

PROPOSITION 2.4.20. For all £ > 0, €y = 0y.

ProOOF. By shifting indices it suffices to just prove that € = o, i.e., the £ = 0 case. Further,
since both maps are Tj-equivariant A-module maps (see Corollary 2.4.9) it suffices to show that for
all partitions A, e(z*) = &(2*). From the proof of Proposition 2.4.17 we saw that e(z}) = Q,[X; 1]
whereas it follows from the definition of the Jing vertex operators that o(z*) = Py\[X]. Therefore,

it suffices to argue that Q[ X;t] = P»[X]. To this end we will prove that

(2.8) PAIX] = (2120 Expl(1 — 8)(z1 + ...+ 2) X Expt — 1) > Z]

1<icj<r 2

which by 2.15 in Macdonald Chapter 3 [30] is an alternative definition for Q,[X;].
Suppose A = (A1,..., ) is a partition. Note first that by definition Py[X] = Ay, - - - %, (1). We
will now induct on the number of operators % acting on 1 in the expression %y, --- %, (1). As a

base case

B, (1) = (21X — 27 T Expl(1 - 0)2,X] = (=) Expl(1 - 1)z X).

We claim that for all 1 < k <r
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(29)  Br- B 1) = (52 Bl =@+ 2)X] Bl -1 Y D).
k<i<j<r 7

Suppose the above is true for some 1 < k < r. Then

Br 1B, - - B (1)

= ,@)\]ﬁl <z2‘k e zi‘r> EXp[(l — t)(zk + ...+ ZT)X] Exp[(t — 1) Z ZJ]

- Zi
k<i<j<r
_ Z4
— () (e Y Exp[(1 = ) (2 4 - - + 2) (X — 21.1))] Exp[(t — 1) > ;{]
k<i<j<r 7

x Exp[(1 —t)zp—1X].

Now we use the additive property of the plethystic exponential namely,
Exp[A + B] = Exp[A] Exp|[B|

, to rearrange terms and get

A .
(2,57 22 ) Expl(1 = £)(2k + - - + 2) X] Exp[(1 — )21 X] Exp[(t — 1) > ;7]
k<i<j<r 7

LI

x Exp[(t — 1
(=1~ o

)]

which simplifies to

o .
(57 2 ) Expl(l—t)(ze—1 + 2k + ...+ 2) X|Expl(t —1) > =
k—1<i<j<r

]

2

showing that the formula (2.9) holds for all 1 < k < r. Taking k = 1 shows equation (2.8) holds.
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As an immediate consequence of Proposition 2.4.20 we find the following enlightening description

for the E(#I ») functions.

COROLLARY 2.4.21. For all (u|A) € X,
(2.10) By = lim 621(2)(EM*A*O”*(Z(NHZ(A)))'

In particular, for partitions X, A\[X] = (1 — t)!Mu\(t)Py[X; ¢, t] where Py[X;q ', t] is the

symmetric Macdonald function. As a consequence the set {Ay : A € Y} is a basis of A.

REMARK. The Py\[X;q,t] are the symmetric Macdonald functions as defined by Macdonald in [30]
and seen in Cherednik’s work [9] not to be confused with the modified symmetric Macdonald func-
tions IA-LL seen in many places but in particular in the work of Haiman [2/]. Further, Corollary
2.4.21 gives an interpretation of the E(M)\) as limits of partially symmetrized non-symmetric Mac-
donald polynomials. Goodberry in [18] and Lapointe in [28] have investigated similar families of
partially symmetric Macdonald polynomials. Up to a change of variables and limiting these different

notions are likely directly related.

In order to prove the first main theorem in this chapter, Theorem 4.2.12, we will require the

following straightforward lemma.

LEMMA 2.4.22. For any composition  there is some nonzero scalar v, € Q(q,t) such that

5(EH) = ’Y,uAsort(,u)
where v, = 1 when p is a partition.

PrOOF. We know that for all partitions A, 5(5’)\) = A, so this lemma holds trivially for
partitions. Now we proceed by induction on Bruhat order similarly to the argument in the proof of
Theorem 2.4.3. To show the lemma holds it suffices to show that if u is a composition and k£ such
that sg(u) > p in Bruhat order and E(Eu) = VuAsort(p) for v, # 0 then 5(E5k(u)) = Vor () Asort (1)
for 7, (u) # 0. To this end fix such p and k. Then by Corollary 2.4.4

(1= t)auk+1) \ =
Gu(k) — Gk + 1>> a

Esk(#) = <Tk +

From Proposition 2.4.20 & = lim,, €™ so that 5T} = &. Therefore,
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o(Bao) =7 (7 25 Sz 1) P)
- <1 + a(j(;)tiagiizk++1i)> 5
(

Gu(k) —tau(k +1))
(k) — (4 1)) e

By Lemma 2.4.1 we see that since si(u) > pu it follows that a, (k) # ta,(k +1). Hence, v, () :=
<%) Yu 7 0 so the result follows. O

(—%;&?{_?}i‘fﬁiff) Yu in the proof of

REMARK. Note that using the recursive formula s, () =
Lemma 2.4.22, the formula for the eigenvalues oy, (k) in Lemma 2.4.1, and the base condition
Yu =1 for p a partition, it is possible to give an explicit expression for vy, for any composition fi.

However, all we need for the purposes of this chapter is that v, # 0 so we will not find such an

explicit expression for 7,.

2.4.3.1. First Main Theorem and a Full % -Weight Basis of &,. Finally, we prove that the
stable-limit non-symmetric Macdonald functions are a basis for Z},. To do this we will use the
stable-limit symmetrization operator to help distinguish between stable-limit non-symmetric Mac-

donald functions with the same % -weight.
THEOREM 2.4.23. (First Main Theorem) The E‘(u\k) are a % -weight basis for P..

PROOF. As there are sufficiently many E(u\ ) in each graded component of every P2(k)T it
suffices to show that these functions are linearly independent. Certainly, weight vectors in distinct
weight spaces are linearly independent. Using Lemmas 2.4.1 and 2.4.12, we deduce that if E( LW
and E(u<2)|/\(2>) have the same weight then necessarily u(l) = M(Q). Hence, we can restrict to the

case where we have a dependence relation

clE(M)‘(l)) + ...+ CNE(M)‘(N>) =0
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for XV ... X)) distinet partitions. By applying the stable-limit symmetrization operator we see

that

5(61E(“|>\(1)) 4+ ...+ CNE(M)\(N))) = 5(61EM*)\(1) 4+ ...+ CNE“*)\(N)) =0.

Now by Lemma 2.4.22, 5(Eu*)\(i)) = 'yu*A(i)Asort(“*)\(i)) with nonzero scalars v, @) yielding
0= Cll‘Asort(,u*)\(l)) +oF C;Asort(p*MN))‘

The partitions A(?) are distinct so we know that the partitions sort(u * A?)) are distinct as well.
By Corollary 2.4.21 the symmetric functions .Asort(u )y are linearly independent. Thus ¢, = 0

implying ¢; = 0 for all 1 < ¢ < N as desired. ]

2.5. Some Recurrence Relations for the E(u\ \)

In this section we will discuss a few recurrence relations for the stable-limit non-symmetric Mac-
donald functions. We start by looking at the action of the Demazure-Lusztig operators T; and the

lowering operators J_.

PROPOSITION 2.5.1. For (u|A\) = (u1, .-y e A1y oy Ak) € X if pr > A1 and pp—1 # 0 then

) (7 _
67 (E(Mlv"?lj/’!'lAl?“'v)\k)) - E(l"/l7"'7MT—1|M7'7>\17"'7>‘1€).

Proor. This follows immediately from the definitions of E(m ) and 8(_”. 0

PROPOSITION 2.5.2. Take (u|A\) € ¥ and suppose 1 < i < €(u) — 1 such that s;(u) > p and
s;(u) € Comp™@. Then

- (1 = )i +1) ) =
E ) = j—jl — R ~ . '
(si(p)|N) < + a/#*)\(l) — Oé/pk)\(z + 1) e

PROOF. Since s;(u) > p we know that s;(p* A) > px X\ so by Corollary 2.4.4

~ (I=t)aua(@+1) \ =
£, = E = - = s E *
(o) < T En ) — G 1 1))
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(¢ (u)+1) L) +N)

Now we know T; commutes with the operators 9= and thus we see that

P N Gy )

D) gl <<T L (1= D@+ ]) > EM*A>
Apr (1) — Qpan(i + 1)

< (1 —t )& (i + 1) ) Pl U+ (E
Oz’u*)\ au*)\(l + 1)

< 1—taw(z+1) )E
O[.U»*)\ O‘u*)\(l + 1) (-

Esyuyn) =

PROPOSITION 2.5.3. For (u|\) = (p1, - .., pr|\) € X we have that

Yux E(

Tr B = 1 oftr— 1,0, | A)

’y(ulr"7u’l‘*1707ur)*>\

Proor. First note that by Corollary 2.4.12

Or(E ()
= (T (% — D) + (1~ )% 1) B

= (@pr(r) = )T Euny + (1= 1)(0) By

= &M*A(T)Trﬁ(m/\)-

and by Lemma 2.4.1 ay.\(r) # 0 since p, # 0. Therefore, ng(E(m »)) is nonzero and therefore

must be a #%-weight vector with weight (v (1), ..., @ua(r — 1),0, a0 (7),0,...). By using the

explicit formula for the eigenvalues o, (%) from Lemma 2.4.1 we see that for 1 <i <7, a (i) =

exactly when p; = 0 and further, for all 1 <@ < r with p; # 0, 0. (7) = g"it% for some b;. Hence

by Theorem 4.2.12 and Corollary 2.4.12, qb,,(E(M)\)) is of the form

E(N‘)\ Zal[ ----- pr—1,0, Mr' )
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v ranges over a finite set of partitions v and a, are some scalars. Note that we have

F(Br(En)) = F(@uan (1) Tr B0

and since 01, = o

(¢r( (|\) )) = a,u*)\(r)a(E(uP\)) = a,u,*)\(r)'}/u*)\-Asort 1EN)

using Lemma 2.4.22. Similarly, we see that

5 (Z aVE(ul,...,Hr—I:O’/‘LT‘V)> =
12

Z QY (1ot —1,0ptr i Asort ()
s fr—1,0, 1) % ) = sort(u * v) for all v

12
since sort( (1, - -

Thus

sort (pxA) E a Asort (pxv)

where

o = Y (pa s pir—1,0,17)

v &M*A(T)’Y,u*/\

By Corollary 2.4.21 we know that the Ag are a basis for A and so we see that the only possible

(SN (r)’Y[,L*)\

partition v that can contribute a nonzero term in the above expansion is ¥ = A. Further, a) =1
and thus a) =

pp— 1,0, ) %A
Therefore,
E o~ T E . &u*/\(r)’Yu*A B
Gr(Eny) = Quer ()T By = (11 ottr—1.0,417 )
fy(ula"'7/117‘*1707/1/7')*>‘
which yields
~ _ fyl‘*)‘ ~
T’“E(MP\) - (11 0n) )\E(ulv---,urfu(),urlk)'
1yeeoyr—1,U, 1 ) *
O

DEFINITION 2.5.4. Define 7y, := X1 Ty *--- T,

L, considered as an operator on P} .

REMARK. These operators are the same as the corresponding operators of the same name defined
by Ion and Wu up to inversion and some scalars

We have defined the operators as above for
convenience.

The operators m, and T, are used by Ion and Wu [26] to give operators analogous
to the d,d* operators in A4
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LEMMA 2.5.5. The sequences of operators (Tm)m>1 and (Tm)m>1 converge to operators m,T :

P — PT respectively with actions given by

o (2" (X)) = 2Ty - T Mt g FIX
o m(x}' 2P F[X]) = x3' -2k FIX + (g — D).

PROOF. Let (fmm)m>1 be a convergent sequence with limit f € Z2(k)T. We start by showing
the sequence (7, (fim))m>1 converges to an element of 2. It follows directly by the definition of
convergence that there exists some M > k such that for all i and m with m > M and k+1 <i <

m — 1, T, fru = fmn. Therefore, for all m > M
~ _ -1 -1
T (fm) = 2171} D fm

which clearly converges to 217} L. T, L. Tt follows then that the sequence of operators (Tm)m>1
converges to an operator which we call 7. By considering f = 27" - - 23* F[X] with F € A we get
the first formula in the lemma statement above.

Next we will show the sequence (7, (Em,(f)))m>1 converges. Expand f as

N
(4)
f= E cizt Fi[X]
i=1

for ¢; € Q(gq,t), compositions u(i), and F; € A where we may assume each composition ,u(i) has

length k so that for all m > k
Z clx“( Filx1+ ...+ x).

Applying 7, to Z,,,(f) gives for m > k

(@)

ch xk+1F[qx1+3:2—|—...+xm]
so therefore we get
‘ _ N W
lim (2 (£)) = S ciaht -l FIX + (g = D]
i=1
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Thus the sequence of operators (mp,)m>1 converges to an operator which we call 7. Lastly, by
applying this formula to f = z7'---2}* F[X] with F € A to see the second formula given in the

lemma statement. O

In line with the above results in this section we will now give a partial generalization of the

classical Knop-Sahi relation regarding the action of the 7 operators on Macdonald polynomials.

PROPOSITION 2.5.6. For all compositions p

#0705 (B,) = 2y7m(E,) = Ere.
PROOF. Suppose ¢(u) = n. Recall that for all m > 1

(Y("+m))—1 — tn—i—m—lﬂ—l T—l L. T—l

n+m n+mt1 n+m—1-

Therefore, by recalling the eigenvalue notation in Lemma 2.4.1 we have

tn+m_17-‘-;_il_mTfl N Tni&mflEM*om = (Yn(i;m))_lE#*Um = aflm) (n + m)_lEu*om

so that

+m—1 -1 -1 _
ghTm a&m) (n+m)e Ty - T, Epom = 21 pm Epsom .

From Lemma 2.4.1 we see that

tn+m*1a£bm) (n+m) = #4070}

which gives

t#{j:uﬁo}xljﬂl—l T Esom = #7570}

n+m—1 %n—l-m(E,u,*Om) = 1'17Tn+mEﬂ*0m.

From the classical Knop-Sahi relations (see [19]) applied to E,.on we get
$17Tn+mEu*Om = El*u*om—l.
Applying Corollary 2.3.2 and Lemma 2.5.5 as m — oo now gives

t#{jruﬁo}%(ﬁﬂ) =nm(E,) = El*u'
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2.6. Constructing E(ul y-Diagonal Operators from Symmetric Functions

The main goal of the following section of this chapter is to construct an operator on .}, which is
diagonal in the stable-limit Macdonald function basis, commutes with the limit Cherednik operators
%;, but does not annihilate A. This operator will be constructed from a limit of operators arising
from the action of thl(m) +.. .+thn(1m) on &} . After finding the eigenvalues of this new operator
we will show that the addition of this operator to the algebra generated by the limit Cherednik
operators has simple spectrum on .

We begin with the following natural definition.

DEFINITION 2.6.1. For F' € A define the operator \Ilg;n) L P P by
(2.11) o= Fevy™ 4 ey o),

Further, for a composition p with £(;) = n and m > 0 define the scalar mLm) (q,t) as

n+m

KO (g,1) =Y " malm (i),
=1

Recall from Lemma 2.4.1 that a&m) (1) is given by Yi(n+m)Eu*0m = aLm)(i)Eu*om.

LEMMA 2.6.2. For all compositions p the sequence (m&m)(q,t))mzo converges to some k,(q,t) €

Q(q,t). Further, k,(q,t) = Ko (g, t) for allk > 0 and k,(q,t) = kg, (q, 1) for all 1 < i < () —1.

i

ProoOF. Using Lemma 2.4.1 we get the following:

n+m
KM (g,1) = > t"Tma(m (i)
=1
n n+m . '
:Ztn—i-ma’gm)(i)_’_ Z t#{j:uj7é0}tm+1—(z—n)
i=1 i=n+1

n

= Z t”ag)) (Z')tm]l(m:o) + G #0} Z gm—itl

i=1 i=1
= "0 @)+t Y (i) + FUmTNN "4
Hi#0 wi=0 i=1
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Therefore,

L+#{7:; 70}

(2.12) Ku(g,t) == li%n HLm)(q,t) = Z t"a,&o) (i) | + 17

i1 70

€ Q(q,1).

The last statement regarding r,.ox(¢,t) and kg, (,)(q,t) follows now directly from Lemma 2.4.1

and classical DAHA intertwiner theory. O

REMARK. Recall from the proof of Lemma 2.4.1 that

100 = ghsgnt1=Au(),

Applying this to the Lemma 2.6.2 gives the combinatorial formula

t1+#{5:p;#0}

i gnt1=Bu (i),
=t

Hi#0

ku(g,t) =

If we consider the partition \ to have an infinite string of 0’s attached to its tail then
e .
k(g t) = Zq’\it’.
i=1

Notice that this is exactly equal to

t

T (1= (=D~ 9)Bx(g,1))

where By(q,t) is the diagram generator of X in [22].
COROLLARY 2.6.3. Let \ and v be partitions. Then kx(q,t) = k,(q,t) if and only if A = v.

Proor. This follows readily from the identity
s .
ralg,t) =Y Nt
i=1

given in the prior remark. (|

In this next result we will show that the sequence of operators (\I/gf))mzl converges to a well

defined map on Z,. As expected these operators are well-behaved on sequences of the form

(m)
€u(u) (B

sequences. However, this is not a sufficient argument to show the convergence of the (‘III(JT))mzl.
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In order to obtain a well-defined operator on 7, from the sequence of operators (Wéﬁn))mzl one
needs to show that given an arbitrary convergent sequence (fp,)m>1 the corresponding sequence
(\I/gln)( fm))m>1 converges. Therefore, the difficulty in the following proof is to show that the ‘I/z(aT)

are well behaved in general.

THEOREM 2.6.4. The sequence of operators (‘I’z(vT))mE converges to an operator Wy, : P —

DL which is diagonal in the E(M\A) basis with
Uy (Eguiny) = Fusa(@; ) By
PROOF. Notice that every element of 92/ is a finite Q(g, t)-linear combination of terms of the
form T,2*F[X] where o is a permutation, ) is a partition, and F € A. Therefore, to show that
the sequence of operators (\I/g'?))mzl converges it suffices using Remark 13 to show that sequences
of the form
(U T2 Flay + .+ 2m)))ms1

converge. For m sufficiently large, T, commutes with \IJ]E,T) = tm(Yl(m) +... 4+ Yn(lm)) so it suffices

to consider only sequences of the form

(\Ijgzw) (2 Flzy 4 ..+ 2m)))m>1-

Let A be a partition, k := ¢(\), F' € A, and take m > k. Recall that ﬁ(m)Xl = thl(m)Xl from
which it follows directly that z(m)Xi = thi(m)Xi forall 1 <i<m. Then forall 1 < i<k we

have that since \; # 0,
Y " APy + .+ ap)) = V@ Flo 4+ 2)).
Therefore,
V™ Y )@l 4t am]) = (VY 4 A Y@+ A+ 2).

Now since 22 F[x1 + ... + x,,] is symmetric in the variables {k + 1,...,m} we see that
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V) 4 YD) @ Fla 4 )

= (tmika e T17TmT_1

m—1"

T AT T - Tymg Tl T + A Ty - Tim)
X (2 Flz1+ ...+ 2p))
=" T R T A Ty T (2N Fzy + L 4 2)])
= ("R T A TR T Ty T (2 kaF[qxl + 224 ...+ Ti))
= (tm_k + tm_k_lTkH +oo+tTy—1 - Tpa) (Tk i Tlxg‘ . kaF[qml 4+ x4+ ...+ fcm]> .
Notice that since T, - ‘-Tlxé\ . kaF[qxl + x9 + ... + x| is symmetric in the variables {k +

2,...,m}

(m) >\1 >\k _ )\1 )\k

ek+1(Tk-~~T1m2 ~--:pk+1F[q:C1+x2+...+:cm})—Tk~-T1x2 ---xk+1F[qx1+x2+...+xm].
Therefore,

VI A YD) @ Fla 4 )
=™ tT, TkH)e;:JZ)I(Tk Tyt - xk_HF[qwl +aa+ ...+ T

= (" e (T T -t Flgay + @2 + .+ o))

where the last equality follows from

gkl g2 4+ T T\ (m) ()
gm—k—1 { gm—k—2 1 1] €1 =

Putting it all together we see that

T (A Flzy + ...+ )
="V + 4 YY) @ Fla + .+ 2))

=" 4 YN @ F a4 ) T 4+ Y @ Pl 4 )
= YN @Al 4t an]) FHE )

X 6§€m)(Tk“'T1UC§ . kaF[q:m + T+ ..+ T))
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which by Theorem 2.1.5 and Corollary 2.4.18 converges to

t

(Z4+ ...+ %) (@ FIX]) + -

ex(Ty, - T -- -:rzilF[X + (¢ — D)a1)).

Therefore, the limit operator ¥, := lim,, \Ilgln) is well defined.
We will now show that the E(u\ ) are weight vectors of W), and compute their corresponding

weight values. Let (u|A) € ¥. By Corollary 2.4.21 we have that

E(MA) = lim 6%1)) (B pnsom—(em+e0) )-

Therefore, by Proposition 6.21 from [26], Lemma 2.6.2, and the fact that symmetric polynomials

in the Y; variables commute with the T} elements it follows that

‘IJP1 (E(M)\))
= hﬁln \I/I(J’I”) (e%?) (EH*A*Om—@(wM(A)) )

= ]inrln tm (Yl(m) + ...+ Yn(@m))eyz)) (EM*/\*Om—(Z(u)JrZ()\)))

= lim EéZL)) (tm(Yl(m) + ...+ Yn(,Lm))EM*A*Omf(Z(H)JrE(/\)))

(m)

(m—((u)+L£(N))) (q, t)ef?;) (E“*,\*(]m—(f(#)“'f()\)) )

= 0 (@, ) E (-

REMARK 14. From the proof of Theorem 2.6.4 we see that in particular, for partitions A we have

that

Wy, (AX) = T (1= (1= )(1 = 0) B(a, 1) AN X].

We saw that in Corollary 2.4.21 A\[X] = (1 —t)*Muy(#)PA[X; ¢ 1, 1] so, following the argument of
Haiman in [22], the operator t—1(1 — t)¥p, is up to a change of variables equal to A’'. Therefore,
we can view t~1(1 — )V, in a certain sense (after changing variables) as extending the operator

A from A to .. Further, Theorem 2.6.4 does not follow immediately from the work of Ion and
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Wu in [26] and in particular,

Uy, 9 +%+...

although the latter operator is certainly well defined in a weak sense as a diagonal operator in the

Ex) basis. The easiest way to see this is to note that %1 + % + ... will annihilate A whereas ¥y,

acting on the basis Ay of A has nonzero eigenvalues rkx(q,t) # 0.

THEOREM 2.6.5 (Second Main Theorem). Let Y denote the Q(q, t)-subalgebra of Endg(,.(25)
generated by W, and %; for i > 1. Pt has a basis of ?—weight vectors and every ?—weight space

of P, is 1-dimensional.

Proor. Since ¥,, is diagonal in the E(M)\) basis, see Theorem 4.2.12, it commutes with each
%. Therefore, Y is a commutative algebra of operators on 7 so it makes sense to ask about its
weights in Z},. To show that the Y-weight spaces of P} are 1-dimensional it suffices to show that if
(MIXDY £ (@A) for (WAL, (LD |AP) € ¥ with E(u“)\)\(l)) and E(M@)‘)\(g)) having the same
% -weight then the ¥, eigenvalues for E(H(l)lA(l)) and E(#@)p\(g)) are distinct. Necessarily, from the
proof of Theorem 4.2.12, if E(M(1>|/\(1)) and E(M@)‘/\(z)) have the same & -weight then ) = 1@ = 4.
Since (u[AM) #£ (uA®) it follows that A # A2 so that sort(u A1) # sort(u * A?). From
Lemma 2.6.2 we then know that KA #* Kya2) SO lastly by Theorem 2.6.4 we see that the

VU, eigenvalues for E(ul Ay and E(ul A2) are distinct. Hence, the ?—weight spaces of 2], are

1-dimensional.

Theorem 2.6.4 motivates the following definition.
DEFINITION 2.6.6. For F € A let Wp : 2} — P}, be the diagonal operator in Endgyy(24,)
in the {E(M\A) : (u|A) € X} basis given by
Ur(Eun)) = Flrua(a, )] Eg-

Notice that by construction every operator ¥z commutes with each of the operators %; since

from Corollary 4.2.12 we know that the E(u\ ») are a basis of 27
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2.7. Higher Delta Operators

At the end of the author’s prior paper [3] it is conjectured that for any symmetric function

+

as - An affirmation of

F € A the sequence of operators (\I/gl))nzl converges to an operator on &
this conjecture has direct implications related to the conjectural partially symmetric elliptic Hall
algebras mentioned by Carlsson-Mellit in [8] and the extended double Dyck path algebra IB%Zi”tt of
Gonzélez-Gorsky-Simental in [17]. The main purpose of this section is to give a proof of this

conjecture. The proof involves a detailed computation which will be done in stages. We will start

with some of the required preliminaries.

2.7.1. Preliminaries. There are a few elementary technical results we will need before we are
able to prove the main result of this section Theorem 2.7.8.

For the remainder of this section we consider n, k,r with n > k+r > 1. We begin by expressing

certain partially symmetric polynomials in the Cherednik elements Y; in terms of products of

consecutive Cherednik elements.

LEMMA 2.7.1.

e [t”Yk@l oY = 3 Ty T,

UeG(lk,n—k)/G(lk,r,n—k—r)
PrOOF. Notice that for 0 € &1k »,_1)/S 1k s p—j—r) the values o(k +1),...,0(k + ) are in-
creasing i.e. k+1<o(k+1)<...<o(k+r)<n—k and uniquely determine o. As such there is
a natural bijection &k ,_py/S 1k yn—k—r) = {(i1,- .- i) [k +1 <y < ... <ip <n—k} given by

o— (o(k+1),...,0(k+r)). Hence, it suffices to show that for all

(n) (n) _ 4—¥(o (n) (n)
Ya(k+1) T YO’ k+r) t ( )TO'Yk-Jrl cet YkJrTTofl.

We proceed by induction on the Bruhat order on &k 1)/ &1k 45—y Clearly, this formula

holds for o = 1.
70



Suppose k +1 =1ig < i1 < ... <% <ipgpq1 =n with 4,47 —i; > 1 for some 0 < 7 < r. Then

Yi(ln) Ly ™y () 3 ) )y )

15—1 74j+1 T4l 42 n
_ vy M) (=1, (M) (n) v(n)
=V Y T T Y T )Y YT v

=,y My T

it

Now if 0,0’ € 6(1;97”_@/6(1;@7“”_,‘:_” are the unique elements with o(k + ¢) = iy and ¢’ = s;,0.

Suppose that Yo(zlk)-‘,-l) e Y(f?k?—i—’r’) = t_g(")Tng(Z)l e YéﬁlTa_l. Then from the above we find that
(n) (n)
Yo’(k+l) e Yo’(k+r)

Y™y @y @y y o)y

Gj—17 G+l T a2

— vy T

i1 ir
_ 41 (n) (n)
=t T Ya(k+1) Y k+r)Tij

= (O, Ty Ly T T

—L(c’ n) n)
= =T, Yy T

Now we may write a product of consecutive Cherednik elements in terms of .

LEMMA 2.7.2.

(n) (n)
tT”Yk—?—l T Yk—?r

= t(n—k)+---+(n—k—r+1)(Tk T (Thgr - To) -+ (T - - T (T - Tkjrll) . (T7:—11 e Tl;rlr)‘

PrROOF. We will show this result by induction. For » = 1 we see that

—k -1 -1
Y = T T T T
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Now we find

r+1)n n) (n)
¢t lc(+1 T Yk+r+1

(n) (n) (n)
= thkﬁl e -Ykﬁrt”YkZm

= t(n*k)+--~+(n*k*T+1)(Tk o T1) e (Tt - - TT)W;"L(Tn—_lT

= t("*k)+--~+(n*k*T+1)(Tk o) (Thgg - Tl (T

% (tn—k—er_H .. 'T17TnT7;11 .. .T];_lr_‘_l)

— (n=k)+..+(n—k-r) (Th - T1) - (Tpgry - - TT)W’I’{I‘,(TH_}T ..

-1 -1
X Thar - T Tty - Tty

Looking closer we see

(T D) - (T T ) T - T

:(Tn:lr"‘T 1)"'(Tn_—11"'T_1 VT 1 - -

k+1 k4+r+1

:(Tn_—lr"'T 1)"'(Tn_—12"'T_1 VT 1 - -

k+1 k4+r—1

= (T}~ "Tl)(T{_lr .. 'Tl<;_+12) e (T7;11 ool

72

-1
T

—1
T

.T—l)...(

k+1

Ty

n—1

k+r+1)'

~T1(T_1 ..

-1 —1 )
( n—1""" Tk—i—r)tnyk(zr—l—l

— -1
( njl e Tk—i—r)

—1 —1
LTk

-1
’ k+r+1)



Therefore,

(Ty - T1) - (Tppy - Ty (T2 - - Tk_+11) (T 'T;;J:T)Tkw Ty T Tk_+1r+1

-1 -1 -1 -1 -1 -1
— (Tk .. TI) Ce (Tk'Jr’l"*l A TT)W;(T]{ A Tl)(Tn—r Ce Tk+2) A (Tn—l ce Tk—l—’r—&-l)ﬂ-nTn—l R Tk—i—r—i—l

= (T T1) - (Tpgr—1 - T (Thoy - - - Tr+1)7T:L(Tn_—1T . Tk_—i-12) . (Tn_—ll .. 'Tk—+1r+1)

-1 -1
x 7Tnirnfl e Tk+r+1

= (T T1) (Thgr—1 - T (T - - - TrH)”ZH(T?:rq .. T];rll) .. (Tnilz . Tl;i-lr)

X (T{—ll e 'TI;+1T+1)
so that
1 (n) (n)
¢+ )nYkL T Ykir-ﬁ-l

=tk k) () s (They - T )7 PN (T .T’;rll) (T .TI;ETH)-

We need the following standard result.

LEMMA 2.7.3.

