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Abstract

This thesis is centered around extending families of representation theoretic objects correspond-

ing to finite rank GL to the setting of infinite rank GL. Specifically, we study representations of the

double affine Hecke algebras in type GL, the elliptic Hall algebra, and the double Dyck path alge-

bra. Throughout this thesis we will develop new methods for constructing representation theoretic

objects from families of finite rank classical objects and ways to understand these representations.

In the first chapter, we give an overview of the background information regarding Macdonald

theory and Cherednik theory and of recent results in the area including the Shuffle Theorem. This

chapter contains a review of the necessary algebraic, combinatorial, and representation theoretic

definitions which will be used throughout the thesis.

In Chapter 2, we investigate limits of non-symmetric Macdonald polynomials and their place in

the theory of almost symmetric functions. We will construct a basis of simultaneous eigenvectors

for the limit Cherednik operators of Ion-Wu and investigate many of their properties. Further, we

construct new operators on the space of almost symmetric functions generalizing the higher delta

operators in Macdonald theory. Lastly, we explicitly compute q,t specializations of this basis to find

a generalization of Schur functions to the almost symmetric functions with interesting combinatorial

and representation theoretic properties.

Chapter 3 revolves around a family of modules called the Murnaghan-type representations for

the elliptic Hall algebra generated using a stable-limit procedure from the vector-valued polyno-

mial DAHA representations of Dunkl-Luque. This family of modules is indexed by partitions and

generalizes the standard polynomial representation of EHA. We will construct a special family of

generalized symmetric Macdonald functions as simultaneous eigenvectors for a generalized Mac-

donald operator and investigate their properties.

Lastly, in Chapter 4 we will construct new representations of the double Dyck path algebra built

from compatible families of DAHA representations. We will use this general procedure to define

Murnaghan-type representations using the EHA representations in Chapter 2.
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CHAPTER 1

Introduction

1.1. Background

1.1.1. Background. Spaces of polynomials are a meeting ground for a wealth of interesting

combinatorics and representation theory. While we may first and foremost consider polynomial

spaces like Q[x1, . . . , xn] to be rings with their own algebra structures, in fact many other inter-

esting algebras act on such spaces. For example the symmetric group algebra Q[Sn] will act on

Q[x1, . . . , xn] by permuting the variable indices. This action is central to the representation theory

of GLn yielding a great deal of interesting combinatorics. Another more complicated family of

algebras which act on polynomials are the double affine Hecke algebras (DAHAs) of Chered-

nik [9]. Let us primarily focus on the DAHA corresponding to the Lie group GLn. In this case

the polynomial space is Q(q, t)[x1, . . . , xn] and the type GLn DAHA acts by a combination of mul-

tiplication operators Xi, Hecke operators Ti, and what are known as Cherednik operators Yi

which are related to Dunkl operators. This action generalizes to all Lie types and has an impor-

tant place in modern representation theory. As it turns out, the Cherednik operators Yi commute

with each other and are simultaneously diagonalizable. Weight vectors for the Cherednik operators

are known as non-symmetric Macdonald polynomials Eµ. These special polynomials satisfy

many exceptional combinatorial properties and can be viewed as an orthogonal basis with respect

to a natural inner product.

Often, mathematicians are most interested in the subspace of symmetric polynomials, as

there are fundamental links between the structure of symmetric polynomials and representation

theory/combinatorics. In this case, we have that the Sn-invariants Q(q, t)[x1, . . . , xn]
Sn are not

preserved by the DAHA action, but rather by DAHA’s spherical subalgebra. This algebra contains

the special element Y1+ . . .+Yn which acts diagonally on symmetric polynomials via the finite vari-

able Macdonald operator. The normalized weight vectors for the action of Y1+. . .+Yn are known
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as symmetric Macdonald polynomials Pλ, which generalize many other important symmetric

polynomials including Jack polynomials, Hall-Littlewood polynomials, and Schur polynomials.

In many instances, interesting actions on spaces of polynomials have geometric interpretations

allowing for a bridge between the purely algebraic properties of polynomials and certain proper-

ties of geometric objects. The Schur polynomials sλ correspond both to irreducible characters of

GLn and to the cohomology classes of Schubert cells in Grassmanians. In recent decades a similar

picture has been built for the symmetric Macdonald polynomials Pλ. Consider the equivariant

K-theory of certain moduli spaces called the Hilbert schemes Hilbn(C2). Haiman, in his ground-

breaking work [23], showed that a certain transformation of the symmetric Macdonald polynomial

Pλ, called the modified Macdonald polynomial H̃λ, corresponds naturally to the torus fixed point

Iλ of the Hilbert scheme Hilbn(C2). This correspondence constituted a significant development

in algebraic combinatorics, shedding light on both the combinatorics of the modified Macdonald

polynomials and on the structure of Hilbert schemes. Later works by Schiffmann-Vasserot [34]

and Carlsson-Gorsky-Mellit [7] built on this picture by directly linking the polynomials H̃λ to the

torus-equivariant K-theory of the nested Hilbert schemes and of the parabolic flag Hilbert schemes,

respectively.

In recent years there has been a new type of action on polynomial spaces which has seen an

abundance of interest. The famous Shuffle Theorem of Carlsson-Mellit [8] resolved a long stand-

ing open problem in algebraic combinatorics regarding the modified Macdonald polynomials dating

back to the work of Haiman and many others. The proof of Carlsson-Mellit involved the construc-

tion and study of a quiver path algebra Aq,t called the double Dyck path algebra which acts on

a family of spaces Vk = Q(q, t)[z1, . . . , zk]⊗Λ. Here Λ denotes the space of symmetric functions

which are infinite variable versions of symmetric polynomials. At first glance, the algebra Aq,t

appears to be a limit of the type GLn DAHAs. Ion and Wu showed in [26] that there is a direct

relation between the classical theory of Cherednik and Aq,t. They introduced an algebra H + called

the positive stable-limit DAHA along with an action of H + on the space of almost symmetric

functions P+
as := Q(q, t)[x1, x2, . . .]⊗Λ. This action is generated by multiplication operators Xi,

Hecke operators Ti, and what are known as the limit Cherednik operators Yi. These opera-

tors are the limits of certain deformations of the classical Cherednik operators Yi, defined using a

nontrivial notion of convergence for sequences of polynomials incorporating the t-adic topology of
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the field Q(q, t). It was shown by Ion-Wu that the H + action on P+
as in a sense globalizes the

polynomial representation of Aq,t, as you can recover the action of Aq,t on each space Vk by looking

locally at the H + action on Q(q, t)[x1, . . . , xk]⊗ Λ ⊂P+
as .

1.2. Thesis Overview

1.2.1. Stable-Limit Non-Symmetric Macdonald Functions. In Chapter 2 of this thesis

we will answer a question of Ion and Wu regarding the spectral theory of the limit Cherednik

operators Yi. In the classical DAHA picture, the non-symmetric Macdonald polynomials are a

weight basis for the Cherednik operators. Ion-Wu conjectured the existence of a similar story for

their limit Cherednik operators, namely that there exists a Y -weight basis for P+
as. By using

Ion and Wu’s new notion of convergence involving the t-adic topology from the field Q(q, t), we

show that the sequences E(µ1,...,µn,0m) converge to well defined elements Ẽµ of P+
as . In the pro-

cess of this convergence proof we give an explicit combinatorial formula for the Ẽµ similar to the

Haglund-Haiman-Loehr formula for the non-symmetric Macdonald polynomials. Importantly, using

a continuity-like argument, it is straightforward to prove that the Ẽµ are in fact Y -weight vectors.

However, these almost symmetric functions Ẽµ do not span all of P+
as . To find a basis of P+

as, we

will use Ion-Wu’s variant of the Jing vertex operators ∂
(r)
− to construct partial symmetrizations of

the Ẽµ. We call these functions Ẽ(µ|λ) the stable-limit non-symmetric Macdonald functions

as they are the analogues of the classical non-symmetric Macdonald polynomials for the setting of

the stable-limit DAHA. It is perhaps also appropriate to refer to them as the almost symmet-

ric Macdonald functions. They are indexed by pairs (µ|λ) of (reduced) compositions µ and

partitions λ.

In a significant deviation from classical Cherednik theory, the Y -weight spaces of P+
as are all

infinite dimensional. Classically, the Macdonald operator ∆ acts on symmetric functions Λ with

distinct spectrum and weight vectors given by the symmetric Macdonald functions Pλ. It is thus

natural to try to extend the Macdonald operator from Λ to P+
as in a way that acts diagonally on

the Ẽ(µ|λ) basis. Constructing this operator required bringing in new ideas beyond the work of Ion

and Wu. We prove that there is a natural way to define an extended Macdonald operator, Ψp1 , on

P+
as which dramatically refines the Y -weight spaces on P+

as to be 1-dimensional. That is to say, if

one considers any pair (µ|λ), then the weight of the operators (Ψp1 ,Y1,Y2, . . .) acting on Ẽ(µ|λ) is
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distinct from any other (µ′|λ′). This operator Ψp1 is constructed as the limit of finite-rank DAHA

operators tm(Y
(m)
1 + . . . + Y

(m)
m ) from a nontrivial and technical convergence argument using the

stable-limit convergence of Ion and Wu. As a benefit of this limit construction one can prove that

Ψp1 satisfies some interesting nontrivial algebraic relations. The refinement of the Y -weight spaces

shows that, from the perspective of this new stable-limit DAHA theory, the Ẽ(µ|λ) are the unique

basis of P+
as generalizing the classical non-symmetric Macdonald polynomials.

In classical Macdonald theory, along with the Macdonald operator ∆ there are higher delta

operators F [∆] which in-part generate the action of the elliptic Hall algebra on symmetric func-

tions Λ. Using techniques developed to show that the operator Ψp1 on P+
as exists we show similarly

that there are analogous operators ΨF which generalize the classical higher delta operators. The

verification of this construction involves significantly more intricate calculations. This construction

hints at the existence of a larger family of algebras generalizing the elliptic Hall algebra which acts

naturally on P+
as .

Lastly, we will investigate the q =∞, t = 0 specializations of the Ẽ(µ|λ). For the finite rank non-

symmetric Macdonald polynomials Ion showed that this specialization yields the key polynomial

basis for polynomials. The key polynomials are notable as they interpolate between finite variable

Schur polynomials and monomials corresponding to partitions. They are in fact the characters of

Demazure modules for the group of upper triangular matrices as is shown by the famous Demazure

character formula. We will show that the q =∞, t = 0 specializations of the Ẽ(µ|λ) give a basis for

almost symmetric functions which interpolate between key polynomials and Schur functions. These

almost symmetric Schur functions are limits of characters of certain parabolic subgroups of

type GL and thus satisfy some interesting positivity properties. We will also give an explicit

combinatorial model for the almost symmetric Schur functions using the HHL-type formula for the

key polynomials.

1.2.2. Murnaghan-Type Representations for the Elliptic Hall Algebra. Dunkl and

Luque introduced symmetric and non-symmetric vector-valued (vv.) Macdonald polynomials. The

term vector-valued here refers to polynomial-like objects of the form
∑

α cαX
α ⊗ vα for some

scalars cα, monomials Xα, and vectors vα lying in some Q(q, t)-vector space. The non-symmetric

vv. Macdonald polynomials are distinguished bases for certain DAHA representations built from

the irreducible representations of the finite Hecke algebras in type A. These DAHA representations
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are indexed by Young diagrams and exhibit interesting combinatorial properties relating to peri-

odic Young tableaux. The symmetric vv. Macdonald polynomials are distinguished bases for the

spherical (i.e. Hecke-invariant) subspaces of these DAHA representations. Naturally, the spherical

DAHA acts on this spherical subspace with the special element ξ1 + . . . + ξn of spherical DAHA

acting diagonally on the symmetric vv. Macdonald polynomials.

Dunkl and Luque (and in later work of Colmenarejo, Dunkl, and Luque) only consider the finite

rank non-symmetric and symmetric vv. Macdonald polynomials. It is natural to ask if there

is an infinite-rank stable-limit construction using the symmetric vv. Macdonald polynomials to

give generalized symmetric Macdonald functions and an associated representation of the positive

elliptic Hall algebra E +. In this chapter, we describe such a construction. We obtain a new family

of graded E +-representations W̃λ indexed by Young diagrams λ and a natural generalization of the

symmetric Macdonald functions PT indexed by certain labellings of infinite Young diagrams built

as limits of the symmetric vv. Macdonald polynomials.

For any λ we consider the increasing chains of Young diagrams λ(n) = (n − |λ|, λ) for n ≥

|λ| + λ1 to build the representations W̃λ. These special sequences of Young diagrams are central

to Murnaghan’s theorem regarding the reduced Kronecker coefficients. As such we refer to the

E +-representations W̃λ as Murnaghan-type. For λ = ∅ we recover the E + action on Λ and the

symmetric Macdonald functions Pµ[X; q, t].

We obtain a Pieri rule for the action of the multiplication operators e•r on the generalized

symmetric Macdonald function basis PT . After studying the particular case of the e1-Pieri coeffi-

cients we will show that the modules W̃λ are cyclic generated by their unique elements of minimal

degree PTmin
λ

. Lastly, we show that these Murnaghan-type representations W̃λ are mutually non-

isomorphic. At the end of Chapter 3 we will look at a family of product-sum formulas which follow

naturally using the results described thus far and a bit of simple analysis. These formulas relate

certain (q, t) statistics on special infinite diagrams and appear to give rational formulas for certain

sums of hyper-geometric series.

1.2.3. Double Dyck Path Algebra Representations From DAHA. In this chapter we

develop a method for constructing modules for the double Dyck path algebra Bq,t directly from

the representation theory of DAHA in type GL. The algebra Bq,t is a highly related geometric
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version of the Carlsson-Mellit algebra Aq,t. We show that given any D+
n module V we may con-

struct an action of the subalgebra B(n)
q,t on the space L•(V ) defined by L•(V ) =

⊕
0≤k≤n Lk(V ) :=⊕

0≤k≤nX1 · · ·Xkϵk(V ). Here ϵk are the partial trivial idempotents of the finite Hecke algebra.

Each space may be considered as a module for the partially symmetrized positive DAHA, ϵk D+
n ϵk.

We show that in the case of the polynomial representations V
(n)
pol of DAHA that L•(V

(n)
pol ) is a

B(n)
q,t -module quotient of the restriction of the polynomial representation of Bq,t to B(n)

q,t .

Afterwards, we use stable-limits of the representations L•(V ) of B(n)
q,t to build representations

of Bq,t. This construction requires the input of an infinite family of representations of DAHAs,

(V (n))n≥n0 , along with some connecting maps, Π(n) : V (n+1) → V (n), satisfying some special

assumptions. Most interestingly, we require that the following relations holds: Π(n)π(n+1)Tn =

π(n)Π(n). This is the same relation used by Ion-Wu in their construction of the limit Cherednik

operators and is related to certain natural embeddings of the extended affine symmetric groups

S̃n ↪→ S̃n+1. We call such families C =
(
(V (n))n≥n1 , (Π

(n))n≥n1

)
compatible and construct spaces

Lk(C) given by Lk(C) := lim← Lk(V
(n)). These are the stable-limits of the spaces Lk(V

(n)) with

respect to the maps Π(n). Finally, we package together these spaces to form L•(C) given as L•(C) :=⊕
k≥0 Lk(C) which may be also thought of as the stable-limit of the B(n)

q,t modules L•(V
(n)). We

show that there is a natural action of Bq,t on L•(C) determined by the B(n)
q,t module structures on

L•(V
(n)). This construction is also functorial.

Lastly, we use this construction of the functor C → L•(C) to define a large family of Bq,t modules,

L•(Ind(Cλ)), indexed by partitions λ. These representations in a sense extend the Murnaghan-type

representations of the positive elliptic Hall algebra.

1.3. Polynomials and Symmetric Functions

1.3.1. Basic Combinatorics.

Definition 1.3.1. In this paper, a composition will refer to a finite tuple µ = (µ1, . . . , µn) of

non-negative integers. We allow for the empty composition ∅ with no parts. We will let Comp

denote the set of all compositions. The length of a composition µ = (µ1, . . . , µn) is ℓ(µ) = n and

the size of the composition is |µ| = µ1 + . . .+µn. As a convention we will set ℓ(∅) = 0 and |∅| = 0.

We say that a composition µ is reduced if µ = ∅ or µℓ(µ) ̸= 0. We will let Compred denote the set

of all reduced compositions. Given two compositions µ = (µ1, . . . , µn) and β = (β1, . . . , βm), define
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µ ∗ β = (µ1, . . . , µn, β1, . . . , βm). A partition is a composition λ = (λ1, . . . , λn) with λ1 ≥ . . . ≥

λn ≥ 1. Note that vacuously we allow for the empty partition ∅. We denote the set of all partitions

by Y. We denote by Σ the set of all pairs (µ|λ) with µ ∈ Compred and λ ∈ Y .

We denote by sort(µ) the partition obtained by ordering the nonzero elements of µ in weakly

decreasing order. We define rev(µ) to be the composition obtained by reversing the order of the

elements of µ. The dominance ordering for partitions is defined by λ ⊴ ν if for all i ≥ 1, λ1+ . . .+

λi ≤ ν1 + . . .+ νi where we set λi = 0 whenever i > ℓ(λ) and similarly for ν. If λ ⊴ ν and λ ̸= ν.

we will write λ ◁ ν.

We will in a few instances use the notation 1(p) to denote the value 1 if the statement p is true

and 0 otherwise.

Definition 1.3.2. The symmetric group Sn is defined as the set of bijective maps σ : {1, . . . , n} →

{1, . . . , n} with multiplication given by function composition. For 1 ≤ i ≤ n− 1 we will write si for

the transposition swapping i, i+ 1 and fixing everything else. For any µ = (µ1, . . . , µr) with µi ≥ 1

and µ1 + . . .+ µr = n we define the Young subgroup Sµ to be the group generated by the si for

i ∈ {µ1 + . . .+ µj−1 + 1, . . . , µ1 + . . .+ µj−1 + µj} for some 0 ≤ j ≤ r.

We have the following alternative presentation of the symmetric group Sn.

Proposition 1.3.3 (Coxeter Presentation). The symmetric group Sn is generated by elements

s1, . . . , sn−1 subject to the relations:

• s2i = 1

• sisi+1si = si+1sisi+1

• sisj = sjsi for |i− j| > 1.

Definition 1.3.4. For σ ∈ Sn the length of σ, ℓ(σ), is defined to be the minimal number of

si required to express σ, i.e. σ = si1 · · · sir . We will denote by w
(n)
0 the unique element of Sn of

maximal length ℓ(w
(n)
0 ) =

(
n
2

)
given by

w
(n)
0 (i) := n− i+ 1.

Remark 1. We may also express w
(n)
0 using the Coxeter presentation as

w
(n)
0 = (sn−1 · · · s1)(sn−1 · · · s2) · · · (sn−1sn−2)sn−1.

7



In line with the conventions in [19] we define the Bruhat order on the type GLn weight lattice

Zn as follows.

Definition 1.3.5. Let e1, ..., en be the standard basis of Zn and let α ∈ Zn. We define the

Bruhat ordering on Zn, written simply by <, by first defining cover relations for the ordering

and then taking their transitive closure. If i < j such that αi < αj then we say α > (ij)(α) and

additionally if αj −αi > 1 then (ij)(α) > α+ ei− ej where (ij) denotes the transposition swapping

i and j.

It is important to note that with respect to the Bruhat order any weakly decreasing vector v ∈ Zn

is the minimal element in its permutation orbit Sn.v.

1.3.2. Polynomials. Throughout this thesis the variables q and t are assumed to be commut-

ing free variables.

Definition 1.3.6. Define Pn := Q(q, t)[x±11 , . . . , x±1n ] for the space of Laurent polynomials in

n variables over Q(q, t) and define P+
n := Q(q, t)[x1, . . . , xn] for the subspace of polynomials. We

define algebra homomorphisms Ξ(n) : P+
n+1 →P+

n by

Ξ(n)(xa11 · · ·x
an
n x

an+1

n+1 ) = 1(an+1 = 0)xa11 · · ·x
an
n .

The symmetric group Sn acts naturally on Pn by algebra automorphisms via

σ(f(x1, . . . , xn)) = f(xσ(1), . . . , xσ(n)).

1.3.3. Symmetric Functions.

Definition 1.3.7. Define the ring of symmetric functions Λ to be the subalgebra of the

inverse limit of the symmetric polynomial rings Q(q, t)[x1, . . . , xn]
Sn with respect to the quotient

maps sending xn → 0 consisting of those elements with bounded x-degree. For i ≥ 1 define the i-th

power sum symmetric function by

pi = xi1 + xi2 + . . . .

8



It is a classical result that Λ is isomorphic to Q(q, t)[p1, p2, . . . ]. For any expression G = a1g
µ1 +

a2g
µ2 + . . . with rational scalars ai ∈ Q and distinct monomials gµi in a set of algebraically inde-

pendent commuting free variables {g1, g2, . . . } the plethystic evaluation of pi at the expression

G is defined to be

pi[G] := a1g
iµ1 + a2g

iµ2 + . . . .

Note that gi are allowed to be q or t. Here we are using the convention that iµ = (iµ1, . . . , iµr) for

µ = (µ1, · · · , µr). The definition of plethystic evaluation on power sum symmetric functions extends

to all symmetric functions F ∈ Λ by requiring F → F [G] be a Q(q, t)-algebra homomorphism. Note

that for F ∈ Λ, F = F [x1+x2+ . . .] and so we will often write F = F [X] where X := x1+x2+ . . . .

For a partition λ define the monomial symmetric function mλ by

mλ :=
∑
µ

xµ

where we range over all distinct monomials xµ such that σ(µ) = λ for some permutation σ. For

n ≥ 0 define the complete homogeneous symmetric function hn by

hn :=
∑
|λ|=n

mλ.

Equivalently,

hn =
∑

i1≤...≤in

xi1 · · ·xin .

For n ≥ 1 define the elementary symmetric function en by

en =
∑

i1<...<in

xi1 · · ·xin .

We can extend plethysm to Q(q, t)[[p1, p2, . . . ]]. The plethystic exponential is defined to be the

element of Q(q, t)[[p1, p2, . . . ]] given by

Exp[X] :=
∑
n≥0

hn[X].

Here we list some notable properties of the plethystic exponential which will be used later in this

thesis.

• Exp[0] = 1

9



• Exp[X + Y ] = Exp[X] Exp[Y ]

• Exp[x1 + x2 + . . . ] =
∏∞

i=1

(
1

1−xi

)
• Exp[(1− t)(x1 + x2 + . . . )] =

∏∞
i=1

(
1−txi
1−xi

)
Example. Here we give a few examples of plethystic evaluation.

• p3[1 + 5t+ qt2] = 1 + 5t3 + q3t6

• s2[(1− t)X] = (
p2+p1,1

2 )[(1− t)X] =
(1−t2)p2[X]+(1−t)2p1,1[X]

2

• Exp[ t
1−t ] =

∏∞
n=1(

1
1−tn )

Definition 1.3.8. [30] Define the (q,t)-Hall inner product on Λ by

⟨pλ, pµ⟩q,t := δλ,µzλ
∏

1≤i≤ℓ(λ)

(
1− qλi

1− tλi

)

where

zλ :=
∏
i

(
imλ(i)!mλ(i)!

)
.

Further, define the t-Hall inner product and classical Hall inner product respectively by

• ⟨•, •⟩t := ⟨•, •⟩0,t

• ⟨•, •⟩ := ⟨•, •⟩0,0.

Definition 1.3.9. [30] Define the symmetric Macdonald functions Pλ[X; q, t] for λ ∈ Y to

be the unique symmetric functions satisfying the conditions:

• Pλ[X; q, t] = mλ +
∑

µ◁λ cµmµ for some coefficients cµ ∈ Q(q, t)

• ⟨Pλ[X; q, t], Pµ[X; q, t]⟩q,t = 0 for λ ̸= µ.

Define the symmetric Hall-Littlewood functions Pλ[X; t] by

Pλ[X; t] := Pλ[X; 0, t]

and the Schur functions sλ[X] by

sλ[X] = Pλ[X; 0, 0].

Proposition 1.3.10. [30] The following sets are all Q(q, t)-bases for Λ :

• {sλ[X]}λ∈Y
10



• {Pλ[X; t]}λ∈Y

• {Pλ[X; q, t]}λ∈Y.

It will be convenient in Chapter 2 to use a variant of the Hall-Littlewood functions Pλ[X; t].

Definition 1.3.11. For n ≥ 0 define the Jing vertex operator Bn ∈ EndQ(q,t)(Λ) by

Bn[F ] := ⟨zn⟩F [X − z−1]Exp[(1− t)zX].

Here ⟨zn⟩ denotes the operator which extracts the coefficient of zn of any formal series in z. For a

partition λ = (λ1, ..., λr) define the dual Hall-Littlewood symmetric function, Pλ, by

Pλ := Bλ1 · · ·Bλr(1).

Note that the operator Bn is homogeneous with degree n. As we will see later in Proposition

2.4.20 the Pλ[X] are the same as the dual Hall-Littlewood symmetric functions Qλ[X; t] defined by

Macdonald [30]. These symmetric functions have the following useful properties.

• Pλ is homogeneous with degree |λ|

• P(n)[X] = hn[(1− t)X]

• If n ≥ λ1 then Bn(Pλ) = Pn∗λ

• B0(Pλ) = tℓ(λ)Pλ

1.3.4. Almost Symmetric Functions.

Definition 1.3.12. [26] Let P+
∞ denote the inverse limit of the rings P+

k with respect to the

homomorphisms Ξk : P+
k+1 → P+

k which send xk+1 to 0 at each step. We can naturally extend

Ξk to a map P+
∞ → Pk which will be given the same name. Let P(k)+ := Q(q, t)[x1, . . . , xk] ⊗

Λ[xk+1+xk+2+ . . .]. Define the ring of almost symmetric functions by P+
as :=

⋃
k≥0 P(k)+.

Note P+
as ⊂ P+

∞. Define ρ : P+
as → x1P+

as to be the linear map defined by ρ(xa11 · · ·xann F [xm +

xm+1 + . . .]) = 1(a1 > 0)xa11 · · ·xann F [xm + xm+1 + . . .] for F ∈ Λ. Note that ρ restricts to maps

Pn → x1 Pn which are compatible with the quotient maps πn.

The ring P+
as is a free graded Λ-module with homogeneous basis given simply by the set of

monomials xµ with µ reduced. Therefore, P+
as has the homogeneous Q(q, t) basis given by all

xµmλ[X] ranging over all reduced compositions µ and partitions λ. Further, the dimension of the

11



homogeneous degree d part of P(k)+ is equal to the number of pairs (µ, λ) of reduced compositions

µ and partitions λ with |µ|+ |λ| = d and ℓ(µ) ≤ k.

1.4. Hecke Algebras in Type GL

1.4.1. Finite Hecke Algebra.

Definition 1.4.1. Define the finite Hecke algebra H n to be the Q(q, t)-algebra generated by the

elements T1, . . . , Tn−1 subject to the relations

• (Ti − 1)(Ti + t) = 0 for 1 ≤ i ≤ n− 1

• TiTi+1T1 = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2

• TiTj = TjTi for |i− j| > 1.

We define the Jucys-Murphy elements θ1, . . . , θn ∈ H n by θ1 := 1 and θi+1 := tT−1i θiT
−1
i for

1 ≤ i ≤ n−1. Further, define φ1, . . . , φn−1 by φi := (tT−1i )θi−θi(tT−1i ). For a permutation σ ∈ Sn

and a reduced expression σ = si1 · · · sir we write Tσ := Ti1 · · ·Tir .

Remark 2. There are natural algebra inclusions H n →H n+1 given by Ti → Ti for 1 ≤ i ≤ n−1.

Under this embedding θi → θi for 1 ≤ i ≤ n so we can naturally identify the copies of θi in both

H n and H n+1.

We require the following list of relations.

Proposition 1.4.2. The following relations hold:

• θi = ti−1T−1i−1 · · ·T
−1
1 T−11 · · ·T−1i−1 for 1 ≤ i ≤ n

• θiθj = θjθi for 1 ≤ i, j ≤ n

• Tiθj = θjTi for j /∈ {i, i+ 1}

• φi = tT−1i (θi − θi+1) + (t− 1)θi+1 for 1 ≤ i ≤ n− 1

• φiφi+1φi = φi+1φiφi+1 for 1 ≤ i ≤ n− 1

• φiφj = φjφi for |i− j| > 1

• φiθj = θsi(j)φi for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n

• φ2
i = (tθi − θi+1)(tθi+1 − θi).

Proof. This result follows directly from using the map ρn defined in Definition 1.4.6 and

Proposition 1.4.5 which will be independently proven later. □

12



1.4.2. Affine Hecke Algebra. Throughout this thesis will use two equivalent presentations

for the affine Hecke algebras in type GLn.

Definition 1.4.3. Define the affine Hecke algebra A n to be the Q(q, t)-algebra generated by the

elements T1, . . . , Tn−1 and Y ±11 , . . . , Y ±1n subject to the relations

• T1, . . . , Tn−1 generate H n

• YiYj = YjYi for all 1 ≤ i, j ≤ n

• Yi+1 = t−1TiYiTi for 1 ≤ i ≤ n− 1

• TiYj = YjTi for j /∈ {i, i+ 1}

We will refer to the Yi as the Cherednik elements of A n. Define the special elements πn and

ϕ1, . . . , ϕn−1 of A n by

• πn := Y1T1 · · ·Tn−1

• ϕi := TiYi − YiTi.

We will denote by Y (n) the commutative subalgebra of A n generated by Y
(n)
1 , . . . , Y

(n)
n .

We will also use the following alternative presentation of A n .

Definition 1.4.4. Define the affine Hecke algebra A n to be the Q(q, t)-algebra generated by the

elements T1, . . . , Tn−1 and θ±11 , . . . , θ±1n subject to the relations

• T1, . . . , Tn−1 generate H n

• θiθj = θjθi for all 1 ≤ i, j ≤ n

• θi+1 = tT−1i θiT
−1
i for 1 ≤ i ≤ n− 1

• Tiθj = θjTi for j /∈ {i, i+ 1}

We will refer to the Yi as the re-oriented Cherednik elements of A n. Define the special

elements πn and φ1, . . . , φn−1 of A n by

• πn := tn−1θ1T
−1
1 · · ·T−1n−1

• φi := (tT−1i )θi − θi(tT
−1
i ).