UEG(lk,n—k)/G(lk,r,n—k—'r)



PROOF. We see the following:

066(1k7n7k>

_ Z S e

gee(lk,n—k)/g(lk,r,n—k—r) 766(1k,r,n—k—7‘)

— Z Z H(73F) (o) —(7)

T€S 1k k) /S (1 rm—k—r) YEO 1k o)

. 3 C-CEN0 S )

UEG(lk,n—k)/G(lk,r,n—k—r) Wee(lkﬂ"an—k—ﬂ

=[n—k—r][r]¢ 3 ()= (5) ).

Ueg(lk,nfk)/G(lk,r,nfkfr)

The result follows.

Using the prior lemmas in this section now shows the following:

LEMMA 2.7.4.
er {t”Yk(:f)l +...+ t"Yé")} el(gn)

—— 1— tn—k—r—l—l 1— tn—k n
) (A ) () 0@ T T (B T
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PRrROOF. Putting together Lemmas 2.7.1, 2.7.2, and 2.7.3 we get the following computation:

e [T+ Y
- [t”Y,fj:)l + t"Y,ﬁ")} (eM)?
_ El(gn)er |:tnYk(+)1 4+ tnYn(n)] 6](;1)
- 3 O,y T e
ge@(lk,n—k)/g(lk,r,n—k—r)
UeG(lk,n—k)/G(lk,r,n—k—r)
= Z 4—40) ,(C")t("*k”“'*(”*k*”l)(Tk T (Tosr - To) (Tt -+ - T})
UEG(lk,n—k) /6(1k,r,n—k—'r)
(L T (T 1)
= Z +—4(0) 6](C")t(n—k)+~--Jr(n—/’c—“rl)(Tk T (Tosr - To) -+ (T -+ - T3)
UEG(lk,n—k) /G(Ik,r,n—k—r)
X W,Zel(:)

— () > 1("2") =" 7))t
€S 1k 1) /S 1k pn—k—r)
x e (T 1) (Tia -+ To) -+ (Tipr - Tr) el

_ [n — k¢! (n)
O R

ri1y (1 — R 1—t"k\ n
— ("2 <1t> <1t7“> &N Ty T (Thpy - Ta) -+ (T - Ty,

(Tk s Tl)(Tk+1 Tt TQ) e (Tk—I—r—l o 'TT)T‘-J;EI(;L)

O

The next result will be important for the proof of Theorem 2.7.7 where we will need to argue
that the operator e, [t"Yk(z)l .+ t”Yén)} preserves the space x1 ... z;Q(q,t)[z1,.. ., xn]G(l’“,n*M

in the polynomial representation.
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LEMMA 2.7.5.

e, [tnyk(ﬂ + ..+ t"Y,f”)} Xy X,
X X trk+(7d2rl) <1 _ tnkr+1> <1 _ tnk>
— X, X i DU S

1—t L=t
% 6]in) (Tk_l o Tfl)(Tk_Jrll .. -T2_1) .. (Tk_+1r71 .. .Tr_l)’f(’;eén)

PROOF.
e [V Y] (VX X

1 1— tn—k‘—r—‘rl 1— tn—k n
— ("3 (1—t> <1—tr> (T ) (Thr - Ta) -+ (T -

X W:Lelgn)Xl e X

1 1— tn—k—r+1 1— tn—k n
1 (H) (H) (T ) (Tigr -+ To) -+ (Typ -

X Xl

B t(r_QH) 1— tn7k7r+l o 1— tnfk
B 1—t 1—tr

% e,(Cn)(Tk T (Thgr - To) - (Tigr—1 -+ T) Xy -+ Xk+r7T;€§€n).

Further,

Torr—1 T Xpg1 - Xogp

=Thqr—1 Tt (T Xoq 1) Xpgo - Xo g
= Thgr—1 o1 (T X o+ X
= tThrr—1 - Tr1 Xo Xoyo - Xy T

= tXer—i-r—l o 'TT+1XT—|-2 T Xr—i-kTr_l
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=t X, i1 Trpat Xo 1 T 5 Xy - XT3

= tQXrXrJrlTk—i—r—l to Tr+2Xr+3 t Xr—i-kTrq_llTr_l

= thT e Xr“l’k*lTk_—‘,-lr—l e TT_]-.

By applying this argument repeatedly we find that

(T -+ T1) - (Thgr—2 - Tre1) D1 1) X1 -+ Xpgr

=t" Ty T1) - (Thgr—z - Tro1) Xy -+ Xk+r—1(Tk_+1T,1 T

:tTleXk(Tk_lTl_l)( k__,_l,,«_l"'Tril)

so therefore,
1 1 — tnfkfr+1 1— tnfk
) <1—t> <1—t7"> & (T T1)(Tir -+ Ta) -+ (Tipror -+ Ty)
X Xr+1 T Xk—i—rﬂ:;e]&n)

1-1¢

- 1— tnfkfrJrl 1— tnfk
_x, .. 'thrk+( ) <H> o () El(gn)(Tk_l .. .Tl—l) e k_+1r71 .. 'Tr_l)ﬂ'

- 1— tn—k—r—i—l 1— tn—k
—+("3") (> e <> e,(fn)trle .. 'Xk(Tk_l .. 'T1_1) e (Tk_—i-lr—l .. .Trfl)ﬁnek

Lastly, we have the standard coproduct formula for the elementary symmetric functions.

LEMMA 2.7.6. e, [X + Y] =>""_,es[X]er—s[Y].
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PRrROOF. Using the definition of e, we see that if Z = z; + 20 + ... then

11 <...<tp
so if we set Z = X +Y we have
IS
X+Y Z Z Xil'..Xis}/jl ”'}/}r—s = eZ[X]e'f'*S[Y]'
s=0 91<...<%p s=0

J1<...<Jr—s

2.7.2. Proof of Convergence. We will now use all of the lemmas proven above to show the

following result:

PROPOSITION 2.7.7. Forr > 1 the sequence of operators (\Ifgf))nzl converges to an operator e,[A]

on P}, . The operators e.[A] satisfy the following properties:

e ¢ [A ](E(u\)\)—er[’{sort(u*k)(% O ()
er[A], %] =

]

]

* [e/[A], T3] =
o [er[A],es[A]] =

er[Allpy oz 2(k)+ = ZH (1 —tl> er—s(, ) ek (T T1)(Thg1 - Ta) -+ - (Ths—1 -+ - Ts)m’.

5=0 i=1
PROOF. The structure of the following argument is similar to the proof of Theorem 59 in [3].
Notice that every element of 22, is a finite Q(g,t)-linear combination of terms of the form
Tax/\F[X] where o is a permutation, A is a partition, and F' € A. Therefore, to show that the

sequence of operators (\1/&7))”21 converges it suffices to show that sequences of the form

(\I/SZ) (T2 Flzy + ... + Zn]))n>1

(n)

converge. For n sufficiently large, T,, commutes with Ve ' = e, [t”Yl(n) 4+ ...+ t”YﬁEn)] so it suffices

to consider only sequences of the form

(UM (@ A1 + ...+ 20]))ns1.
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Let X be a partition, k := ¢()\), F € A, and take n > k+ 7. Set X' := (A\y — 1,..., \x — 1). Recall
that ¥, X, = #"Y\" X, from which it follows directly that ¥, X; = "V, X; for all 1 < i < n.

Then for all 1 < i <k we have that

t”Yi(n)Xl X = Z(")Xl X

) _ g

This means that as operatorson z ...z ﬂz, "y, . Note that these operators preserve the

subspace 1 ... Tk L@z Further, we may naturally extend this argument to show that as operators

on xi--- Tk ,@g for any aq,...,ar > 0, and any permutation v € Sy,

ny (n) ya ny(n) ya _ o) a <(n) \a
(t Y,y(l)) Lot yy(k)) S ot = (Y'y(l)) 1., (yy(k)) - ot

(n)

This is notable because, unlike the Cherednik operators Y, the deformed Cherednik operators

Y;(n) do not mutually commute. Therefore again as operators on 33;, forall0 <s<r

er Y Y IX X = e (VL YK X

Using Lemma 2.7.6 we now find the following:

e[tV Y Flay + .+ 7))

= e, [V Y)Y Y )@ Fle .t 2))

T
=S e[tV 4 Y e Y, A YD) @ Flay 4+ @)
s=0
Importantly, since 2*F[x1 + ... + x,] is symmetric in k 4+ 1,...,n,

e,gn)(xAF[xl +... 4z = az)‘F[acl + ..t @)

so that by using Lemmas 2.7.4 and 2.7.5 we find
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S etV o Y e[V L Y@ Pl )
s=0

=Y etV Y e+ Y eV X X (@ Pl . 2)
s=0

r n—k—s+1 n—k
- . () (41 (1 —t 11 (n)
_gwaﬂa+m+wkwvxﬂ“2%14>”(14§6k

% (kal e Tfl)(Tlgjl .. .T{l) . (Tkjrls—l e Ts_l)w;el(fn) (:p>‘ Flzy + ...+ zy,))

T

~ ~ a1y (1 — gn—k—stl 1 — ¢k
=S e,V VM X X () <> e <> e
s 1—+¢ 1—¢5

(T T T ) (T T me @ Floy 4 )
. —k—s+1 n—k
_ () )y, (51 (L=t Lot e
_E;%waVWWﬁWﬂ”<1_t'“1qﬁ #
-

X (T T (Thgr - T2) - (Thas—1 - To)mE (@ Flay + ...+ 2)).

From here it is clear that

li7rln \Ilg’:) (2 Flxy + ... + )

=2 11 <1 it) ers(Ph - )er (T 1) (Tosr - T) -+ (Thwsmr - To)m* (2 F X))

s=01=1

which is evidently an element of Z(k)* C &2, . Therefore, the sequence of operators (\I/g:))nzl
converges to an operator on ., which we will call e,[A].

We will now prove various properties of e, [A]. Forall 1 <i<k—1land 0<s<r

80



ek(Tk . Tl)(TkJrl RN T2) . (Tk+571 .. 'Ts)ﬂ—sn
= en(Tp T (Thosr - To) -+ (Tssr -+ Ts)Tppsm®

=Tk T1)(Thg1 - T2) - (Thys—2 To—2)Tits—1(Thgs—1- - Ts)m®

= Ekﬂ(Tk c Tl)(Tk—i-l R T2) - (Tk+5_1 .. -Ts)ﬂ's

= TiEk(Tk .. 'Tl)(Tk—i-l .. .T2) - (Tk—i-s—l .. -Ts)ﬂ's.

Therefore, for any f € x1 - -- 2, 2 (k)T by expanding f into a sum of terms of the form T,2* F[X]

where o € G and A is a partition with £(\) = k we find that

SNGEI| (1 t_ltl.> ers(Bs e )T T) (T - o)+ (T - T (f):

s=01=1
Now let (u|\) € ®. Using Corollary 47 in [3] (see Definition 2.4.10) and Proposition 1.7.5 we have

that

er[Al(E(un))
n)

= 1i7rln er [tnyl(n) 4+t t”Yén)](5§(M)(E#*/\*Onf(e(u)u(x))))

= lirILn 622)67« [t”Yl(n) 4+t tnYTSn)](EM*A*OTHM(M)HQ\)))

— Tim

n
- hTILn v [Z qSOrt(M*A)itl] 5222) (EM*A*O"*(‘Z(HHEO‘)))

=1

n

Z qsort (x4 £

=1

EM*A*OH(Z(M)JJ()\)))

=6 [Hsort(u*)\) (q, t)]E(uM) .
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To see that [e,[A], T;] = 0 we may check directly:

er[A]T;
= lim e, [t"Y" + ..+ "Y,("I|T;
= lim Tye, [t"V™ + ... + "V, ™)

= Tier [A]

Lastly, since the E(M)\) are a basis of 27, (Theorem 4.2.12) it follows that for all 4,7, 5 > 1,

o [e[A], %] =0
o [er[A], es]A]] = 0.

As an immediate consequence we have the following result confirming the conjecture posed in [3].

THEOREM 2.7.8. For any symmetric function F' € A the sequence of operators (\I/%n))nzl con-
verges to an operator on P, which we may call F[A]. These operators satisfy the following prop-

erties:

® F[A](E(M)\)) = F[’isort(u*)\) (Qvt)]E(m/\)
[F[A], %] =0

e [FIA]LT] =0

o [FA],GA]] = 0.

PRrROOF. Recall that the ring of symmetric functions A is generated algebraically by the ele-
mentary symmetric polynomials ej, ez, .... For any F' € A we may write F' = f(e1,e2,...,€,) S0
that for all n > 1

ol = f(ul, ).

er v

By applying Propositions 1.7.6 and 2.7.7 we find that (\I/EUT'L))nZI converges and that

FIA] :=1lim ¥ = fUm ™. lim T) = f(es[A], ..., e, [A]).

[
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For (pu|\) € @ we see that

FIA(Eq)

= f(el[A],..., er[A)(Equn)
= f(el ["isort(,u*/\) (Q7 t)]? <o Cr [Ksort(u*)\) (Q? t)])(E(M/\))

= Flbsort(uen) (@ 1) Egup)-
The other properties follow directly from Theorem 4.2.12 and Proposition 2.7.7.

EXAMPLE. The operator e3[A] acts on x1z2x3 P(3)T as

3

TN Ty T Tor?.
(1—t)(1—t2)63 324144131l 2m

t
(Z1% + DYy + D5%5) + 7 (%1 + P + Ds)es LT Tam +

If we instead consider e4[A] acting on P(0)t = A[X] then we get

th
1-t)1-t)1—-t3)1 -4

4
ETT .
)

As an example computation we have that

p2[A](E(4,1,2\5,4,2,2,1)) =

(q10t2 4 q8t4 4 q8t6 4 q4t8 4 q4t10 4 q4t12 4 q2t14 4 q2t16 + t18 4., ) E(471,2|57472,271).

In the next section we will explore a few interesting commutation relations satisfied by the A-

operators on &, .

2.7.3. Interesting Relations. In this section we compute some of the commutation relations
between the A-operators F[A] and the operator 7 on /.. These relations are conceptually
important because in the case of the finite rank DAHA in type GL, the analogous commutation
relations allow for one to develop a theory of intertwiners and the Knop-Sahi relations for non-

symmetric Macdonald polynomials.
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We start with the following result which will follow easily using the properties of Ton-Wu limits

and particularly Proposition 1.7.6.

PROPOSITION 2.7.9. For F € A
TF[A] = FI[A + (¢! — )#]7.
PrROOF. Let F € A and G;, H; € A such that
FIX+Y]= Z Gi[X]H;[Y].

We may compute directly:

FF[A] = im 7 F[Y™ + ..+ Y, ™)
= lim F["YV™ + .+ V™ 4 ¢ ey )R,
—lim FY,™ + ..+ Y, + (¢ = DY MR,
=1im > GtV + .+ Y Hi (g7 - Dy V)R,
=lim G ™ ey E (o - Dy )X T T
=limY G ™ 4 YOI E (g - DY) X T T
=1im Y Gi[t"V" + .+ Y H (g - )Y
= Z (lim G [tnYl(n) +...+ t”YTE”)]) (lim Hil(¢™" - 1)571(71)]) (hm %n>
=Y Gi[AlHi(¢' - )#7

=F[A+ (¢! - 1)H)F

By applying Proposition 2.7.9 to F' = p, we see the following:
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COROLLARY 2.7.10. For everyr > 1
7, oe[Al] = (7" = )27
PRrOOF. Using Proposition 2.7.9 applied to F[X] = p,[X] gives

wpr[A] = pr[A+ (g7 = DAJT = (pe[A] + (77 = D).

Lastly, we compute the full commutation relations between the limit Cherednik operators %; and
7. Interestingly, most of these relations mimic the standard finite rank DAHA situation except for

2% 7 which now involves A.

PRrorosITION 2.7.11.

PROOF. For i = 1 we have that from Proposition 2.7.9
TA - AT = (¢ - D)7

and hence
W7 =7, Al (g —1).
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Let 7 > 1. We see that

220

= liTrln z(n)%n
= 1171111 Ty Typm, T - TN (X T T )
= 1jTan Iy Typry Xa T TN T

= lim¢" g - TIPX27TnTn__11 .. .T,—lTl—l R it

P, i n—1

= liint”_i“Ti_l T Xopm, T - T T Y

n—1"

=lim "y DX Ty D emn T T T T

n

n—1

= 117?””*”2)(1];_1 T e, T T AT T
= liznt”_”zXlTi_l ... TnglpTQ_I ... TiillﬂnT;_ll .. 'Ti_1T;11 R
= 11751115”—”2)(1];71 . Tszngl .. .Tlf_llpﬂnTy;ll .. -Tfle_ll ool
= lim X T T T Thpm T - T T Y - T
= li7£nt"_i+2X1T1_1 T ATy TypT T, T T
= 11713175”—”2)(1]11*1 e TAT g T T o T T
= 1171Ln Ry T Ty Thpm T T

= li7rln (X1t T ) (8P T s Tapm T - TN

n—1
= ()
= llTl;Ilﬂn}/;-le

=71

2.8. Specialization at t = 0,9 = ©

The goal of this section is to determine the specialization of the stable-limit non-symmetric

Macdonald functions E(u\ n) at ¢ = oo and t = 0. After adjusting for the (g,t)-conventions in
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this thesis, we will see that this specialization generalizes the well known specialization result of
Ion [25] about the non-symmetric Macdonald polynomials. We will show that the specializations
of the E(m ) give an almost symmetric generalization of the Schur functions s,y which satisfy
some positivity properties. Further, we will give an interpretation for the these almost symmetric
Schur functions in terms of Demazure characters.

In order to state and prove the main results of this section we will first need to review some
relevant information about Weyl symmetrization, isobaric divided difference operators, and key

polynomials.

2.8.1. Weyl Symmetrization and Isobaric Divided Difference Operators. We now
recall the definition of the Weyl symmetrization map and its partial symmetrization analogues.

Informally, these maps are the ¢ = 0 specialization of the eén) maps defined previously.

DEFINITION 2.8.1. Let 0 < k < n. We define the partial Weyl symmetrizer, W,gn), to be the
map

W Q(a, D)1, -, 2] = Q(g, )z, ... 2] S0F

given by

W (fn )= Y o f@) ] (1—91/9)

k+1<i<j<n

REMARK 15. Notice that these maps are defined over Q (over Z in fact) and hence in fact define
maps

W,gn) :Qxyy .. xn] = Qlay, . .. ’wn]G(lk,n—k).

It is not immediately obvious that Wén)(f(arl, ..y y)) s a well defined polynomial due to presence

of the nontrivial rational function

I ()

k+1<i<j<n

However, we may rewrite the given definition of W,En) as follows. Let 5,(€n) =0"x(n—k—1,...,1,0).
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W (1, )

1
- > ol T (7m)
L —xj/x;
UEG(lk,n—k) k+1<i<j<n
Ty
- > el T (375)
1 \w—a
066(11@’”7,{) k+1<i<j<n
(n) 1
- ¥ e[ T (55)
L Ti — T
UEG(lk,n—k) k+1<i<j<n

ZUEG(lk

(~1) @ (a5 f()

Hk+1§i<j§n (zi — )

,n—k)

Since the numerator of the above fraction is an alternating polynomial, i.e. s;(g) = —g for k +
1 <i<n-—1, it must be divisible by the Vandermonde determinant [[1,1<; <, (xi — ;). Thus

ngn)(f(xl, ..., Tp)) must be a polynomial.

LEMMA 2.8.2. As elements of Endgq)(Zn) the operators W,in) satisfy the following:

o« (W2 =W

° aW,gn) = W,En)a for o € &)
o oW =W foro € S i
o WW =w(" for k < j.

PROOF. These properties are straightforward to verify and we leave their verification to the

reader. O

LEMMA 2.8.3. For0<k<n



PROOF. We begin with the following computation:

W)

e sy, (Do (25 (@)

Hk’-i—l<z< <n+1 (i x])
J

L T T e e

oy x x
Hk+1§z<]§n+1 ( i ]) 566(1&”%’1) 766(11",nfk,l)\G(lk,nJrlfk)

1 — Z <_1)€(o')0_ Z (_1)5(7)7 (J:‘Sfinﬂ)f(x))

Hk+1§i<j§n+1 (zi — z5) 06 11

n+1l—k)

n—k,1) VES 1k n—1,1) \S 1k g 1-k)
1

a Hk+1§i<j§n+1 (z; — ;)

X Z (-1)")g (1 — S (=) R sk> <:U51(cn+1)f(x)> :

TES 1k k1)

(n+1)

(n+1)
Now notice that for all k <i <n, s, - - - $;X%% - 18t si(X5k ~¢). Further, if x,,11]g
then x,41[0(g) for any o € &yx ,,_j 1)- Thus we may write
1 1 (n41)
Wi () = X (Do (VT @) + znng
Hk+1<2<]<n+1 ( x]) S
T€O 1k p_k,1)

for some polynomial g.

Therefore,

_ E(n) ( Z 1)5(0)0 (xélgwrl)f(x)) + Tpi19

Hk+1<7,<_7<n+1 UEG(lk n—k,1)
_ ;gk_‘l_l ot Z (~1 )Z(a) (E(”)(xél(@nﬂ)f(x))) +0
Iiii<icj<n (@i — 7)) €S 1k n—k,1)
mk—il-l ! S
B [ S
Hk+1§i<j§" (i — ) €S 1k g 1)
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n+1 n
—1,00 Y e

. -1
Since we have that @), -z, 2% we see

=W ()

: > ) (2 ()

Hivrsicjen @ =2) \ee 07

= W ED(f@)).

The above lemma allows for the following definition.
DEFINITION 2.8.4. Let k > 0 define the operator Wy, on 21, as
Wy, == lim W™,

As we will prove later, the operators W) are the ¢ = 0 specializations of the partial Hecke

symmetrizers €.

DEFINITION 2.8.5. Define the isobaric divided difference operators, &1, ...8,-1, on P, by

rif — $i+18i(f).

Ti — Ti41

&i(f) =

LEMMA 2.8.6. We have the following relations:
& =¢
o {i&in1&i = &im&iin
o §i&j =& for i — gl > 1.

PRroOF. This will follow from Lemma 2.8.15 proven independently later in this section. (|

The above are the generating relations for the 0-Hecke algebra. For any o € &,, with a reduced
expression o = s;, - - - 8;, we define
§o =&y &y
The following lemma relates the Weyl symmetrizers ngn) to be the isobaric divided difference

operators &;.
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LEMMA 2.8.7. We have the recursion relation:
W,ﬁ") =&n-1"&kt1 Wéz)l-

PRrROOF. We leave this as an exercise to the reader. O

)

One of the main utilities for defining the maps W,gn is that they generate the Schur polynomials

in the following way.

PROPOSITION 2.8.8 (Weyl Character Formula for GL,). For A € Y and n > ¢())
Won)(ac)‘) = sa(z1,...,Tn).

2.8.2. Key Polynomials. Here we review some relevant information about the key polyno-

mials.

DEFINITION 2.8.9. Let n > 1. Define the key polynomaials to be the unique collection of poly-

nomials {Kq (21, ... ,xn)}aezgo determined by the following properties:

o Ifay > ... > «y then

Ka(z1,...,zy) := %

o Whenever a; > a1
Ksa) (@15 70) = §(Kalm1, ..oy 20)).
By a simple induction argument we see that for o € Z%
Kar,....m,0) (X1, ooy Ty Tpg1) = K(aly...@n)(xl, cey ).

As such we will refer to K, () for p € Comp”®® unambiguously as an element of Z>olz1, 2, 23,...] C

+
77,

REMARK 16. It is known that the key polynomials {K.|a € Zgo} for a basis for :@2'
For A €Y andn > £(X)

Kon—t) srev(n) (@1, - Tn) = sa(@1, ..., ).
91



Further, if o = (aq,...,ay) € 2% and there exists some 1 <1 < j < n with a; < ... <«  then

Ka(z1,...,xy,) is symmetric in the variables z;, . .., x;.
2.8.3. Specialization at t =0, ¢ = o0
DEFINITION 2.8.10. Define O C &7, to be the set of f(x) € P, such that

f(x) = flz1,22,...5¢7 ") = Zc(i)$“(i)m/\(i) [X]

for some scalars ) = ¢ (g7 1) € Qg Y[[t]] N Q(g, 1), (uP|ND) € X, Let ,@;rs’@ denote the set
of f(x) € L, such that

z) = Z D m o [X)
for some scalars ¢V € Q, (uD|AD) € X. Define the Q-algebra homomorphism Y : O — @as ob
Y(f(z1,20,...;¢ 1) := f(zx1,22,...30,0).
Equivalently,

Y(f) := lim lim f.

qg—o00 t—0

We will need the following lemma.
LEMMA 2.8.11. Let f, € 2} NO with lim,, f,, = f € PL,. Then f € O and

T(f) = lim T(f,).

PROOF. By the definition of convergence (see Definition 1.7.3) we know that we have for all
n>1
N
Z c ’)x“ mye 1 + ...+ 2y
i=1
where ¢ € Q(g,t), (P ND) € ¥ with lim, ) = ) ¢ Q(q,t) convergent t-adically. Since

fn € 2 NO we know that &) = cg)(q_l,t) € Qg YI[t]] N Q(g,t). Since Q[g~!][[t]] is complete
t-adically we must have ¢ € Q[¢~!][[t]] N Q(q,t). Then it is clear that

N
(%)
=1
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A simple topological argument shows that

-1

lim lim ¢ (¢, t) =lim lim lim clt )(q_l,t).

q—00 t—0 n g—oot—0
Then we find
lim Y (f)
n
N
zliTanT (Zc’)x“ mym [T + - +xn]>
=1
= hgbn qlggo }g%z ) ot m/\< EAIE S
= hmz (qlg(r)lo }g%c > l‘“(i)m)\(i) [X1+ ...+ ]
al (1)
= Z (qlggo ]Egr(l)c > zh my 6y [ X]
=T(f).
[
Adjusting to the (g, t)-conventions in this thesis we may restate a result of Ton [25] relating the

non-symmetric Macdonald polynomials to the key polynomials.

THEOREM 2.8.12. [25] For a € ZY,,

From Ion’s result we find a known combinatorial formula for the key polynomials using the HHL
combinatorial formula (see 2.2.2) for the non-symmetric Macdonald polynomials. For a € Z%,

denote by L(«) the set of non-attacking labellings o : @ — [n] such that maj(c) = coinv(c) = 0.

PROPOSITION 2.8.13. For a € Z%,,,

Zx

ceL(x
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PROOF. From the combinatorial formula for E, (Theorem 2.2.2) we see that

o 1-t¢
_ o —maj(o) coinv(d)
Fa= X atq ™0 I (o )
o:a—[n] uedg’ (o)
non-attacking o(u)#o(d(u))

Note that the values leg(u) and arm(u) are both non-negative so that E, € O. Therefore, when we

specialize ¢ — oo and t — 0 we find that

S5 coinv (S 1-—t
maj(a) coinv(c) _ SO\ ~\ __
Jm limg T 11 (1 - q—ag<u)+1>t<a(u>+1>> = 1 (maj(7) = coinv(7) =0).
uedg’ ()
o (u)#a(d(u))

Hence, from Theorem 2.8.12

o:a—>[n] oeL(w)
non-attacking
maj(a)=0
coinv(c)=0

0

REMARK 17. Note that maj(c) = 0 is equivalent to Des(c) = O which in turn is equivalent
to o(u) < o(d(u)) i.e. T is weakly decreasing upwards along columns. The requirement that
coinv(a) = 0 is equivalent to the statement that o has no co-inversion triples (see Definition
2.2.83). Importantly, for a non-attacking filling o : o — [n], coinv(c) is equal to the number of
co-inversion triples of o. Thus a non-attacking filling o is in L(«) if 0 is weakly decreasing upwards

along columns and has mo co-inversion triples.
As an easy application of Ion’s result we may compute the specializations of all E(M@).

PROPOSITION 2.8.14. For all u € Comp™, E'(u‘@) € O and

T(Eu)) = K-
PROOF. Let p € Comp™. From the combinatorial formula Corollary 2.3.2 we may observe
directly that E(M@) € 0. To see this note that each of the scalar coefficients of the expansion of

E(M@) has the form

1—1t
—ab
tH(l—q Cﬁd)
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for some a, b, ¢;, d; > 0. By expanding the denominators

1—gq cltd Z q e
m>0

we see that
] (2 ) < Q)
as required.
As T(EM) is now well defined, we may compute directly using Lemma 2.8.11 to find

Y (EL)
= lirrln T(Exom)
= liyrln ICuxom
= 1i71Ln Ky

=K.

In the next lemma we will formalize the notion that the operators &;, Wy are the g = co and t = 0

specializations of T, ¢; respectively. This result is standard but we will include its proof for the

sake of completeness.
LEMMA 2.8.15. For allk >0 andi>1, ToT;lo =& o Y|o and Y o exlo = Wi o Y|o.

PROOF. Let f = f(x;q7 1, t) € 2, NO. Let i > 1 and k > 0.
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First, we have

ToT(f)

—r (s I e 10))
T(Sz(f)—i-(l t) in_xﬂ_l)
= s 0(1) + (1= 0y - =2

1—s
= <5i + 961'8) f(2:0,0)
Ti — Ti4+1

((mi —wia)si a1 - 5”) £(:0,0)

Ti — Tit1
= &if(2;0,0)
=& o Y(f).

If f € 2(k)* then
Toer(f) =T(f)
and
Wi o X(f) =71(f).

Thus we may assume that f € 2(k+r)" for some 7 > 1 in which case using Lemma 2.8.11 we see
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e X (5 =e)rle=0)

TS 1k )

= li7rln(Tn71 o Thr1) - (T - Ty ) YEM™(£))

= li1§1(§n_1 coobpr1) o (Enm1 ) f(x1, ooy 20, 0,..050,0)
= lir{nW,gn)f(xl,...,wn,O,...;0,0)

= Wy o Y(f)

0

2.8.4. Almost Symmetric Schur Functions. The stable-limit non-symmetric Macdonald
functions E(ul ») were defined in Definition 2.4.10 by applying successive partial-symmetrization
operators to the functions E’( weA|0)- Given that the operator Tj, €, specialize to the &;, Wy, respectively

we may define a set of almost symmetric functions s(,y) analogously.