We will denote by θ(n) the commutative subalgebra of A n generated by θ
(n)
1 , . . . , θ

(n)
n .

It is important to note that when converting between the AHA conventions in this paper and those

in Dunkl-Luque [12] the standard Cherednik elements Yi of Dunkl-Luque do not align with the

θi above. In particular, after the appropriate translation into our conventions we have that Yi are

13



given by Yi = t−i+1Ti−1 · · ·T1πnT
−1
n−1 · · ·T

−1
i as opposed to θi = t−(n−i)T−1i−1 · · ·T

−1
1 πnTn−1 · · ·Ti.

The distinction between the standard Cherednik elements Yi and the reversed orientation Cherednik

elements θi will be important in Chapter 3 since the latter will yield operators with additional

stability properties which the Yi do not satisfy.

Remark 3. We will use the notation Y
(n)
i and Y

(m)
i to differentiate between the copies of Yi in

A n and A m for n ̸= m. We will do similarly for θ
(n)
i .

The following proposition is standard in AHA theory and will be required at many points through-

out this paper. We include the proofs of these relations for completeness and to emphasize that

we may use intertwiner theory for AHA with the θi elements instead of the standard Yi with only

slight differences.

Proposition 1.4.5. The following relations hold:

• ϕi = Ti(Yi − Yi+1) + (t− 1)Yi+1 = (Yi+1 − Yi)Ti + (1− t)Yi+1 for 1 ≤ i ≤ n− 1

• ϕiYj = Ysi(j)ϕi for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n

• ϕ2
i = (Yi − tYi+1)(Yi+1 − tYi)

• ϕiϕi+1ϕi = ϕi+1ϕiϕi+1 for 1 ≤ i ≤ n− 2

• ϕiϕj = ϕjϕi for |i− j| > 1

• φi = tT−1i (θi − θi+1) + (t− 1)θi+1 = (θi+1 − θi)tT
−1
i + (1− t)θi+1 for 1 ≤ i ≤ n− 1

• φiθj = θsi(j)φi for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n

• φ2
i = (tθi − θi+1)(tθi+1 − θi)

• φiφi+1φi = φi+1φiφi+1 for 1 ≤ i ≤ n− 2

• φiφj = φjφi for |i− j| > 1.

Proof. The proofs of the correctness of the above relations are standard but we include them

for completeness. We will only give the proofs for the θ-version of the above relations since the

Y -version is more standard.

We will proceed by proving each of these relations in the order in which they appear above.
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Let 1 ≤ i ≤ n− 1. Then

φi = tT−1i θi − θi(tT
−1
i )

= tT−1i θi − Tiθi+1

= tT−1i θi − (tT−1i + 1− t)θi+1

= tT−1i (θi − θi+1) + (t− 1)θi+1.

By a similar calculation we also get

φi = (θi+1 − θi)tT
−1
i + (1− t)θi+1.

This can also be written as

φi = (θi+1 − θi)Ti + (1− t)θi

which we will need later in this proof.

Now we see

φiθi = tT−1i (θi − θi+1)θi + (t− 1)θi+1θi

= tT−1i θi(θi − θi+1) + (t− 1)θi+1θi

= θi+1Ti(θi − θi+1) + (t− 1)θi+1θi

= θi+1 (Ti(θi − θi+1) + (t− 1)θi)

= θi+1

(
(tT−1i + 1− t)(θi − θi+1) + (t− 1)θi

)
= θi+1

(
tT−1i (θi − θi+1) + (t− 1)θi+1

)
= θi+1φi

and

15



φiθi+1 = tT−1i (θi − θi+1)θi+1 + (t− 1)θ2i+1

= (Ti + t− 1)θi+1(θi − θi+1) + (t− 1)θ2i+1

= Tiθi+1(θi − θi+1) + (t− 1)
(
θi+1(θi − θi+1) + θ2i+1

)
= tθiT

−1
i (θi − θi+1) + (t− 1)θiθi+1

= θi
(
tT−1i (θi − θi+1) + (t− 1)θi+1

)
= θiφi.

For any j /∈ {i, i+ 1} it follows since θj commutes with both θi and Ti that

φiθj = θjφi.

Thus for any 1 ≤ j ≤ n

φiθj = θsi(j)φi.

Now we have that

φ2
i = (tT−1i θi − θitT

−1
i )2

= t2T−1i θiT
−1
i θi − t2T−1i θ2i T

−1
i − t2θiT

−2
i θi + t2θiT

−1
i θiT

−1
i

= tθi+1θi − tθi+1TiθiT
−1
i − tθi(1 + (t− 1)T−1i )θi + tθiθi+1

= 2tθiθi+1 − tθi+1(tT
−1
i + 1− t)θiT

−1
i − tθ2i + t(1− t)θiT

−1
i θi

= 2tθiθi+1 − t2θi+1T
−1
i θiT

−1
i + t(t− 1)θiθi+1T

−1
i − tθ2i + (1− t)θiθi+1Ti

= 2tθiθi+1 − tθ2i+1 − tθ2i + (1− t)θiθi+1(Ti − tT−1i )

= 2tθiθi+1 − tθ2i+1 − tθ2i + (1− t)2θiθi+1

= (1 + t2)θiθi+1 − tθ2i+1 − tθ2i

= (tθi − θi+1)(tθi+1 − θi).
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Now suppose 1 ≤ i ≤ n − 2. By expanding each of the φj from right to left using φj = (θj+1 −

θj)Tj + (1− t)θj and repeatedly applying the relation φjθk = θsj(k)φj we find

φiφi+1φi = (θi+2 − θi+1)(θi+2 − θi)(θi+1 − θi)TiTi+1Ti + (1− t)θi(θi+2 − θi+1)(θi+2 − θi)Ti+1Ti

+ (1− t)θi+1(θi+2 − θi)(θi+1 − θi)TiTi+1 + (1− t)2θiθi+1(θi+2 − θi)Ti

+ (1− t)2θiθi+1(θi+2 − θi)Ti+1

+
(
t(1− t)θi(θi+2 − θi+1)(θi+1 − θi) + (1− t)3θ2i θi+1

)
.

Using the same method we also see that

φi+1φiφi+1

= (θi+1 − θi)(θi+2 − θi)(θi+2 − θi+1)Ti+1TiTi+1 + (1− t)θi+1(θi+1 − θi)(θi+2 − θi)TiTi+1

+ (1− t)θi(θi+2 − θi)(θi+2 − θi+1)Ti+1Ti + (1− t)2θiθi+1(θi+2 − θi)Ti+1

+ (1− t)2θiθi+1(θi+2 − θi)Ti

+
(
t(1− t)θi(θi+1 − θi)(θi+2 − θi+1) + (1− t)3θ2i θi+1

)
.

From here we may use the braid relation TiTi+1Ti = Ti+1TiTi+1 and some rearrangement of terms

to see φiφi+1φi = φi+1φiφi+1.

Lastly, consider |i − j| > 1. Since TiTj = TjTi, Tiθj = θjTi, and θiθj = θjθi we readily find that

φiφj = φjφi. □

In Chapter 3 we will be interested in AHA modules which are pulled back from irreducible finite

Hecke representations. To do this we need to define algebra surjections A n → H n . There are

many such choices for these maps but we choose the maps ρn defined below carefully so that the

AHA modules we consider in this paper satisfy nontrivial stability conditions.

Definition 1.4.6. Define the Q(q, t)-algebra homomorphism ρn : A n →H n by

• ρn(Ti) = Ti for 1 ≤ i ≤ n− 1
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• ρn(θ1) = 1.

For a H n-module V we will denote by ρ∗n(V ) the A n-module with action defined for v ∈ V and

X ∈ A n by X(v) := ρn(X)(v).

Remark 4. Note that ρn(πn) = tn−1T−11 · · ·T−1n−1 and for all 1 ≤ i ≤ n, ρn(θi) = θi.

1.4.3. Double Affine Hecke Algebras.

Definition 1.4.7. Define the double affine Hecke algebra Dn to be the Q(q, t)-algebra gen-

erated by T1, . . . , Tn−1, X
±1
1 , . . . , X±1n , and Y ±11 , . . . , Y ±1n with the following relations:

(1) (Ti − 1)(Ti + t) = 0,

TiTi+1Ti = Ti+1TiTi+1,

TiTj = TjTi, |i− j| > 1,

(2) T−1i XiT
−1
i = t−1Xi+1,

TiXj = XjTi, j /∈ {i, i+ 1},

XiXj = XjXi,

(3) TiYiTi = tYi+1,

TiYj = YjTi, j /∈ {i, i+ 1},

YiYj = YjYi,

(4) Y1T1X1 = X2Y1T1,

(5) Y1X1 · · ·Xn = qX1 · · ·XnY1

Further, define the special element π̃n by

π̃n := X1T
−1
1 · · ·T−1n−1.

Definition 1.4.8. We define the positive double affine Hecke algebra in type GLn, D+
n ,

to be the subalgebra of Dn generated by the elements T1, . . . , Tn−1, X1, . . . , Xn and π±1n .

Definition 1.4.9. Let ϵ(n) ∈H n denote the (normalized) trivial idempotent given by

ϵ(n) :=
1

[n]t!

∑
σ∈Sn

t(
n
2)−ℓ(σ)Tσ

where [n]t! :=
∏n

i=1(
1−ti
1−t ). The positive spherical double affine Hecke algebra Dsph

n is the non-unital

subalgebra of D+
n given by Dsph

n := ϵ(n) D+
n ϵ(n).

The element ϵ(n) := 1
[n]t!

∑
σ∈Sn

t(
n
2)−ℓ(σ)Tσ ∈H n is uniquely determined by the following prop-

erties:
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• ϵ(n) ̸= 0 (non-zero)

• (ϵ(n))2 = ϵ(n) (idempotent)

• ϵ(n)Ti = Tiϵ
(n) for all 1 ≤ i ≤ n− 1 (central)

• Tiϵ
(n) = ϵ(n) (trivial-like).

We will use without proof that ϵ(n) as defined in Definition 1.4.9 satisfies these properties but

it is straightforward to check this using the defining relations of H n . Since (ϵ(n))2 = ϵ(n) we see

that D sph
n is a unital algebra with unit ϵ(n). The algebra D sph

n contains both of the subalgebras

Q(q, t)[X1, . . . , Xn]
Snϵ(n) and Q(q, t)[θ±11 , . . . , θ±1n ]Snϵ(n).

We may use ϵ(n) to generate modules for the spherical DAHA. Given any Dn-module V the space

ϵ(n)(V ) is naturally a D sph
n -module. In the standard picture of Cherednik theory the standard poly-

nomial representation of D+
n on Q(q, t)[x1, . . . , xn] is symmetrized using ϵ(n) to yield the standard

symmetric polynomial representation of D sph
n on Q(q, t)[x1, . . . , xn]

Sn .

Remark 5. We will use without proof the standard result that Dn is a free right A n module with

basis {Xα}α∈Zn . This follows from the standard PBW-type result for DAHA. Importantly, for our

purposes, this implies that for any A n-module V with Q(q, t)-basis {vi}i∈I , the induced module

IndDn
A n

V := Dn⊗A nV

has Q(q, t)-basis {Xα ⊗ vi|α ∈ Zn, i ∈ I}. Similarly, if we consider induction from A n to D+
n

instead then we find that

Ind
D+

n
A n

V := D+
n ⊗A nV

has Q(q, t)-basis {Xα ⊗ vi|α ∈ Zn
≥0, i ∈ I}.

Definition 1.4.10. The standard representation of Dn is given by the following action on

Pn:

• Tif(x1, . . . , xn) = sif(x1, . . . , xn) + (1− t)xi
1−si

xi−xi+1
f(x1, . . . , xn)

• Xif(x1, .., xn) = xif(x1, . . . , xn)

• πnf(x1, . . . , xn) = f(x2, x3, . . . , xn, qx1).

Under this action the Ti operators are known as the Demazure-Lusztig operators. The action

of the elements Y1, . . . , Yn ∈ Dn are called Cherednik operators.
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Remark 6. For q, t generic Pn is known to be a faithful representation of Dn. It is straightfor-

ward to check that P+
n is a D+

n -submodule of Pn. Further, we may identify the Dn-module Pn

with

Pn
∼= IndDn

A n
(1, t−1, . . . , t−(n−1))

where (1, t−1, . . . , t−(n−1)) is the 1-dimensional A n-module determined by

• Ti → 1

• Yi → t−i+1.

Similarly,

P+
n
∼= Ind

D+
n

A n
(1, t−1, . . . , t−(n−1)).

As it turns out, the polynomial representation Pn of DAHA admits a basis of simultaneous

eigenvectors for the Cherednik operators Y
(n)
i .

Definition 1.4.11. The non-symmetric Macdonald polynomials (for GLn) are a family of

Laurent polynomials Eµ ∈Pn for µ ∈ Zn uniquely determined by the following:

• Triangularity: Each Eµ has a monomial expansion of the form Eµ = xµ +
∑

λ<µ aλx
λ

• Weight Vector: Each Eµ is a weight vector for the operators Y
(n)
1 , . . . , Y

(n)
n ∈Hn.

Importantly, the set {Eµ|µ ∈ Zn} is a basis for Pn with distinct Y (n) weights. For µ ∈ Zn, Eµ

is homogeneous with degree µ1 + . . . + µn. Further, the set of Eµ corresponding to µ ∈ Zn
≥0 gives

a basis for P+
n .

Remark 7. Given a family of commuting operators {yi : i ∈ I} and a weight vector v we denote

its weight by the function α : I → Q(q, t) such that yiv = α(i)v. We sometimes denote α as

(α1, α2, . . .).

For µ ∈ Zn we will write αµ := (αµ(1), . . . , αµ(n)) for the Y (n) weight of Eµ. We have the

following explicit combinatorial description for the αµ:

Proposition 1.4.12. For 1 ≤ i ≤ n and µ ∈ Zn

Y
(n)
i Eµ = qµit1−βµ(i)Eµ

where

βµ(i) := #{j : 1 ≤ j ≤ i , µj ≤ µi}+#{j : i < j ≤ n , µi > µj}.
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Proof. [19] □

In practice one may generate the non-symmetric Macdonald polynomials recursively using the

Knop-Sahi Relations.

Proposition 1.4.13. For µ ∈ Zn we have the following relations:

• E(1+µn,µ1,...,µn−1) = q−µnx1πnEµ

• If si(µ) > µ

Esi(µ) =

(
Ti +

(1− t)αµ(i+ 1)

αµ(i)− αµ(i+ 1)

)
Eµ =

Ti −
1− t

1− αµ(i)
αµ(i+1)

Eµ.

Proof. [19] □

Example. Beginning with E(0,0,0) = 1 we may use the Knop-Sahi relations iteratively to construct

E(2,0,0). We start with

E(1,0,0) = x1π3E(0,0,0) = x1.