DEFINITION 2.8.16. Define the almost symmetric Schur functions, s, x) = s (71,72, . .),

for (u|X) € . by the following recursive formula:

® (o) = K
o If u. > A1 then

S (11 yevespbr—1 s A1 yeeey >\1z):WTfl(S(M,--erflvurP\l ----- Ae))‘

REMARK 18. We note that from the above recursion it follows that for any A € Y s\ =
sx. Thus the almost symmetric Schur functions interpolate between the key polynomials and the
Schur functions in infinitely many variables xi,x2,.... Lapointe in their paper [28] defines the
m-symmetric Schur functions s (v;t). These functions have the property that s.p)(z;1) =
Ka(z) and sz (z;1) = sa(x) similarly to the functions s,z () defined above. Further, there
give a basis for 22(m)T. However, it is not clear to this author how Lapointe’s m-symmetric Schur
functions are related to the almost symmetric Schur functions. Lapointe defines s,z (z;t) by first
defining the dual m-symmetric Schur functions S?a;)\) (x;t) as an explicit linear combination of the
non-symmetric Hall-Littlewood-Schur basis Hy(x;t)s,[X] (note that X = x1 + ... here instead of
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X = Tmy1+ .. .) with explicit combinatorial coefficients (involving certain weighted skew tableauz)
along with a non-degenerate pairing on P (m)*. The S(asx) (3 1) are then defined as the dual basis
to the $>(ka;)\) (x;t). In this thesis we have used a purely algebraic/recursive approach in defining our
generalized Schur functions. Any proof that relates these two types of functions would likely be
nontrivial and combinatorial in nature. However, it seems fruitful to understand how these notions
are related as this will likely provide additional insight into the properties of the almost symmetric

functions.

EXAMPLE. Here we calculate s(y31) directly using the operators §; and Wi:

$(213,1)

= W1Wa(s(2,3,1)0))

= WiWati (s(3.2,10))

= W1 Wai (2 25m3)

= Wi Wa(x3xdes + a2ades)

= Wi (232251 [Xa] + 222551[¥2))

= s, [X1] + 2Ts(3.1) [X1]

EXAMPLE. Here we give a list of some examples of almost symmetric Schur functions that are

neither symmetric Schur functions nor key polynomials.

® 500,12 = 2379 + 1351 [Xo] + 2371 + 1351[Xa] + 2152[X2] + 282[Xo] + 2712251 [X2)
® S(913,1) = L3521 [X1] + T53,1)[%1]

* s = Tires [Xo]

° S(1001) = Tx2s1[X2] + 212351 [X2]

o S(i21) = 5011 [X1] + 21801 [X1].

We are now ready to compute the specializations of the stable-limit non-symmetric Macdonald

functions E(#\/\) at g =00 and t = 0.
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THEOREM 2.8.17. For (u|\) € &, E(MA) € O and

T(E(un)) = S(un) (2)-

PROOF. Let (u|A) € 2. In order to show that E(ul ) € O it suffices by induction to verify that
each €x(f) € O for every f € O. However, this is easy to see using the explicit formula for the
action of € using the Jing vertex operators %, (see 2.4.5). We now proceed by direct computation

using Lemma 2.8.15 and Proposition 2.8.14.

T(E(un)

— T(Eg(“)(E(M*M@)))
= Wi (Y Eguep))
= Wiy (Kpun)

= Wi ()

= S(uln)-

2.8.5. Combinatorial Formula for Almost Symmetric Schur Functions. In this sec-
tion we will compute an explicit combinatorial formula for the monomial expansion of the almost
symmetric Schur functions. Further, we will use this expansion to show that a generalization of

the classical Kostka coefficients for Schur functions are non-negative integers.

PROPOSITION 2.8.18. For (u|\) € X,

S(uln) = hgln ICM*O"*rev()\)'
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ProOF. We proceed by direct calculation:

S(ulN)

= Wo) - W) +-e(0) S (uxA|0)
= W) S (/0

= W) Kpux

= 1171;11 WZ((Z,E?)JFZ()\)JFTL) (]CM*A*O”)
= hgbn(gé(u)Jr@(/\)Jrnfl T §Z(M)+1) T (gé(,u)JrZ()\)Jrnfl T gé(,u)Jr@(/\))(IC,u*)\*O")

= h};ﬂ K:M*O”*rev(/\) :

As an immediate consequence we get the following;:
COROLLARY 2.8.19. The set {s(, ) (7)|(1|\) € B} is a homogeneous Q-basis for L@:SQ.

PROOF. Since the key polynomials are homogeneous and the operators Wj, are clearly homoge-
neous, we see that the s(,y) are homogeneous as well. Following similarly to the proof of Theorem
4.2.12, we see that as there are sufficiently many s(,y) in each homogeneous component of P(k)T, it
suffices to show that the s(,) are linearly independent (over Q). Let (DN, (A e 5
be distinct. Set () := £(u®) 4+ £(AD). Suppose that for some o € Q, 37", a(i)s(u(i)u(i)) =0.
Then

m
_ i
0=> a5
=1
m
= OB} .
;a hTILnIcu(i)*on—“"(l)*rev(/\(i))
1=

m

— T (@) ,

_h};ﬂZa ’Cu(i)*O"*T(”*rev(}\(i))'
i=1
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Now we see that for all sufficiently large n,
(1) . _
Z a ]C,u(i)*O"”'(l)*rev(A(i)) =0
i=1
but, since the pairs (u(?|\?)) are distinct, we know that the key polynomials IC#m*O%ru) erev(A)

are linearly independent. Therefore, a(? = 0 as desired. O

We will need to consider the following combinatorial construction.

DEFINITION 2.8.20. Let (u|\) € X. Let w denote the first infinite ordinal i.e. n < w for alln €
{1,2,...}. For alabelling o : dg'(uxrev(\)) — {1,2,...} denote by o* the labelling of@(,u*rev(/\))
given by

e 0*(u) =o(u) if u € dg'(u * rev(N))
(J,0) =j for 1 < j < €(u)
(7,0) =w+3j = L(p) =1 for £(p) +1 < j < L(p) +£(N).

e o~
*

)

We naturally extend the definitions in Definition 2.2.1 of non-attacking, coinv, and Des to labellings
of the form o* which take values in {1,2,...} U{w + 1l,w + 2,...}. Define L(u|\) to be the set
of labellings o : dg'(p * rev(\)) — {1,2,...} such that o* is non-attacking, coinv(c*) = 0, and

Des(o*) = 0.

ExaMpPLE. We will consider in this example two labellings of the type defined above for the pair

(2]3,1). Our diagrams in this case are given as follows:

dg'(2,1,3) =

—

dg(2,1,3) =

Consider the labellings 01,02 : dg’(2,1,3) — {1,2,3,4} and there corresponding labellings 0§, o5 :

@(2, 1,3) — {1,2,3,4} given by
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1
1
1 2
o1 = 1 2 —>U’f:
1 3 4
1 3 4
1 w w41
1
1
1 3
op = | 1 3 |—o5=
1 2 4
1 2 4
1 w w41

Both o1,02 are non-attacking with maj(oy) = maj(c}) = 0. Howewver, coinv(c}) = 0 whereas

coinv(o}) # 0. To see this note that in the labelling o2, the bozes

1

form a coinversion-triple in the sense of [19].
The almost symmetric Schur functions have the following monomial expansion.

THEOREM 2.8.21. For (u|)\) €

sy =, @

o€L(plN)

PRrROOF. We start by noticing that from Proposition 2.8.18 we have

S(uln)

= hén ]C,u,*()”*rev(k)

= 1i7rln Z z°.

c€L(pux0"xrev(N))
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For all n > 0 there is an injection £(u % 0™ x rev()\)) — L(u * 0" x rev()\)) obtained as follows.

Let o € L(1 % 0" xrev()\)). Consider o’ : dg’(pu * 0" x rev()\)) given by

e o/(u) =o(u) if u € dg'()

e o/(i,j) = o(i,j — 1) if (4, 4) lies in the rev()\) component of dg’(u * 0" * rev(\)).

In other words, we are simply aligning the rev(\) parts of each of the diagrams dg’(j*0™" ! xrev()\))
and dg’(u = 0™ * rev(\)) and copying the corresponding values of o. It is easy to see that o' €

L(p+0" 1 xrev())) and that the map o — o’ is injective. Now we may consider the directed union

L:= U L(p 0" xrev(A))

n>0

where we identify the image of £(u * 0™ * rev()\)) in L£(p * 0" x rev())) for all n > 0. Hence, we

have

S = 27

o€l

Lastly, we show that there exists a simple bijection L — L£(u|)\) such that 27 = z/(°) for all
o€ L. For o € L say, 0 € L(pu* 0" xrev()\)), we may define o” : dg’(pn *x rev(\)) — {1,2,...} by

o o'(u) =0o(u) if u e dg'(u)
e 0"(i,j) = o(i +n,j) for (i,7) in the rev()\) component of dg’(u * rev(\)).
Then o” € L(u|A\) and the map o — ¢” is injective. We now show this map is also surjective.
Let v € L(p|A) and N := max{max,cqy (urev(r)) (1), £(1t) + £(N)}. Define o : p * ON U =) «
rev(\) — [N] similarly to before by copying the values of ¢ for both the y and rev(\) components

of dg’(p*rev()\)) onto the corresponding components of dg’ (g * 0N == «rev())). Since N was

chosen sufficiently large, o € £(p % 0N U~ s rev()\)). Now ¢/ = v and 2°” = 27. Therefore,

Sen =227 = >,

o€l seL(ulN)

Since s(,n) € Z(€(p))" and the set {z%m,[Xy,,)] [(alv),€(a) < £(u)} is a basis for Z(k)* we

may consider the following definition.
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DEFINITION 2.8.22. Define the almost symmetric Kostka coefficients K(( l ; to be the coef-

lv
ficients of the almost symmetric Schur functions into the monomial basis of Z(£(p))", i.e.

S(ulx) = Z K(a| $mu[%e(u)]~

(alv)

£(a)<t(p)

If (0) > £(u) we simply set K2 =

REMARK 19. It is straightforward to check that for

O _
Ky = On0 B

R,

meaning that the K( ) generalize the classical Kostka coefficients K ,,. On the other extreme, we

find that

(110)

unless A = 0 in which case K(a‘@) is the multiplicity of the weight o in the Demazure character

corresponding to . In either case, we see that the Kostka coefficients are non-negative.
THEOREM 2.8.23 (Positivity for almost symmetric Kostka coefficients).

K € 220

PROOF. Let (u|\) € . Using the explicit combinatorial formula in Theorem 2.8.21 we see that

sy = Y, 27

a€L(p|\)

However, we know s(,y) is symmetric in the variables ()11, Zg(,)42; - -- S0 we may group terms

by symmetry to find

o o 11 o1
T 0= Ym0 gl e

seL(ulN) vey €Ly (ulA)

where L, (u|)) is the set of labellings o : p * rev(\) — [p + £(v)] such that o € L£(u|A) and for all
1 <i<{l(v), o~ (€(n) + )| = v;. Notice that |L,(u|A\)| < oo for all v.

We may further subdivide the sets L, (u|\) now to account for the value of :1:'10_1(1)‘ e I'Z;)l (DI,

For £(a) < £(p) let Liq),) (1| A) denote the set of all o € L, (u|A) such that [0~ (i) = (ax0Uw =),
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Then
Sy = D [ Lagw) (1l A) |2y [X ()]
(alv)
Thus

K~ L) ()] € Zso.

(a
|

REMARK 20. Note that K (((’jj))

metric Kostka coefficients. This formula generalizes the well known formula Ky, = | SSYT(A, u)|

= |L(a))(1|N)] gives a combinatorial formula for the almost sym-

where SSYT(A, p) is the set of semistandard Young tableaux with shape A and content y.

ExXaMPLE. We saw before that
5(203,1) = 1’?5(2,1)[%1] + 1’%3(3,1)[%1]

which we can expand as

5(213,1)

= ﬂfi’m(z,n[xl] + 237?”1(1,1,1)[351] + ﬂf%m(sg)[xl] + x%m(m) [X4] + 295%”(2,1,1)[%1] + 333%7”(1,1,1,1)[%1]

This gives that, for example, K ((22|‘f 11 )1 = 3 which corresponds to the 3 diagrams:
2 2 3
1 3 1 4 1 4

1 w lw+1| 1 w lw+1| 1 w lw+1

Note that the above fillings in the rev(\) = (1,3) component are exactly, up to shifting in-
dices, the semistandard Young tablevax of shape (3,1) with content (1,1,1,1) (and hence standard).

This reflects that in the monomial-Schur expansion of s(g(3,1) there is one copy of l’%S(&l)[xl] and

Kz1),1,1,1,1) =3
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(23,1)

We also have that K(3|1,17171

)= 2 which may be seen by computing the labellings in L(3j11,1y(2[3,1)

directly:

1 1 4 1 3 4

1 w w41 1 w w41

2/3,1)

a]1,1,1,1) On€ might be tempted to guess that there is always a way

From the computation of K((

to compute the almost symmetric Kostka numbers by classical Kostka numbers in some obvious

manner. However, the example of K((§||i’11,)1,1) shows that it is not always so simple. It particular,
the filling
1
1 3
1 2 4
1 w w1

has a reverse standard filling of rev(\) but is not in L(z,1,1y(2[3,1) since coinv # 0.

2.8.6. Representation-Theoretic Interpretation. In this section we are going to show
that the monomial-Schur expansions of the s(,|) have non-negative coeflicients using the Demazure

character formula by relating s, ) to the representation theory of parabolic subgroups of the GLy, .

A)

DEFINITION 2.8.24. Define the scalars M((éj'ly) to be the coefficients of the expansion of the almost

symmetric Schur functions into the monomial-Schur basis of P (L(p))™, i.e.

_ ((RYB
Sy = Z M(S\u)x Su[Xo(u]-
(alv)

(o) <e(p)

If b(a) > £(p) we simply set MY — .

(alv)
We wish to show that M, ((: ||j)) € Z>( but in order to do so we must first review some representation
theory in type GL.
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DEFINITION 2.8.25. For n > 1 define GL,, to be the group of invertible n x n matrices over C.
Let B, denote the Borel subgroup of upper-triangular matrices in GLy, and let H,, denote the group
of diagonal matrices in GLy, . For 0 < k < n denote by P, (k) the group of M € GL,, such that
M;; =0 if either 1 < j <i<korj<k<i—1. Lastly, let L,(k) = Hy x GL,,_, C GL,, under the
block diagonal embedding GLy x GL,,_r — GL,, . Let b,, denote the Lie algebra of By, i.e. the set of
upper triangular n x n matrices over C with the usual commutator product. Let U(b,,) denote the

universal enveloping algebra of b,,.

REMARK 21. Note that
H, ¢ B, c GL,

and for all0 < k <n

H, C B, C P, (k).

Following terminology standard to Lie theory, B, and H, are respectively Borel and Cartan
subgroups of GL,, . Further, the group P, (k) is a parabolic subgroup of GL,, with Levi subgroup
Ly (k). Parabolic subgroups of GL,, correspond to pairs of choices of a Borel subgroup and a subset of
the set of simple positive roots {e; —e;+1|1 < i <n—1} in type Ap—1. The group P, (k) corresponds
to the Borel subgroup B,, and the subset {e; —e;+1lk +1 <1i <mn—1}. From standard results in the
the theory of algebraic groups we know that GL,, is reductive meaning that any finite dimensional
polynomial (rational) representation of GL,, decomposes as direct sum of irreducible polynomial
(rational) representations. Importantly, if V is a polynomial representation of GL,, then H, acts

semi-simply with simultaneous eigenvectors v € V- having eigenvalues indexed by a € 2%, i.e.

Z1 0 0

0 2z 0 o u
v=2z7 2.

0o 0 ... z,

Thus the H,,-weights of polynomials representations of GLy, are indexed by Z%,.
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DEFINITION 2.8.26. Given a finite dimensional polynomial representation V' of H,, we will denote
by char(V) € Z[x1,...,z,] the formal character of V as
char(V) = Z dim Homy,, (o, V') 2.
aGZgo
REMARK 22. IfV is any polynomial representation of GL,, then char(V') is a symmetric polyno-

mial since char(V') must be invariant under the action of the Weyl group of GL,, i.e. S,,. If W

is another polynomial representation then we have that

e char(V @ W) = char(V') + char(W)
o char(V ® W) = char(V') char(WW).

Thus we may interpret the map V. — char(V') as giving a ring homomorphism from the virtual
polynomial representation ring of GLy, to the symmetric polynomial ring Z[x1, . .., x,]%". This map

s an isomorphism.

It follows from standard representation theory of reductive algebraic groups over C that we have

the following description of the irreducible representations of GLy, .

THEOREM 2.8.27. The irreducible polynomial representations of GL,, are indexed by dominant
integral weights A\ = (\1,...,\,) € ZLy ie. \i = ... > An. These representations VA have the

following properties:

e char(V*) = s)(21,...,2,); where we truncate A\ when necessary to obtain a partition
o There exists a unique highest weight in V*. Namely, there exists a unique vector v € Y
(up to scaling) such that v is a Hy-weight vector with weight A\ and U(by)v = 0.
e Forallo € G,
dim Homy, (0()), V) = 1.

DEFINITION 2.8.28. Given a dominant integral weight A € Z% and o € &,, define the Demazure

module V;\(A) to be the B,,-module

where v € V2 is any weight vector with weight o()).
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REMARK 23. Notice that the Demazure module V2 is only well defined up to the vector o ().

Therefore, we may instead index these modules as
A A
Va'()\) = Va.

THEOREM 2.8.29. (Demazure Character Formula) [1] Given a dominant integral weight X and
o€G,
A
char(Vo,()\)) = ICO-()\).

REMARK 24. The Demazure character formula in full generality gives a similar formula to the
above for all semisimple Lie types. The first complete proof of the Demazure character formula was
given by Andersen [1] by realizing the Demazure modules as spaces of sections of vector bundles of

Schubert varieties and showing that the singularities of Schubert varieties are rational.

DEFINITION 2.8.30. Let (u|A) € X. For all n > £(u) + €(\) define

SOI‘t(y,*A)*On—f(sort(u*)\))

V(n)(,U,P\) = px0n L) —E(X) yrev ()

If a € Comp™ and 0(a) < k we will write X" (a|\) for the irreducible Ly, (k) = Hy x GL,_-
module given by

YW (@A) = (@ % OFH@)y g Pre0F T

where we are using the shorthand o * 0k—H) to represent the corresponding 1-dimensional repre-

sentation of Hy .

We may relate the almost symmetric Schur functions s, ) to Demazure characters via key

polynomials directly from the following simple lemma.
LEMMA 2.8.31. Let (u|\) € X. Then
S(uln) = lign char V™) (| ).
PrOOF. In Proposition 2.8.18 we saw that

S(ulx) = hgbn ICM*O"*I‘EV()\) = hgbn Kﬂ*on—f(u)—l(k)*rev(x\)‘
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Using the Demazure character formula we see that

_ SOrt(M*A)*On*l(sort(u*x))
K#*O”—é(u)—Z(A)*rev(A) = char (VM*Onfl(H)*Z(A)*reV()\)

so the result follows. O
We require the following simple lemma.

LEMMA 2.8.32. Suppose X is an integral dominant weight of GL, and a x 8 = o(\) for some

o € 8, with § weakly decreasing. Then V’\*B is a Pp(£(c)) submodule of V.

PROOF. Let k = ¢(a). Since P,,(k) is the semidirect product of B, and L, (k) we only need

to show that Vé‘* 5 is preserved under action by both B, and L, (k). Since Vé* 5 is by definition a
B,,-module it suffices to show that Vé‘* 3 is preserved under the action of Id; x GL,,_ .

We will proceed by induction using raising and lowering operators. To start fix vy € V) e 1O be

a nonzero vector with weight o * 5. Then for all k +1 < ¢ < j < n, since [ is weakly decreasing,

Ejv=0¢ PA e Suppose now that vg, v1, ..., Ums1 iS a sequence of weight vectors in V) e With

Upy1 = Fj j v, for all 0 <7 <m for some 1 <4, < j. <n and that
Ejivr S V(i\*ﬁ

forall k+1 <i < j<mnand 0 <r < m. Note that any weight vector in V 5 May be obtained

using such a chain. Now fix some k+ 1 < i < j < n. We see that
Ejivmi
= FEiE;, . Um
= (Eimijji + [EJ17 Ezmjm]) Um

=FEirjm (Ejivm) [ij Elm]m]

By assumption Ej;v,, € % s SO that, since i, < Jm, Ei,jm (ijm) € Vé* L Therefore, it suffices

to show that [Ej;, E; . Jvm € Va*ﬁ
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There are a few cases we must consider. First, assume 7 = 4,,. Then
(Ejis By |vm = (Ejjp = 0jjm Eii) vm = Ejjp, vm — com

for some scalar c. If j < j,, then Ej; vy, € PA 3 automatically. If instead j > jp,, then £k +1 <

1=ty < Jm S0 Ejj vy € YA x5 Dy the inductive hypothesis. Either way [Eji, Ei,, i m € Vé*ﬁ

315 i jiom
Now assume j = j,,. Then

[Ejis Eipyjon |vm = (9i

Tyim

Ejj — Ei,i) m = cvm — Ejivm,

for some scalar c. If i,,, < ¢ then F; v, € Vé*ﬁ automatically. If 4, > i then, since k +1 < i,

E;

im

and ] 7& jm then [Eji’Eimjm} =0 so [E]Z,E

TmJm

iUm € V2 o by the inductive hypothesis. In either case, [Ej;, E;

TimJm

Jom € V2 «p- Lastly, if © # ip,
Jum =0 € V) .p trivially. O

Since the group L, (k) is reductive we obtain the following representation theoretic interpretation

for the coefficients M ((“ ||)‘))

THEOREM 2.8.33. Let (u|)), (a]y) € . For all sufficiently large n
A . n n
M((g”,y)) = dlmHOan(g(u)) (X( )(a’I/),V( )(,u|)\)) € ZZQ.
PRrOOF. From Lemma 2.8.31 and the definition of the coefficients M((g ‘l,i‘)) we see that for n
sufficiently large

Z M((fjﬂ ))5” sulTy(uy41 + - - + xp] = char V) (| N).

(afv)
L) <e(p)

From Lemma 2.8.32 we may decompose V(™ (u|)\) into irreducible L, (¢()) submodules as

4™

D) = P x(aly) e
(alv)
() <t(n)

where dEa? ) = dim Homy,,, (¢, (x™ (alv), V™ (u|N)) . Notice that

char Y™ (a|v) = T8y [Tg(y 1 T - -+ T
111



Putting this together we find that for all n sufficiently large

A«
(Z) M((C’:"V))x sulToguy+1 + -+ 0
L) <l(p)
= char Y™ (u|A)

(n)
= char @ X(n)(a|y)®d(a\w

(afv)
£(a)<b(p)

(n)
= Z charx(”)(oz|u)®d(a\")
(alv)

£(0) <L)
= Z dEqu) char Y™ (a|v)
(afv)
£(0) <L(p)
= Z dim Homy, , (¢, (X(”)(a\u), yn) (u!A)) T8y [Ty - -+ T

(alv)
(o) <t(p)

Lastly, as the terms 2%s,[zy()41 + ... + @] for £(a) < £(u) are linearly independent we may

compare coefficients to obtain the result. ]

As a consequence of the above theorem we obtain a second proof of Theorem 2.8.23.

COROLLARY 2.8.34. Let (u|N), (a|y) € X. For all sufficiently large n

| Lajuy (1IN = Z | SSYT (v, v)| x dim Homg,, (4(,)) <X(n)(@’7),v(n)(/ﬂ/\)) :
yeY
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PrOOF. First, we expand the Schur functions s,[X;(,)] into the monomial symmetric function

basis:

From here we find

(BN _ (Bl
Ky = D KM,
yeY

Lastly, by combining the formula K, , = | SSYT(, v)|, the expression for M ((” |‘)‘)) in Theorem 2.8.33,
and the equation K (( = |L(a)») (1| A)| from the proof of Theorem 2.8.23 we conclude the desired

result. O

REMARK 25. The inverse Kostka coefficients KEY_)\I)

m,y—z s

are given by

Notice that
Oy \ = Z K,
“w

The inverse Kostka coefficients are known from the work of Egeciolgu-Remmel [13] to have an
explicit combinatorial formula involving signed rim hook tabloids which we will not detail here.
In the same way we obtained Corollary 2.8.3/ we may instead expand each my into the Schur basis
to obtain for all sufficiently large n

dim Homy, , 4.y <X(")(04V), (1l \) ) > KD 5 | Lapy (M-
yeY
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Using the combinatorial formula for the Kg;\l) we see that this gives a purely combinatorial formula.

Howewver, this is not a non-negative combinatorial formula as the inverse Kostka coefficients are

often negative.

By carefully taking direct limits of groups and their corresponding modules in the right way it is

possible to simplify the expression in Theorem 2.8.33:

A . 0o 00
M((f;'lv)) = dim Homy, _ () (X( )(a|1/),V( )(,u|)\)) .
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CHAPTER 3

Murnaghan-Type Representations for the Elliptic Hall Algebra

3.1. Introduction

The space of symmetric functions, A, is a central object in algebraic combinatorics deeply connect-
ing the fields of representation theory, geometry, and combinatorics. In his influential paper [29],
Macdonald introduced a special basis Py\[X; g, t] for A over Q(g, t) simultaneously generalizing many
other important and well-studied symmetric function bases like the Schur functions s)[X]. These
symmetric functions Py[X;q,t], called the symmetric Macdonald functions, exhibit many striking
combinatorial properties and can be defined as the eigenvectors of a certain operator A : A — A
called the Macdonald operator constructed using polynomial difference operators. It was discovered
through the works of Bergeron, Garsia, Haiman, Tesler, and many others [23] [4] [5] that variants
of the symmetric Macdonald functions called the modified Macdonald functions H AlX; ¢, t] have
deep ties to the geometry of the Hilbert schemes Hilb™(C?). On the side of representation theory, it
was shown first in full generality by Cherednik [9] that one can recover the symmetric Macdonald
functions by considering the representation theory of certain algebras called the spherical double
affine Hecke algebras (DAHASs) in type GL,,.

The positive elliptic Hall algebra (EHA), &, was introduced by Burban and Schiffmann [6]
as the positive subalgebra of the Hall algebra of the category of coherent sheaves on an elliptic
curve over a finite field. This algebra has connections to many areas of mathematics including,
most importantly for the present situation, to Macdonald theory. In [34], Schiffmann and Vasserot
realize &1 as a stable limit of the positive spherical DAHAs in type GL,. They show further that
there is a natural action of &7 on A aligning with the spherical DAHA representations originally
considered by Cherednik. In particular, the action of Py; € & gives the Macdonald operator A.
The action of &1 on A can be realized as the action of certain generalized convolution operators

on the torus equivariant K-theory of the schemes Hilb"(C?).
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Dunkl and Luque in [12] introduced symmetric and non-symmetric vector-valued (vv.) Mac-
donald polynomials. The term vector-valued here refers to polynomial-like objects of the form
Y 0 CaX® ® v, for some scalars c,, monomials X, and vectors v, lying in some Q(q, t)-vector
space. The non-symmetric vv. Macdonald polynomials are distinguished bases for certain DAHA
representations built from the irreducible representations of the finite Hecke algebras in type A.
These DAHA representations are indexed by Young diagrams and exhibit interesting combinatorial
properties relating to periodic Young tableaux. The symmetric vv. Macdonald polynomials are dis-
tinguished bases for the spherical (i.e. Hecke-invariant) subspaces of these DAHA representations.
Naturally, the spherical DAHA acts on this spherical subspace with the special element Y7 +...4Y,,
of spherical DAHA acting diagonally on the symmetric vv. Macdonald polynomials.

Dunkl and Luque in [12] (and in later work of Colmenarejo, Dunkl, and Luque [10] and Dunkl
[11]) only consider the finite rank non-symmetric and symmetric vv. Macdonald polynomials. It
is natural to ask if there is an infinite-rank stable-limit construction using the symmetric vv.
Macdonald polynomials to give generalized symmetric Macdonald functions and an associated
representation of the positive elliptic Hall algebra &*. In this chapter, we will describe such
a construction (Thm. 4.2.12). We will obtain a new family of graded &*-representations W,
indexed by Young diagrams A and a natural generalization of the symmetric Macdonald functions
P indexed by certain labellings of infinite Young diagrams built as limits of the symmetric vv.
Macdonald polynomials. For combinatorial reasons there is essentially a unique natural way to
obtain this construction. For any A we will consider the increasing chains of Young diagrams
A = (n —|A|,\) for n > |\| + A\; to build the representations Wy. These special sequences
of Young diagrams are central to Murnaghan’s theorem [32] regarding the reduced Kronecker
coefficients. As such we refer to the & -representations W)\ as Murnaghan-type. For A = () we
recover the & action on A and the symmetric Macdonald functions P,[X;g,t]. We will obtain a
Pieri rule for the action of the multiplication operators e? on the generalized symmetric Macdonald
function basis P, . After studying the particular case of the ej-Pieri coefficients we will show that
the modules WA are cyclic generated by their unique elements of minimal degree ‘BTFW . Lastly,
we will show that these Murnaghan-type representations W)\ are mutually non-isomorphic.

The existence of these representations of the elliptic Hall algebra raises many questions about

possible new relations between Macdonald theory and geometry. Other authors have constructed
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families of & -representations [14] [15]. Although there should exist a relationship between the
Murnaghan-type representations /I/I\?,\ and those of other authors, the construction in this thesis
appears to be distinct from prior &-module constructions.

For technical reasons (regarding the misalignment of the spectrum of the Cherednik operators
Y;) we will need to reprove many of the results of Dunkl and Luque in [12] using a re-oriented
version of the Cherednik operators 6;. Since the elements #; are not uniformly conjugate to the
Y; on the vector-valued polynomial spaces V), we are not immediately able to use the results of
Dunkl and Luque. However, many of these results follow from very similar proofs in this chapter.
This alternative choice of conventions greatly assists during the construction of the generalized
Macdonald functions Bp. The 6; satisfy additional stability properties which the Y; fail to satisfy.
The combinatorics underpinning the non-symmetric vv. Macdonald polynomials originally defined
by Dunkl and Luque is also nearly identical but with reversed orientation to the conventions

appearing in this chapter.