Now we use the Ti operators:

• E(0,1,0) =
(
T1 − 1−t

1−qt−2

)
x1 = x2 +

1−t
1−q−1t2

x1

• E(0,0,1) =
(
T2 − 1−t

1−qt−1

)(
x2 +

1−t
1−q−1t2

x1

)
= x3 +

1−t
1−q−1t

(x1 + x2).

Lastly, we find

E(2,0,0) = q−1x1π3

(
x3 +

1− t

1− q−1t
(x1 + x2)

)
= x21 + q−1

1− t

1− q−1t
x1(x2 + x3).

The weights of these non-symmetric Macdonald polynomials are given as

• α(0,0,0) = (1, t−1, t−2)

• α(1,0,0) = (qt−2, 1, t−1)

• α(0,1,0) = (1, qt−2, t−1)

• α(0,0,1) = (1, t−1, qt−2)

• α(2,0,0) = (q2t−2, 1, t−1).

1.5. Elliptic Hall Algebra

Here we recall some basic facts about the elliptic Hall algebra which we will need in chapter 3.

Definition 1.5.1. For ℓ ∈ Z \ {0}, r > 0 define the special elements P
(n)
0,ℓ , P

(n)
r,0 ∈ Dsph

n by
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• P
(n)
0,ℓ = ϵ(n)

(∑n
i=1 θ

ℓ
i

)
ϵ(n)

• P
(n)
r,0 = qrϵ(n) (

∑n
i=1X

r
i ) ϵ

(n).

Theorem 1.5.2. [34] The elements P
(n)
0,ℓ , P

(n)
r,0 for ℓ ∈ Z \ {0}, r > 0 generate Dsph

n as a Q(q, t)-

algebra. There is a unique Z≥0 × Z grading on Dsph
n determined by

• deg(P
(n)
0,ℓ ) = (0, ℓ)

• deg(P
(n)
r,0 ) = (r, 0).

There is a graded algebra surjection Dsph
n+1 → Dsph

n determined for ℓ ∈ Z \ {0}, r > 0 by P
(n+1)
0,ℓ →

P
(n)
0,ℓ and P

(n+1)
r,0 → P

(n)
r,0 .

The existence of the Z≥0 × Z-graded algebra surjections D sph
n+1 → D sph

n allows for the following

definition.

Definition 1.5.3. [34] The positive elliptic Hall algebra E + is the stable limit of the Z≥0×Z-

graded algebras Dsph
n with respect to the maps Dsph

n+1 → Dsph
n . For ℓ ∈ Z \ {0}, r > 0 define the

special elements of E +, P0,ℓ := limn P
(n)
0,ℓ and Pr,0 := limn P

(n)
r,0 .

The positive elliptic Hall algebra contains elements P(a,b) for (a, b) ∈ N×Z which may be defined

using repeated commutators of the elements P0,ℓ, Pr,0. For example, P(1,1) = [P(0,1), P(1,0)]. We

will not require an explicit description of these elements for the purposes of this paper. Further,

we will not require knowledge of the full elliptic Hall algebra E which is obtained as the Drinfeld

double of E+ with respect to a certain Hopf pairing. In the standard Macdonald theory picture,

we can realize the action of the full EHA on the ring of symmetric functions Λ using multiplication

operators p•r , skewing operators p⊥r , and Macdonald operators pℓ[∆] roughly corresponding to the

elements P(r,0), P(−r,0), P(0,ℓ) respectively.

Remark 8. We will be considering the Z≥0-grading on E+ obtained by the specialization (a, b)→

a i.e. for r > 0 and ℓ ∈ Z \ {0}

• deg(P0,ℓ) = 0

• deg(Pr,0) = r.

When we refer to a E+-module V as graded we are referring to the Z≥0-grading on E+.
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1.6. Double Dyck Path Algebra

The Double Dyck Path Algebra Aq,t, introduced by Carlsson and Mellit [8], is a quiver path

algebra with vertices indexed by non-negative integers with the following edge operators:

• d+, d
∗
+ : k → k + 1

• T1, ..., Tk−1 : k → k

• d− : k + 1→ k.

The full set of relations for Aq,t are omitted here because they will not be required but they can

be found in [8]. In order to match the parameter conventions in Ion and Wu’s work [26] we will

often consider At,q as opposed to Aq,t formed by simply swapping q and t in the defining relations

of Aq,t. Here we highlight a few notable relations of At,q which will be required later:

• The loops T1, ..., Tk−1 at vertex k ≥ 2 generate a type A finite Hecke algebra H n

• d2−Tk−1 = d2− starting at vertex k ≥ 2

• Tid− = d−Ti at vertex k for 1 ≤ i ≤ k − 2

• zid− = d−zi at vertex k for 1 ≤ i ≤ k − 1 where z1 := tk

1−t [d
∗
+, d−]T

−1
k−1 · · ·T

−1
1 and

zi+1 = t−1TiziTi.

Although we did not give a full description of Aq,t we will require in Chapter 4 a detailed

description of the relations of the highly related algebra Bq,t.

Definition 1.6.1. [7] The algebra Bq,t is generated by a collection of orthogonal idempotents

labelled by Z≥0, generators d+, d−, Ti, and zi modulo relations:

(Ti − 1)(Ti + q) = 0

TiTi+1Ti = Ti+1TiTi+1

TiTj = TjTi if |i− j| > 1

T−1i zi+1T
−1
i = q−1zi for 1 ≤ i ≤ k − 1

ziTj = Tjzi if i /∈ {j, j + 1}

zizj = zjzi for 1 ≤ i, j ≤ k

d2−Tk−1 = d2− for k ≥ 2

d−Ti = Tid− for 1 ≤ i ≤ k − 2

T1d
2
+ = d2+

d+Ti = Ti+1d+ for 1 ≤ i ≤ k − 1

qφd− = d−φTk−1 for k ≥ 2

T1φd+ = qd+φ for k ≥ 1

zid− = d−zi

d+zi = zi+1d+

z1(qd+d− − d−d+) = qt(d+d− − d−d+)zk for

k ≥ 1

where φ := 1
q−1 [d+, d−].

We will consider Bq,t as a graded algebra with grading determined by
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• deg(Ti) = deg(zi) = deg(d−) = 0

• deg(d+) = 1.

For n ≥ 0 define B(n)
q,t to be the subalgebra of Bq,t given by only considering Ti, zi, d−, d+ between

the idempotents labelled by {0, . . . , n}.

Remark 9. The graded algebras B(n)
q,t naturally form a directed system with

Bq,t = lim
→

B(n)
q,t .

Definition 1.6.2. [7] Let V pol
• =

⊕
k≥0 V

pol
k :=

⊕
k≥0Q(q, t)[y1, . . . , yk] ⊗ Λ. Define an action

on V pol
• by the following operators given for F ∈ V pol

k by

• TiF := (q−1)yi+1F+(yi+1−qyi)si(F )
yi+1−yi for 1 ≤ i ≤ k − 1

• d+F := −T1 · · ·TkF [X + (q − 1)yk+1]

• d−F := F [X − (q − 1)yk] Exp[−y−1k X]|y−1
k

• zkF := Tk−1 · · ·T1F [X + (1− q)ty1 − (q − 1)u, y2, . . . , yk, u] Exp[u
−1ty1 − u−1X]|u0

• zi := q−1T−1i zi+1T
−1
i for 1 ≤ i ≤ k − 1

where |y−1
k

represents taking the coefficient of y−1k . Here we are using plethystic notation. This

representation V pol
• of Bq,t is called the polynomial representation.

Note that the signs ±1 of the operators d−, d+ are reversed in [7]. This choice is made to align

with the conventions in [26] and [31] and does not make a substantial difference in the underlying

representation.

Remark 10. Carlsson-Gorsky-Mellit also construct an action of Bq,t on the larger space W pol
• :=⊕∞

k=0(y1 · · · yk)−1V
pol
k . The space V pol

• is isomorphic to the equivariant K-theory of the parabolic

flag Hilbert schemes of points in C2 and the larger space W pol
• is defined in order to relate the

original Aq,t polynomial representation as defined by Carlsson-Mellit [8] to the Aq,t polynomial

representation constructed in [7]. We will use the space W pol
• briefly to relate the Bq,t action on

V pol
• to the work of Ion-Wu.

1.7. Stable-Limits

1.7.1. Classical Stability. We will write deg(v), deg(r) for the degree of either a homoge-

neous vector v in a graded vector space or a homogeneous element r of a graded ring. For the
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following definitions for a graded vector space V we will write V (d) for the degree d ≥ 0 homoge-

neous component of V. If R is a graded ring then we will write R−Mod for the category of consisting

of graded left R modules as the objects and with degree-preserving homomorphisms (homogeneous

maps) as the morphisms.

We now review some formalities regarding stable-limits of spaces and modules.

Definition 1.7.1. Let (V (n))n≥n0 be a sequence of graded vector spaces and suppose (Π(n) :

V (n+1) → V (n))n≥n0 is a family of degree preserving maps. The stable-limit of the spaces

(V (n))n≥n0 with respect to the maps (Π(n))n≥n0 is the graded vector space Ṽ := lim← V (n) con-

structed as follows: For each d ≥ 0 we define

Ṽ (d) := {(vn)n≥n0 ∈
∏
n≥n0

V (n)(d) | Π(n)(vn+1) = vn}

and set

Ṽ :=
⊕
d≥0

Ṽ (d).

Lemma 1.7.2. Let (R(n))n≥n0 be a sequence of graded rings with injective graded ring homomor-

phisms (ι(n) : R(n) → R(n+1))n≥n0. We will identify R(n) with its image ιn(R
(n)) ⊂ R(n+1). We

write R̃ = lim→R(n) for the direct limit of the rings R(n). Suppose (V (n))n≥n0 is a sequence of

graded vector spaces with each V (n) a graded R(n) module and (Π(n) : V (n+1) → V (n))n≥n0 a se-

quence of degree-preserving maps with each Π(n) a graded R(n) module homomorphism. Then the

following defines a graded R̃ module structure on Ṽ := lim← V (n): For r ∈ R̃ and v ∈ Ṽ with

r ∈ RN and v = (vn)n≥n0, define r(v) ∈ Ṽ by

r(v) =
(
Π(n0) · · ·Π(N−1)(r(vN )), . . . ,Π(N−1)(r(vN )), r(vN ), r(vN+1), r(vN+2), . . .

)
.

Remark 11. It is a straightforward exercise to check that the action defined above actually yields a

graded R̃ module structure on lim← V (n). We leave this to the reader. We call lim← V (n) the stable-

limit module corresponding to the sequence (V (n))n≥n0 and the maps (Π(n))n≥n0 . Notice that this

construction is functorial. Suppose (W (n))n≥n0 is another sequence of graded vector spaces with

each W (n) a graded R(n) module and (Ψ(n) : W (n+1) → W (n))n≥n0 a sequence of degree-preserving

maps with each Ψ(n) a graded R(n) module homomorphism and ϕ = (ϕ(n))n≥n0 is a family of graded
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R(n) module maps ϕ(n) : V (n) →W (n) such that for all n ≥ n0

ϕ(n)Π(n) = Ψ(n)ϕ(n+1).

Then ϕ determines a graded R̃ module homomorphism ϕ̃ : lim← V (n) → lim←W (n) given by

ϕ̃(v) := (ϕ(n)(vn))n≥n0 .

Remark 12. The stable-limit spaces Ṽ = lim← V (n) may be zero even if each V (n) is nonzero.

However, if each V (n) is nonzero and the maps Π(n) are surjective then Ṽ is nonzero.

1.7.2. Ion-Wu Stability. Ion-Wu define the following generalization of classical stable-limits

by utilizing the t-adic topology on Q(q, t).

Definition 1.7.3. [26] Let (fm)m≥1 be a sequence of polynomials with fm ∈ P+
m. Then the

sequence (fm)m≥1 is convergent if there exist some N and auxiliary sequences (hm)m≥1, (g
(i)
m )m≥1,

and (a
(i)
m )m≥1 for 1 ≤ i ≤ N with hm, g

(i)
m ∈P+

m, a
(i)
m ∈ Q(q, t) with the following properties:

• For all m, fm = hm +
∑N

i=1 a
(i)
m g

(i)
m .

• The sequences (hm)m≥1, (g
(i)
m )m≥1 for 1 ≤ i ≤ N converge in P+

∞ with limits h, g(i)

respectively. That is to say, Ξm(hm+1) = hm and Ξm(g
(i)
m+1) = g

(i)
m for all 1 ≤ i ≤ N and

m ≥ 1. Further, we require g(i) ∈P+
as.

• The sequences a
(i)
m for 1 ≤ i ≤ N converge with respect to the t-adic topology on Q(q, t)

with limits a(i) which are required to be in Q(q, t).

The sequence is said to have a limit given by limm fm = h+
∑N

i=1 a
(i)g(i).

This definition of convergence is a mix of both the stronger topology arising from the inverse

system given by the maps Ξm and the t-adic topology arising from the ring Q(q, t). It is important

to note that part of the above definition requires convergent sequences to always be written as a

finite sum of fixed length with terms that converge independently.

Here we list a few instructive examples of convergent sequences and their limits:

• limm tm = 0

• limm 1 + . . .+ tm = 1
1−t

• limm
1

q2−tm (x23 + . . .+ x2m) = q−2p2[x3 + . . .].
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Remark 13. In this thesis we will be entirely concerned with convergent sequences (fm)m≥1 with

almost symmetric limits limm fm ∈P+
as. In this case it follows readily from definition that each of

these convergent sequences necessarily will have the form

fm(x1, . . . , xm) =
N∑
i=1

c
(m)
i xµ

(i)
Fi[x1 + . . .+ xm]

where N ≥ 1 is fixed, c
(m)
i are convergent sequences of scalars with limm c

(m)
i ∈ Q(q, t), Fi are

symmetric functions, and µ(i) are compositions. Here we will consider xµ
(i)

= 0 in Pm whenever

ℓ(µ(i)) > m.

Definition 1.7.4. [26] For m ≥ 1 suppose Am is an operator on P+
m. The sequence (Am)m≥1 of

operators is said to converge if for every f ∈P+
as the sequence (Am(Ξm(f)))m≥1 converges to an

element of P+
as. From [26] the corresponding operator on P+

as given by A(f) := limmAm(Ξm(f))

is well defined and said to be the limit of the sequence (Am)m≥1. In this case we will simply write

A = limmAm.

There are two important examples of convergent operator sequences which will be relevant for

the rest of this paper. For all i ≥ 1 and m ≥ 1 let X
(m)
i denote the operator on P+

m given by 0 if

m < i and by X
(m)
i f = xif if i ≤ m. Similarly for i ≥ 1 and m ≥ 1 let T

(m)
i denote the operator on

P+
m given by 0 if m−1 < i and by Tif = sif +(1− t)xi

f−sif
xi−xi+1

if i ≤ m−1. Then for all i ≥ 1 it is

immediate from definition that the sequences (X
(m)
i )m≥1 and (T

(m)
i )m≥1 converge to operators Xi

and Ti respectively on P+
as. Further, their corresponding actions are given for f ∈P+

as simply by

• Xi(f) = xif

• Ti(f) = sif + (1− t)xi
f−sif

xi−xi+1
.

The following important technical proposition of Ion and Wu will be used repeatedly in this

paper.

Proposition 1.7.5 (Prop. 6.21 [26]). If A = limmAm and f = limm fm are limit operators and

limit functions respectively then A(f) = limmAm(fm).

This is a sort of continuity statement for convergent sequences of operators. The utility of the

above proposition is that for an operator arising as the limit of finite variable operators, A =

limmAm say, we can use any sequence (fm)m≥1 converging to f ∈P+
as in order to calculate A(f).
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It is easy to verify the following proposition using Proposition 1.7.5.

Proposition 1.7.6. [26] If A = limmAm and B = limmBm then AB = limmAmBm.

Proof. Let f ∈P+
as. Then (Bm(Ξm(f)))m≥1 converges to B(f) and thus

AB(f) = A(B(f))

= lim
m

Am(Bm(Ξm(f)))

= lim
m

(AmBm)(Ξm(f))).

Therefore, AB = limmAmBm. □

28



CHAPTER 2

Stable-Limit Non-Symmetric Macdonald Functions

2.1. Introduction

The Shuffle Conjecture [20], now the Shuffle Theorem [8], is a combinatorial statement regard-

ing the Frobenius character, FRn , of the diagonal coinvariant algebra Rn which generalizes the

coinvariant algebra arising from the geometry of flag varieties. The conjecture built on the work

of many people during the 1990s, including but not limited to Bergeron, Garsia, Haiman, and

Tesler [4] [16] [5]. The following explicit formula is due to Haiman [24]

FRn(X; q, t) = (−1)n∇en[X]

where the operator ∇ is a diagonalizable operator on symmetric functions prescribed by its action

on the modified Macdonald symmetric functions H̃µ as

∇H̃µ = H̃µ[−1] · H̃µ.

The original conjecture of Haglund, Haiman, Loehr, Remmel, and Ulyanov [20] states the following:

Theorem 2.1.1 (Shuffle Theorem). [8]

(−1)n∇en[X] =
∑
π

∑
w∈WPπ

tarea(π)qdinv(π,w)xw.

In the above, π ranges over the set of Dyck paths of length n and WPπ is the set of word parking

functions corresponding to π. The values area(π) and dinv(π,w) are certain statistics corresponding

to π and w ∈WPπ.

In [8], Carlsson and Mellit prove the Compositional Shuffle Conjecture of Haglund, Morse, and

Zabrocki [21], a generalization of the original Shuffle Conjecture. Carlsson and Mellit construct

and investigate a quiver path algebra called the Double Dyck Path algebra Aq,t. They construct

a representation of Aq,t, called the standard representation, built on certain mixed symmetric and
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non-symmetric polynomial algebras with actions from Demazure-Lusztig operators, Hall-Littlewood

creation operators, and plethysms. The Compositional Shuffle Theorem falls out after a rich un-

derstanding of the standard representation is developed. Later analysis done by Carlsson, Gorsky,

and Mellit [7] showed that in fact Aq,t occurs naturally in the context of equivariant cohomology

of Hilbert schemes.

Recent work by Ion and Wu [26] has solidified the links between the work of Carlsson and Mellit

on Aq,t and the representation theory of double affine Hecke algebras. Ion and Wu introduce the

+stable-limit double affine Hecke algebra H + along with a representation of H + on the space

of almost-symmetric functions, P+
as, from which one can recover the standard Aq,t representation.

The main obstruction in making a stable-limit theory for the double affine Hecke algebras is the

lack of an inverse/directed-limit system of the double affine Hecke algebras in the traditional sense.

Ion and Wu get around this obstruction by introducing a new notion of convergence (Defn. 1.3.12)

for sequences of polynomials with increasing numbers of variables along with limit versions of the

standard Cherednik operators defined by this convergence.

Central to the study of the standard Cherednik operators are the non-symmetric Macdonald

polynomials. The non-symmetric Macdonald polynomials in full generality were introduced first

by Cherednik [9] in the context of proving the Macdonald constant-term conjecture. The introduc-

tion of the double affine Hecke algebra, along with the non-symmetric Macdonald polynomials by

Cherednik, constituted a significant development in representation theory. They serve as a non-

symmetric counterpart to the symmetric Macdonald polynomials introduced by Macdonald as a

q, t-analog of Schur functions. Further, they give an orthogonal basis of the polynomial representa-

tion consisting of weight vectors for the Cherednik operators. The spectral theory of non-symmetric

Macdonald polynomials is well understood using the combinatorics of affine Weyl groups. The cor-

rect choice of symmetrization applied to a non-symmetric Macdonald polynomial will yield their

symmetric counterpart. The type A symmetric Macdonald polynomials are a remarkable basis for

symmetric polynomials simultaneously generalizing many other well studied bases which can be

recovered by appropriate specializations of values for q and t. The aforementioned modified Mac-

donald functions H̃µ can be obtained via a plethystic transformation from the symmetric Macdonald

polynomials in sufficiently many variables.
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It is natural to seek a stable-limit extension for the non-symmetric Macdonald polynomials fol-

lowing the methods of Ion and Wu. In particular, does the standard H + representation P+
as have

a basis of weight vectors for the limit Cherednik operators Yi? The first main theorem of this

chapter (Theorem 4.2.12) answers this question in the affirmative. In the second main theorem of

this chapter (Theorem 2.6.5) we use a new operator Ψp1 , which commutes with the limit Cherednik

operators, to distinguish between Y -weight vectors with the same Y -weight. The operator Ψp1 is

up to a change of variables an extension of Haiman’s operator ∆′ [22] from Λ to P+
as (Remark 14).

The operator Ψp1 is a limit of operators from finite variable DAHAs.

At the end of this chapter we will investigate further properties of the stable-limit non-symmetric

Macdonald functions. We will construct higher delta operators generalizing Ψp1 which act diag-

onally on the stable-limit non-symmetric Macdonald function basis and satisfy many other inter-

esting properties. Lastly, we will give a detailed analysis of the q = ∞, t = 0 specialization of the

stable-limit non-symmetric Macdonald functions which give an almost symmetric analogue of the

Schur functions. We will find an explicit combinatorial expansion of these almost symmetric Schur

functions and prove some positivity properties. In the process in proving these positivity results

we will develop a representation theoretic interpretation of the almost symmetric Schur functions

realizing them as limits of characters of representations certain parabolic subgroups of GLn.

2.1.1. Stable-Limit DAHA of Ion and Wu. As the index n varies, the standard Hn repre-

sentations, Pn, fail to form a direct/inverse system of compatible Hn representations. However, as

the authors Ion and Wu investigate in [26], this sequence of representations is compatible enough to

allow for the construction of a limiting representation for a new algebra resembling a direct limit of

the double affine Hecke algebras of type GL. We will start by giving the definition of this algebra.

Definition 2.1.2. [26] The +stable-limit double affine Hecke algebra of Ion and Wu, H +,

is the algebra generated over Q(q, t) by the elements Ti, Xi, Yi for i ≥ 1 satisfying the following

relations:

• The generators Ti, Xi for i ∈ N satisfy (1) and (2) of Defn. 1.4.7.

• The generators Ti, Yi for i ∈ N satisfy (1) and (3) of Defn. 1.4.7.

• Y1T1X1 = X2Y1T1.
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Ion and Wu begin their construction of the standard representation of H + by noting the following

key fact.

Proposition 2.1.3. [26] For n ≥ 1

πn−1t
nY

(n)
1 X1 = tn−1Y

(n−1)
1 X1πn−1.

In other words, the action of the operators tnY
(n)
1 and tn−1Y

(n−1)
1 are compatible on x1Pn. As

such there exists a limit operator Y
(∞)
1 : x1P+

∞ → x1P+
∞ such that πnY

(∞)
1 = tnY

(n)
1 . A crucial

idea of Ion and Wu is to extend the action of the operators tnY
(n)
1 on x1Pn to all of Pn using the

previously defined projection ρ : Pn → x1Pn.

Definition 2.1.4. [26] Define the operator Ỹ
(n)
1 := ρ ◦ tnY (n)

1 . For 2 ≤ i ≤ n define Ỹ
(n)
i by

requiring Ỹ
(n)
i = t−1Ti−1Ỹ

(n)
i−1Ti−1.

A direct check shows that Ỹ
(n)
1 X1 = tnY

(n)
1 X1 so that Ỹ

(n)
1 extends the action of tnY

(n)
1 on x1Pn

as desired. The main utility of this specific choice of definition is the following theorem.

Theorem 2.1.5. [26] The sequence (Ỹ
(m)
1 )m≥1 converges to an operator Y1 on P+

as. Define the

operators Yi for i ≥ 2 by Yi := t−1Ti−1Yi−1Ti−1. The operators Yi along with the Demazure-Lusztig

action of the Ti’s and multiplication by the Xi’s generate an H + action on P+
as.

In particular, the authors Ion and Wu show that despite the fact that for 1 ≤ i ̸= j ≤ n,

Ỹ
(n)
i Ỹ

(n)
j ̸= Ỹ

(n)
j Ỹ

(n)
i the limit Cherednik operators commute:

YiYj = YjYi.

The action of the Yi operators respect the canonical filtration of P+
as =

⋃
k≥0 P(k)+. For all

n ≥ 0, the operators {Y1, ...,Yn} restrict to operators on the space P(n)+ whereas the operators

{Yn+1,Yn+2, ...} annihilate P(n)+. Note that for n = 0, P(0)+ = Λ so all of the operators Yi

annihilate Λ.

2.1.2. Double Dyck Path Algebra. The Double Dyck Path Algebra Aq,t, introduced

by Carlsson and Mellit [8], is a quiver path algebra with vertices indexed by non-negative integers

with the following edge operators:
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• d+, d
∗
+ : k → k + 1

• T1, ..., Tk−1 : k → k

• d− : k + 1→ k.

The full set of relations for Aq,t are omitted here but can be found in [8]. In order to match the

parameter conventions in Ion and Wu’s work [26] we will consider At,q as opposed to Aq,t formed by

simply swapping q and t in the defining relations of Aq,t. Here we highlight a few notable relations

of At,q which will be required later:

• The loops T1, ..., Tk−1 at vertex k ≥ 2 generate a type A finite Hecke algebra

• d2−Tk−1 = d2− starting at vertex k ≥ 2

• Tid− = d−Ti at vertex k for 1 ≤ i ≤ k − 2

• zid− = d−zi at vertex k for 1 ≤ i ≤ k − 1 where z1 := tk

1−t [d
∗
+, d−]T

−1
k−1 · · ·T

−1
1 and

zi+1 = t−1TiziTi.

2.1.2.1. The Standard At,q Representation and the +Stable-Limit DAHA. Vital to the proof of

the Compositional Shuffle Conjecture by Carlsson and Mellit [8] is their construction of a particular

representation of At,q.

Definition 2.1.6. [8] For k ≥ 0 let Vk = Q(q, t)[y1, . . . , yk] ⊗ Λ be associated to the vertex k

and denote by V• be the system of spaces Vk. Let ζk denote the algebra homomorphism

ζkf(y1, . . . , .yk−1, yk) = f(y2, . . . , yk, qy1).

If f is a formal series with respect to the variable y with coefficients in some ring R denote by

cy(f) ∈ R the constant term of f i.e. the coefficient of y0 in f . Note that each Sk acts on Vk by

permuting the variables y1, ..., yk. Define the following operators:

• TiF = siF + (1− t)yi
F−siF
yi−yi+1

• d−F = cyk(F [X − (t− 1)yk] Exp[−y−1k X])

• d+F = −T1 · · ·Tk(yk+1F [X + (t− 1)yk+1])

• d∗+F = ζkF [X + (t− 1)yk+1].

Theorem 2.1.7. [8] The above operators define a representation of At,q on V•.

Ion and Wu use their construction of the standard H + representation P+
as to recover the stan-

dard At,q representation V•.
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Theorem 2.1.8. [26] There exists an At,q representation structure on P• = (P(k)+)k≥0 iso-

morphic to the standard representation V• such that at each vertex k, zi acts by Yi and yi acts by

Xi. Further, according to this isomorphism P(k)+ is identified with Vk via the map

xa11 · · ·x
ak
k F [xk+1 + . . .]→ ya11 · · · y

ak
k F [

X

t− 1
].

2.2. Combinatorial Formula for Non-symmetric Macdonald Polynomials

Note that the q, t conventions in [19] differ from those appearing in this thesis. In the below

theorem the appropriate translation q → q−1 has been made.

In [19], Haglund, Haiman, and Loehr give an explicit monomial expansion formula for the non-

symmetric Macdonald polynomials in terms of the combinatorics of non-attacking labellings of

certain box diagrams corresponding to compositions which we will now review.

Definition 2.2.1. [19] For a composition µ = (µ1, . . . , µn) define the column diagram of µ as

dg′(µ) := {(i, j) ∈ N2 : 1 ≤ i ≤ n, 1 ≤ j ≤ µi}.

This is represented by a collection of boxes in positions given by dg′(µ). The augmented diagram

of µ is given by

d̂g(µ) := dg′(µ) ∪ {(i, 0) : 1 ≤ i ≤ n}.

Visually, to get d̂g(µ) we are adding a bottom row of boxes on length n below the diagram dg′(µ).

Given u = (i, j) ∈ dg′(µ) define the following:

• leg(u) := {(i, j′) ∈ dg′(µ) : j′ > j}

• armleft(u) := {(i′, j) ∈ dg′(µ) : i′ < i, µi′ ≤ µi}

• armright(u) := {(i′, j − 1) ∈ d̂g(µ) : i′ > i, µi′ < µi}

• arm(u) := armleft(u) ∪ armright(u)

• lg(u) := | leg(u)| = µi − j

• a(u) := | arm(u)|.

A filling of µ is a function σ : dg′(µ)→ {1, ..., n} and given a filling there is an associated augmented

filling σ̂ : d̂g(µ) → {1, ..., n} extending σ with the additional bottom row boxes filled according to

σ̂((j, 0)) = j for j = 1, . . . , n. Distinct lattice squares u, v ∈ N2 are said to attack each other if one

of the following is true:
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• u and v are in the same row

• u and v are in consecutive rows and the box in the lower row is to the right of the box in

the upper row.

A filling σ : dg′(µ) → {1, . . . , n} is non-attacking if σ̂(u) ̸= σ̂(v) for every pair of attacking boxes

u, v ∈ d̂g(µ). For a box u = (i, j) let d(u) = (i, j − 1) denote the box just below u. Given a filling

σ : dg′(µ)→ {1, . . . , n}, a descent of σ is a box u ∈ dg′(µ) such that σ̂(u) > σ̂(d(u)). Set Des(σ̂) to

be the set of descents of σ̂ and define

maj(σ̂) :=
∑

u∈Des(σ̂)

(lg(u) + 1).

The reading order on the diagram d̂g(µ) is the total ordering on the boxes of d̂g(µ) row by row,

from top to bottom, and from right to left within each row. If σ : dg′(µ) → {1, . . . , n} is a filling,

an inversion of σ̂ is a pair of attacking boxes u, v ∈ d̂g(µ) such that u < v in reading order and

σ̂(u) > σ̂(v). Set Inv(σ̂) to be the set of inversions of σ̂. Define the statistics

• inv(σ̂) := | Inv(σ̂)| − |{i < j : µi ≤ µj}| −
∑

u∈Des(σ̂) a(u)

• coinv(σ̂) :=
(∑

u∈dg′(µ) a(u)
)
− inv(σ̂).