3.1.1. Overview. Here we will give a brief overview of this chapter. First, in Section 3.2 we
will introduce and review relevant combinatorial definitions and notations. In Section 3.3 we will
reprove many of the results of Dunkl-Luque but for the re-oriented Cherednik operators including
describing the non-symmetric v.v. Macdonald polynomials F; and their associated Knop-Sahi
relations (Prop. 3.3.5). We define (Def. 3.3.12) the DAHA modules V) and connecting maps
@E\n) : Vitn+1y — Vi@ which will be used in the stable-limit process. Next in Section 3.4, we

) of Hecke invariants of V)fn) and the symmetric v.v. Macdonald

describe the spherical subspaces W)(\n
polynomials Pr including an explicit expansion of the Pr into the F. (Cor. 3.4.5). We will use
the connecting maps to define the stable-limit spaces W,\ and show in Thm. 3.4.13 that they
possess a graded action of &1 having a distinguished basis of generalized symmetric Macdonald
functions P . In Section 3.5 we will obtain a Pieri formula (Cor. 3.5.9) for the action of e? on the
generalized Macdonald functions . Lastly in Section 3.6, we will look at an interesting family of

(¢, t) product-series identities (Thm. 3.6.12) which follow naturally from the algebra/combinatorics

in the prior sections of the chapter.
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3.2. Diagrams and Labellings

We start with a description of many of the combinatorial objects which we will need for the

remainder of this chapter.

DEFINITION 3.2.1. Denote by Y the set of all partitions. Given a partition X = (A1,..., \r) we
set L(N) :=r and (A ;= A1+ ...+ . For A\ = (A,..., ) € Y and n > ny = |\ + A\ we set
A = (n— A, A\, ..., A\). We will identify partitions as defined above with Young diagrams of
the corresponding shape in English notation i.e. justified up and to the left.

Fiz a partition X with |\| = n. We will require each of the following combinatorial constructions
for types of labelling of the Young diagram \. If a diagram A appears as the domain of a labelling

function then we are referring to the set of boxes of A as the domain.

e A non-negative reverse Young tableau RYT>((\) is a labelling T : X\ — Zxo which is
weakly decreasing along rows and columns.

o A non-negative reverse semi-standard Young tableau RSSYT>o(\) is a labelling T :
A = Z>y which is weakly decreasing along rows and strictly decreasing along columns.

e A standard Young tableau SYT(N) is a labelling 7 : X — {1,...,n} which is strictly
icreasing along rows and columns.

e A non-negative periodic standard Young tableau PSYT>o(\) is a labelling 7 : X\ —
{j¢" : 1 < j < n,b > 0} in which each 1 < j < n occurs in evactly one box of \ and
where the labelling is strictly increasing along rows and columns. Here we order the formal
products jg™ by jq¢™ < kq® if m > £ or in the case that m = { we have j < k. Note that
SYT(N) C PSYT>o(N).

Define 11%,75° € SYT(A) to be the row-standard and column-standard labellings of X respectively.

17¢7[15¢°|16¢° |11¢3| 7q" | 2¢°

14¢%(12¢*[13¢*| 9¢% | 8¢°
EXAMPLE. € PSYT>((6,5,4,2)
10¢%| 44" | 5¢* | 6¢*

3¢t | 1¢°
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DEFINITION 3.2.2. Given a box, O, in a Young diagram X we define the content of O as ¢(0J) :=
a — b where O = (a,b) as drawn in the N x N grid (English notation). Let T € PSYTso(\) and
1 <i<n. Whenever 7(0) = iq® for some box O € \ we will write

o cri) = (D)
o w, (i) :=bh.

Set wr := (wr(1),...,wr(n)) € ZY,. Let 1 < j < n—1 and suppose that for some bozes 1,0z € A
that 7(01) = jg™ and 7(02) = (j + 1)¢". Let 7' be the labelling defined by v (01) = (j + 1)¢™,
(02) = jq*, and 7/(0) = 7(0) for O € A\ {Oy,0a}. If 7" € PSYT350()\) then we write s;(1) :=7'.
Let W(71) € PSYT>o(A) be the labelling defined by whenever 7(0O) = kq® then either ¥(7)(0) =
(k —1)q® when k > 2 or ¥(7)(0) = ng®*! when k = 1.

We give the set PSYT>o(\) a partial order > defined by the following cover relations.

o For all T € PSYT>o(N), ¥(1) > 7.
o Ifw:(i) <wr(i+1) then s;(1) > 7.
o Ifw (i) =w;(i+1) and c; (i) — e (i + 1) > 1 then s;(1) > 7.

Define the map py : PSYT>o(\) — RYT>o()\) by pa(7)(0) = b whenever 7(0) = iq®. We will
write PSYT>o(\;T) for the set of all 7 € PSYT>(A\) with pa(7) =T € RYT>0(A).

147 | 3¢° | 5¢° | 8¢2 |12¢1 [17¢° 17¢%| 2¢° | 4¢° | 7¢% |11¢* |164°

2¢% | 4¢° | 6¢° [14¢°|164¢" 1¢° | 3¢° | 5¢° |13¢°|154°
EXAMPLE. W =

7¢° [10¢" [11¢" [15¢° 6q2 | 9¢* |10q" [144°

9¢' 13¢° 8q' [12¢°

We will frequently require the basic lemma regarding the ordering < on PSYT>o(\).

LEMMA 3.2.3. Let A € Y and T € RYT>o(X). There are unique min(T), top(T) € PSYT>o(\; T)
such that for all T € PSYT>o(X) with px(7) =T, min(T) < 7 < top(T).

PROOF. We can explicitly construct the elements top(7"), min(7") directly. Define top(T") by
first filling in the boxes [ € A of A with the values ¢7(®). Now we label these boxes with the values
{1,--- ,n} by first decomposing A into skew diagrams where T is constant on each sub-diagram.

This gives us an increasing chain of Young diagrams A(Y) < ... ¢ A") = X\, Next we fill each
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diagram A with the values {(AM|+ ...+ XD 41, AXD] 4+ ..+ 2D} in column-standard
order. This gives a value ig? in each box of A.

For min(T'), we proceed similarly by first first filling in the boxes [J € A of A with the values
¢7 D). Then we decompose A into the same skew diagrams as before. Now we fill each diagram A(®)
with the values {n — (]AM| + ...+ XD o n— (AP + ...+ [AD]} in row-standard order.

This gives a value ¢g® in each box of .

EXAMPLE. Given T = € RYT>(6,5,4,2) we have that

110
17¢"|12¢°|13¢°[10¢?| 64" | 1¢° 14" | 3¢° | 5¢° | 8¢® |12¢'[17¢°
164¢%(14¢°|15¢° | 2¢° | 34° 2¢5 | 4¢° | 6¢° |144°|164¢°

min(7) = and top(T') =
11¢%| 7¢* | 8¢* | 4¢° 7¢° [10¢' [11¢" [15¢°
9¢* | 5¢° 9q" |13¢°

DEFINITION 3.2.4. Let A € Y with |A\| =n and T € RYT>0(A). Define v(T) € Z%, to be the vector
formed by listing the values of T in decreasing order i.e. v(T) = sort(w,) for any ™ € PSYT>o(\; T).
Define S(T') € SYT(XA) by ordering the boxes of A according to 01 < O if and only if

We will often write as a shorthand Oy <p Oy whenever S(T)(01) < S(T)(Os). Define the statistic

bT S ZZO by

n

br =Y v(T)ilcser)(i) +i— 1).

=1

Lastly, define the composition p(T) of n as follows. Decompose X into horizontal strips hy, ..., hpy,
where T is constant on each strip. We order these strips so that the min(T") labels in h; are strictly

less than those in hiy1 for all i. Note that, unless T € RSSYT>o(X), we may have horizontal strips
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with the same T-value touching in adjacent rows. We see that each of these horizontal strips h; has

some labels a;,...,a; + ;.. Then pu(T) is given as (r1,...,Tm).

REMARK 26. For every T' € RYT>o(A\) we can recover T' from the pair (S(T'),v(T')) by labelling
A with the entries of v(T') following the order of S(T'). Further, the standard Young tableau S(T)

is the largest such tableau following the partial order defined in Definition 3.2.2.
Below is an example calculation of the various data which we associate to "€ RYT>q(\).

EXAMPLE. For T' € RYT>((6,5,4,2) as in Example 3.2 we have that
1 3 5 8 | 12 | 17

21 4|6 |14] 16
S(T) = € SYT(6,5,4,2),
7 110 | 11| 15

9 |13
v(T) = (7,6,5,5,5,5,2,2,1,1,1,1,0,0,0,0,0) € ZL,
by =0+0+15+15+30+30+8+20+5+8+10+15+0+0+0+ 0+ 0 = 156,

and p(T) = (1,2,1,1,1,2,1,1,1,2,2,1,1).
The next definition will be crucial for many of the results in this chapter.

DEFINITION 3.2.5. Let A € Y, with |\| =n and 7 € PSYT>o(X\) with T = px(7). An ordered pair
of bozes (1,02) € A x X is called an inversion pair of T if S(T)(01) < S(T)(Oz2) and i > j
where 7(O1) = iq%, 7(0y) = j¢° for some a,b > 0. The set of all inversion pairs of T will be denoted

by Inv(7). We will use the shorthand I(T') for the set Inv(min(T)).

17¢712¢°[13¢° [10¢?| 64" | 1¢°

16¢%(14¢°|15¢° | 2¢° | 3¢°
EXAMPLE. In the labelling we have that the pairs (17¢",12¢°),
11¢%| 7¢" | 8¢* | 4¢°

9q1 5q0

(14¢°,13¢%), and (5¢°,4¢°) are all inversions. Here we have referred to boves according to their

labels.

In the following definition our conventions for the Bruhat ordering differ from many other au-

thors and from the conventions seen previously in Chapter 1. These conventions are use to help
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properly state some triangularity properties later in the chapter. However, one may obtain the

below definition from the more standard conventions in [19] by reversing the order of the entries
of each vector (ai,...,a,) — (an,...,a1) and rewriting their Bruhat ordering from this reversed
perspective.

DEFINITION 3.2.6. Define the reversed Bruhat ordering = on ZZ using the following cover rela-

tions for A € Z%:

o if i < j with \; < \j then X\ < (i,j)A
o ifi < j with \j +1 < \j then A = X+ ¢; —e;.

Here e; denotes the i-th standard basis vector of Z™ and (i,j) € &,, denotes the simple transposition
swapping i and j. For o = (a1, az,...,an) € Z%, we define y(a) := (az,...,an, a1 +1). We will
write sort(«) for the vector formed by listing the entries of a in weakly decreasing order. We define
Stab(a) to be the corresponding stabilizer subgroup of &, for « i.e. the set of all 0 € &,, with

ola) = a.

We require the following simple lemma regarding the interplay between the map 7 on Z%, and

the ordering < .
LEMMA 3.2.7. If o, B € Z%, satisfy a < B then y(a) < 5(8).

PRrROOF. We will show that if o, § € Z%, and § covers a with respect to the Bruhat order then
Y(a) < ¥(B). We will proceed in cases. Let A € ZZ,.

First, suppose 1 <4 < j and A; < A;. Then
YA) < (i = 1,7 = DyA) =3((E 5)A)-
Now suppose 1 < j and A\; < ;. Then
(L, )A) = (L H)A) + €5 — en = (5,n)(F((1, 5)A) + € — en) = F(A).
If now we have that 1 <4 < j and A\; < A\j — 1 then

FA) =N +ei1 —ej—1 =7 A+ e —€j).
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Lastly, consider the case when 1 < j and Ay < A; — 1. If A\; +2 = ); then

YA) = (G =1L,n)(A) =7(A +e1 —€j).

Instead if A\; < Aj — 2 then

ﬁ()‘) - (] - 1)”)%()‘) - (] - 1)”)%()‘) +ej—1—ep= &/()‘ +e1 — 6j)'

O
Here we review some necessary details about the extended affine symmetric groups.
DEFINITION 3.2.8. Define GASn to be the extended affine symmetric group given by
én =6, xZ"
where &, acts on Z"™ by coordinate permutations. Denote by t1,...,t, the standard generators of
7" C én Further, we define the special element 7, € én given by
Yn = tpSn_1--.81-
For any B € Z™ we will write
tg =t ... tfn
Define the positive submonoid of én, é;[, as the monoid generated by {si,...,Sn—1,7n} (i-e. no

Vu'ts).

The length (o) of o € én is the minimal number of s; required to express o in terms of the
generators {s1,...,Sn—1,Vn}. We denote by @n/Gn the set of minimal length left coset represen-
tatives of @n with respect to the subgroup &,. We will denote the set of positive minimal length
coset representatives of S, with respect to the subgroup &, by (én/6n>+ = (én/Gn) N @x If
o= (1, ..., ) is a composition of n = p1 + ...+ p, then we will define the Young subgroup &,
of &, corresponding to p as S, = &, x --- x &, C &,. We will write &,,/&,, for the set of
minimal length left coset representatives for &,, with respect to the subgroup &,,.

For 8 € Z" define og € (/‘%n by

08 = Olsort(p)
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where o is the unique minimal length coset representative in 6n/65tab(80rt(ﬁ)) such that o(sort(B)) =

3.

The next two lemmas are standard in the theory of (extended) affine permutations and we leave

them to the reader to verify.

LEMMA 3.2.9. We have that
E‘%n/Gn ={oslB € 2"}

and

(én/6n)+ = {op|B € Z5,}.

LEMMA 3.2.10. For all o € ZY, we have the following:

o If a is weakly decreasing then o, = tq.

o If si(a) = a then 04, (q) = 5i0a-

o If si(a) = « then sjo, = TaSe—1(i) where o is the minimal length permutation with
o(sort(a)) = a.

[ J Ui’n(a) = ;?n(ga)-

Recall that in Definition 3.2.2 we only defined s;(7) for 7 € PSYT>o(A) in the situation where
swapping the ¢ and ¢ 4 1 labels in the boxes of 7 resulted in an element of PSYT>o(\). We now

generalize this notion to elements of @g .

DEFINITION 3.2.11. Suppose z,---z1 is a reduced word in @;‘; written in the generators z; €
{s1,...,8n—1,7n}. We define inductively on v > 1 if z,—1---z1(7) € PSYT>0(\) the element
zr - 21(T) of PSYT>0(A) as either

o U(zp1---21(7)) if 20 = n
o si(zp—1---21(7)) if zr = s; and swapping the i and i+ 1 labels in the boxes of zp—1 -+ 21(T)
results in an element of PSYT>q(\).
Otherwise we will leave this symbol undefined. This definition is only dependent on the element
Zp 21 of @j{ in that if zy---z1 = z.--- 2] is another reduced word then z,---z (1) is defined if
and only if z.---21(7) is defined. Thus we will write o(7) = z,---21(7) unambiguously in this

situation if o = zp -+ 21.
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We will need the following result later in the chapter.
LEMMA 3.2.12. For T € RYT>(\) we have that
top(T) = ¢/ TR D (5(1)

where for all1 <1< n

Gii=(si - sn1W)".

PROOF. One may check by direct computation that if 7' € RYT>o(\) and 1 < i < n then
Gi(top(T))) is well defined according to Definition 3.2.11 and in particular, ¢;(top(T")) = top(T”)
where T"(0) = T(0) + 1 for S(T)(0) < i and T'(0) = T'(O) otherwise. Note that S(T) = S(T”) so
applying (; does not change the underlying diagram ordering corresponding to the labelling 7. Thus
given any T € RYT>((\) by applying each (; one at a time we see that Cf(T)l_V(T)Q - CZ(T)” (S(T))
must equal top(7). O

We will need to identify an explicit bijection between PSYT>o(\) and (én/Gn)+ x SYT(A).
We already have a map PSYTEOZO(A) — <én/6n)+ given by 7 — oy,_. This is not bijective so

we will use elements of SYT(A) to refine this map to yield a bijection. We now identify the correct

choice of SYT(A) for a given 7 € PSYT>054(A).

DEFINITION 3.2.13. For 7 € PSYT>o(\) we define S(1) € SYT(X) by the following recursion:
o S(top(T)) := S(T) as defined in Definition 3.2.4
o Ifw:(i) < wr(i+1) then S(si(7)) = S(7).
e S(¥(r)) =S(7)
o Ifw,(i) = wr(i+1) and c; (i) — ¢, (i + 1) > 1 then S(si(1)) = s;5() where j = o~ 1(i)

and o is the minimal length permutation with o(sort(w;)) = w;.
PROPOSITION 3.2.14. For 7 € PSYT>((\)
T = 0y, (S(7)).
PRrOOF. Using Lemma 3.2.10 and Lemma 3.2.12 we see that for all " € RYT>())

Gy (S(OAEOD(T)))) = 0,1 (S(T)) = by (S(T)) = ¢ 2 2D (S(T)) = top(T).
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Let 7 € PSYT>0(A; T') and suppose for sake of induction that 7 = oy, (S(7)). Now let s;(7) < 7. If

wr (1) > w, (i + 1) then S(s;(7)) = S(7) and oy, ., = Si0w, so that

()
Uwsim(s(si(T))) = 80, (S(1)) = si(7).

In the case instead that w,(i) = w,(i + 1) with ¢;(i + 1) — ¢-(¢) > 1 then S(s;(7)) = s;(S(7)) and

Ow, (- = Ow, Where j = o71(i) and o is the minimal length permutation with o(sort(w,)) = w;.

Then

Oy (S(5i(7)))
= 0w, (5;5(r))

= (0u,5)(5(7)
= (100, )(S(7))

= 81(7’).

We may now obtain the desired bijection.

~ +
PROPOSITION 3.2.15. The map Ey : PSYT>o(\) — (Gn/Gn) x SYT(A) given by
EX(T) := (ow,,5(7))
s a bijection.

PROOF. It is immediate from Proposition 3.2.14 that =y is bijective onto its image. But it is

~ +
straightforward to check inductively that given any o € (6n / Gn) and S € SYT()\), o(95) is a well
defined element of PSYT>o(\) in the sense of Definition 3.2.11. This shows that = is surjective

and thus bijective. ]

3.2.1. Intertwiner Relations. We will require the following lemmas regarding the inter-
(n)

twiner relations for the 6, operators. These relations involve the following special element.

DEFINITION 3.2.16. Define v, := X, Th—1 -+ - T1.
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The element ~,, behaves predictably with the )

%

operators.

LEmMA 3.2.17. The following hold:
® 0y =Ynbip1 for 1 <i<n-—1

® 0nYn = Ynqbs.

PrROOF. Let 1 <i<n—1. We find that

0;vy = t—(n—i)TZ:ll .. -Tflﬂnan T X, Ty - T
= t_("_i)Tl:ll T T 1 X Thyo - TiTy 1T
= t*("*i)Ti:ll ... Tl_lﬂntXn—lTn__llTn—2 i TTyy - Ty
= f(n*(iJrl))Ti—_l1 .. .Tl—anﬂnTJ_llTn_2 Ty - Ty

— 75*(n*(iJrl))XnTi—_l1 T, TN T g T(Ty -+ - Th).

From the braid relations we see that for all 1 < j <n —2
Tj(Th—1 - Th) = (Th—1 - T1) T
and hence

t—(n—(i+1))XnTZf_11 .. .TflﬂnTnillTnfz e Ty(Tpey - - Th)

n—1

(Tn—y - T\)Tp—1 -+ Tis1
- 75—(n—(Z‘Jrl)))(nTiil1 . .Tl—lﬂnTW2 T T - Tig1

= t_(”_(”l))XnT;ll .. 'Tl_lTn—l e Tymp Tt - Ti1

= t*(ﬂ*(l‘rl))XnTi—_l1 .. .Tl—lTn_1 .. 'T2T1T1_17TnTn—1 T
—¢ (=D x 7 .TlTi—l .. 'T2_1T1_17TnTn—1 T

= (X, Ty - .Tl)(t*(n*(ile))Ti—l T Ty - Tign)

= nbiy1.
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Now we consider the last case:
971%1 — Tn_—ll . T1_17TnTn—1 Ty
= Tn__ll T Tl_qulﬂnTn—l T
= ti(nil)XnTn—l RN AT/ e PSR £
= (X, Tpq - .Tl)(qt*(nfl)ﬁnf_rn_l o Ty)

= Ynqth.

O

Recall the definition of the intertwiner elements ¢; in Definition 1.4.4. As is standard in DAHA

theory we will use the elements {¢1, ..., ©n—1,7,} to define intertwiner operators corresponding to

elements of &7

DEFINITION 3.2.18. For any o € &} with 0 = (s;, - Siz )W Yn(Sis 4 i1 Sige )

written minimally in terms of the generators {s1,...,sn—1,7} define o, € D, by

Po = (301'1 o Pigy )’Vn T 7n(90ij1+...+jT_1+1 e gpij1+..4+jr) € Dn.
In particular, we have that o5, = @; and 5, = Vn.
The main utility of considering the intertwiner operators ¢, comes from the next lemma.

LEMMA 3.2.19. If v is a 0" -weight vector in some Z,,-module with weight o = (a1y...,aq) and

o € &, with ¢, (v) # 0 then ps(v) is a 8 -weight vector with weight o given by the following

TeCUTSION:
S; . .
o o = (a1, ..., Qg1, Q... Q)
o = (0[2, s 7an7qal)

° (aaz)ol — Oé0'10'2‘

PRrROOF. This result follows easily by using induction on éj{ using the relations in Proposition

1.4.5 and Lemma 3.2.17. We leave the details to the reader. O
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3.3. DAHA Modules from Young Diagrams

3.3.1. Irreducible Representations of .77,. The following definition gives a description
of the irreducible representations of J#,. There are many equivalent methods for defining these
representations but we choose to specify eigenvectors for the Jucys-Murphy elements 6; directly as

we will require these eigenvectors throughout this chapter.

DEFINITION 3.3.1. Let A € Y with |\| = n. Define Sy to be the S ,-module spanned by e, for
7 € SYT()) defined by the following relations:
o Oi(e,) = ter(We,
o If si(1) > 7 then B,(e;) = (tc7() — tCT(Hl))eSi(T).
o [f the labels i,i + 1 are in the same row in T then T;(e;) = e.

o If the labels i,i + 1 are in the same column in T then T;(e;) = —ter.

Using the relations from Proposition 1.4.2 we can show the following more explicit form for the

action of the T; on the SYT()) basis:

o If s;(7) > 7 then

o (1 — t)ter(@
Tiler) = esitn) T @ e o

o If 5;(7) < 7 then

(tcT(i+1)+1 _ tcT(i))(tcT(i)H _ tcf(iJrl)) (1— t)tcT(i)

Ti(er) == (tcf(iJrl) - tCT(i))2 €si(7) + ter (@) — ¢er(i+1) Er-

PROPOSITION 3.3.2. Definition 3.3.1 is well-posed i.e. the action of the operators T; on Sy define

an irreducible 7, -module.

PROOF. As this construction is standard we will only give an outline. It follows from stan-
dard theory for the finite Hecke algebra ¢, (analogous to that of the symmetric group &,, in
characteristic 0) that there exists an irreducible representation of ., Sy, corresponding to the
partition A with a basis of weight vectors for the Jucys-Murphy elements 6;, v, say, indexed by
7 € SYT()). Further, the weights are given by 0;(v,) = t"Du,. As these weights are all distinct
it follows that this basis is unique up to re-normalization by nonzero scalars. The presentation
given in Definition 3.3.1 fixes a specific normalization given by choosing first e-rs = v-rs and then

building the full basis e, using the intertwiner @; relations in Proposition 1.4.2 with the choice that
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whenever s;(7) > 7 we have that ;(e,;) = (t) — tcf(”l))esi(ﬂ. Up to an initial arbitrary choice

for the scalar multiple of e;rs, this uniquely determines the rest of the coefficients of the e;. O

REMARK 27. The set {\ € Y : |A| = n} gives a full set of irreducible 7 -modules up to
isomorphism. Note that for 7,7 € SYT()), the O-weights of e; = e are equal if and only if

T="T.

In the following lemma we identify a particular map between finite Hecke algebra representations

which will be central in the stable-limit construction later in the chapter.

LEMMA 3.3.3. Let A € Y and n > ny. Let Uy be the unique square in the skew-diagram

XD /XM - Consider the map q&n) : Syman) = Sy given for 7 € SYT(A™H) as

e, T(0p) =n+1
A (er) =4
0 T(DU) 75 n+ 1.

Then qf\n) is a Jp-module map.

PrROOF. Let 7 € SYT(A(™+D), First, assume that 7(Cp) # n + 1 so that qf\n)(eT) = 0. Then for
1 <i < n—1, from the relations in Definition 3.3.1, we see that T;(e,) is either a scalar multiple
of e; or a linear combination of e, and ey, (;). In either case qE\") (Ti(er)) =0 = Tiqg\n) (er). Now
assume 7(0p) = n + 1. We will be more detailed about this case as we will need to be careful

about the combinatorics regarding the coefficients of expanding Tj(e,) into the SYT(A() basis.

For 1 < i <mn —1 we have the cases

Ti(e;) = e; if i,i+ 1 are in the same row of 7
T;(e;) = —te, if 4,4+ 1 are in the same column of 7
Ti(er) = %67— if s;(1) > 7
oy = e e e

In any of these cases since 7([p) = n+ 1 and 1 < i < n — 1, we have that s;(7)(p) = n + 1
as well. Further, the placement of the boxes labelled 7,7 4+ 1 in the labellings 7, s;(7) is unchanged
when restricted to A i.e. in the labellings 7|y), 8i(7)|yo)- Let 7/ := 7|ym). Therefore we have
the cases:

. qg\") (Ti(er)) = rl ) = Tiqf\n) (er) if i,7 + 1 are in the same row of 7
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o q, (Tier)) = —ter| ) = Tiqg\")(er) if 4,4+ 1 are in the same column of 7

IO .
@ B (Tler)) = euey + e mer = Tl (er) i si(r) > 7

cr(i+1)+1 ey (i)yper()+1 e s (i+1) 1— c (i) .
° qg\n)(T‘z(eT)) — 7(t (tcj,(i+1))gttcT,<i))2 t )682.(7'/) + tCTS(i)i)zCT’(i+1) err = T‘zqg\n)(ef) if
T > 5;i(7).
Thus in all cases we have that qg\n) (Ti(er)) = Tl-qg\")(e.r). Hence, qE\n) is a /¢ p-module map. O

3.3.2. The Z,'-module V. We begin by defining a collection of DAHA modules indexed by
Young diagrams A € Y. These modules are the same as those appearing in [12] but we take the

approach of using induction from .27, to 2. for their definition.

DEFINITION 3.3.4. Let A € Y with |\| = n. Define the 2, -module Vy to be the induced module
7F
V)= Indé?/:z pn(SA).

The modules V) naturally have the basis given by X ® e, where X< is a monomial and 7 €
SYT(A). We will refer to this as the standard basis of V). Using the theory of intertwiners for DAHA
and some combinatorics we are able to show the following structural results. The F, appearing
below are the version of the non-symmetric vv. Macdonald polynomials from [12] following our
conventions. These do not align with the non-symmetric vv. Macdonald polynomials of [12].

The next result is fundamental to the rest of this chapter and will be used repeatedly. Recall the

definition of the 92(”) elements from Definition 1.4.4.

PROPOSITION 3.3.5. There exists a basis of Vy consisting of 0 -weight vectors {F: : 7 €
PSYT>o(N\)} with distinct 0™ -weights such that the following hold:
o 00 () = o,
o If T € SYT()) then Fr =1Re;.

o If s;(T) > T then

_ wr(i+1) per (i41)
(tTi_l I Vel ) N
q T

w (i)tcf(i) _ qu(i+1)tcT(i+1)

b F\I!(T) = qwl(T)Xnﬂ';l(FT)‘

ProoF. Using Mackey Decomposition we find
131



@-F
gr. Resa(z) (V)

= gr. Resf(a Indffi P (Sy)
= @ (Resgf% pZ(Sﬂ)
ae(én/Gn)+

= @ Q(q,t)(tpg ® 67)'

Ue(én/Gn)Jr
T7ESYT(A)

As a consequence we find that the set {p,®e;} . is a generalized #("™-weight

8, /6n)  xesSYT(N)
basis for V). We now define
Fr = gr¢o.,, ®es(r)

of V) where the scalars g, are to be chosen uniquely to satisfy the conditions detailed in this
proposition’s statement. It is easy to check that since every 7 € PSYT>0(\) may be obtained by
applying oy, to S(7) the scalars g, are uniquely determined by setting g,rs = 1. By Proposition
3.2.15 this assignment produces a basis for V) labelled by PSYT>(\). Further, by induction using
Lemma 3.2.19 and Proposition 3.2.14 we see that no matter our choice of nonzero scalars g, each
F, is a 8™ -weight vector with 02(”) (Fr) = gD B

The only remaining step to justify is that if 7 € PSYTx(()\) then 7, (F;) agrees with X, m, 1 (F;)

up to some nonzero scalar. We see that

Tn(Fr)

— X, T - Ti(F)

= nﬂglwnTn_l Ty (Fy)
=" X, 10, (Fy)

— tnflqwq—(l)tcf(l)Xnﬂ_;l(FT).
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Therefore, there is no issue in defining the coefficient gy ;) so that Fy(;) = q“’f(l)Xnﬂg YE,).

U
ExXAMPLE
F1q2q[:t X1 Xo®em 2[+t 1= g2 XoX3®e i3]
13] 13] 12]
A XoX o () xox
it 1—qr2) 2 3® €M)~ 1—qiz) ! 3®6§3[
t~1 1—t
— | X4 X
+1+t<1—qt2> 1 3®ei132]

REMARK 28. Note that from Proposition 3.3.5 we get that
f}/n(FT) = tnilJrCT(l)F‘Il(‘r)'

By induction we see that

’Y;,(FT) _ tr(nfl)tc.,—(l)Jr...Jrc,—(T)FWT(T).
We now look at the .o7,-submodules of V).

PROPOSITION 3.3.6. The Z; -module Vy has the following decomposition into </ ,-submodules:

7R
Res, Vy = @ Ur
TERYT>o(N)

where Ur := spangq y{F7|T € PSYT>0(N\;T)}. Further, each oy -module Ur is irreducible.

PrOOF. Let T' € RYT>((\). Note that it follows immediately from Proposition 3.3.5 that each
Ur is a &/ ,-submodule of V). Further, trivially Uy N Uy = () for T' # T’ since the F, are a basis
for V) and the sets PSYT>o(\; 1) partition PSYT>o(A). Therefore,

7+
Resf/; Vi = @ Ur.
TERYTs0())

Now let T' € RYT>o(A). If U C Ur is a nonzero & ,-submodule then U must contain some Q)
weight vector as Up is spanned by 6 weight vectors. Thus there exists some 7 € PSYT>o(N T)

with F,, € U. But then it is follows readily from Proposition 3.3.5 that by using intertwiner
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operators ; given any 7 € PSYT>((A\) we may find A € &7, such that A(F;,) = F;. Therefore,
U = Up and hence Uy is irreducible. O

REMARK 29. It follows by using Frobenius Reciprocity and Proposition 3.3.6 that in fact there
are surjective 7, module maps

Ind;‘;Z(T) xT — Ur

where xr is the 1-dimensional representation of & (1) determined by the 0 _weight of Frin(ry and
T; — 1 for relevant T;. Thus each Ut is a quotient of an induced module from a parabolic subalgebra
of @, . In the case of T € RSSYT>o(\) this map is an isomorphism. We may witness the implied
bijection between PSYT>o(A\;T) and &,/& ) combinatorially using the map o — o(min(T')) for
o € 6,/6,1). It is straightforward to check by decomposing A into horizontal strip diagrams where

T is constant along rows that this map is actually an isomorphism of posets.

The following lemma exhibits triangularity for the T[l operators with respect to the reversed

Bruhat order on Zgo.

LEMMA 3.3.7. For1<i<n—1anda >0,

7YX, = XoT ! Xt X
1) Xy = XA ) + (= D)X ——————
XZ_XH—I

. . . Xe—X¢ . . .
Further, every monomial occurring in the term X@'.}.lﬁ is strictly lower than X' with respect

to the Bruhat ordering <. Consequently, it follows that for any o € Z% with si(a) = « the

following expansion holds for some scalars cg

(X = X5@OaT )+ Y epX”,
B%si(a)
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Proor. We start with

T X = (T +t— DXY

(3

=TXM4 + (- 1D)X{,
Xa  _ xa

b1
:Xfﬂ'f‘(l_t)Xiﬁ_(l_t) i1
1 Xy —X¢
— 2 (2
= X{'(tT; +1—t)+(1—t)Xim—(1—t) i1
xo . _ xo
= XMT7 4+ (1 - ) X2 — (1 - ) X%, + (1 — )X, 0L 0
Xi— Xit1

X& = X7

= XM 4 (t— 1) X

Xiy1 — X,

Further,
X, i =X
5 4
Xiv1 — X, o
so that

= X0+ XX+ XA X X X!

T X = XHTT 4 (6= DX + XE X+ o+ XE X072 4+ X X0,

i+1

Now let € Z%, with si(a) = aie. a; < ajq1. Then

tT; X

_ —1 yva1 Qi—1 v o v 4l v Qi42 «@
=Xy X XX Xt X

o [e%1 Q1 Q42 «@ —1 yvo; v Qi+l
=Xy XX X XX

o (e %1 Q—1 v v 42 o —1 vy Qiy1—0y
= XML XXX X X T X

i1 042 i+1

_ ar Q-1 ;v Oy Qit2 @
=X X, XXX X"

% (X;liﬂ—aitTi—l + (t _ 1)(X0¢i+1—06i + Xai+1_ai_

i+1 i+1

ai+1fa¢fl

= X5 4k —1) Y XeHlETen),
§=0
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Lastly, from Definition 3.2.6 it is clear that for all 0 < j < a1 —a; —1, si(a) = a+j(e;—eir1). O

Now we show that each F has a triangular monomial expansion of a certain form. It will be
important to identify explicitly the vector-valued leading term of the F- as this will be crucial when

defining the stable-limits of the symmetric v.v. Macdonald polynomials.

COROLLARY 3.3.8. ForT € PSYT>((\) each F; has a triangular monomial expansion with respect

to the reversed Bruhat order on ZY% of the form

Fr=X"@f(r)+ Y X’'®u

B=wr

for some vg € Sy where f(1) € Sy is given by the following recurrence relations:

Ifr € SYT(N) then f(7) = e,.

FU() = DT, Ty (7))

I ws (i) < we(i + 1) then f(s:(r)) = ¢T;7 (7).
If w; (i) =w,(i+ 1) and ¢, (i) — e (i + 1) > 1 then

(41
F(su(r) = (tT;l v M) (7).

ProOF. We will proceed by induction with respect to the partial ordering on PSYT>q()\)
defined in Definition 3.2.2. We will at the same time verify the recurrence relations given for
f(r) € Sy given above.

From Proposition 3.3.5 we know that if 7 € SYT(A) then F; = 1 ® e,. Hence, F trivially has a
triangular monomial expansion of the correct form in this case and that f(7) = e-.

In what follows assume that for 7 € PSYT>(A) we have that
Fr=X"@f(r)+ Y X’ ®u
B<w7'

for some vg € S).
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First, we see that

Fy(ry = qwl(T)er 1(FT)

= (7 )Xnﬂ'ileT®f Z q! nﬂ'rleﬁ@Uﬁ
B=wr

_ qw1(7)q—w1(7)Xﬁ(wT ® f + Z qw1(7') 61X'y(ﬁ) ® vg

B=wr
= X7 @ py(m + > XD g (m, g

B=wr

= X1(wr) g == CTLf(T) + Z XTB) g g =Pry=(n=D)p .. -Thvg.

B<wr

From Lemma 3.2.7 we know that if 8 < w; then 7(8) < J(w;). Therefore, we find that Fy ;) has
the expansion

Fyiy =X @001, o Tif(m) + > XP @
B=A(7)

for some vy € Sy. From this we see that f(¥(7)) = t==DT, T (f (7).

Now suppose s;(7) > 7. From Proposition 3.3.5 we get

1 wT(i+1)tcT(i+1)
Fsi(‘r) = (tT'_l + ( ()q 1 1 (FT)

i (Z)tCT i) _ qw7(1+1)t57(z+1)
- -1 (t _ 1)qwr(i+1)tc-r(i+1) o ,
B (tT' + qu(i)tCT(i) — qu(i-&-l)tcT(i-i-l) X ® f Z X" ® vg
B=<wr
= tj';*l Xwr ® f Z Xﬂ ® vs
B=wr
( 1) wr (i+1) per (i+1) o ,
* (q r(Dger (i) — qur(i+1)er (i41) XU @ f(r Z X" ®wvg
B=wr

For any 8 < w, using Lemma 3.3.7 we find that

7 X P wus= Y XV oupg
B/<5'L(wr)
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for some ug g € Sy; that is to say, each of the monomials X A" that appears in the standard basis
expansion of tTi_lXB ® vg must have ' < s;(w;).

Assume w, (i) < wy(i + 1). By Lemma 3.3.7 we see

tTHXY @ f(r) = X5 Y e f(n)+ Y X @ f(r)

6<si(w7)
= X5 o (T f() 4 Y eXP® f(r).
6<3i(w7)
Therefore, Fy, ;) has the expansion
Fur = xsi(wr) tTi_lf(T) + Z X?® 1}23
5<si(w‘r)

where vj; € Sy. Since s;(w;) = wy,(r) we have

Fym =Xty f(r)+ Y Xl o
B=ws, ()

and f(si(7)) = tT; f(7).
Now assume instead that w; (i) = w,(i + 1) and ¢, (i) — ¢, (i + 1) > 1. Then T; X% = X" T; so

s (D) ¢er (@) — qur (i+1)per (i+1)

_ (tTi_l + MtCT(H_l)) (F;)

_ wr (i+1)per (i41)
For) = (tTi_l + = 1)g ! ) (Fr)

ter (@) — ¢er(i+1)

_ o, (= 1)tcT(i+1) wy 8
B=wr
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B . (t o 1)tc7—(2+1) w, _1 (t _ 1 tCT(Z+1 ﬁ
- <tTi + e | XU e 0+ (17 + e ) Y X e

B=wr

T O (e VA L, (t ety 8
=X (tTi t e e ) ©fM 1T +m > X o

B=<w,

B w. (t _ 1)tc7—(l+l) 4 (t _ 1)tCT(Z+1 P
=X7e (tT by creyl A SO Rl R B ey mrn ) ; X" ®vg.

Therefore, since w; = wy,(r) we find that

Ws,; () -1 —(t — 1)tCT(i+l) B /
Fsi(T) =X @ tTi + ter () — ger(i+1) f(T) + Z X7 ® Ys
/B'<w5i(‘r)

for some vj; € Sy and

_ cr(i41)
Flsi(r) = (tT;l n M) (£

Using the ¢; operators on PSYT>q(\) we may compute f(top(7')) explicitly.

PROPOSITION 3.3.9. For T'€ RYT>(\) we have that
Fleop(T)) = 67T g D egry)
where define for 1 <i <mn,

o= (1) T2 (O IT o))

PrOOF. Using the recurrence relations in Corollary 3.3.8 for the elements f(7) and Proposition

3.2.14 we see that for any 7' € RSSYT>((A) since
top() = ¢ G (5(1)
with each (; := (s;---s,_1¥)’ then we have a similar expression for f(top(T)):

fltop(T)) = & D2 gD (e g )
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where €; == ((¢T;) -+ (¢T, 1) (DT, - - Tl))i is obtained by replacing each s; and ¥ in
(; with tTj_1 and ¢~ (DT, ... T} respectively. Importantly, when we apply ¢; to any element of
the form top(7”) we never perform any swaps s;(7) > 7 such that w,(j) = w,(j + 1) and hence

never require the more complicated recurrence relation:

— er (j+1)
Fls;(m)) = (tTfl ¥ W) (F(7)).

ter(G) — ¢er(G+1)

The %; operators can be identified concretely using the 9]- elements of the finite Hecke algebra.

LEMMA 3.3.10. Forall1 <i<n,

where Aj := t_(j_l)gj_l.

PrROOF. Let 0 < k <14 — 1. We first show by induction that
. -1 o 1—=—1
(! 19i Yoo (t k lgi_k) = (Tj_ - “Tl)k+1(Tk+1 T ) (T -+ Ty—g) - (Ty -+ Ty_jp—p).
To start we see that for k = 0 we have

i 17—1
7, =TT T = (Tyq - TN T - Tiq).
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Now suppose that for 0 < k < ¢ — 2 the formula above holds. Then

(ti—lg;l) o (ti—(k:-i-l)g*l

= (Tj_y - -Tl)kH(TkH ..
= (Tj_y - 'T1)k+1(Tk+1 e

= (Tj_y - -Tl)kH(TkH o

X (T Ti—g—2)

= (Tj_y - 'Tl)k+1(Tk+1 e

x (T ---Ti—g—2)

= (Tj_y--- Tl)k+1(Tk+1 .

i—(k+1))

Ty ) (Tp-+ Tys) - -

=1

- Tigm) (V0 )

Ty (Tjppn -T2 Ti_p_2)
~Tip)(Th -+ Timg1)(Timg—2 -+ - T1)
i) (Tikr - To)(Th - - Tiog1)
L) (i1 T)(To - Tiog1)

Tip1) Ty Timg)(Ti—g—1 - - T1)

i) (Tieg - Th) (T3 - - Ti)

=(Ti_y--- T1)k+1(Tz'—1 T Tz Tio1) Ty - Ti2) - (T1 -+~ Tip—2)

= (Tj_y - .Tl)k+2(Tk+2 o Ty y)(Thgr - Ty2) - (T - -

By taking k =i — 1 we find

T _p—2).

(F15) (18 = (T T’
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Now we see that

&= (0T 0T ) (VT - Ty))'

= ¢y Ty)

_ t—i(i—l)(ti—lg;l) . (togl—l)

— —2(i-1)=2(i-2)—...=2(1)-2(0) (ti—lgi_l) . (toél_l)

= (Vg g

7

where A; := t*(jfl)g;l. O

Putting the results of this section together gives the following:

COROLLARY 3.3.11. For T'€ RYT>o(), the triangular expansion of Fy,yr) has the form

Fopr) =t " X" D@ e+ Y X @up
B=v(T)

for some vg € S).

PROOF. First, notice that for T' € RYT>0(A) wiopry = v(T). From Proposition 3.3.9 and
Lemma 3.2.12

ftop(T)) = & D2 gD ey

= AT gy gy Da—vDs (4 A) D (egiry)

= AP D) A G Dna (DT 4D o= D))+ D gu(T)

n—

es(r))

= ()DL (@, e

es(r))

— s D=(-D) = Dnlesi W~y

— i V(T)i(CS(T)(i)H*l)eS(T)

—¢7br es(T)-
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Therefore, the leading term of Fi,,r) is

XU @ f(top(T)) = t T X"D) @ egip).

3.3.3. Connecting Maps Between V). We now construct special maps between the v.v.

polynomial DAHA modules which satisfy particular stability properties.

DEFINITION 3.3.12. Let A\ € Y. For n > n) define @gn) : Vi) = Vi as the Q(q, t)-linear

map giwen on any element X @ v € V1) by

(" (X @) = Lants = )X - X2 @ g\ (v).

)

ProposiTION 3.3.13. The map @E\n satisfies the following relations:

o =T,0" for1<i<n—1

e o\"X; = ;0" for1<i<n
"X, =0

o, 0 T, = (D,

<I>E\n)9§n+1) = ng)q)g\n) for1<i<n
oM (0D — =M = o,

ProOOF. From Lemma 3.3.3 and Definition 3.3.12 it follows immediately for all 1 < i <n —1
and 1 < j < n that @7 = 7,0, (" X; = x;8("), and (" X,,,, = 0.
Let X* ® v € Vymt1). By direct calculation we find
143



O, T (X X0 @ v)

= O A X X T (X X © )
— oM X X, T (X X7 @ v)
— XS X1, T (X0 X0 @ v)

n+1
Xn - Xn+1

n
n—+

XanXOer—l _ Xan Xan+1
= X X8 (X“ XEMT, @ 0+ (1= )X, 22 nf1 X ®v>

— t_nXéll . X’rOLén—l

XanXanJrl — Xon Xan+1
X (I)E\n) (qanX?nXg—flrlwnJrlTn X v+ (1 - t)XnJrlﬂ'nJrl . ";21 X . ® ’U>
n — An+l

= L(aps1 = 0)t g X X5+ X210 (1@ ppyy (1 T)v)
= Lo = 0) g XX X ol (1 " T )

= 1(ang1 = 0)g " XPn X1 ... X0l @ Tfl .. Tﬁlq&") (v).

On the other hand we see

t—(n—l)ﬂ-nq)g\”) (Xil .. Xz‘rlfl ® U)
= Lanp = 0t " Vmu (X1 X 0 ) ()
= 1(aps1 = O)t_("_l)qo‘"Xf‘"Xg‘l ce X0l @ pn(ﬂn)(qg”) (v))

= 1(omsy = 0)g*" XPn X1 ... X0l @ T1_1 .. 'TJ_llq(A") (v).

Therefore, <I>E\n)t_”7rn+1Tn = t_(”_l)ﬂnq)g\n) as desired.
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Now let 1 <7 < n. We see that

oY = @O T T T
— il Tl—l((pg\")t*”ﬂnHTn)Tn_l T
=il Tl—l(t’("’l)ﬂn®g\n))Tn_1 TG
=t T T e Ty T

_ g,

Now let o € ZZ5" and 7 € SYT(A("*1). We find

oo (X @ er)
= (Pg\n)TnTl P Tl_lﬂ-n-l,-l(Xa ® 67-)
= <I)g\n)Tn_1 .. -Tflqan+1X?n+1 Xén R Xﬁil ® pn+1(77n+1)€7-

_ qan+1q)g\”)Tn—1 . Tleil"+1X2al v Xgil(l ® tanl ce Tn_l(ef))'

Now if ap+1 > 0 then this evaluates to 0 since
ot T X = e X, T, T = 0,
Hence,
MY (X @ e,) = L(anys = )BT TTIXS X0 (1@ T T ey).

n+1 n

Now we by repeatedly applying Lemma 3.3.7 we see that as maps V)m+1) — Vi)
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ST Ty (X)X XS

Xo - X
= oty (Xf”Tfl FA -t X Tl 2 > Xge ... Xon

n ){1 _ XQ n+1
_ _ _ _ B Xal _ Xal
— X?l@&”)Tn LoTrixge. X0 4+ (1t I)an)Tn L., 1)@ﬁX§Y2 D S
= X" @E\”)Tn—l .. 'Tf1X§‘2 . Xgil
XM — X
1=t 200X, Ty - T L2 X g2 X0
+( ) A n+lin—1 2 Xl — X2 3 n+1

= XTI TTIXS L X 40

= xp oM TN X T X X0

— Xf‘lxycp&”)Tnfl L TTIXOS X0,

= Xlo“ c. X,‘f”fbg\n)Tn_l .. Tfl.

As usual let [y denote the unique square of the skew diagram \(?+1) / A Returning to our main
calculation now shows
oY (X @ er)
= Lo = 0@ T TIXS - X0 (L@ T T (er))
= Uanp = XM - XTI L @ T T (ey)
= Wy = 0) X - XMW A @ " T - T T T er)

= 1(anyr = )X - X201 087 (e,))
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= Lapsr = 0)X{1 - X0 (1@ e,

=t DY (g = 0) XM X2 @ q&”)(er)

=t (41 = 0)1(7(To) = n+ DX -+ X" @ ey
=" M1 (ap = 0)1(r(Do) =n + DX{ - X3 ® e 5w

_ CI)g\n)(tnil)‘lxa ® 67—).

Therefore,

B ) =0

COROLLARY 3.3.14. Let n > ny and Og = A" /XM For 7 € PSYTso(A" ) we have

F,
@) (Fy) = § TN

0 T(Do)#n—{—l.

7(0p) =n+1

PrOOF. We will first deal with the case when 7(Cg) = n 4+ 1. Let T € RYT5o(A™) and

let T' € RYTso(A"D) with T7/(0p) = 0 and T'|,y = T|yw. By looking at the eigenval-

(n—l—l) egn—l-l) (n) '

ues of 0 on Fioprry and the eigenvalues of 67, ..,95{” on Fiopr)y we see that

<I>(") (Fiop(17)) = BFiop(r) for some scalar 3. We will now show that 3 = 1. From Corollary 3.3.11

we know that
Ftop(T’) = t_bT,XV(T/) X €s(17) + Z XB ® U//B
B=v(T")
and
Ftop(T) = ¢~br x(T) ®eg(r) + Z x5 @ vg
B=v(T

for some v € Sym) and vy € Sym+1). Since T'(Cp) = 0 and 7" |)\(n) =T\, it follows that by = b,

v(T") = v(T) * 0, and q&")(esm)) = eg(r)- Therefore,

(I)E\n) (t_bT’XV(T,) 2 €S(T/)) _ t_bTXV(T) X €s(T)-
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Now if 8 < v(T") then @E\n) (XP® vg) = 1(Bpt1 = O)Xlﬁ1 o XPrg qg\n) (vj) cannot be of the form
XY @w for any w € S \(n)- As such the coefficient of X" M e s(r) in the standard basis expansion
of @E\")(Ftop(p)) is t =7 Since this agrees with the same coefficient in the expansion of Fiop(r) We
know that 8 = 1 and thus " (Fiop(rr)) = Frop(r)-

Now consider any 7/ € PSYT5o(A™V) with /(o) = n+1. Let T := pyur1) (7) € RYTso(AHD).
Then T"(0p) = 0so if we set T := T"|,n) we have that @E\n)(Ftop(T/)) = Fiop(r)- Write 7 := 7'[ ). As
seen before there exists a sequence 7 < s;, (1) < ... < s;, -+ 8, (7) = top(T'). Since /(o) =n + 1,
we see that 7/ < s;, (7) < ... < 84, -8, (7)) = top(T”) as well. For each 1 < j < r we will consider
using the intertwiner operators from Proposition 3.3.5 to obtain F; sijsiy_ysiy (7) from Fsz'j,l'“sz‘l(f)'

We have that

tT—l (t B 1)qwsijflmsil (T)(lj+1)tcsij—1msil(T)(2j+1) (F )
2 wsij71-~5il (7) (Zj)tcsij71<~si1 (T)(ZJ) o qwsij71-~5i1 (7) (zj+1)tcsij71"'5i1 (7) (Z]+1) Sljfl Siy (T)
=F,

Now the same exact formula holds with 7 replaced by 7’. Importantly, we have that w;, esiy (7) (154
i

1) = w,,

iy (= (i; + 1) and Csi,ywmsiy (1) (i; +1) = Csij_l"'sil(T,)(ij + 1). Therefore, we may write

Dj(Fsij71-~~sil (T)) = Fsi.sijil---sil (1)

J

and

DJ(FSi-_l"'5i1 (T’)) = Fsi-si-_l"'sil (")

J J
for D; € &y, C & (1) of the form D; = T, + a; where a; € Q(g,t). Here we have used tTi;1 =
Ti; +t — 1. By using the quadratic relation for T;; we may locally invert the operator D; in the

sense that there exists operators C; € &/, with

F — C(F,

Sij_qSiy (1) 8i;8i;_q7Siy (7’))
and

Fsij71 iy (T7) T Cj (Fsi Sii Sy (.,./)).

J 77
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I
S|

: (n)
Therefore, if we assume that (IDAn (Fsl.]_ Sij_f"sil(T')) Lesiy (7) then

Si.:Si:
A

Thus by induction, since we know @g\n)(Ftop(T/)) = Fiop(T), it follows that @g\n)(FT/) = F..

Lastly, we consider the case of 7(0y) # n + 1. Then 7(0g) = ig® with either i #n + 1 or a > 0.
If a > 0 then 7 = ¥(7') for some 7/ and thus from Proposition 3.3.5 we know X, ;1 divides F;.
Since <I>g\n)Xn+1 = 0 it follows that @g\n)(FT) = 0. Now suppose a = 0 and i # n + 1. Notice for any
m > ny that the largest power of t occurring in the 8™ -weight of any F, with 7/ € PSYTZO(A("‘))
is exactly t™~N=1. Since i # n + 1 we know that if @E\n)(FT) = BF, for some nonzero scalar (3
and 7’ € PSYTEO()\("H)) then the maximal power of ¢ occurring in the §(-weight of F, is "~

coming from

Thus @E\n)(FT) cannot be a 8™ -weight vector in Vi@ and so B = 0. O

The maps @g\n) possess another important stability property.
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PROPOSITION 3.3.15. For all £ € Z\ {0} and n > ny,

n+1 n
(I)g\n) Z(9§n+1))é_ Z P (m)) Z(eén))z_ Z 4e(D) ‘I’(An)'
j=1 Oex(n+1) j=1 Oel®)

PrOOF. Let ¢ € Z \ {0} and n > ny. As usual let [y denote the unique square of the skew

diagram A("+1) /A Directly from Proposition 3.3.13 we see

n+1
n n+1 c
‘I’E\) Z@ + ))z_ Z ()
Jj=1 Oex(n+1)
a0 (S = Y ) ) a (6l - )
Jj=1 Oex(n)

(S0 5 0] o+ a (@ - o).
Jj=1 Oex(®)

It follows from the relation @E\n) (97(17};1) — t”_w) = 0 and the fact that 07(3;1) is invertible on

V)\(mq) that
n n+1 n—
o) (103 - o) =0
Therefore,
n+1
n n+1 c n c n
(I)g\) Z(GJ( + ))€ - Z tl @1 = Z 0( Z tﬁ (b(
7=1 Oex(n+1) 7j=1 OeX(n)

3.4. Positive EHA Representations from Young Diagrams

3.4.1. The Qflph—modules Wym. We now turn to the corresponding spherical DAHA mod-
ules and symmetric v.v. polynomials to the positive DAHA modules V) and the non-symmetric

v.v. polynomials F; considered in the prior sections.
DEFINITION 3.4.1. For A € Y with |\| = n define the 2 "-module W) := €™ (V).

The F; expansions of any symmetrized element of any .«7,, submodule Up satisfy a simple set of

recurrence relations.
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LEMMA 3.4.2. Let T € RSSYTx0()\) and v € €™ (Ur). Suppose that v has the following expansion

into the F, basis:

V= Z K+ Fr.

TEPSYT>o(NT)

Then for each T € PSYT>o(A\; T) with 1 <i <n —1 such that s;(t) > 7 we have the relation

B qu(i)tcT(i) _ qu(i+1)tcT(i+1)
Kgi(7) = T | e

qur (@) ger (i) — qur (i+1)¢er (i+1)+

As a consequence, if Koy # 0 then each coefficient ki is also nonzero.

PrOOF. Let 7 € PSYT>o(\;T) and 1 <4 <n —1 with s;(7) > 7. Note that Q(q, t){Fr, Fy, ()}
is a 2-dimensional submodule for Q(g, t)[T;]. The T;-invariant subspace of Q(q, t){ Fr, Fy,(r)} is given
by Q(q,t)(1 + ¢T; ') F,. From Proposition 3.3.5 we find

(1 + TN F, = Fy + T, F;

1—1¢ wT(i+1)tCT(’i+1)
= Fy ot Py + 10

qu(i)tcT(i) _ qu(i—i-l)tcT (i+1) 12

_ N qu(i)tcT(i) _ qu(i+1)tCT(i+1)+1F
81‘(‘1‘) qu (Z)tCT(Z) — qu(i+1)tcT(i+1) i

Since v = ZTEPSYT>0()\'T) Kk, Fr is Tj-invariant then we know that in particular x,F + Koy (r) Fsi(m)
is also Tj-invariant and therefore must be a scalar multiple of (1 + tTl._l)FT. Therefore,

g (D) per (@) — qvr (i4+1) ger (i+1)+1

gorDger (D) — qur(i+1)ger (i+1) Ksi(r)Ir

keFr + K/Si(T)FSZ‘(T) = HSZ'(T)FSZ‘(T) +

and so

qu(i)tcT(i) _ qu(i+1)tcT(i+1)
Ksi(r) = g D er@) — qur(iFDge G+ | B

Using the recurrence relations in Lemma 3.4.2 and the irreducibility of each of the 7, submodules

of Vy we may determine which T'€ RYTx((\) have a non-zero space of ¢ ,-invariants ™ (Ur).
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PROPOSITION 3.4.3. For A € Y with |\| =n and T € RYT>o(A),

dlmQ(q’t)e(n)(UT) =

0 T ¢ RSSYT>¢(A).

PROOF. By Proposition 3.3.6 each «7,-module Uy is irreducible with simple #(® spectrum.
This implies that dim@(qi)e(”)(UT) < 1 for any T € RYT>q()\). Further, we have that ™ (Ur) is
zero if for any (") -weight vector v in Uz, €™ (v) is zero. If T € RYT50(A\)\RSSYTx0()\) then there
exists a pair of boxes Oy, 0y € A with (J; directly above [y such that T'(0;) = T'(Og2) = a. Hence,
top(T')(01) = ig® and top(T)(0z2) = (i+1)q* for some 1 < i < n—1. Then Tj(Fiop(7)) = —tFiop(r)
which implies that €™ (F,)) = 0. Thus ¢™ (Ur) = 0.

Alternatively, now suppose T' € RSSYT>¢(\). Following Lemma 3.4.2 we construct a vector

v € Up of the form

v = Z KrFr

TEPSYT>o(NT)

where kopr) = 1 and if s;(7) > 7 then

B qu(i)tCT(i) _ qu(i+1)tcT(i+1)
Rsi(r) = 1)

qur (D) ¢er (@) — qur (i+1) ger (i+1)+

These coefficients x, have the property that if s;(7) > 7 then

Ti(kr Fr + K/si(T)FSZ‘(T)) =K Fr + ’isi(T)Fs (r)-

i

qvT (4) ger (4) —q¥T (i+1)ger (i41)
qwT (i) ¢er (4) —qwT (i+1)ger (i+1)+1

Ti(v) = v for all 1 <i <n —1 and thus ¢™ (Ur) # 0.

# 0 whenever s;(7) > 7. We will show that

By construction v # 0 since
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We find that

Ti(v)

= Z KTE(FT)

TGPSYTZO (}\,T)

= Z T; (K/T(FT) =+ Ks; (1) (FSZ(T))) + Z KTE(FT)

(7,5:(1)) PSYT50(A)2 TEPSYT>0(A)
si(T)>T 4,4+1 same row of T
+ > kT3 (Fr)
TEPSYTzo(A)

i,i+1 same column of 7

— Z (Kr(Fr) + sy(r) (Foi(n)) + Z K F.

(7,8:(7)) PSYT>0(A)? TEPSYT>0(X)
si(T)>T i,i+1 same row of 7
+ > (—t)k, F.
TGPSYTZ()()\)

i,i+1 same column of 7

Thus
T;(v) —v = Z (L +t)r - Fr.

TGPSYTZ()()\)
1,i+1 same column of 7

Lastly, since T' € RSSYT>o(\) there cannot be any 7 € PSYT>((A; T') with 4,7+ 1 occurring in the

same column as necessarily this would imply that T" would have redundant values in those boxes

contradicting the fact that T is reverse semi-standard. Hence, the above sum vanishes and we find

Ti(v) = v.

Finally, we are able to define the symmetric v.v. Macdonald polynomials following the conventions

of this chapter.

DEFINITION 3.4.4. Let T € RSSYTxo()\). Define Pr € €™ (Ur) to be the unique element of the

form

PT:FtOP(T)+Z”yFy
y

where the sum above ranges over y € PSYT>o(\) with px(y) =T and y < top(T).
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Now we are able to explicitly compute the F. expansion of each Pr using the recurrence relations

found in Lemma 3.4.2.