Lastly, for a filling σ : dg′(µ)→ {1, . . . , n} set

xσ := x
|σ−1(1)|
1 · · ·x|σ−1(n)|

n .

The combinatorial formula for non-symmetric Macdonald polynomials can now be stated.

Theorem 2.2.2. [19] For a composition µ with ℓ(µ) = n the following holds:

Eµ =
∑

σ:µ→[n]
non-attacking

xσq−maj(σ̂)tcoinv(σ̂)
∏

u∈dg′(µ)
σ̂(u)̸=σ̂(d(u))

(
1− t

1− q−(lg(u)+1)t(a(u)+1)

)
.

We may better understand the statistic coinv through the next definition.

Definition 2.2.3. [19] Let σ : µ→ [n] be a non-attacking labelling. A co-inversion triple is

a triple of boxes (u, v, w) in the diagram d̂g(µ) of one of the following two types

Type 1:
u

w v
Type 2:

v u

w

that satisfy the following criteria:
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• in Type 1 the column containing u and w is strictly taller than the column containing v

• in Type 2 the column containing u and w is weakly taller than the column containing v

• in either Type 1 or Type 2 σ̂(u) < σ̂(v) < σ̂(w) or σ̂(v) < σ̂(w) < σ̂(u) or σ̂(w) < σ̂(u) <

σ̂(v).

Informally, in Type 1 we require the entries to strictly increase clockwise and in Type 2 we require

the entries to strictly increase counterclockwise.

Co-inversion triples are important because they have the same count as the complicated coinv

statistic from Definition 2.2.1.

Lemma 2.2.4. [19] For a non-attacking labelling σ : µ → [n], coinv(σ̂) equals the number of

co-inversion triples of σ̂.

Example. We finish this subsection with a visual example of a non-attacking filling and its

associated statistics. Below is the augmented filling σ̂ of a non-attacking filling σ : (3, 2, 0, 1, 0, 0)→

[6] pictured as labels inside the boxes of d̂g(3, 2, 0, 1, 0, 0).

6

4 1

1 2 3

1 2 3 4 5 6

Let u be the column 1 box of d̂g(3, 2, 0, 1, 0, 0) filled with a 4 in the above diagram. Notice that u

is a descent box of σ̂ as 4 is larger than the label 1 of the box d(u) just below u. Further, we see that

a(u) = 2 and lg(u) = 1. Considering the diagram as a whole now we see that xσ = x21x2x3x4x6,

maj(σ̂) = 3, | Inv(σ̂)| = 21, inv(σ̂) = 14, and coinv(σ̂) = 1. The contribution of this non-attacking

labelling to the HHL formula for E(3,2,0,1,0,0) ∈P+
6 is

x21x2x3x4x6q
−3t1

(
1− t

1− q−1t3

)(
1− t

1− q−1t2

)(
1− t

1− q−2t3

)(
1− t

1− q−1t2

)
.

2.3. Stable-Limits of Non-symmetric Macdonald Polynomials

We start by investigating the properties of certain sequences of non-symmetric Macdonald poly-

nomials. We will find that if we fix any composition µ and consider the sequence of compositions

(µ ∗ 0m)m≥0 the corresponding sequence of non-symmetric Macdonald polynomials (Eµ∗0m)m≥0
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will converge in the sense of Definition 1.7.3. It is important to note that in most cases the se-

quence (Eµ∗0m)m≥0 will not converge with respect to the inverse system (Ξk : Pk+1 → Pk)k≥1.

This should be expected because the spectra of the Cherednik operators acting on Pk+1 are in-

compatible with the spectra from the Cherednik operators acting on Pk. However, by using the

HHL explicit combinatorial formula for the non-symmetric Macdonald polynomials we show that

the combinatorics of non-attacking labellings underlying the sequence (Eµ∗0m)m≥0 converge in a

certain sense. The weaker convergence notion introduced by Ion and Wu is consistent with these

combinatorics. For our purposes later in this chapter we will heavily rely on the convergence of these

sequences as a bridge between the limit Cherednik operators Yi and their classical counterparts.

We now show the convergence of the sequence (Eµ∗0m)m≥0. First, we describe a convenient

rearrangement of the monomials in each Eµ∗0m .

Theorem 2.3.1. Let µ be a composition with ℓ(µ) = n and m ≥ 0. Then Eµ∗0m has the explicit

expression given by

Eµ∗0m =
∑

λ partition
|λ|≤|µ|

mλ[xn+1 + . . .+ xn+m]
∑

σ:µ∗0ℓ(λ)→[n+ℓ(λ)]
non-attacking
∀i=1,...,ℓ(λ)

λi=|σ−1(n+i)|

x
|σ−1(1)|
1 · · ·x|σ−1(n)|

n Γ(m)(σ̂)

where

Γ(m)(σ̂) :=

q−maj(σ̂)tcoinv(σ̂)
∏

u∈dg′(µ∗0ℓ(λ))
σ̂(u)̸=σ̂(d(u))
u not in row 1

(
1− t

1− q−(lg(u)+1)t(a(u)+1)

) ∏
u∈dg′(µ∗0ℓ(λ))
σ̂(u)̸=σ̂(d(u))
u in row 1

(
1− t

1− q−(lg(u)+1)t(a(u)+m+1)

)
.

Proof. First, start with directly applying the HHL formula (2.2.2):

Eµ∗0m =
∑

σ:µ∗0m→[n+m]
non-attacking

xσq−maj(σ̂)tcoinv(σ̂)
∏

u∈dg′(µ∗0m)
σ̂(u)̸=σ̂(d(u))

(
1− t

1− q−(lg(u)+1)t(a(u)+1)

)
.
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We know that Eµ∗0m is symmetric in the variables xn+1, ..., xn+m [9] so it follows that the coef-

ficient (as a polynomial in Q(q, t)[x1, ..., xn]) of each monomial in xn+1, ..., xn+m is independent of

the ordering of the latter variables. Hence, we find that by grouping these monomials by symmetry

Eµ∗0m =
∑
λ

mλ[xn+1 + ...+ xn+m]
∑

σ:µ∗0m→[n+m]
non-attacking
∀i λi=|σ−1(n+i)|

x
|σ−1(1)|
1 · · ·x|σ−1(n)|

n q−maj(σ̂)tcoinv(σ̂) ×

∏
u∈dg′(µ)

σ̂(u)̸=σ̂(d(u))

(
1− t

1− q−(lg(u)+1)t(a(u)+1)

)
.

Note that by degree considerations the only possible partitions λ that have a nonzero contribution

to the above sum have |λ| ≤ |µ| and hence we can rewrite the above sums as

∑
λ

∑
σ:µ∗0m→[n+m]
non-attacking
∀i λi=|σ−1(n+i)|

=
∑

λ partition
|λ|≤|µ|

∑
σ:µ∗0m→[n+ℓ(λ)]

non-attacking
∀i λi=|σ−1(n+i)|

.

In the latter sum above we have written each σ as a non-attacking labelling σ : µ ∗ 0m → [n+ ℓ(λ)]

to emphasize that the numbers occurring in this labelling are contained in the set [n+ ℓ(λ)] which

is independent of m. However, these are still considered labellings of the diagram corresponding to

µ ∗ 0m and hence we calculate the corresponding q, t coefficients in the HHL formula accordingly.

We must now understand the dependence on m of the statistics maj, coinv, lg, and a in each

of the non-attacking labellings σ : µ ∗ 0m → [n + ℓ(λ)] as m varies. Fix a non-attacking labelling

σ : µ ∗ 0k → [n+ k] for some k ≤ m and let σm be the associated labelling of µ ∗ 0m. Recall that

maj(σ̂) =
∑

u∈Des(σ̂)

(lg(u) + 1)

and similarly for maj(σ̂m). The only descent boxes of σ̂m occur in the diagram dg′(µ) itself and

lg(u) for these boxes will not depend on m. Therefore, maj(σ̂m) = maj(σ̂). For u ∈ dg′(µ ∗ 0m)

clearly u ∈ dg′(µ) and by direct computation we see that when u is not in row 1 then a(u) does

not depend on m. However, for u in row 1 a(u) when calculated in the diagram d̂g(µ) increases to

a(u) +m when calculated in the diagram d̂g(µ ∗ 0m). This comes from counting the extra row 0
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boxes for each box in row 1. Also note that in any non-attacking labelling there cannot be descent

boxes in row 1. Now from careful counting we get the following:

• | Inv(σ̂m)| = | Inv(σ̂)|+ (n+ k)(m− k) +
(
m−k
2

)
• |{i < j : (µ ∗ 0m)i ≤ (µ ∗ 0m)j}|

= |{i < j : (µ ∗ 0k)i ≤ (µ ∗ 0k)j}|+ (#{i : µi = 0}+ k)(m− k) +

(
m− k

2

)
•
∑

u∈Des(σ̂m) a(u) =
∑

u∈Des(σ̂) a(u).

By using the above calculations and cancelling out terms we get

inv(σ̂m) = | Inv(σ̂m)| − |{i < j : (µ ∗ 0m)i ≤ (µ ∗ 0m)j}| −
∑

u∈Des(σ̂m)

a(u)

= | Inv(σ̂)| − |{i < j : (µ ∗ 0k)i ≤ (µ ∗ 0k)j}| −
∑

u∈Des(σ̂)

a(u) + (n−#{i : µi = 0})(m− k)

= inv(σ̂) + #{i : µi ̸= 0}(m− k).

Further, from the prior observation about how arm, a(u), changes with m we see that

∑
u∈dg′(µ∗0m)

a(u) = #{i : µi ̸= 0}(m− k) +
∑

u∈dg′(µ∗0k)

a(u)

where arm has been calculated in the corresponding diagrams.
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We then have

coinv(σ̂m) =

 ∑
u∈dg′(µ∗0m)

a(u)

− inv(σ̂m)

=

#{i : µi ̸= 0}(m− k) +
∑

u∈dg′(µ∗0k)

a(u)

− (inv(σ̂) + #{i : µi ̸= 0}(m− k))

=

 ∑
u∈dg′(µ∗0k)

a(u)

− inv(σ̂)

= coinv(σ̂).

Thus maj(σ̂m) = maj(σ̂) and coinv(σ̂m) = coinv(σ̂).

Lastly, we return to the expansion of Eµ∗0m we found above. For each partition λ with |λ| ≤ |µ|

we now see that

∑
σ:µ∗0m→[n+ℓ(λ)]

non-attacking
∀i λi=|σ−1(n+i)|

x
|σ−1(1)|
1 · · ·x|σ−1(n)|

n q−maj(σ̂)tcoinv(σ̂)
∏

u∈dg′(µ)
σ̂(u)̸=σ̂(d(u))

(
1− t

1− q−(lg(u)+1)t(a(u)+1)

)

=
∑

σ:µ∗0ℓ(λ)→[n+ℓ(λ)]
non-attacking
∀i λi=|σ−1(n+i)|

x
|σ−1(1)|
1 · · ·x|σ−1(n)|

n Γ(m)(σ̂).

where

Γ(m)(σ̂) :=

q−maj(σ̂)tcoinv(σ̂)
∏

u∈dg′(µ∗0ℓ(λ))
σ̂(u)̸=σ̂(d(u))
u not in row 1

(
1− t

1− q−(lg(u)+1)t(a(u)+1)

) ∏
u∈dg′(µ∗0ℓ(λ))
σ̂(u)̸=σ̂(d(u))
u in row 1

(
1− t

1− q−(lg(u)+1)t(a(u)+m+1)

)
.

and we calculate all of the associated statistics in their respective diagrams.

□
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Now that we have conveniently rearranged the monomial terms of each Eµ∗0m and identified the

dependence of the coefficients on the parameter m we can give a simple proof that the sequence

(Eµ∗0m)m≥0 converges.

Corollary/Definition 2.3.2. Let µ be a composition with ℓ(µ) = n. The sequence (Eµ∗0m)m≥1

converges to an almost symmetric function Ẽµ := limmEµ∗0m ∈P+
as given explicitly by

Ẽµ =
∑

λ partition
|λ|≤|µ|

mλ[xn+1 + . . .]
∑

σ:µ∗0ℓ(λ)→[n+ℓ(λ)]
non-attacking
∀i=1,...,ℓ(λ)

λi=|σ−1(n+i)|

x
|σ−1(1)|
1 · · ·x|σ−1(n)|

n Γ̃(σ̂)

where

Γ̃(σ̂) := lim
m

Γ(m)(σ̂) = q−maj(σ̂)tcoinv(σ̂)
∏

u∈dg′(µ∗0ℓ(λ))
σ̂(u) ̸=σ̂(d(u))
u not in row 1

(
1− t

1− q−(lg(u)+1)t(a(u)+1)

) ∏
u∈dg′(µ∗0ℓ(λ))
σ̂(u)̸=σ̂(d(u))
u in row 1

(1− t) .

Proof. Note that the formula in Theorem 2.3.1 is a fixed size finite sum where the only

dependence on m is in the mλ symmetric function terms and the tm occurring in the Γ(m) terms.

Thus in the sense of Ion and Wu, see Definition 1.7.3, this sequence converges to a well defined

element of P+
as. In particular, each mλ[xn+1 + . . . + xn+m] converges to mλ[xn+1 + . . .] and tm

converges to 0 in the Γ̃-term. Simplifying gives the formula above.

□

It follows from Corollary 2.3.2 that the almost symmetric functions Ẽµ are homogeneous of degree

|µ| and Ẽµ ∈ P(ℓ(µ))+. Note importantly, that for any composition µ (not necessarily reduced)

and any n ≥ 0, by shifting the terms of the sequence (Eµ∗0m)m≥0 we see that Ẽµ∗0n = Ẽµ.

Corollary 2.3.3. Let λ be a partition with ℓ(λ) = n and |λ| = N . Then Ẽλ is determined by

Eλ∗0N ∈P+
n+N . That is to say, if

Eλ∗0N (x1, ..., xn+N ) = c1x
µ(1)

mν(1) [xn+1 + ...+ xn+N ] + ...+ ckx
µ(k)

mν(k) [xn+1 + ...+ xn+N ]

then

Ẽλ = c1x
µ(1)

mν(1) [xn+1 + ...] + ...+ ckx
µ(k)

mν(k) [xn+1 + ...].
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Proof. As λ is a partition, row 1 of any non-attacking labelling of λ must be 1,2,,...,ℓ(λ). Thus

no boxes of dg′(λ) in row 1 will have σ̂(u) ̸= σ̂(d(u)) and so there will be no contributions from

any of the terms of the form

∏
u∈dg′(λ)

σ̂(u) ̸=σ̂(d(u))
u row 1

(
1− t

1− q−(lg(u)+1)t(a(u)+m+1)

)
.

Further, from Corollary 2.3.2 it is clear that these are the only coefficients that depend on m in

the limit. Also it follows that each term of the form xµmν [xn+1 + . . .] that occurs in the expansion

of Ẽλ appears at least by the m = N step of the limit. From these two facts it follows that the

expansion of Ẽλ will match that of Eλ∗0N (x1, ..., xn+N ) up to truncating each mν [xn+1 + . . .] to

mν [xn+1 + . . .+ xn+N ] using Ξn+N .