COROLLARY 3.4.5. For all T € RSSYT>o()),

T(Dl) C(Dl)-i-l _ T(DQ) C(DQ)

_ q 3 q 3

Pr= Z H ( qT @) ¢cO1) — ¢T(O2) (D) ) Fr.
TEPSYT>o(MT) (O1,02)€Inv(T)

PrOOF. For 7 € PSYT>o(\; 7)) let

= I

(d1,02)€Inv(T

qT(Dl)tc(D1)+1 . qT(Dz)tc(Dz)
) gL (E)¢e(0r) — T (B2)¢e(B2)

From Lemma 3.4.2 it suffices to show that

® figop(r) =1

wr () gor (i) _ guwr (i+1) ger (i+1)
o If 5;(7) > 7 then Ky, (s = ( gt 4 ! ) K.

qw-,-(i)tc-,—(i)_qwq—(i+1)t(;7—(i+l)+1
It is easy to see that Inv(top(T')) = () s0 Kyep(r) = 1. Now suppose s;(7) > 7. Let O®, 06+ ¢ A
denote the boxes of A with 7(0®) = ig® and 7(OY) = (i 4+ 1)¢* for some a,b > 0. It is

straightforward to check that
Inv(s;(7)) = {(OD, 0} UInv(r).
Therefore,

Ksi(r)

T(0h) ge(@)+1 _ qT(Dz)tc(DQ)>

— q
B H T(Oh)4c(01) — T (02)4c(0
(Dl,Dg)eInv(si(T))< qT(@)¢e@1) — ¢T(O2)¢e(02)

qT(D(i>)tc(D<i))+1 _ qT(D<i+1>)tC(D<i+1>) g7 (O ¢e@)+1 _ (T (o) 4e(Cz)
- qT(DU))tc(D(i)) _ qT(D<i+1>)tc(D<i+1)) ( H qT(Dl)tc(Dl) _ qT(DQ)tc(DQ)

0;,02)€Inv(T)

qu(i)tcT(i) _ qu(i—l—l)tcT(i—i—l)
~ \ o @per () — qur D e HD+1 Kr

We look now at the action of the special spherical DAHA elements P((g Z)'
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PROPOSITION 3.4.6. Let |\| = n. The set {Pp: T € RSSYTso(\)} is a Q(q,t)[67", ..., 051 ]%n-
weight basis for Wy. Further, for ¢ € Z \ {0}

(0 f <Z qET tﬁc )

Oex

Consequently, P(%n )1) acts on W with simple spectrum

{Z qT(D)tC(D) T € RSSYTEO(A)} :

e
PRrOOF. It follows directly from Proposition 3.3.6 and Proposition 3.4.3 that the set {Pp: T €
RSSYT>((\)} is a linear basis for Wy. We need to show that the Pr are Q(q,t)[0:",...,0:"Sn
weight vectors. Let T' € RSSYT>o(A). Then from Definition 3.4.4 we know that

Pr = 56(n) (Ftop(T))

for some nonzero scalar 8 depending on 7'. Then for any ¢ € Z \ {0} we have that

(i(e§">>f) (Pr)

J=1

Jj=1

((Zen ) FtopT)))
— Be(n) ((Z qéwmp(T) (4) ¢lesop(T) (j)) Ftop(T))
j=1

_ Be(n) ((Z QET(D)tKC(EI)) Ftop(T))
Oex
(Z qZT teC(D ) ﬁe (Ftop T))

Oex

_ (Z qu(D)tec(D)) Py

Oex

_ (Z(e§")>z) (8™ (Frop(r)))

Hence, Pr is a Q(q,t) [9?1, <o, 0518 weight vector.
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Now let S € RSSYT>¢(A) and suppose that

3 TOFO 2 ¥ SO0,
Odex Oex

Fix any d € Z. Since g and t are algebraically independent over Q,

Y O= Y SO

Oex OeX
c(0)=d c(0)=d

Since the labelling 7" is reverse semi-standard, the values of T'(0J) for 0 € A with ¢(d) = d are all
distinct and strictly decreasing down the d-diagonal. Of course, the same is true for .S. Therefore,
the values of T' and S agree along the d-diagonal of A. As d € Z was general it follows that T = S.
)

Thus the spectrum of the operator P(gﬁ on W) is simple.

0

As mentioned previously, the non-symmetric v.v. Macdonald polynomials do not align with
those of Dunkl-Luque. However, we are able to show that, once symmetrized, the symmetrized v.v.

polynomials agree.

COROLLARY 3.4.7. The symmetric vector valued Macdonald polynomials of Dunkl-Luque [12]

agree with the Pr of this chapter up to nonzero scalars.

PROOF. The Z;-modules V, in this thesis are isomorphic (after aligning conventions) to the
2 -modules My in Dunkl-Luque’s paper. Dunkl and Luque characterize the symmetric vector
valued Macdonald polynomials as eigenvectors with distinct eigenvalues for the operator Yl(n) +...+
v, acting on €™ (M,). Here Yi(n) are the standard Cherednik elements given in our conventions
by Yi(n) = nTitlT . T17TnTn_,11 e Ti_l. A simple calculation shows that the spherical DAHA
elements €(™) (Yl(") +...4 Yén))e(") and (™ (Hgn) +...+ 07(7,”))6(”) are both nonzero scalar multiples
of €™M, e Since the spectrum of €™, acting on Wy is simple, it follows that the Pr
are eigenvectors for (™ (Yl(n) +... .+ Yén))e(") and hence agree with the symmetric vector valued

Macdonald polynomials of Dunkl-Luque up to re-normalization. O

3.4.2. Stable Limit of the W,(,. Finally, we identify a special stability property for the Pr

elements.
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COROLLARY 3.4.8. For T € RSSYT>o(A™) let T" € RSSYTso(A ) be such that T(O) =
T'(0) for O e X" and T'(0p) = 0 for o € XD /XM Then

o\ (Pp) = Pr.

PRrROOF. Note that restriction from A"V to A" identifies PSYT5o(A™;T) as the subset of
7 € PSYT5o(A™+D): T") with 7(Cg) = n + 1. Thus by using Corollary 3.3.14 in conjunction with
Corollary 3.4.5 we find that

o\ (Pp)

T(O1)ge(@1)+1 _ T (O2)4e(02)
q q n
) o (F,)

= Z H ( ¢TO0 @) — gT(02)4e@2)

TEPSYT 5o (A +1);77) (O1,02)€lnv(r)
B Z H qT(Dl)tC(Dl)"rl _ qT(Dz)tC(Dg) F
B L0 o) — TO2)4e@2) |~ how
TEPSY T (A1 ;77) (B1,02)€lnv(r)
7(0p)=n+1

gT O e@0)+1 _ qT(Dz)tc(D2)> |
TIx(n)

= Z H ( qT(Dl)tC(Dl) _ qT(DQ)tC(Dz)

TEPSYT5o(AP+1);77) (O1,02)€Inv(7|, (n))

7(0o)=n+1
B Z H <qT(Dl)tC(D1)+1 _ qT(Dg)tC(DQ)) i
- T(Oh)¢e(01) — T (02) ¢e(02) T
TEPSYT5o(AM);T) (O1,02)€lnv(7) q D q 22

= Pr.

This stability allows for the following definition.

DEFINITION 3.4.9. Let A € Y. Define the infinite diagram N> := Unsn, A" Define Q(X) to be
the set of all labellings T : \(*°) — Zq such that

e {Oe ™) . T(0O)#0} < o0
o T decreases weakly across rows

o T decreases strictly down columns.
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For T € Q(\) we define the degree of T as deg(T) := Y ey T'(0). Define the rank of T, tk(T),
to be the minimal n > ny such that T|)\<oo>\)\(n) = 0.

Define the space W;\OO) to be the inverse limit @W)\(n) with respect to the maps @g\n). Let W)\
be the subspace of all bounded X -degree elements of W/soo). For T € Q) define the generalized
Macdonald function

B = liyrln PT|/\(n) e Wy.

EXAMPLE. For A\ = (3,2,1)

() = and

3 2 0

€ Q(N).
1] 1
0

REMARK 30. The degree of each L1 is given simply as
deg(PBr) = deg(T) = > T(D).
Oe(ee)

It is clear from definition that the set of all Py for T € Q(N) gives a Q(q,t)-basis of W,.

Using the stability of the action of the 2%

0.,0) operators we may define the following operators.

DEFINITION 3.4.10. For ¢ € Z\{0} define the operator Al W;\OO) — W;\OO) to be the stable-limit

KEOO) := lim Z(OJ(-TL))Z - Z #te(@)

J=1 Dex™)

A simple calculation shows the following:
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LEMMA 3.4.11. For all £ € Z\ {0} and T € Q(\),
Kﬁoo) (Br) = ( Z ("™ — 1)t€c(m)) Br .
DOeAl(ee)

PrOOF. Let £ € Z\ {0} and T' € (). Then
A (%r)

= lim (ey(n))e_ > tMﬂ) (1171;11 PT'wo)

J=1 Oex()

Jj=1 Dex)

:hén Z ¢ TO)te(@) _ Z tzc(m)) Pri o

Oex(®) OeX(®)

Oex(®)

Importantly, for n > rk(T")

Z (qﬁT(EI) - 1)t€c(D) — Z (qu(D) - 1)téc(|j)'
Oex(®) Oex(e0)
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Therefore,

lim Z (qﬁT(D) — 1)tec(D) Pr

A(n)

= > @™ —1)D) | tim Py
OeA() no A
Exlee

— Z (qKT(I]) o l)téc(D) f'pT

Oe(e0)

COROLLARY 3.4.12. For ¢ € Z\ {0} the operator Egoo) restricts to an operator on Wi.

PROOF. Let £ € Z\ {0}. We know that the set {8 |T € Q(A)} is a basis for Wy. From Lemma
3.4.11 we further know that &éoo) acts diagonally on this basis. Therefore, &éoo) restricts to an

operator on WA. U
EXAMPLE. For T € §2(3,2,1) as is Example 3.4.2,
APV PBr) = (@@ =D+ (@ = DE + + )+ (@ = D+ ) + (= D2+ +) Py

3.4.3. Positive Elliptic Hall Algebra Action on ’W\//',\. Combining every result of this chap-

ter thus far we are able to define a novel family of positive EHA representations.

THEOREM 3.4.13. For A € Y, Wy is a graded & -module with action determined for € € Z \ {0}
and r >0 by

® Pro—q'p}
o P07g — Agoo)
Further, WA is spanned by a basis of eigenvectors {Pr}rea(n) with distinct eigenvalues for the

Macdonald operator A = &goo).
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PrOOF. It suffices to establish that the map &% — EndQ(q,t)(W)\) satisfies the generating

relations of &* . Any such relation is a non-commutative polynomial expression in &% of the form
F(Py,—v,...,P01Po1,...,Pos, Pro,...,Ps0) =0

for some r > 0 and s > 0. By an argument of Schiffmann-Vasserot (Lemma 1.3 in [34]), there are
automorphisms I'(™) of Z°P! such that for all £ € Z\{0} and s > 0, F(”)(PO(Z)) = Pé;)_ZDG)\(”) ¢te(@)
and F(")(PS(’%)) = Ps(z). By applying the canonical quotient maps II,, : V[N/,\ — Wy we see using
Cor. 3.3.15 that as maps

I, F(Py—r,...,Po—1,Po1,--., Por, Pro,..., Psp)
= F(C(P ), TR, T (B, ... . T (B, 1) (P, . T (P,

T

=r(FEE . BB B P, PI)IL, = 0.

As this holds for all n > ny, it follows that F(FPy —r,...,Po—1,Po1,---,FPor, Pro,...,Psp) =0
in EndQ(q’t)(W)\) as desired. The last statement regarding the spectrum of A follows directly from
Prop. 3.4.6 and Cor. 3.4.8. [l

REMARK 31. For T € Q(X) and ¢ € Z\ {0},

Poe(Br) = | Y (a7 —1) @ | g,

Oe(ee)

REMARK 32. For A\ = 0, W@ = Ayt recovers the standard representation of &T . In this case,

Q0) =Y and B, = P,[X;q71,1] (up to nonzero scalar).
Now we identify a special element of each /VIV/A.
DEFINITION 3.4.14. For any XA € Y define the labelling T/(m" of A°°) by
Tyn(0) = #{0' € XD strictly below O}

LEMMA 3.4.15. The labelling T{"" is the unique element of U(A\) of lowest degree dy := dis1 i
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PROOF. It is immediate that since X is a partition 75" € Q()). Further, by construction each
entry of 7" is chosen minimally in that for any 7' € Q(\) and O € A 7o) < 7(0). To
see this simply note that if T € Q()\) and 00 € A% then if (I’ is the box directly below [ then
T(O) > T(). Hence, T(O) must be at least as large as the number of boxes strictly below [J.
Therefore, T)‘\Ilin has the minimal degree among all elements of Q(\). Lastly, the number of boxes

O € A(*°) with 79 (0) =i is \; so deg(T{™") = d as defined above. O
PROPOSITION 3.4.16. For A\, u € Y distinct, WA * Wu as graded &+ modules.

PROOF. Let A, x € Y and suppose that f : /VIV/A — Wu is a graded &7 module isomorphism.
Then by Lemma 3.4.15 we know that

f (mTfﬂi“) = amTﬁnin
for some nonzero scalar o € Q(q,t). Further,

Po1(f(Brmin)) = f(Po,1 (Brmin))
= FCY @O 1)) Pn)

de(e)

= Z (qTimn(D) — 1)) f(mT;\“i“)

de(ee)
S @O - 1)eO ) asp
OeX(e)
On the other hand,
Po1(a ‘BT;pm) = Z (qT:”mn(D) - 1)tC(D) amTﬁniﬂ .
DE/L(OO)

By assumption a # 0 so

3 (@O @ = ST (O ),

DE)\(OO) DEH(OO)
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This gives

Z (qT;\nm(D) . 1)tc(D) _ Z (quanm(D) . 1)tC(D)
OeA™x) Oep(nw)

which after limiting ¢ — 0 gives

S0 = 3 ),

OeX Oep

By comparing the coefficient of t¢ for all d € Z on both sides of the above equality we see that A

and p have the same number of boxes on each diagonal and are therefore equal.

3.5. Pieri Rule for Generalized Macdonald Functions

The goal of this section is to derive and utilize an explicit combinatorial formula for the action of
the multiplication operators e,[X]® on W. We will show investigate the e; Pieri coefficients in more
depth and show that they satisfy a simple non-vanishing conditions. We will use this non-vanishing

to prove that the WA modules are cyclic.

3.5.1. Pieri Rule Preliminaries. We begin first by establishing some useful lemmas.

LEMMA 3.5.1. For T € RYT>q()\)

Z t((g)_(MQT)))_Z(U)TU(Fmin(T))‘

n [ (T)]!
6( )(me(T)) = [ ]t'
O'GGn/GH(T)

PRrROOF. The result follows from the following simple calculation:
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€(n) (Fmin(T) )

' Z mln(T) )

ceS,

1 ny_
LS Y e
UGGn/GH(T) 'YEGu(T)

= [Tll]tl Z Z ~He)~Ho T T (Fmin(T))

0€6n/6,,1) VEG#(T)

1 (3)- (7)) —t(o) , (MDY (o
R D )T, (Frincr)

’ O’EGn/GM(T) v€S w(T)

= [1' Z t((g)f(ﬂg‘r))) (U)T (me(T)) ( Z t(”<2T>)€(a))

n]t.
UEGn/gu(T) VGBM(T)
[n(T)]i! )= ("))t
~ > ((&-0%7) To (Fmin(r))-
GGGn/G#(T)

LEMMA 3.5.2. For RSSYT>o(\) and 0 € 6,/6 (7
To(Fmin(T)) = FU(min(T)) =+ Z ke Fr
7<o(min(T))

for some scalars k.

ProOOF. We will proceed by induction using the fact that PSYT>q(A;T') is isomorphic to
&,/6, (1) as posets which we saw in Remark 29. Certainly, the statement holds trivially for

7 = min(7). Take some o(min(7")) = 7 € PSYT>0(\; 1) with s;(7) > 7 and suppose that

TU(Fmin(T)) = Fo’(min(T)) + Z Kt o
7/ <o (min(T"))

164



for some scalars k.. Then using Proposition 3.3.5

TSiU(Fmin(T))

= TiTU(Fmin(T))

=T,F,+ Y reTFy
7/ <o(min(T))

B (1 _ t)qu (’L)th—(l)
= o) T e — oG LT

(1 _ t)qu’(i)tcT’(i)
+ Z Kzt (F si(r) T g D genr () — qup D) e (1) o
7/ <o(min(T))

= Flao)min(ry) + D, KpFo
7' <(si0)(min(T))

The above lemmas may now be used to compute the symmetrization of each F:- in terms of the

Pr basis.

PROPOSITION 3.5.3. For T'€ RSSYT>¢(A)

e(n) (Fmin(T)) = [H[gj|]t'

PROOF. Recall from Definition 3.4.4 that the coefficient of Fi,,r) in Pr is 1. We know that
from the proof of Proposition 3.4.3 that since T' € RSSYT>(A),

e (Fuin(r)) = aPr

for some nonzero scalar a.. Let o denote the longest element of &,,/& (1. Note that oo(min(T)) =

top(T). We now use Lemmas 3.5.1 and 3.5.2 to compute the coefficient of Fiop(Ty in e (Fmin(T))
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determining « :

€(N) (Fmin(T))
[IU’(T)]t' n\_ (u(T) 7[(0)
=l Z t<(2) (" )) Ty (Fonin(r))
UEGn/GH(T)
[/"L(T)]t' n\_ (w(T) —E(U) Y
= [n]t' Z t((Z) ( 2 )) FU(IH]H(T)) + Z /{TFT
O'GGn/GH(T) T<0’(mi1’1(T))
[IU’(T)]t' n\_ (u(T) 7((0 )
~ [l Fruinyt ISy,
T<oo(min(T))
[u(T)]¢!
= [n]t' Ftop(T) + Z H;FT.
. T<top(T)
Therefore, o = [”[(nT]t)gt!, -

LEMMA 3.5.4. For 1 € PSYTso()) with pA(7) = T € RSSYT50()\)

(M) ge(Cr) — ¢T(02)4e(H2)

n _ q n
6( )(FT) - H (qT(Dl)tc(Dl) _ qT(D?)tC(D2)+1> 6( )(Ftop(T)).
(O1,02)€Inv(r)

PrOOF. Let T' € RSSYT>0(A) and 7 € PSYT>o(A; T') with s;(7) > 7. Then using Proposition

3.3.5 we see

€™ (For)

o wr (%) 4cr (1)
_ , (t —1)g" "t
=€ ((E + o Dger(0) — g (1) ger (i+1) Fr

_ wr (1) cr (3)
(1 + (t 1)q t )) e(n)(FT)

qur (D ¢er (@) — qur (i+1)¢er(i+1

wr(i+1)per (14+1) _ wr (i) 4er (i)
(q t q t ) 6(n)(FT)

qur (i+1)ger (i+1) — qur (1) ¢er (4)

166



Now using an induction argument nearly identical to the proof of Corollary 3.4.5 we see that for

any 7 € PSYT>o(\; 1)

T(On)ge(th) — T (Ca)e(D2)

n _ q n
M(Fy) = 11 <qT(D1)tc(D1) _ qT(Dz)tC(DQ)H) " (Frop(r))-
(O01,02)€Inv(r)

]
COROLLARY 3.5.5. For py(7) =T € RSSYT>o(\)
T(O1)¢e(B1) _ oT(O2)4e(B2)
(n) — q q
e (Fr) = Kr(q,t) - 51)11 . <qT(D1)tC(D1) _ qT(Dg)tc(Dg)—‘rl) T
1,12 nv(7

where

X [(T)! (PO l01) _ gT(O2) a1

t) =
T(q7 ) [n]t‘ - DQ)eg(min(T)) qT(Dl)tC(Dl) _ qT(Dg)tc(Dg)
PROOF. We begin by noting that from Lemma 3.5.4 applied to min(7"):
T(O1)pe(@) _ (T(02)4c(02)
(n) ) — q q n)
€ (Fnin) = H T(O1)¢e(C1) — oT(B2)¢c(02)+1 ¢ (Fmp(T))'
(O1,02)€Inv(r) q q
But from Proposition 3.5.3 we know that e(”)(Fmin) = MPT SO
[n]¢!
I gM et — g ) () (Fro o) = O

(01,02)€lnv(7) g7 OV ¢e(O1) — ¢T(O2)ge(E2)+1 top(T) ]!

Thus
E(n) (Ftop(T)) = KT(Qv t)PT
as defined in the corollary statement above.
Lastly, we can now use Lemma 3.5.4 to finish the proof. [l

The last lemma of this section relates the action of e,[X]® to the action of 4] on symmetrized

elements.

LEMMA 3.5.6. For 1 <r <n, €™e, [X1 +... + X,]e® = ¢~ (n=Dttn=m))e [Lt2]em)are(n),

PROOF. First, we will show by induction that for 1 <r <mn

Ar = D Fet(nor) (TY YT Ty ) (T T T X X
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For r = 1 we see that

Yo =Xy Tpo1--Ty =t" T - T X

Now suppose this equation holds for some 1 < r < n — 1. Then we have

r+1
Tn

= YnTn

— (=Dt +(n—r) (Tnill .. ~Tf1)(T111 - T{lTl) .. (T;jl T T

n
x X1 X" TN X

= 2g(n—l)Jr---Jr(n—T)tn—l(Tn—_ll S TINYTE T ) - (T
% Xl"'XTTn__ll"'Tl_le

= t("’l)*”*("’r)t"’l(Tn__ll .. .Tl—l)(Tn—_ll .. T2_1T1) e (Tn_—11

x X1 X, T T X

A simple calculation verifies that

Xl...XTTT—l...Tl—l:t—?“TT...TIXZ..

Therefore,

r+1
Tn

= A T (T T T (T

1 "

X t_rTT s T1X1X2 s XrJrl

= t(n—1)+---Jr(n—T)Jr(n—(?"Jrl))(Tn—_l1 .. .Tl—l)(Tn—_ll .. -T2_1T1) e (Tn_—ll T T

> (Tn—_ll...TT—JrllTT...Tl)Xl...XTJrl

which is of the correct form.
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Now we see that for any 1 < r < n,

€M) ()

— (M)y(n=1)+..+(n-r) (Tn_—ll .. Tl_l)(Tn_—ll .. 'T2_1T1) .. (Tn_—ll T T X X,

e e 0P S a0}

Suppose that 1 =g <71 < ... <14 < ipp1 = n with 4; <441 — 1 for some 0 < j < r. Then

D CTREED. CHED. CHTP. P, CHPRELY. CF
- X;

T

—1p—1 —1
=Xi - Xy, (¢ lTij XijTij )Xij1 Xijn
= th‘;lXil e Xy Xy Xija Xy o X“Tij_'l

~1 -1
=T, Xiy - X, T,

which shows that
EMX X X 1 X X X e =M X, X )
1 11N +1A G A0 iy i1 iy .
It follows that for any 1 <i1 < ... <i.<n

€M X, oL X, M) = gl b ) x L)

11
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Now we see

e€Me (X1 4.+ X, ]e™

6(n)( S X X) ()

1<i1<...<ir<n

= Z E(n)Xil Ce Xire(n)

1<i1<...<ip<n

= Z lir=r) et (=1 () x, L x (0

1<ii<...<ir<n

_ Z =) (1= 1) = (= Dt (1)) () ()

1<ii<...<ir<n

t((n1>+...+(nr>>< 3 t<i11>+...+<zw>) )7 ()

1<i1 <. .<ir<n

_ t_((”_1)+"'+(n_r))€r(1a o 71&”_1)5(")’7;6(”)

11—t
= ¢~ ((n=Dtet(n=r)), | 2 | (n),r(n)
t er [ T—¢ ] ey e
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3.5.2. Pieri Rule. Using the above lemmas, we may derive an explicit formula for the action
of e,[X]® on the symmetric v.v. Macdonald polynomials in the finite variable situation. We will

then use the stability of the Pr to derive a similar formula for the B .

THEOREM 3.5.7. For T' € RSSYT>o(\) and 1 <r <n we have the expansion

er[ X1+ ...+ XolPr = di)Ps
S

where

d

i '5;;T _ Z tCT(1)+-~~+CT(r)H(T’ o (7—))
t(2)67» [117_2 ] Ks(q,t) TEPSYT>o(ANT)

\I!’"(T)EPég.S?TZO()\%S)

where H(1,V" (7)) is given by

H <qT(D1)tC(D1)+1 _ qT(Dz)tc(D2)> H ( ¢SO eO1) _ ¢5(02)4e(02) )
(1) (1) — T (a)4c(a) S(O1)4e(01) — ;S(02)pe(T2)+1
O Oyetv(n \ 4 T T R vy \E T T @R

and T" ranges over all T" € RSSYT5¢(A\) one can obtain from T by adding r to the bozes of T

with at most one 1 being added to each bozx.

ProOF. Using Lemma 3.4.5 and Remark 28 we find

er[ X1+ ...+ X, Pr

= e, Xy 4+ X ()

.
e _tt €M7 ) (pry
— (=Dt (n=r)) 11—'5 €T (Py)

L - t -
(Dt [

1t

T(Dl)tC(D1)+1 _ T(DQ)tC(DQ)
() q q
X Z H < qT(E1)¢e(0r) — T (B2)¢e(B2) ) Fr
TEPSYT 5o (MT) (O1,02)€Inv(r)
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— (=Dt (nr) [1 B tn}
1t

gFEgeE0Ft — TE)4e@2) -
T(O0)e(0h) — gT(O2)ge(z) | € " (Fr)
(ry \ @V — R

<D 11

TEPSYT>o(NT) (O1,02)€lnv(r

T(Dl)tC(D1)+1

_ (=Dt (nry), |1 3 I q — T (O2)ge()
11—t qT (B ¢e(Br) — gT([O2)¢e(B2)
TEPSYT>o(NT) (O1,02)€lnv(r)

x 6(n) (tr(nfl)tc.r(1)+...+CT(T)FWT(T))

gTODe@n+1 qT(Dg)tc(Dg)>

L), L=t er (D)4t (r)
Beer 1—t¢ Z ¢ H qTE)¢e(Br) — gT([O2)¢e(B2)
TEPSYT>o(NT) (O1,02)€Inv(r)

X G(n) (F\PT(T))

From Corollary 3.5.5,

€™ (Fyr(r))
=1 (p)\(\I’T(T)) S RSSYTZ()()\)) KpA(WT(T))(q7 t)

y H gT ) e(Ch) _ (T (H2)¢e(C2) P
qT(E0)¢e@) — ¢T(O2)e(B2)+1 PA(ET (7))
(O01,02)EInv (¥ (7))

Hence, by collecting coefficients around each Pg for S € RSSYT>q(\) we see that
er[ X1+ + Xl Pr = d§)Ps
S

)

where d(;,T are as given in the theorem statement above.

Lastly, if 7 € PSYT>o(A; T') then the boxes of A containing the labels 1, ..., r (with some powers
of ¢ given by T') are exactly those boxes O € A with p,(V"(7))(0) = T'(O) + 1. Thus if S =
pA(P"(7)) € RSSYT>0(A) then we may obtain S from 7' by adding the value 1 to r boxes of T

with at most one 1 added to each box.
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DEFINITION 3.5.8. For S,T € Q(A) and r > 1 define Dng € Q(g,t) by

el X]Br= ) o0} Ps.

SeQ(N)

REMARK 33. Note that from Theorem 3.5.7 it is clear for T € Q(X) and r > 1 that each S € Q(X)
such that Dng % 0 will necessarily be obtained from T by adding r to the boxes of T with at most

one 1 being added to each box. As such the set of such S is finite. Further, any such S has
rk(S) < rk(T) +r.

As an immediate consequence of Theorem 3.5.7 and the definition of B from Definition 3.4.9

we obtain the following result.

COROLLARY 3.5.9 (Pieri Rule). Let S,T € Q(\) and r > 1. For alln > rk(T) +r

T d(r)

o) = .
ST EINOEARS,

3.5.3. Non-vanishing for e; Pieri Coefficients. In this section we will prove that if T, .S
satisfy a simple combinatorial relationship then D(Tl,)'T # 0. This will be instrumental in the proof

that the modules WN/A are cyclic.

DEFINITION 3.5.10. Let A € Y and T € RSSYT>o(N). A box Oy in A is T-raisable if the labelling
S defined by
T(O) O # Oy
S(0) =
T{O)+1 O=0O.
is also in RSSYT>o(N). We say that S is obtained by raising the box Oy of T. Further, we say that

Lo is a S-lowerable box in ).

We will write T' 1 S if S may be obtained by raising one box of T.

REMARK 34. We may define a partial order C on the set RSSYT>(X) simply by

TCS«vVOeX® 70 <sO).
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Then the relation T T S defined in Definition 3.5.10 is simply the cover relation of C . Lastly, we
may extend the definitions of raisable/lowerable bozes and of the relation T 1T S to Q(X\) analogously

i the obvious way.
We require the following lemmas.

LEMMA 3.5.11. Let 7 € PSYT>o(A\;T) for T € RSSYT>o(A). If (O1,02) € Inv(7) with T(0;) =
T(Ogz) then ¢(Og2) — c(0O1) > 2.

PRrROOF. Since T € RSSYT>o()), for all n > 0 the set of boxes {0 € A\T(O) = n} is a
skew-diagram consisting of a union of disjoint horizontal strips. Suppose ((J1,2) € Inv(7) with
T(Oy) = T(Oz) = n. Then OJ; and O cannot be in the same horizontal strip component of
{0 e \|T(0) = n}. Further, [J; must be to the left of Og. Hence, ¢(02) — ¢(0Jy) > 2. O

LEMMA 3.5.12. Let T € RSSYT>0(A). Given a T-raisable box of A, Oy, there exists a unique
7€ PSYT>o(\;T) such that
e 7(0p) = 1¢* for some a >0

o inv(r) = S(T)(To) — 1.

PROOF. Since the count inv(7) = S(T")(0p) — 1 is tight there exists at most one such labelling.
We may simply define 7 € PSYT>q by labelling the boxes [1 € A with J <7 [y with the labels
{2,...,5(T)(0p) — 1 following the box ordering S(T"). We then fill the boxes O >7 Oy with the
values {S(T)(0y), . .., n} following the box ordering S(T"). Thus 7 has exactly S(T")(Cy)—1 inversion

pairs. (]

LEMMA 3.5.13. Let T, T" € RSSYT>o(A\) with T 1 T'. Let Oy be the box of X\ on which T and T"
differ. Let 7 € PSYT>o(\;T) with U(7) € PSYT>o(X; T7). Then we have the following:
. InV(T) = {(Dl,\jg) S Inv(7‘)||:|i #* Do} (] {(D,Do)’\:‘ <r Do}
[ ] IHV(‘I’(T)) = {(Dl, []2) € IHV(\I/(T))H:]Z‘ 75 DQ} U {(Do, D)“jo <7 D}
° {(Dl,\jg) S IHV(T)||:|Z‘ 7& Do} = {(Dl, |:|2) S Inv(\IJ(T))|D1 75 Do}

PRrROOF. This result follows by simple case work which we leave to the reader. (Il

Putting these lemmas together we may show the following:
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THEOREM 3.5.14. Let A € Y and T, T' € RSSYTxo(\) with T 1 T'. Then d\). # 0.