□

2.4. Y -Weight Basis of P+
as

2.4.1. The Ẽµ are Y -Weight Vectors. In what follows, the classical spectral theory for

non-symmetric Macdonald polynomials is used to demonstrate that the limit functions Ẽµ are Y -

weight vectors. The below lemma is a simple application of this classical theory and basic properties

of the t-adic topology on Q(q, t).

Lemma 2.4.1. For a composition µ with ℓ(µ) = n define α
(m)
µ to be the Y (n+m)-weight of Eµ∗0m.

Then in the t-adic topology on Q(q, t) the sequence (tn+mα
(m)
µ (i))m≥0 converges in m to some

α̃µ(i) ∈ Q(q, t). In particular, α̃µ(i) = 0 for i > n and for 1 ≤ i ≤ n we have that α̃µ(i) = 0 exactly

when µi = 0.

Proof. Take µ = (µ1, . . . , µn). From classical double affine Hecke algebra theory [9] we have

α
(0)
µ (i) = qµit1−βµ(i) where

βµ(i) := #{j : 1 ≤ j ≤ i , µj ≤ µi}+#{j : i < j ≤ n , µi > µj}.

If we calculate βµ∗0m(i) directly it follows then that
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tn+mα(m)
µ (i) =


qµitn+m+1−(βµ(i)+m1(µi ̸=0)) = tnα

(0)
µ (i) i ≤ n, µi ̸= 0

qµitn+m+1−(βµ(i)+m1(µi ̸=0)) = tn+mα
(0)
µ (i) i ≤ n, µi = 0

tn+m+1−(#{j:µj= 0}+i−n) = t#{j:µj ̸= 0}tm+1−(i−n) i > n.

Lastly, by taking the limit m→∞ we get the result. □

For a composition µ define the weight α̃µ using the formula in Lemma 2.4.1 for the list of scalars

α̃µ(i) for i ∈ N.

Lemma 2.4.2. For a composition µ = (µ1, . . . , µn) with µi ̸= 0 for 1 ≤ i ≤ n, Ẽµ is a Y -weight

vector with weight α̃µ.

Proof. Fix any r ∈ N. We start by rewriting the operator Yr explicitly in terms of the limit

definition of Y1.

Yr = t−(r−1)Tr−1 · · ·T1Y1T1 · · ·Tr−1

= t−(r−1)Tr−1 · · ·T1 lim
k

tkρπkT
−1
k−1 · · ·T

−1
1 T1 · · ·Tr−1Ξk

= lim
k

tkTr−1 · · ·T1ρt
−(r−1)πkT

−1
k−1 · · ·T

−1
r Ξk

= lim
k

tkTr−1 · · ·T1ρT
−1
1 · · ·T−1r−1t

−(r−1)Tr−1 · · ·T1πkT
−1
k−1 · · ·T

−1
r Ξk

= lim
k

tkTr−1 · · ·T1ρT
−1
1 · · ·T−1r−1Y

(k)
r Ξk.

Applying Yr to Ẽµ we see by taking k = n+m ≥ n and shifting the indices that

Yr(Ẽµ) = lim
m

tn+mTr−1 · · ·T1ρT
−1
1 · · ·T−1r−1Y

(n+m)
r (Eµ∗0m)

= lim
m

Tr−1 · · ·T1ρT
−1
1 · · ·T−1r−1t

n+mα(m)
µ (r)Eµ∗0m
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and by Lemma 2.4.1 this converges to

Yr(Ẽµ) = α̃µ(r)(Tr−1 · · ·T1ρT
−1
1 · · ·T−1r−1)Ẽµ.

Importantly, we have implicitly used the fact that both of the sequences (Eµ∗0m)m and (α
(m)
µ (r))m

converge, that the operator Tr−1 · · ·T1ρT
−1
1 · · ·T−1r−1 commutes with the quotient maps Ξk : Pk+1 →

Pk for k > r, and Proposition 6.21 in [26]. We will show that the right side is α̃µ(r)Ẽµ. As

α̃µ(r) = 0 for r > n by Lemma 2.4.1 we reduce to the sub case r ≤ n. Fix r ≤ n. If we could show

that x1 divides T−11 · · ·T−1r−1Ẽµ then we would have

ρ(T−11 · · ·T−1r−1Ẽµ) = T−11 · · ·T−1r−1Ẽµ

implying that

Yr(Ẽµ) = α̃µ(r)(Tr−1 · · ·T1ρT
−1
1 · · ·T−1r−1)Ẽµ

= α̃µ(r)Tr−1 · · ·T1T
−1
1 · · ·T−1r−1)Ẽµ

= α̃µ(r)Ẽµ

as desired. To show that x1|T−11 · · ·T−1r−1Ẽµ it suffices to show that for all m ≥ 0, x1 divides

T−11 · · ·T−1r−1Eµ∗0m . To this end fix m ≥ 0. We have that

α(m)
µ (r)Eµ∗0m = Y (n+m)

r (Eµ∗0m)

= tn+m−r+1Tr−1 · · ·T1πn+mT−1n+m−1 · · ·T
−1
r Eµ∗0m .

Since α
(m)
µ (r) ̸= 0 we can have 1

α
(m)
µ (r)

T−11 · · ·T−1r−1 act on both sides of the above to get

T−11 · · ·T−1r−1Eµ∗0m =
tn+m−r+1

α
(m)
µ (r)

πn+mT−1n+m−1 · · ·T
−1
r Eµ∗0m .
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By HHL any non-attacking labelling of µ ∗ 0m will have row 1 diagram labels given by {1, 2, . . . , n}

so in particular xr divides Eµ∗0m for all m > 0. Lastly,

πn+mT−1n+m−1 · · ·T
−1
r Xr = πn+mt−(n+m−r)Xn+mTn+m−1 · · ·Tr

= qt−(n+m−r)X1πn+mTn+m−1 · · ·Tr.

Thus x1 divides T−11 · · ·T−1r−1Eµ∗0m for all m ≥ 0 showing the result.

□

Now we consider the general situation where the composition µ can have some parts which are

0. We can extend the above result, Lemma 2.4.2, by a straight-forward argument using intertwiner

theory from the study of affine Hecke algebras.

Theorem 2.4.3. For all compositions µ, Ẽµ is a Y -weight vector with weight α̃µ.

Proof. Lemma 2.4.2 shows that this statement holds for any composition with all parts

nonzero. Fix a composition µ with length n. We know that by sorting in decreasing order that µ

can be written as a permutation of a composition of the form ν ∗ 0m for a partition ν and some

m ≥ 0. From the definition of Bruhat order it follows that ν ∗ 0m will be the minimal element out

of all of its distinct permutations, including µ. Necessarily, this finite subposet generated by the

permutations of ν ∗ 0m is isomorphic to the Bruhat ordering on the coset space Sn/Sκ where Sκ

is the Young subgroup of Sn corresponding to the stabilizer of ν ∗ 0m. Hence, it suffices to show

inductively that for any composition β with ν ∗0m ≤ β < si(β) ≤ µ, if Ẽβ satisfies the theorem then

so will Ẽsi(β). As µ is finitely many covering elements away in Bruhat from ν ∗ 0m this induction

will indeed terminate after finitely many steps.

Using the intertwiner operators from affine Hecke algebra theory, given by ϕi = TiYi − YiTi in

this context, we only need to show that for any composition β with ν ∗ 0m ≤ β < si(β) ≤ µ,

ϕiẼβ = (α̃β(i)− α̃β(i+ 1))Ẽsi(β).
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Suppose the theorem holds for some β with ν ∗ 0m ≤ β < si(β) ≤ µ. Then we have the following:

ϕiẼβ = (Ti(Yi − Yi+1) + (1− t)Yi+1)Ẽβ

= (α̃β(i)− α̃β(i+ 1))TiẼβ + (1− t)α̃β(i+ 1)Ẽβ

= lim
m

(tn+mα
(m)
β (i)− tn+mα

(m)
β (i+ 1))TiEβ∗0m + (1− t)tn+mα

(m)
β (i+ 1)Eβ∗0m

= lim
m

(tn+mα
(m)
β (i)− tn+mα

(m)
β (i+ 1))Esi(β)∗0m

= (α̃β(i)− α̃β(i+ 1))Ẽsi(β).

□

As an immediate consequence of the proof of Theorem 2.4.3 we have the following.

Corollary 2.4.4. Let µ be a composition and i ≥ 1 such that si(µ) > µ. Then

Ẽsi(µ) =

(
Ti +

(1− t)α̃µ(i+ 1)

α̃µ(i)− α̃µ(i+ 1)

)
Ẽµ.

We have shown in Theorem 2.4.3 there is an explicit collection of Y -weight vectors Ẽµ in P+
as

arising as the limits of non-symmetric Macdonald polynomials Eµ∗0m . Unfortunately, these Ẽµ do

not span P+
as. To see this note that one cannot write a non-constant symmetric function as a linear

combination of the Ẽµ. However, in the below work we build a full Y -weight basis of P+
as.

2.4.2. Constructing a Full Y -Weight Basis.

2.4.2.1. Defining the Stable-Limit Non-symmetric Macdonald Functions. To complete our con-

struction of a full weight basis of P+
as we will need the ∂

(k)
− operators from Ion and Wu. These

operators are, up to a change of variables and plethysm, the d− operators from Carlsson and Mellit’s

standard At,q representation.

Definition 2.4.5. [26] Define the operator ∂
(k)
− : P(k)+ → P(k − 1)+ to be the P+

k−1-linear

map which acts on elements of the form xnkF [xk+1 + xk+2 + . . .] for F ∈ Λ and n ≥ 0 as

∂
(k)
− (xnkF [xk+1 + xk+2 + . . .]) = Bn(F )[xk + xk+1 + . . .].
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Here the Bn are the Jing operators which serve as creation operators for Hall-Littlewood symmetric

functions Pλ given explicitly by the following plethystic formula:

Bn(F )[X] = ⟨zn⟩F [X − z−1] Exp[(1− t)zX].

Importantly, the ∂
(k)
− operators do not come from the H + action itself. Note that the ∂

(k)
−

operators are homogeneous by construction.

We will require the useful alternative expression for the ∂
(k)
− operators which can be found in [26].

Recall the notation cy from Definition 2.1.6.

Lemma 2.4.6. Let τk denote the alphabet shift Xk → Xk−1 acting on symmetric functions where

Xi := xi+1 + xi+2 + .... Then for f ∈Pk and F ∈ Λ

∂
(k)
− (f(x1, . . . xk)F [Xk]) = τkcxk

f(x1, ..., xk)F [Xk − xk] Exp[−(t− 1)x−1k Xk].

Proof. [26]. □

As an immediate consequence of this explicit description of the action of the ∂
(k)
− operator we get

the following required lemmas.

Lemma 2.4.7. [26] The map ∂
(k)
− : P(k)+ →P(k− 1)+ is a projection onto P(k− 1)+ i.e. for

f ∈P(k − 1)+ ⊂P(k)+ we have that ∂
(k)
− (f) = f .

Proof. Fix F ∈ Λ. It suffices to show that ∂
(k)
− (F [Xk−1]) = F [Xk−1]. By using the coproduct

on Λ we can expand F [Xk−1] = F [xk + Xk] in powers of xik with some coefficients Fi ∈ Λ as
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F [xk + Xk] =
∑

i≥0 x
i
kFi[Xk]. From Lemma 2.4.6 we have

∂
(k)
− (F [Xk−1]) = ∂

(k)
− (F [xk + Xk])

= ∂
(k)
− (
∑
i≥0

xikFi[Xk])

= τkcxk

∑
i≥0

xikFi[Xk − xk] Exp[−(t− 1)x−1k Xk]


= τkcxk

F [Xk − xk + xk] Exp[−(t− 1)x−1k Xk]

= τkcxk
F [Xk] Exp[−(t− 1)x−1k Xk]

= τkF [Xk]cxk
Exp[−(t− 1)x−1k Xk]

= τkF [Xk]

= F [Xk−1].

□

We will need the following lemma showing that the maps ∂
(k)
− are Λ[xk + xk+1 + . . .]-module

maps.

Lemma 2.4.8. For all G ∈ Λ and g(x) ∈P(k)+

∂
(k)
− (G[xk + xk+1 + . . . ]g(x)) = G[xk + xk+1 + . . . ]∂

(k)
− (g(x)).

Proof. It suffices to take g(x) ∈ P(k)+ to be of the form g(x) = f(x1, . . . , xk)F [Xk] with

f ∈P+
k and F ∈ Λ. From Lemma 2.4.6 we get the following:
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∂
(k)
− (G[xk + xk+1 + . . . ]g(x)) = ∂

(k)
− (G[Xk−1]g(x))

= τkcxk
G[Xk−1 − xk]f(x1, . . . , xk)F [Xk − xk] Exp[−(t− 1)x−1k Xk]

= τkcxk
G[Xk]f(x1, . . . , xk)F [Xk − xk] Exp[−(t− 1)x−1k Xk]

= τkG[Xk]cxk
f(x1, . . . , xk)F [Xk − xk] Exp[−(t− 1)x−1k Xk]

= G[Xk−1]τkcxk
f(x1, . . . , xk)F [Xk − xk] Exp[−(t− 1)x−1k Xk]

= G[Xk−1]∂
(k)
− (f(x1, . . . , xk)F [Xk])

= G[Xk−1]∂
(k)
− (g(x)).

□

Corollary 2.4.9. For G ∈ Λ and g(x) ∈P(k)+

∂
(k)
− (G[X]g(x)) = G[X]∂

(k)
− (g(x)).

Proof. Take G ∈ Λ and g(x) ∈ P(k)+. Expand G[X] as a finite sum of terms of the form

fi(x1, . . . , xk−1)Fi[xk + . . .], where fi ∈Pk−1 and Fi ∈ Λ so

G[X] =
∑
i

fi(x1, . . . , xk−1)Fi[xk + . . .].

By Lemma 2.4.8 and the fact that ∂
(k)
− is a P+

k−1-linear map from Definition 2.4.5 we now see that

∂
(k)
− (G[X]g(x)) =

∑
i

∂
(k)
− (fi(x1, . . . , xk−1)Fi[xk + . . .]g(x))

=
∑
i

fi(x1, . . . , xk−1)Fi[xk + . . .]∂
(k)
− (g(x))

= G[X]∂
(k)
− (g(x)).

□
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We can now construct a full Y -weight basis of P+
as. We parameterize this basis by pairs (µ|λ) ∈ Σ.

Combinatorially, this is reasonable because, as already mentioned, the monomial basis for P+
as,

{xµmλ | (µ|λ) ∈ Σ}, is indexed by Σ.

Definition 2.4.10. For (µ|λ) ∈ Σ define the stable-limit non-symmetric Macdonald func-

tion corresponding to (µ|λ) as

Ẽ(µ|λ) := ∂
(ℓ(µ)+1)
− · · · ∂(ℓ(µ)+ℓ(λ))

− Ẽµ∗λ.

For a partition λ define

(2.1) Aλ := Ẽ(∅|λ) ∈ Λ.