PROOF. Let [y be the T-raisable box on which T and 7" differ. From 3.5.7 we see that

dY gTOD (@) +1 _ qT(Dg)tC(Dz)>

_rr cr (1)
1=t? N Z t H ( T e(0h) — AT (C2) (0
(FOEr (@8 el Gr e \ OO — T

s.t.
\II(T)GPSYTZO NT)

H ( g7 O)¢e0n) _ (T7(O2)4e(C2) >

(O1,0s) €y (T (7)) g"'(E0e(Bh) — ¢T'(E)ge(O2)+1 |
Therefore, it suffices to show that the sum on the right hand side of the above equation is nonzero.
If 7 € PSYT>o(\;T) with U(7) € PSYT>o(\;T7) then ¢ (1) = ¢(0y). Hence, we may factor

out the term t¢-() = ¢¢(Mo) cutside the sum. From Lemma 3.5.13 we have the following for any

7 € PSYT>o(\;T) with U(7) € PSYT>o(\; T7):

T(O1)4e(Th)+1 _ qT(Dz)tC(Dz)> H ( g7 @) e(@1) _ o T(02) 4e(C2) )
T(0h)4e(0h) — ,T(O2)e(0 T/ (01 4e(01) — 41" (O2) pe(0a)+1
qT (B ¢e(Br) — gT([O2)¢e(B2) (01 Oa) o (¥(r) g7 O ¢e@r) — T (B2)¢e(02)+

(q
(Dl,Dg)EInV(T)

gL @) e@+1 _ oT(T0)4e(Ch) gL (@)1 4e(Co) _ T(0) 4e(0)
- DI[D 0@ — gT(00)¢eCo) 1:[ ¢TC0)+1¢c(00) — gT(@)¢e@)+1
740 o<p/

qT(D1)tc(D1)+1 . qT(Dz)tc(Eh)
gT (@) ¢e@1) — ¢T(O2)e(@2)+1

< 11

(01,02)€Inv(r)
0;#00

The first two products above are nonzero and do not depend on 7 and can therefore be brought

outside the summation

>

TEPSYTZ()(A,T)
W(r)ePSY T a0 (T)
Hence, it suffices to show that
Z H qT(Dl)tC(D1)+1 _ qT(Dg)tc(Dg) 75 O
qT(Dl)tC(Dl) _ qT(DQ)tc(D2)+1 :
TEPSYT>o(MT)  (O1,02)€Inv(7)
WPV "

Notice that we can rewrite the above product terms in the following way:
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I

(O01,02)€Inv(r)
0;#Ho

qT(D1)tC(D1)+1 _ qT(Dz)tc(Dz)
gT (@) ¢e(@1) — ¢T(O2)e(@2)+1

— tinV(T)—S(T)(D())-‘rl H

(O1,02)€Inv(r)
0;#00

1— qT(DQ)fT(Dl)tc(Dz)fc(Dl)71
1 — g7 (@2)=T([O)¢e(B2)—e(@1)+1

Therefore,

2. 11

TEPSYT>o(MT)  (Oy,02)€Inv(T)

qT(Dl)tC(Dl)+1 _ qT(Dz)tc(Dz)
qT(Dl)tC(Dl) _ qT(Dz)tC(D2)+1

\p(r)epsik%zo(,\;T') o
= > 4Anv(T)=S(T) (o) +1 11 1 — g7(F2) =T (B0 ge(02) —eC)—1
1 — ¢T(O2)=TO1)e(02)—e(B1)+1
TEPSYT>o(NT) (O1,02)€Inv(r)

s.t. 0, #00
\I/(T)EPSYTEO ()\;T/)

Now we have by definition for any inversion pair ((J;,0z) that 7 (02) — T'(0;) < 0. Therefore,

by limiting ¢ — oo we see that

1— qT(Dg)—T(Dl)tc(Dg)—c(Dl)—l

: inv(r)=S(T)(0o)+1
lim Z t 0 H (1 _ qT(EIQ)—T(Dl)tc(lilz)—c([ll)—H>

q—00
TEPSYT>o(NT) (O01,02)€Inv(r)
0;#00

S.t.
\II(T)GPSYTZQ()\;T/)

1— tc(Dg)fc(Dl)fl

_ Z tinV(T)_S(T)(D0)+1 H (1 tC(D2)—C(D1)+1) '

TEPSYT5o(NT) (01,02)€Inv(T)
s.t. 0,;#00
U(r)EPSY T 5o (A\T") T(01)=T(02)

Using Lemma 3.5.11 we see that for each of the inversion pairs ((J;,03) € Inv(r) for 7 in
PSYTZ()()\; T) with \I/(T) S PSYTZ(]()\7T/) and T(Dl) = T(Dg) that C(Dg) - C(Dl) -1 Z 1.

Therefore, if we limit ¢ — 0
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i inv(7)—S(T) (0o )+1 1 — ¢e(@2)—c(@1)-1
%ﬂ% Z t H 1 — ¢e(@2)—c(@1)+1

TEPSYT>o(NT) (O1,02)€Inv(T)
s.t. 0;#00
U(1)EPSYT»0(NT") T(0h)=T(02)

' . 1— tC(DQ)—C(Dl)—].
- > 1(inv(r) = S(T)(Co) - Dlim [ T GAE GRS

0
TEPSYT>o(AT) (O01,02)€Inv(r)

s.t. ;%00
U(1)EPSYT50(NT7) T(O)=T(02)

= Z 1 (inv(7) = S(T)(0p) — 1) H (1)

TEPSYT>o(NT) (O1,02)€Inv(r)
s.t. 0,00
U(1)EPSYT50(NT7) T(01)=T(02)

= #{1 € PSYT>o(\; T)|¥(7) € PSYT5o(\; T), inv(7) = S(T)(Tp) — 1}.

By Lemma 3.5.12, #{7 € PSYT>o(\;T)|¥(7) € PSYT>o(\;T7),inv(r) = S(T)(0p) — 1} =1
which in particular is not 0. Therefore, dg“l'),T #0. ([

Using stability we find the following:
: )
COROLLARY 3.5.15. Let A € Y and T,T" € Q(X) with T 1 T". Then 0/, # 0.

ProOF. From Corollary 3.5.9 we know that for all n > rk(7") + 1

0(1) _ 4
™7 T’ (n) Tl ()"

Since T” is obtained from T by increasing the value of a single box of T' by 1 we know that the
same must be true for T"|,m) and T'|yw) for all n > rk(T) + 1. Therefore, from Theorem 3.5.14 we

conclude that Dg},) = dgp,)| o0 T #0. ]
Al Aln

The non-vanishing of the e; Pieri coeflicients is sufficient to prove that the W)\ are cyclic &-

modules.

COROLLARY 3.5.16. For A €Y, W)\ is a cyclic &' -module.
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ProOF. We will show that ‘BTimn is a cyclic vector for WA ie. & ‘BT;M = WA. It suffices to
show that for every T € Q(\) there exists some X € &1 with X (%Tfnn) = B . Notice that given
any T € Q()\) we may choose any lowerable box [J; of T and obtain a labelling T} € Q()\) by
subtracting the value of 1 from [J; in the labelling 7. Continuing in this process yields a sequence
of labellings T1,T5, ... with T;41 1 T; which must eventually terminate as deg(7;) = deg(T") —i. It
is easy to verify that the only element of (\) without any lowerable boxes is T' i“in so the sequence
11,75, ... must end at Tmln Reversing this process shows that any 7' € () may be obtained from
Tj\nin by a sequence T/{mn =1T,...,T, =T with T; 1 T;+1. Hence, by induction it suffices to show
that if 71 7" then there exists X € & such that X () = Py .

Let T,T' € () with T 1+ T". Consider the element X € & defined by

X Poy — Y gen (¢ = 1))
Tis \ 2oexee (@7 — ¢8Ot

ST

The denominator of the above product is nonzero since Fy; acts with simple spectrum on W,\.
Further, as mentioned before the set of S € Q(\) with 7" 1 S is finite so the above product is finite.
We have that for 71V
Poa — ZDGA(oo) (% = 1)¢®
X(‘Bv) - H ( Zme)\( ( aE qS(D))tC(D) (mV)

1S
S£T'

_ H <ZD€A<M( @ _ ¢S@)ype@ )>‘33v
T4S

> e (@™ O) — ¢SO

SAT

= oy, Py -

From Corollary 3.5.15 we know that OT, # 0. Therefore, we may consider the element X' € &%

defined by

qfl

X' =
I

———X P .
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We find that

-1

X' (Pr) = : X Pro(Pr)

T’ T
qfl
=~ Xaei(Fr)
IO
(1) X3 o)
T’ T s
(1) ZDS TCSS T ms
DT’ T T1S
= sl;T’ .

3.6. Family of (¢,t) Product-Sum Identities

In the final section of this chapter we will investigate an interesting family of (g, ¢) product-sum
identities which are derived using the combinatorics underpinning the structure of the generalized

symmetric Macdonald functions B+ along with some elementary non-archimedean analysis.

DEFINITION 3.6.1. A non—negative asymptotic periodic standard Young tableau with base shape

A €Y is a labelling 7 : N — {ig® :i > 1,a > 0} such that

e 7 is strictly increasing along rows and columns
o The set of bozes O € X such that 7(O) = ig® for some i > 1 and a > 0 is finite

e For all i > 1 there exists a unique O € A°) such that 7(O) = iq® for some a > 0.

We will write APSYT>o(\) for the set of all non-negative asymptotic periodic standard Young
tableaur with base shape A\ € Y. If 7 € APSYTxo(\) has that for every O € X\, 7(0) = iq°
for some i > 1 then we will call T an asymptotic standard Young tableau with base shape A\. We
will write ASYT(X) for the set of asymptotic standard Young tableau with base shape . As an
abuse of notation will write py : APSYT>o(X) = Q(X) for the map given on 7 € APSYT>o(A) by
pA(7)(O) = a whenever 7(O) = iq* for some i > 1. We will let APSYT>o(\;T) denote the set of

all T € APSYTZQ()\) with p)\(T) =1T.
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DEFINITION 3.6.2. For T € Q(\) define S(T) € ASYT(\) by ordering the bozes of \>) according

to Oy < g if and only if

T(Oz) and Oy comes before Oy in the column-standard labelling of (o),

[ ]
x|
O

I

Let 7 € APSYTso(\;T). An ordered pair of bozes (Oy,0y) € M) x X(°) s called an inversion
pair of T if S(T)(0y) < S(T)(Da) and 7(0y) = iq® 7(0z) = j¢° for some i > j and a,b > 0. The
set of all inversion pairs of T will be denoted by Inv(7). We will write inv(7) = |Inv(7)|. Define

rk(7) to be the minimal n > ny such that T|/\(oo)/)\(n> has consecutive labels.

EXAMPLE. Consider T' € §2(3,2,1) from Ezample 3.4.2. Then
2¢3 | 3¢% | 5¢% | 7¢° ‘12q1‘13q0‘14q0 15¢°

1q3

4¢? | 6¢° |1141
r= € APSYT>¢(3,2,1;T),
8q1 9q1

104°

4 5 | 10

S(T) =] ’
8 9
12

and rk(T) = 12.

Recall Corollary 3.5.5 for the definition of Krp(q,t).

PROPOSITION 3.6.3. For T' € RSSYT>((\)

1— qT(Dg)T(Dl)tc(Dg)c(D1)1>

1 .

_ E tlHV(T) (

K II — oT(O2)—T(0O1) $e(02)—c(0r)+1
r(a,1) TEPSYT5(NT) (O1,02)€Inv(7) 1 — g OO0 e =)

ProoF. Using Corollary 3.4.5 and Corollary 3.5.5 we find
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PT = E(n) (PT)

T(Oq)4e(0y)+1 T (O2)+e(0Os
o > [[ (oo e
qT(Dl)tC(Dl) _ qT(DQ)tC(DQ) T
TEPSYT>o(NT) (Oy,02)€lnv(r)
T(Dl)tC(D1)+1 _ T(DQ)tC(Dg)
S ) e
qT(Dl)tC(Dl) _ qT(Dg)tc(Dg)
TEPSYT5o(AT) (01,02)€lnv(r)

T(O1)pe(Cr)+1 _ qT(Dz)tc(Dz)

_ q
B Z H ( qT(D1)tc(D1) _ qT(Dz)tc(Dg) ) KT(q’t)
TEPSYT5o(NT) (O1,02)€lnv(T)
T(O1)4c(01) _ ,T(O2)4c(02)
<1 2 : i Pr
qT (B ¢e(0r) — gT([O2)¢e(B2)+1
(O1,02)€Inv(7)

T(Dl) C(D1)+1 _ T(Dz) C(Dg)

_ q t q t

= KT(q7 t) Z H (qT(Dl)tc(Dl) _ qT(DQ)tc(Dg)-i-l) PT'
TEPSYT 5o (MT) (Oy,02)elnv(r)

Therefore,

1 _ Z H <qT(D1)tC(Dl)+1 _ qT(Dg)tc(Dz))
T(O1)¢e(01) — 4T(0O2)4c(O2)+1
Kr(g,1) TEPSYT=o(AT) (O1,0a)elnv(r) \J (BugelBh) — gTE)elC)

1— qT(Elz)—T(Dl)tc(Elg)—c(Dl)—l)

o inv(T)
= Z t H (1 — T @) =T(@) ¢e(02)—c(@)+1

TEPSYT>o(NT) (O1,02)€Inv(r)

Our goal now is to compute the limit of both sides of the equation in Proposition 3.6.3 along
sequences of the form ()\(”))nzm. One side gives an infinite product and the other a power series

which are dealt with separately. We require the following straightforward lemmas.

LEMMA 3.6.4. For 7 € APSYTs(A;T), tk(r) — rk(T) < inv(r) < ().

181



PROOF. Any inversion pair ((y, (y) € Inv(7) has Oy, Oy € A7) Therefore, trivially inv(r) <

(rkg')) )

For the other side of the inequality, we only need to consider the case when rk(7) > rk(T") since
inv(r) > 0. Let Oy be the unique square of A7) /X\(K(7) Then by of the definition of rank
7(0o) # k(7). Further, for any 0 € A() /X(KT) e must have that 7(00) # rk(r) as 7 must
be strictly increasing to the right along the horizontal strip \(k(7)) / AK(T) | Therefore, if Oy is the
box of AK(M) with 7(0;) = rk(7)g* for some a > 0 then for all O € AKM) /AOKT)) we find that
(0¢,0) € Inv(7). Therefore, inv(7) > rk(r) — rk(7T). O

LEMMA 3.6.5. For k > 0 there are only finitely many 7 € APSYT>o(\; 1) with rk(7) < k.

PROOF. The map {7 € APSYTso(\; T)|tk(7) < k} — PSYT5o(A®); T) given by 7 — 7|, is

easily seen to be a bijection. Since PSYTZO()\(]“); T) is a finite set we are done. O
COROLLARY 3.6.6. For k > 0 there are only finitely many 7 € APSYT>o(\;T') with inv(1) < k.

PrOOF. If inv(7) < k then by Lemma 3.6.4 we know that rk(7) < k + rk(7"). Thus by Lemma
3.6.5
#{1|inv(7) < k} < #{7|rk(7) < k+1k(T)} < o0.

O
LEMMA 3.6.7. For T' € RSSYT>o(\), the set I(T') = Inv(min(T")) consists of all pairs of bozes

(O1,02) € XA x X\ with Oy <p Oy except those pairs with T(O1) = T(Oz) and Oy before Oy in the

same row.

Proor. This follows immediately from the definition of min(7). O

Now we deal with the limit of products.

PROPOSITION 3.6.8. Let T' € Q(A). The sequence (KTB(n) (q,t))n>n, converges with respect to the

t-adic topology on Q(q)((t)) to

(1= O Ty e 1 7O T
o (1 = g~ T @) k(D) — A —c(D) H 1 — T2 —T () ge@a)—c@) |
HDeA( (1)) q q

(O1,02) €T (rie(7)))

182



ProOOF. Let n > rk(7'). From Lemma 3.6.7 we know

(T |ym) = T |yxery) U (01, O2)[ 01 € XKD 0, € A0/ 20k,

Therefore,

H (1 _ qT(Dg)T(D1)tC(D2)C(D1)+1>
— T(O2)—T(01) 4c(02)—c(Ch)
(O1,02)€U(T (n)) L= o 1
10 (1 _ qT(Dz)—T(Dl)tC(D2)—C(Dl)+1)
= — T(02)—T(01)4c(02)—c(Ch)
(O1,02) €T (ric(T)) 1=g¢ e 1
— T (O2)=T(O1) pc(O2)—c(01)+1
1 — 702 =T e(02)—e(O)
01 eAGK(T)) Oye(n) JACK(T))
1 — gT(02)=T(00) ge(C2) —c(T)+1 A= ¢ TO) i—e(@)+1
(O1,02) €T (ric(T)) OeAEK™) i=rk(T)—|A|

Note that the following product telescopes:

n_ﬁ_l <1 o —T(D)fi—c(D)—l—l)
_ =T (O)ti—c
i=rk(T)—|\| 1 q ( )t ©
1— —T D)trk(T) [A|—c(@)+1 1— q—T(D)trk(T)—\)\|—c(D)+2 1— q—T(D)t(n—|)\|—1)—c(D)+1
1— 0) grk(T) = [\ —e(0) 1 — ¢ TO kM -A=@+1 | | 1 = g~ TO -1~

1—(] 7O tn [Al—c(O)
= ¢ T kD)D) |-

Thus
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H (1 _ qT(Dz)—T(Dl)tc(Dg)—c(Eh)—H)
1 — ¢7(O2)=T(O1)¢c(C2)—c(Cr)
(O1,02)€L(T]  (ny) 4

= I

(O01,02) €T (rie(T))

1— qT(Dg)fT(Dl)tC(DQ)7C(D1)+1
1 — ¢T(O2)=TO)e(02)—c(B1)

1 — ¢~ TOn=A=<@) )

II =T(O)$rk(T)—|A|—c(O
e (1 q (@) k(T) =[N =c(O)
Now H(q A(”)) lu(j)\(rk(j ))) (n I‘k(] )) S50

[1(Tyo)]e! = [(Tyrery)]e! - [ — tk(T)]¢-

Putting this together gives

KT|>\(n) (q7 t)
_ [N(T’A(n))]t! H 1— qT(Dg)7T(D1)tc(EI2)fc(D1)+1
[n]¢! 1 — ¢T(O2)=TO1)e(02)—c(B1)
(O1,02)el(T, (n))
B [TL _ I'k(T)]t' 1— qT(Dz)7T(D1)tC(Dz)*c(Dl)+1
= [M(Tx(rk(T»)]t!i[n]t! 11 T (02) T (0h) ge0) ()

(O1,02)€X(T | (rie(7)))

— ¢~ T@)n—A—c(@)

SE | Y .

1 — ¢~ T@)pk(T)~A (@)
OeX(k(T))

From here it is simple to see
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nh—>Holo KT'A(H) (q’ t)
s [n — tk(T)];! | gT(O2)T(O0) (D) —e(On) 1
- nli)nolo[u(T)\(rk(T»)]t!T I1 R e e

(O1,02)€NT |, (ri(1) )

— g~ T(@)n—[Al=c(0)
< I (o
1 — q—T(D)trk(T)—P\\—c(D)
Oe(k(T))

= [Ty cexery) 4! H

(O1,02) €T, k(1))

_ l — ¢~ T(@)n—[A|—c(0)
« lim [n — rk(T)]! H ( 1—gq t )

n—00 [n]tl 1— q—T(D)trk(T)—|)\|—c(|])

1 — ¢T(E2)=T(O1)ge(C2)—c(C)+1
1 — 7 @)~ (O e(02)—<(On)

OeX(k(T))

= [u(Tyerery))]¢! H

(O1,02) €T (rie(1y)

% H (1_q—T(D)trk(T)—|/\\—c(D))

k(D)
()T (0n) o(0) <) )“ t)

(1 — T (O2)=T(O1)4e(02)—c(Dr)+1
1—
) q

-1

OeAGk(T))
M T S e
a HDE)\(rk(T>> (1 — q_T(D)trk(T)_P‘l_C(D)) 1— qT(DQ)_T(Dl)tC(DQ)—C(Dl) .

(O1,02)€l(T (rie(1)))

We will now deal with the series side. For this we need the following lemmas. Here we write

|f(q,t)] for the t-adic norm of f(q,t) € Q(q)((t)) normalized so that |t"| =27".

LEMMA 3.6.9. Fora#0 and b e Z

1 b>1
l_qatbfl
'1—q“tb+1 —32 b=0
4 b< -1



PROOF. We proceed in cases. If b > 1 then

1 _ qatb_l B |1 _ qatb—l‘ B
1— qatb+1 - ‘1 _ qatb—I—l‘ -
It b =0,
Lt PR e P e
1— g% 1— g%t |1 — gt
Lastly, if b < —1 then
1— qatb—l B |1 _ qatb—1| B 2—b+1 .
1— qatb+1 - |1 _ qatb+1| T 9-b-1 7

O

LEMMA 3.6.10. Let 7 € APSYT>o(\;T). If (O01,02) € Inv(r) with ¢(02) — ¢(01) < 0 then
Oy, 0z € ACKD),

PROOF. Suppose (;,0;) € Inv(r) with either O; € A /XKD or Oy e A(o0) /\OK(T),
Then, since () /)\(rk(T)) is a horizontal strip, necessarily [y € (o) /)\(rk(T)) and O; e AUKD),

Thus ¢(Os) > ¢(0) + 1. O
Using these lemmas gives the following:
PROPOSITION 3.6.11. Let T' € Q(X). The sequence of sums
T(0)~T(01) pe(Ca) (D)~ 1

. 1-
inv(7) q
Z t H (1 . qT(Dg)—T(Eh)tC(Dz)—C(Dl)-H)

TGPSYTZO(A(”);TL\(R)) (O1,02)€Inv(r)

n>ny

converges with respect to the t-adic topology on Q(q)((t)) to the series

Z tinv(T) H

TEAPSYT>o(NT) (O1,02)€Inv(T)

1 — g7 (O2)=T(O1) e(D2) c(Ch)-1
= TG~ T (O ge@2)—e@n+1 ) © Qg)((®)).

PrOOF. Our method will be to first verify that the above infinite series over 7 € APSYT>o(\; T)
is convergent in Q(q)((t)) and then argue that the above sums over 7 € PSYTso(A™; Ty )
converge to the same element of Q(q)((¢)).

We begin by noting that from Lemma 3.6.10 we have the (sufficient but egregiously unoptimal)

upper bound

rk(T)>'

#{(O1,02) € Inv(7)|e(01) —e(0p) < -1} < ( 5
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Recall that if 7(0;) = T(Oz) then by Lemma 3.5.11 ¢(03) — ¢(CJy) > 2. Thus using Lemma 3.6.9

I (1 - qT(D2)T(Dl)tC(D2)C(Dl)1> < 4("$")

— T(Oy)—T(O1) 4e(0s)—c(01)+1
(0100 \ b g O =)

we find

and hence

. 1 — T(O2)=T(01) ge(B2)—c(Cr) -1 . K (T)

inv(T) q —inv(T)

t @ D]S_[I =) (1 _ qT(Dz)*T(Dl)tc(Dg)fc(DﬂJrl <2 4( 2 )
1,02)€Inv(7

Recall that (from the strong triangle inequality) if (fmn(q,t))m>1 is any sequence in Q(q)((t))
then the series >~ fm(gq,t) is convergent in Q(q)((¢)) if and only if lim,, oo | fm(g, )] = 0. In
turn, this is equivalent to the property that for every r > 0 there are only finitely many m > 1
with |f(q,t)| > 27". From Corollary 3.6.6 we find that for any r > 0 there are only finitely many
7 € APSYT>o(\; T') with

rk(2T))

27",

inv(r) <2 <rk(2T)> +r == 27 iv(y(

Thus there are only finitely many 7 € APSYT>o(\; T) with

. 1 — T (@2)=T(01)c(02)—c(01)-1

inv(7) 4q —r

e DHI o (1—qT(D2)T(Dl)tC(D2)C(Dl)“ =
1,2)€Inv(T

We conclude that the series

S = Z 7finv(T) H

TEAPSYT>o(NT) (O1,02)€Inv(r

| — gT(O2)=T(O) e(Tz)—c(0n) -1
) 1 — ¢T(O2)=TO1)e(02)—c(B1)+1

is convergent in Q(q)((¢)).

Now let n > rk(T).
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) 1 — T 2)=T([01)e(02)—c(01) -1

_ inv(r) q

S Z t H <1 _ qT(Dg)fT(Dl)tC(Dz)*C(D1)+1
TGPSYTzo()\(n),le(n)) (Dl,DQ)EIHV(T)

_ (02 01)pe(02)—c(O1)—
_ S o ] | (0~ T(0) ge(0z) <l
1— qT( ) (Dl)tc DQ C(Dl +1
TEAPSYT5o(MT) (O1,02)€Inv(r)
rk(T)>n
1 — T (@2)=T(O1) pe(O2)—c(01)—
< max tlnv( ) H q
TEAPSYT>o(M\T) 1— qT( 2)—T(01) ge(0z2)—c(01)+1
rk(‘r);n (01,02)€Inv(r)

< o~ (nt1-1k(T7)) 4 (*§7)

Hence,

) 1 — T 2)=T([O1)c(02)—c(01)-1

: . inv(7) q

Am 1S t 11 (1 = IO TO0) 4eC2) (O +1
TEPSYT>o (AT (1)) (01,02)€lnv(r)

< lim 2~ (n+1-rk(1) 4("57)

n—o0

=0.

We immediately arrive at the following product-series formula:

THEOREM 3.6.12. For T € Q(\) we have the following equality in Q(q)((t)) :

[Tereery (1 — ¢ TEak@=Al=e@)) 1 ( 1 — ¢7(O2)=T(O) pe(C) () >
T(O2)—=T(01)¢e(@2)—c(H1)+1
q

_ A\rk(T !
(1 =)D [T |y excrn ) Jo! (O1,002)€LACKT))

inv(r) 1 — ¢ (@2)=T(O1)ge(D2)—e(Cr)—1
— Z t H 1— T D2)7T(Dl)tC(D2)*C(D1)+1 .

(
TEAPSYT5o(NT) (O1,02)€Inv(r) q
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REMARK 35. Note that the powers of q appearing in the Theorem 3.6.12 are all non-positive i.e.
the sum and product are elements of Q[g']((t)). In particular, we may limit ¢ — oo to obtain the

prod-sum equality in Q((t)) :

[Toexexen (1 - trk(T)*P\\*c(El))
& (

(0)=0 | |
_ #\rk(T
(1 =)D (T yexcrn ) ]o! (O Oa) LAEKT)
T(01)=T(0z)

_ 4¢(0g)—c(0y)-1

_ Z finv(r) H 1 — () =e(Bh)

1— tC(DQ)*C(Dl)“rl )
TEAPSYT>o(NT) (O1,02)€Inv(r)
T(01)=T(02)

1 — ¢e(@2)=c(th)
1— tC(Dz)—C(Dl)-i-l

By noting that the product term in Theorem 3.6.12 is a finite product of rational terms we

observe the following:
COROLLARY 3.6.13. For T € Q(\),

. 1 — T (B2)=T(01)e(02)—c(01)-1
inv(T) q
> t 11 (1 — OO0 e 0z)—e(Or)+1 € Q(q, ).
TEAPSYT>o(NT) (O1,02)€Inv(T)

EXAMPLE. Here we give a few simple examples of this (q,t) identity. Consider A =0 and T =

1|0 ] 0 |... €Q0). Then we get
l—q it & iy (1—g ]
Lot ey (L)
1—t 1— g 1tl
k=0 j=1
1 0 0 |...
Now consider A = (1) and T' = € Q(1). In this case we get
0

1—g ')A -) 1 —q 't")
(1=t —-q ")

1_q71tk 1 1_tk71

_ i+j—3

ST (e (=5
k=2

i,j=1

(11(j§z'—1)t <11__ql2> +1(i+1<y) <11__qq_1;>>
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Interestingly, in both of these cases we can write the series part of these identities as a finite sum

of hypergeometric series.
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CHAPTER 4

Double Dyck Path Algebra Representations From DAHA

4.1. Introduction

The algebra B, ; was introduced by Carlsson-Gorsky-Mellit [7] as an algebra which has a natural
geometric action on the equivariant K-theory of the parabolic flag Hilbert schemes of points in
C?. This work built on the prior work of Schiffmann-Vasserot [34] who constructed a geometric
action of the elliptic Hall algebra & on the equivariant K-theory of the Hilbert schemes of points
in C2. These construction are part of a larger story in Macdonald theory of relating geometric
properties of the Hilbert schemes of points in C? to the algebraic combinatorics underlying the
modified Macdonald symmetric functions H . and of the Macdonald operator A (which acts on the
space of symmetric functions A). Importantly, B, is intimately related to the double Dyck path
algebra A, introduced by Carlsson-Mellit in their proof of the Shuffle Theorem [8] regarding the
Frobenius character of the space of diagonal coinvariants and the combinatorics of Dyck paths.

The quiver path algebra B, ; has relations very similar to the positive double affine Hecke alge-
bras (DAHA) in type GL, Z;', introduced by Cherednik [9]. In fact, B, contains many copies
of affine Hecke algebras of type GL. However, there is no direct algebraic relation (no algebra
homomorphisms) between B, ; (nor A, ;) and DAHAs. Nevertheless, there are approaches to more
indirectly relate these algebras. Ion-Wu [26] defined an algebra called the stable-limit DAHA along
with a polynomial representation on the space of almost symmetric functions 2], which, in a
sense, globalizes the polynomial representation of A,; (and as we will see later B, ;). They used
a stable-limit procedure to define this representation from the polynomial representations of the
finite rank DAHAs ;7. This representation of the stable-limit DAHA is much larger than the
polynomial representation of B, ; but the limit Cherednik operators of Ion-Wu, in a sense, behave

better on a certain subspace of &, given by the following direct sum:

@Qfl ’ ku(q,t)[ﬂfl, .,ZL’k;] ® A.

k>0
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This subspace aligns with the polynomial representation of B, ;.

Motivated by the construction of Ion-Wu we will in this chapter develop a method for constructing
modules for B, ; directly from the representation theory of DAHA in type GL. We will use a stable-
limit construction similar to Ion-Wu but will not require any additional non-archimedean topological
considerations as they did. First, we will show (Proposition 4.2.4) that given any ;" module V'

we may construct an action of the subalgebra IBB((IZ) on the space Lo(V') defined by

L(V)= @ Lu(V):= P X1 Xpe(V).
0<k<n 0<k<n
Here ¢, are the partial trivial idempotents of the finite Hecke algebra. Each space may be considered
as a module for the partially symmetrized positive DAHA, ¢, Z;' €. It will be immediate to show
(Theorem 4.2.5) that the map V' — Lq¢(V) is indeed a functor. We show (Proposition 4.2.7) that in
the case of the polynomial representations Vp(gl) of DAHA that L.(Vp(:l)) is a Bé’?—module quotient
(n)

of the restriction of the polynomial representation of B, ; to qubt .

(n)

gt to build representations

Afterwards, we will use stable-limits of the representations Le(V') of B
of By ;. This construction will require the input of an infinite family of representations of DAHAs,
(V("))nzno, along with some connecting maps, 11" : VD 5 () gatisfying some special

assumptions. Most interestingly, we require that the following relations holds:
N7, 1 T = 7, 1.

This is the same relation used by Ion-Wu in their construction of the limit Cherednik operators
and is related to certain natural embeddings of the extended affine symmetric groups én — énH.
We call such families C' = (V)5 (II™),>,,) compatible and construct spaces £4(C) given
by

£4(C) := lim L (V™).

These are the stable-limits of the spaces Lk(V(”)) with respect to the maps II(™. Finally, we package

together these spaces to form £4(C) given as

£.(C) == P £x(C)

k>0
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which may be also thought of as the stable-limit of the Bc(:t) modules Lo (V™). We show (Theorem

4.2.12) that there is a natural action of B, on £(C) determined by the IEB‘(;? module structures on

Lo(V™). This construction is also functorial.

Lastly, we will use our construction of the functor C' — £4(C') to define (Theorem 4.3.5) a large
family of B,; modules, £4(Ind(Cy)), indexed by partitions A. These representations in a sense
extend the Murnaghan-type representations of the positive elliptic Hall algebra previously defined
by the author [2]. As such we call these the Murnaghan-type representations of B, ;. For A = 0,
L¢(Ind(Cy)) recovers the polynomial representation of B, ;.

In a recent paper Gonzalez-Gorsky-Simental [17] defined an extension IB%g’ftt of B, containing
certain additional A-operators as well as a class of representations of IB%fIf(tt called calibrated with
special properties. Further, they construct a large class of calibrated Bgﬁt representations built

from certain posets with exceptional properties. The author conjectures that the Murnaghan-type

ext

qt which are calibrated. More

representations of By ;, £4(Ind(C))), have extended actions by B
generally, there should be a special set of conditions on a compatible sequence C which guarantees

that £4(C) has an extended action by B which is calibrated.

4.1.1. Conventions Change. In an effort to better align conventions with the papers [8], [7],
and [17] one minor change are made in this section of the thesis. Namely, we will for the remainder
of this section swap the roles played by the in-determinants ¢ and ¢. This means, for example, that

the quadratic relation for the finite Hecke algebra now reads (7; — 1)(7; + ¢) = 0.

4.2. Main Construction

4.2.1. Additional Relations. We will often write &2 for the subalgebra of 2,7 generated
by T1,...,Tn_1,X1,..., Xn. We will consider Z," as a graded algebra with
e deg(T;) = deg(Y;) =0
o deg(X;) = 1.
It is straightforward to check the following additional relations which are all standard in DAHA

theory. We will require all of these relations later in this chapter. Some of these relations appeared

in Chapter 1.

REMARK 36. For the element m,, we have:
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o T, X; = X;p1mp for1<i<n-—1
o m, i = Tiyamp for 1 <i<n-—1
[ ] TFELT”,1 = T17T72V

(n)

The elements €.~ are the partial trivial idempotents. They satisfy the relations:
o (el(cn))Z _ 62”)
° e,(g")Ti:ﬂ-e,(cn) :e,in) fork+1<i:<n-1

Tiel(gn) = e](f)Ti for1<i<k-1

[ ]

(n) _ 1 (o) —1

Tl P A Zaee(lk’n%)q 1,

o () _ (T T T ()
ko 14+q+...+qn—k-1 k+1
(n) (n) _ (n)

® €k € T Chmin(k,e)

We have that the important element 7, := Xlel = -Tnill satisfies the relations:
o MY, =Yim, for1<i<n-—1
[ ] %ntyn = Yl%n
o Tl = Toy 7y for 1<i<n—2
[ ] %%Tn—l = Tl%%
Note that the last two of these relations only depend of the structure of the subalgebra %nX of D}t
and thus hold more generally for all 2 < k < n:
o (X Tyt T =T (X Ty T ) for 1 <i<k—2
o (XiTy - T )2 Ty =T (X Ty T2
Lastly, we have the following expansion of the Hecke algebra analogues of the Jucys-Murphy

elements the standard T, basis:
rrt T N T =1+ (- (T a TN T T T,

4.2.2. IB%((;? Modules From Z,. In this section we will take any graded 2, module V and
construct a corresponding graded IB%Z? module Le(V). To do this we will first define the spaces

which constitute Le(V).

DEFINITION 4.2.1. For any graded 9,} module V and 0 < k < n define the space Ly = Lx(V) as
Ly = X1+ Xyep(V). We let Lo = Lo(V') denote the space Lo := @g<p<p, L
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For the remainder of this section let V be a graded module for 2,' . We are going to now construct

(n)

operators Tj, zj,dy,d— on Le which we will show generate a representation of B, ;.

DEFINITION 4.2.2. Define the operators

T, : Ly — Ly for1<i<k—1

ZZLk—>kaO7"1SZSI€

dy Ly = Liyy for0<k<n-—1

o d,:Lk—>Lk_1f0r1§k§n
as follows:

e T;(v) is defined by the action of T; on V
e zi(v) :=Y;(v) as defined by the action of Y; on V
v) = —¢" X Tt T

(
(0) = (1= + gl 4o+ g T T ().

It is not immediately obvious that these operators are well defined i.e. that their ranges are

correctly specified above. We show this now.

LEMMA 4.2.3. If v € Ly then T;(v), zj(v) € Ly forall1 <i<k—-1and1 <j<k Ifk<n-1
then dy(v) € Liy1 and if 1 < k then d_(v) € Li_1.

PROOF. Let v € Ly, say, v = X; - - - Xyex(w) for w € V. First we have,

Ti(v) =T; X5 - Xpep(w)

=X7--- Xkek(Tiw) € L.
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Next we have

21(1}) = Y1X1 .. -Xkek(w)
- q”7rTn__11 . Tl_le o Xper(w)
_n —1 -1 —1 —1
=q"nT, T Xy X T - Ty e (w)
=q"t X1 Xpa T T X Tt - Ty e (w)
=q"Xo - Xpr T, T XG T - T e (w)
= ¢"Xo - Xptq” "X 7T,y T, T e (w)
=" Xy XprTpr - T T - T en(w)

=Xy XDy - - Ther(td" T2, - - T o).

Now for all £k < i <n —1 we have
TimTp- Ty =71l 1T Tk
=rlp1 - TinTi AT T A Ti—o - Tk
=7l LT AT o T

= ﬂ—Tn—l N Tkﬂ

Therefore, we have

X1 Xpr Tt - Tren (g - T w)

=X Xkek(tquTn—l o Tka_,ll T Tl_lw)

which is clearly in L.

Now for any 1 < i < k since Y; = ¢ 'T;_1Y;_1T;_1 we see that

Y, =q Ty - TINTy - Ty
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and so

zi=q T TNy - Ty

Since Ty -+ - T;—1v € L we see that Y7 (17 ---T;—1v) € Ly as well and so
zi(v) = ¢ M TTy - Tima(v) = ¢ Ty - TiYA(Th - Tigv) € L.
We now look at dy. We find that

di(v) =

= —qulTl_l o Tk_l(v)

— "X, Tt T

— _Tl .. .Tka+1(X1 tee Xka(w))
=Ty ---Tp Xy Xk+1€k(w)

=Xy X1 (Th - - Trep(w))
=—X;-- 'Xk+1(T1 s Tk€k+1€k(w))

= X1 Xpgpr€pp1 (=11 - - - Trep(w)) € Ligr.

Lastly, we look at d_. We suppose v € L1 say, v = X7 -+ Xpr1€pr1(w) for w € V. We get that

d_(v)

=(1- 4T+ ..+ T T ) ()

= (1= @)+ T+ + ¢ T ) (X X (w))
= (L= + T+ + ¢ T T (epr (X - - Xpaw))
=(1-q)(1+q+... +¢" " Dep(X1 -+ Xppaw)

= X1+ Xper((1 = ¢" %) Xps1w) € Ly
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Now we will show that the collection of operators T3, z;,d_, d4 acting on the space Lo generates

an action of B ;.

n)

PROPOSITION 4.2.4. Lo is a IB%( -module.

Proor. We will show that the operators T}, zj,d_,d4 on Lo defined in Definition 4.2.2 satisfy
the relations in Definition 1.6.1. Note first that the relations involving only T;’s and z;’s follow
immediately from their definition and the fact that V is a 2, -module.

We will start by verifying the relations between d; and the T;. We will for the remainder of this
proof let v € L and specify various conditions on k as needed. Suppose 0 < k < n — 1. Then for
1 <4 <k — 1 using the braid relations we see directly that dT;(v) = Tit1d+(v).

Now if 0 < k < n — 2 we see from the braid relations and the fact that Tj11(v) = v
Ty d2 (v)
=Ty d (" X T T (0)
= T (=g X0 T T ) (X T T (0)
= TG T X T T ()
= X Ty T X T T ()
= "X X Ty TN T T ()

=R X XoTy T,

MT— Ty M T (v)

=X XN Ty T T T (v)

=M XTI X T T

I T ()
=X T X T T (v)

= (="' X\ T (X T T ()
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We will now show that dyz; = z;4+1d4. Suppose 1 < ¢ < k < n — 1. Then we have by using

Remark 36

Ziy1dy(v)

_ —qui+1X1T1_1 . Tk_l(v)

= —¢"Yin XaTy T T, T (0)
= ="V (0T T ) (0)

= "X\ T T Yi(w)

— X T T YT T (v)

— "X T TY()

= d(2i(v)).

Next we note that the relations between just d_ and the T; follow trivially from the fact that
d_ : Liy1 — Ly is a scalar multiple of x|z, , which follows from the relations (see Remark 36).
Further, the relation z;d_ = d_z; also follows easily from the fact that Y;T; = T;Y; for i ¢ {j, j+1}.

Now we are left to show that the relations involving ¢ := q_%[dJr, d_] hold. Notice that ¢ may

be computed for 1 <k <n—1 as

(¢ —1De(v)
= [d-i-v d—](v)
= (dyd- —d_dy)(v)

—d (1= +qT7 + . 4+ T () —d (=" X0 Tt T o)
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=(1-q)(—¢"' X0 T+ T+ A+ T T ()
~ A=+ g+ 4+ T (X T T )
=(¢— D" XhT - T

n—k:—lT—l

_ —kr— _ _ _ _
X <(1+qu1+---+qn T T =g+ 4T+ 44 n—1"'Tk+11)Tk1>

=(¢— "' XhTy - T

so that
ev) =X Tt T (v).

Let 2 < k <n. Then

qpd—(v)

=ap(l =)L+ 4T + .+ T T

=q(1 - q)qk_QXle1 e Tkil2(1 + qT,;1 + ...+ q”_anf_l1 . -T,;l)v
= (- )+ o+ " T T T X T T (0)

= d—¢Tj—1(v).

Let us now show that Tipdy = gdye. Suppose 1 < k <n — 2. Then

Tipd (v)

Tip(—q" X T - T 1) (v)

=" X T T (=" X T T Y (v)
=-¢"nx Tt T X T T (v)

= =" T(XT T (v)
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= (X T T T (v)
- _q%Xlel .. kaleTfl ... Tl;ll (v)
= q(—" X It T X T T ) (v)

= qd4p(v).

Lastly, we show that z1(gdy+d_ —d_d) = qt(dyd— —d_d4)z,. Take 1 < k < n—1. Then we find

z1(qdyd— —d_dy)
= z1(qd4d—(v) — d_d4(v))
=z (qd+(1 — U+ T+ A+ T T () —d (X T Tk_l)(’v))
=Yiq(1 - ¢) (="' X1yt T )+ qT T T (v)
V(1= + T+ + " T (= X T T (v)
= (¢— DX 1yt 1Y
X (1 T+ T - (U T kalTk_l)> (v)
= (¢- VXt T (1 =D+l T+ g T TF)) (v)
=(q— 1)‘]]€Y1X1T171 e 'Tlg—ll (qn_legl e ‘Trfle;jl T lel) (v)
=¢"(¢—INTT, - T ()

= ¢"(q — DFY)T Y - T Y (v)
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Continuing we find:

=tq"(¢ - V)Xh Ty T (T T YT T (v)
=tq"(q - X1yt T (MY (v)

_ k —1 -1

=t¢"(¢ — )X T} "‘Tk_lYk(v)

=qt(q—1) (qkileTl_l e Tk_—11> Yi(v)

= qt(q — 1)pz(v)

= qt[dy, d_]zk(v).

COROLLARY 4.2.5. The map W — Lo(W) is a covariant functor 2,7 —Mod — IB((;,? — Mod.

PROOF. Suppose ¢ : U — W is a homogeneous &, -module map. Now for any 0 < k < n we

see that if v = X -+ Xyer(u) € Li(U) then

P(v) = (X1 -+ Xpeg(u)) = X1 -+ Xpep(p(u)) € L(W).

Thus ¢ yields a map ¢e : Le(U) — Lo(W) given by restricting ¢ to each of the subspaces Ly (U) C U.

From Definition 4.2.2 we see that each of the operators T;, z;,d_, dy is expressed entirely in terms

(n)

of the action of 2,7 on U and as such we conclude that ¢, is a B, ¢

module map. O

4.2.3. The Polynomial Case. The goal of this section is to relate the IBB((IZ) modules Lq(W)
constructed above to the polynomial representation V.pOI of By in the case when W = Vp(:l). We

will show that there are natural maps

S
o ka(Q7t)[‘T1> . .,JTk] ®A — I xk‘@(q’ t)[xlv cee 7$TL] (1%,n—k)

which are Bg? module projections. This is nontrivial since the definitions of z; and d_ are quite

different in both modules. We will use the work of Ion-Wu to bridge this gap.

DEFINITION 4.2.6. [26] Recall Definition 1.3.12 from Chapter 1. Consider the following opera-

tors given on f € Q(q,t)[z1,...,25] ® A as follows:
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o T(f) = si(f) + (1 — g, L=20)

o di(f)=—"XaTy " T (f)

o d_(z{' - 2t FXpq]) = - 2P FX — u ' Exp[(1 — q)uXy] |,ennt
o 2(f) = Zi(f) := lim,,, Y= (f)

%

where %; are the limit Cherednik operators, lim,, is the limit as defined by Ion-Wu (with q and t

(m)

swapped) and 17'2 are the deformed Cherednik operators.

We can use the work of Ion-Wu to relate the above B,; module &, to the B,; module we ol

defined by Carlsson-Gorsky-Mellit as follows.

THEOREM. [26] The maps T, dy,d—,z; on P define a representation of By . This representa-
tion is isomorphic to the By, representation on weo .= Doy - -yk)*lvkp"l defined by Carlsson-
Gorsky-Mellit via the map ®o = @kzo Dy defined by

a a a-1 a1 X
Py ()t - F[Xg]) =yt eyt F Ll_l] :

REMARK 37. Ion-Wu in their paper also construct the additional operator d’ on &, from which
they obtain an action of Ay on Pe. Further, they show that this A,y module is isomorphic to the
standard Ay representation as defined by Mellit [71] which is the same as the Carlsson-Gorsky-
Mellit action of Ag: on Wel. The result as stated above is thus a strictly weaker result than the
main theorem of lon-Wu but as we are only interested in the subalgebra By of Aqy, we will only

require the above result as stated.

By the above theorem of Ton-Wu we find that each of the spaces yi - - - yp W}, ol = Vkpo1 gets mapped
by @;1 to the space z1 - - - x;Q(q, t)[z1, . . ., 2] ® A which we will call de. Thus we see that B, ; acts
on the space eol .— @kzo L}ZOI c P, . For all n > 0 can relate L2 to L.(Vp(:l)) in the following

way:

PROPOSITION 4.2.7. The map Esn) L L3 L.(Vp(:l)) defined component-wise by 2™ is a B((]Z)

module map.

PROOF. We need to show that 2™ commutes with the operators T, z;, dy,d_ as defined on

both of the spaces L2 and L.(Vp(:l)) respectively. For T; and d. this is immediate. For z; we note
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that from the construction of the deformed Cherednik operators i/v;(") [26] we have that if 1 <i <k
then
v x, = v x,.

Further, from Ion-Wu we also know that (using this chapter’s conventions) for all n > i

v x; 2m = smy ™y,

Thus for f € LZOI and 1 < i < k we find

and so

Let 0<k<n-—1land f =z 2419 for g € Q(q,t)[z1,...,xk]. From Chapter 2, we know that

m—k—1p—1 -1
d_(f) = lim 1+ qu+1 -t+q Ty Ty E(m)(f)
m 1+q—|—...—|—qm—k—1

1 i —k—=1p—1 1\ =
:<1+q+q2+...>h7g1(1+qu+1 g7 lefl"'TkH):(m)(f)
=(1-¢q) linl;n (1 + qu—H 4+ qm—k—1TT;£1 y 'T;;_l1> E(m)(f)

=(1-gq) 1%31 (1 + qu_+11 g™ 'T_+11> Xp - X 2 (g).
Now if m > k then

=(m) (1 AT T TR ) X X

=m) (1 + qu+1 oI k+1> Xi- Xpy1 + EMgmhr L LXa - X

k—i—l
- (1+qu+1 gL TkH) X1 X B £ 2 X T Th X - - X

= (1 + qu+1 -t qm_k_lTvgil Tk+1> X1 X 2 =),

204



Therefore,

=(1—q) (1+¢T 4+ " T Tk_+11> Xi - X1 2 (g)

n—1

)
=(1-q) (1 +qTh +. .+ T T ) EM(X1 - Xpg19)

= (1-q) (14 el + o T T ) 2O

Thus Z™d_ = d_=™ and so Esn) is a IB(

n)
q’

¢ module map. O

REMARK 38. Since LB is isomorphic as a By module to Ve via the map P and from Propo-

sition 4.2.7 we know that 2™ : LR — L.(Vp(:l)) is a IBB((IZ) module quotient, it follows that L.(Vp(gl))
(n)

q,t

Byt y,pol

isaB " Ve
B

module quotient of Res

4.2.4. B,; Modules From Compatible Sequences. We will now build representations for

the full B, ; algebra given certain special families of DAHA representations.

DEFINITION 4.2.8. Let C = ((V("))nZM, (H(”))nan) be a collection of Q(q,t)-vector spaces and
maps O™ VD 5 () with ny > 1. We call C a compatible sequence if the following

conditions hold:

e Each V" is a graded 2 -module

e The maps 1M : V(D) () gre degree-preserving.
e Each map TI™ is a o/ module map.

e IIMX, 1 =0

o 117, (T, = m,I10M.

Given compatible sequences C' = ((V(”))nznl, (H(”))nznl) and D = ((W(”))nznz, (\If(”))nan) a
homomorphism ¢ : C — D is a collection of maps ¢ = (¢("))n2max(nhn2) with ¢ - V) — )
such that

o o™ are degree-preserving P} module maps.
o M) = gn)pnt1)
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We will write € for the category of compatible sequences.

REMARK 39. The importance of the relation H(”)ﬂnHTn = wnH(") can be traced back to at least
the work of Ion-Wu [26] on their stable-limit DAHA. This relation allowed Ion-Wu to construct
the limit Cherednik operators on the space of almost symmetric functions utilizing a remarkable
stability relation for the classical Cherednik operators. We will be following a similar idea in a
different setting in this section of the chapter.

This relation may be interpreted as relating to the natural inclusion map on extended affine
symmetric groups én — én+1 given by s; — s; for 1 <i < n—1 and ® — ws,. Diagrammatically,
this map sends the crossing diagram for some o € én on n-strands to the corresponding crossing

diagram on (n + 1)-strands where we send n + 1 to itself.

For the remainder of this section we fix a compatible sequence C' = ((V("))nzno, (H("))nzno) Tt
is easy to check that for 0 < k < n, I (Ly (VD)) ¢ L (V™) so that the following definition

makes sense.

DEFINITION 4.2.9. For k > 0 define £, = £x(C) to be the stable-limit £y, := lim. Lk(V("))
with respect to the maps I, We define £ = £4(C) as Lo = Di>o Lk - We will write Hsn) :

Ly(VOHD)Y 5 Lo(V™) for the map obtained by restricting II™ to each component Ly (V" +1).

If we let V denote the stable-limit of the spaces V(™ with respect to the maps I then we can

reinterpret the spaces £ as
S ={ve X X,V| Ty(v) = v for i > k}.

LEMMA 4.2.10. For n > ng the map Hsn) : L.(V(”H)) — L.(V(”)) is a Bé@—module map.

PROOF. By definition II(™ is a .anX-module map so for 1 < i < k—1, IMT; = ;11 . Further,

we also know that if & < n — 1 then II™d, = d 11 since on Ly, d, = —qulel e Tk_l.
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Now let 1 < k < n and v € Ly say, v = X1 -+ Xpex(w). We see that from a nearly identical

calculation to one seen in the proof of Proposition 4.2.7
1™d_(v)
=001 — )1+ g7 4.+ TR T (v)
=MW1 - )L+ gl + o+ T T (X - Xpeg(w))
=M1 —q) 1+l 4.+ @M T (X Xeer(w))
+ (1 — g)g" R T X - X (w)
=(1—q)U+qT + ...+ T - T (X - Xep(w))
+ T - ) X1 Ty Te X1 -+ Xp—rex(w)
=(1—)(I+qT + . g T (X - Xpeg (w))
=(1—q)(1+qT " + ...+ gt - 1 HI™ (v)

= d_TI™ (v).

Lastly, let 1 <7 < k. Using the relation H(")WnHTn = WnH(") we find

H(")zi(v)

= 1"Y;(v)

=g Ty Tymg T, T (0)

— H(”)q”_i”Ti,l .. 'T17Tn+1Tn_1 .. .Tfl(Xl o Xpep(w))

= MW= 27 T, T TG (X - X X - Xper(w))

=T PT - T 1 X1 T - Ti(X1 - X 1 X1 - - - Xper(w))
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=TT - Ty Xamna Ty Ti(Xy - Xy 1 X1 - - - Xper(w))

= Ty X Ty (X X1 Xy - X (w))

= PtTiy - T Xam DTy Ti(Xy - X1 X+ Xpe(w))
=Ty 1 Tmn X T+ Ti(Xy - Xi 1 Xig - - XTI (e (w))
=T Ty T T XG (X X Xy - X I (g (w))
=T T T T (X X e ()

= z 11" (v).

O

As an immediate consequence of Lemma 4.2.10 and Lemma 1.7.2 we may make the following

definition.

DEFINITION 4.2.11. We define the graded B,; module structure on Lo given by the stable-limit

of the graded IB((IZ) modules £E”) with respect to the maps Hsn) : ££n+1) — ££”) .

EXAMPLE. In the case of the polynomial representations of 9., Vp(:l), we see using Proposition

4.2.7 that £e(Cpol) = VE where

Cpol = ((Véﬁ))nzh (Egn))nzl) :

The construction in Definition 4.2.11 associates to any compatible sequence C a graded module

£4(C) of By ;. We can easily see that this construction is functorial.
THEOREM 4.2.12. (Main Theorem) The map C' — £4(C') is a covariant functor € — B, ; —Mod.

Proor. This follows immediately using the functoriality described in Remark 11 and from
the fact that the operators on £4(C) are described entirely in terms of the action of each Z; on

V), O

REMARK 40. Recently, Gonzailez-Gorsky-Simental [17] introduced the extended algebra ]B%Zf‘tt and

the notion of calibrated Bgﬁt modules. The extended algebra Bgﬁt contains additional A-operators
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with specific relations motivated by the A-operators in Macdonald theory. Calibrated B‘;ﬁt modules
are those modules with a basis of joint eigenvectors for the z;’s and the additional operators A,
with simple nonzero spectrum.

In the case of the polynomial representations of DAHAs, the B, representation £4(Cpol) has an
extended action by IB%Z”? using A-operators and this representation is calibrated. It is an interesting

question to figure out exactly which properties of the family of DAHA modules Cpo allow for this

ext

extended calibrated action by B .

4.3. Compatible Sequences From AHA

In this section we give a method for defining compatible sequences. We will consider families of
representations for the affine Hecke algebras &7, in type GL with special properties which we call
pre-compatible. These families of representations for o7, can then be induced to give representations
of the corresponding 2,7 which can be shown to be compatible after carefully defining the correct

connecting maps.

DEFINITION 4.3.1. Let C' = ((U(”))nZnO, (fi(”))nZnO) be a collection of Q(q,t)-vector spaces and
maps £™ : UOTY 5 ™) with ny > 1. We call C' a pre-compatible sequence if the following

hold:

o Each U™ is a graded <, module (grading is arbitrary)
o The maps k™ : UMD — UM gre degree preserving 7, module maps
) H(")ﬂnHTn = ﬂnm(”).

Given any pre-compatible sequence C we define the spaces (Vén))nzno by
v = md%t Ut

which we endow with the grading inherited by Q(q,t)[X1,..., Xn] @ U™ (which is isomorphic as a
vector space). Define the maps (H(g) : V(gnﬂ) — V(gn))nzno by
H(Cn)(Xlal S X0 @) = L = 0) @ M (v).

n+1

We will write Ind(C') for the family

d(C) = (V" Ynznes (T )azna) -
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PROPOSITION 4.3.2. If C' is pre-compatible then Ind(C') is compatible.

PROOF. By construction each space Vén) is a graded 2" module and the maps H(Crf) are degree
preserving dff maps with Hg‘)XnH = 0. Thus we only need to show that HgL)W"HTn = Wnﬂ(gf).

To see this we have the following:

) 7 T (X0 X070 @ 0)

= X5 X I 7 T (XE X0 @ 0)

XanXanJrl . Xlln+1 Xa"
U (S LA

— XG1 X T 7,4 (X0 X0 @ Tho)

XanSiJlrl B Xgn+1Xg—Tlil (1 ® U)

1= ) X5t Xon W, X
+(1—q)X;5 n ¢ Tn+14n X, — X1

= X5 X I X (X)) T (16 Tho)

Xar X' = X" Xata ) o
Xn - Xn+1

(1= @)Xt X I X174

= X X0 I X O (6X) 1 (1 Too)

n+1

= L(ap41 = 0)(tX1)"" X3 -
= L(ap41 = 0)(tX1)"" X5 -
= Lan41 = 0)(tX1)* " X5 -

= ]l(()én+1 = 0)(tX1)anX2al o

-XS"‘lﬂg)(l ® 110 (v))
Xt @ £ (11 T ()
X3 @ k™ (v)

X0, © k(1) (v)

. Xan+1

Thus I 7, 1 T, = m, T

® v).

and so Ind(C') is compatible. O

We will now give a large family of pre-compatible sequences built from Young diagrams. The

modules in these sequences are the same (up to changing conventions) as the modules in |

Chapter 3.

] and
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DEFINITION 4.3.3. Define the Q(q,t)-algebra homomorphism py, : o/ — H . by

o pu(Ti) =T; for1<i<n-—1

For a y,-module V' we will denote by p} (V) the o/ ,-module with action defined for v € V and
X €, by X(v) := pp(X)(v).

DEFINITION 4.3.4. Recall from Definition 3.3.1 the irreducible ¢ ,-modules Sy corresponding to

A € Y. Note that the roles of ¢ and t have been reversed in this chapter. For n > n) define the <7,

modules U/En) = p5(S\m)) and maps Iig\n) : U>(\n+1) — U/gn) given, for 7 € SYT(A(+D) gs

eT|>\<n) 7(Oo) =n+1

0 7(Oo) #n+ 1.

’ff\n) (er) ==
where Ly is the unique square in )\("+1)//\(”).
We consider the o ,, modules U)(\”) as graded with the trivial grading i.e. U>(\n) = U)(\n)(()). We wnll
write Cy for the family
O = (O3 )z (55 )z ) -

REMARK 41. As constructed, the elements e, of the </, module U)(\n) are not weight vectors
for the Cherednik elements Y; but rather for the reversed orientation Cherednik elements 0; given
by 0; = qi_lTi__ll---Tl_lﬂTn_l---il}. Ezxplicitly, we have that for 7 € SYT(A) and 1 < i < n,
O;(e;) = g We,.

THEOREM 4.3.5. For any A\, Ind(C\) is a compatible sequence with £4(Ind(C))) a nonzero graded

By,: module.
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PROOF. It is easy from the explicit 7; relations given in Definition 4.3.4 to verify that for every

n > n) the map ﬁg\") U )(\nﬂ) —-U /\n) is a .7, module map. We therefore also have that
ﬂg\n)ﬂ'n-i—lTn
= “E\n)Pn+1(7Tn+l)Tn

=TT,
=17 T kY

(n)

= Tpky -

Hence, C) is a pre-compatible sequence and so by Proposition 4.3.2 it follows that Ind(C)) is a
compatible sequence. Thus we may consider the graded B,; module £,(Ind(C))).

To show that £e(Ind(C))) is nonzero it suffices to show that £y(Ind(Cy)) is nonzero. This is
space is the stable-limit of the symmetrized spaces 6(()”) (Indf;’z U in)) with respect to the maps Hg\n).
However, this space is the Murnaghan-type representation W,\ of the positive elliptic Hall algebra of

shape A from the Chapter 3. This space is infinite dimensional for any A and so clearly £y(Ind(C}))

is nonzero. O

We can show further that for all k& > 0, £,(Ind(C)) is infinite dimensional. To see this note that
dt : £o(Ind(Cy)) — £,(Ind(Cy)) is given by

(="' xy1y T ) o (X T T ) (g Xa T (- X))

which is clearly injective. Thus since £o(Ind(Cy)) = W) is infinite-dimensional the same is true for
Qk (Ind(C)\)).
As the B, ; modules £4(Ind(C))) contain the Murnaghan-type representation W), of EHA we will

refer to these modules as the B, ; modules of Murnaghan-type.

REMARK 42. The author conjectures that each of the Murnaghan-type B, ; modules, £4(Ind(C})),
has an extended action by B‘flf}t and that these extended modules are calibrated. Fvidence for this

conjecture comes from chapter 3 where we constructed A-operators on the space Wy = Lo(Ind(CYy))
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which have distinct nonzero spectrum. Extending these A-operators to the whole space £4(Ind(CY))

18 nontrivial.
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