Later in Theorem 4.2.12, we will show that the collection {Ẽ(µ|λ) | (µ|λ) ∈ Σ} is a Y -weight basis

for P+
as .

Remark. Note importantly that Ẽ(µ|λ) ∈P(ℓ(µ))+ and Ẽ(µ|λ) is homogeneous of degree |µ|+ |λ|.

Further, we have Ẽ(µ|∅) = Ẽµ and Ẽ(∅|λ) = Aλ. Notice that in Definition 2.4.10 it makes sense

to consider Ẽ(µ|λ) when µ is not necessarily reduced. However, it is a nontrivial consequence of

Theorem 2.6.5 that an analogously defined Ẽ(µ∗0|λ) is a nonzero scalar multiple of Ẽ(µ|λ). Thus there

is no need to consider the case of µ non-reduced when building a basis of P+
as .

There is another basis of P+
as given by Ion and Wu in their unpublished work [27] which is

equipped with a natural ordering with respect to which the limit Cherednik operators are triangular.

It follows then that after we show in Corollary 2.4.12 that the Ẽ(µ|λ) are Y -weight vectors that each

Ẽ(µ|λ) has a triangular expansion in Ion and Wu’s basis.

Remark. The stable-limit non-symmetric Macdonald functions Ẽ(µ|λ) as defined in this chapter

are distinct from the stable-limits of non-symmetric Macdonald polynomials occurring in [19]. In

their paper Haglund, Haiman, and Loehr investigate stable-limits of the form (E0m∗µ)m≥0 where

µ is a composition. Their analysis does not require the convergence definition of Ion and Wu as

the sequences (E0m∗µ)m≥0 have stable limits in the traditional sense. Further, the limits of the

(E0m∗µ)m≥0 sequences are symmetric functions whereas, as we will see soon, the Ẽ(µ|λ) are not

fully symmetric in general.
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The following simple lemma will be used to show that since the Ẽµ∗λ are Y -weight vectors the

stable-limit non-symmetric Macdonald functions Ẽ(µ|λ) are Y -weight vectors as well. We describe

their weights in Corollary 2.4.12.

Lemma 2.4.11. Suppose f ∈ P(k)+ is a Y -weight vector with weight (α1, . . . , αk, 0, 0, . . .). Then

∂
(k)
− f ∈ P(k − 1)+ is a Y -weight vector with weight (α1, . . . , αk−1, 0, 0, . . .).

Proof. We know that from [26] for g ∈ P(k)+ and 1 ≤ i ≤ k − 1, Yi∂
(k)
− g = ∂

(k)
− Yig so

Yi∂
(k)
− f = ∂

(k)
− Yif = αi∂

(k)
− f. From [26] we have that if i ≥ k then Yi annihilates P(k − 1). Since

∂
(k)
− f ∈ P(k − 1)+ for all i ≥ k, Yi∂

(k)
− f = 0.

□

Example. Here we give a few basic examples of stable-limit non-symmetric Macdonald functions

expanded in the Hall-Littlewood basis Pλ and their corresponding weights.

• Ẽ(∅|2) = P2[x1 + . . .] +
q−1

1− q−1t
P1,1[x1 + . . .]; weight α̃(∅|2) = (0, 0, . . .)

• Ẽ(2|∅) = x21 +
q−1

1− q−1t
x1P1[x2 + . . .]; weight α̃(2|∅) = (q2t, 0, . . .)

• Ẽ(1,1,1|∅) = x1x2x3; weight α̃(1,1,1|∅) = (qt3, qt2, qt, 0, . . .)

• Ẽ(1,1|1) = x1x2P1[x3 + . . .]; weight α̃(1,1|1) = (qt3, qt2, 0, . . .)

• Ẽ(1|1,1) = x1P1,1[x2 + · · · ]; weight α̃(1|1,1) = (qt3, 0, . . .)

As an immediate result of Lemma 2.4.11 we have the following:

Corollary 2.4.12. For (µ|λ) ∈ Σ, Ẽ(µ|λ) ∈ P+
as is a Y -weight vector with weight α̃(µ|λ) given

explicitly by

α̃(µ|λ)(i) =


α̃µ∗λ(i) = qµitℓ(µ)+ℓ(λ)+1−βµ∗λ(i) i ≤ ℓ(µ), µi ̸= 0

0 otherwise.

Proof. By Definition 2.4.10 we have that

Ẽ(µ|λ) := ∂
(ℓ(µ)+1)
− · · · ∂(ℓ(µ)+ℓ(λ))

− Ẽµ∗λ.
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From Theorem 2.4.3 we know that Ẽµ∗λ is a Y -weight vector with weight α̃µ∗λ. Recall that from

Lemma 2.4.1 that α̃µ∗λ(i) = q(µ∗λ)itℓ(µ∗λ)+1−βµ∗λ(i) for i ≤ ℓ(µ ∗ λ) and equals 0 for i > ℓ(µ ∗ λ).

Using Lemma 2.4.11 inductively now shows that Ẽ(µ|λ) is a Y -weight vector with weight α̃(µ|λ)

given by the expression given in the statement of this corollary. □

By using the HHL-type formula we proved for the functions Ẽµ in Corollary 2.3.2, we readily

find a similar formula for the full set of stable-limit non-symmetric Macdonald functions.

Corollary 2.4.13. For (µ|λ) ∈ Σ we have that

Ẽ(µ|λ) =
∑

ν partition
|ν|≤|µ|+|λ|

∑
σ:µ∗λ∗0ℓ(ν)→[ℓ(µ)+ℓ(λ)+ℓ(ν)]

non-attacking
∀i=1,...,ℓ(ν)

νi=|σ−1(ℓ(µ)+ℓ(λ)+i)|

Γ̃(σ̂)x
|σ−1(1)|
1 · · ·x|σ

−1(ℓ(µ))|
ℓ(µ) ×

B|σ−1(ℓ(µ)+1)| · · ·B|σ−1(ℓ(µ)+ℓ(λ))|(mν)[Xℓ(µ)+ℓ(λ)]

where

Γ̃(σ̂) := q−maj(σ̂)tcoinv(σ̂)
∏

u∈dg′(µ∗λ∗0ℓ(ν))
σ̂(u)̸=σ̂(d(u))
u not in row 1

(
1− t

1− q−(lg(u)+1)t(a(u)+1)

) ∏
u∈dg′(µ∗λ∗0ℓ(ν))
σ̂(u)̸=σ̂(d(u))
u in row 1

(1− t) .

Unfortunately, this formula is not nearly as elegant or useful as the HHL formula (2.2.2). The

main obstruction comes from not having a full understanding of the action of the Jing operators

Ba on the monomial symmetric functions. If one were to find an explicit expansion of elements

like Ba1 · · ·Bar(mλ) into another suitable basis of Λ (possibly the Pν basis) one would be able to

give a much more elegant description of these functions. Likely there is a nice way to do this that

has eluded this author.

2.4.3. Aλ Basis for Λ and Symmetrization via the Trivial Hecke Idempotent. Lemma

2.4.7 shows that the following operator is well defined on P+
as i.e. independent of k.

Definition 2.4.14. For f ∈P(k)+ ⊂P+
as define

(2.2) σ̃(f) := ∂
(1)
− · · · ∂

(k)
− f.
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Then σ̃ defines an operator P+
as → Λ which we call the stable-limit symmetrization operator.

Remark. Note that σ̃(Ẽλ) = Aλ and σ̃(Ẽ(µ|λ)) = σ̃(Ẽµ∗λ).

Definition 2.4.15. For all 0 ≤ k < n define the operator ϵ
(n)
k : P+

n →P+
n as

(2.3) ϵ
(n)
k (f) :=

1

[n− k]t!

∑
σ∈S

(1k,n−k)

t(
n−k
2 )−ℓ(σ)Tσ(f).

Here S(1k,n−k) is the Young subgroup of Sn corresponding to the composition (1k, n − k), Tσ =

Tsi1
· · ·Tsir whenever σ = si1 · · · sir is a reduced word representing σ, and [m]t! :=

∏m
i=1(

1−ti
1−t ) is

the t-factorial. We will simply write ϵ(n) for ϵ
(n)
0 .

For n ≥ 1 define the rational function

(2.4) Ωn(x) = Ωn(x1, . . . , xn; t) :=
∏

1≤i<j≤n
(
xi − txj
xi − xj

).

We will need the following technical result relating the action of ϵ(n) on polynomials to a Weyl

character type sum involving Ωn.

Proposition 2.4.16. For f(x) ∈P+
n

(2.5) ϵ(n)(f(x)) =
1

[n]t!

∑
σ∈Sn

σ(f(x)Ωn(x)).

Proof. See Remark 4.17 in [33]. After translating the finite Hecke algebra quadratic relations

in [33] to match those occurring in this chapter the formula matches. □

From the formula above in Proposition 2.4.16 we can show that the sequence of trivial idempotents

(ϵ(n))n≥1 converges in the sense of [26].

Proposition 2.4.17. The sequence of operators (ϵ(n))n≥1 converges to an idempotent operator

ϵ : P+
as → Λ such that for all i ≥ 1, ϵTi = ϵ.

Proof. From [30] in Chapter 3 and Proposition 2.4.16 we see that for all partitions λ with

ℓ(λ) = k and n ≥ k that

(2.6) ϵ(n)(xλ) =
[n− k]t!

[n]t!
vλ(t)Pλ[x1 + . . .+ xn; t]
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where Pλ[X; t] is the Hall-Littlewood symmetric function defined by Macdonald (not to be confused

with Pλ[X] seen previously in this thesis) and vλ(t) :=
∏

i≥1([mi(λ)]t!) where mi(λ) is the number

of i ’s in λ = 1m1(λ)2m2(λ) · · · . Now we note that with respect to the t-adic topology,

lim
n→∞

[n− k]t!

[n]t!
= (1− t)k

so that

lim
n

ϵ(n)(xλ) = vλ(t)(1− t)ℓ(λ)Pλ[X; t]

and hence (ϵ(n)(xλ))n≥1 converges. Note that following Macdonald’s definitions,

vλ(t)(1− t)ℓ(λ)Pλ[X; t] = Qλ[X; t].

Since ϵ(n)Ti = ϵ(n) for 1 ≤ i ≤ n−1 it follows that for all compositions µ, the sequence (ϵ(n)(xµ))n≥1

is convergent. Clearly from definition we have that for all symmetric functions F ∈ Λ and f(x) ∈

P+
n

ϵ(n)(F [x1 + . . .+ xn]f(x)) = F [x1 + . . .+ xn]ϵ
(n)(f(x)).

It follows now from a straightforward convergence argument using Remark 13 that for all g ∈P+
as

the sequence (ϵ(n)(Ξn(g)))n≥1 converges. The resulting operator ϵ := limn ϵ
(n) ◦ Ξn is evidently

idempotent as its codomain is Λ and certainly ϵ acts as the identity on symmetric functions.

Further, for all i ∈ N we have

ϵTi = lim
n

ϵ(n) ◦ ΞnTi

and since Ξn commutes with Ti for n > i+ 1 we see that

lim
n

ϵ(n) ◦ ΞnTi = lim
n

ϵ(n)Ti ◦ Ξn = lim
n

ϵ(n) ◦ Ξn = ϵ.

□

Corollary 2.4.18. For all k ≥ 0 the sequence (ϵ
(n)
k )n>k converges to an idempotent operator

ϵk : P+
as →P(k)+ such that for all i ≥ k + 1, ϵkTi = ϵk.

Proof. This follows immediately from Proposition 2.4.17 after shifting indices and noting that

the operators ϵ
(n)
k commute with multiplication by x1, . . . , xk. □
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Now we will extend our definition of the stable-limit symmetrization operator σ̃ to partial sym-

metrization operators in the natural way.

Definition 2.4.19. For k ≥ 0 let σ̃k : P+
as →P(k)+ be defined on g ∈P(n)+ for n ≥ k by

(2.7) σ̃k(g) := ∂
(k+1)
− · · · ∂(n)

− (g).

Remark. The operators σ̃k are well defined by Lemma 2.4.7. In particular, if g ∈ P(ℓ)+ for

0 ≤ ℓ ≤ k then P(ℓ)+ ⊂P(k)+ and there is no ambiguity in defining σ̃k(g) = ∂
(k+1)
− · · · ∂(n)

− (g) as

above. Note that σ̃0 = σ̃. Further, for all (µ|λ) ∈ Σ we see that in this new terminology

Ẽ(µ|λ) = σ̃ℓ(µ)(Ẽµ∗λ).

Further, if k ≤ ℓ then σ̃kσ̃ℓ = σ̃k.

We will now show that as operators on P+
as, ϵℓ = σ̃ℓ for all ℓ ≥ 0.

Proposition 2.4.20. For all ℓ ≥ 0, ϵℓ = σ̃ℓ.

Proof. By shifting indices it suffices to just prove that ϵ = σ̃, i.e., the ℓ = 0 case. Further,

since both maps are Ti-equivariant Λ-module maps (see Corollary 2.4.9) it suffices to show that for

all partitions λ, ϵ(xλ) = σ̃(xλ). From the proof of Proposition 2.4.17 we saw that ϵ(xλ) = Qλ[X; t]

whereas it follows from the definition of the Jing vertex operators that σ̃(xλ) = Pλ[X]. Therefore,

it suffices to argue that Qλ[X; t] = Pλ[X]. To this end we will prove that

(2.8) Pλ[X] = ⟨zλ1
1 · · · z

λr
r ⟩Exp[(1− t)(z1 + . . .+ zr)X] Exp[(t− 1)

∑
1≤i<j≤r

zj
zi
]

which by 2.15 in Macdonald Chapter 3 [30] is an alternative definition for Qλ[X; t].

Suppose λ = (λ1, . . . , λr) is a partition. Note first that by definition Pλ[X] = Bλ1 · · ·Bλr(1). We

will now induct on the number of operators B acting on 1 in the expression Bλ1 · · ·Bλr(1). As a

base case

Bλr(1) = ⟨zλr
r ⟩1[X − z−1r ] Exp[(1− t)zrX] = ⟨zλr

r ⟩Exp[(1− t)zrX].

We claim that for all 1 ≤ k ≤ r
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(2.9) Bλk
· · ·Bλr(1) = ⟨z

λk
k · · · z

λr
r ⟩Exp[(1− t)(zk + . . .+ zr)X] Exp[(t− 1)

∑
k≤i<j≤r

zj
zi
].

Suppose the above is true for some 1 < k ≤ r. Then

Bλk−1
Bλk
· · ·Bλr(1)

= Bλk−1

⟨zλk
k · · · z

λr
r ⟩Exp[(1− t)(zk + . . .+ zr)X] Exp[(t− 1)

∑
k≤i<j≤r

zj
zi
]


= ⟨zλk−1

k−1 ⟩⟨z
λk
k · · · z

λr
r ⟩Exp[(1− t)(zk + . . .+ zr)(X − z−1k−1)] Exp[(t− 1)

∑
k≤i<j≤r

zj
zi
]

× Exp[(1− t)zk−1X].

Now we use the additive property of the plethystic exponential namely,

Exp[A+B] = Exp[A] Exp[B]

, to rearrange terms and get

⟨zλk−1

k−1 · · · z
λr
r ⟩Exp[(1− t)(zk + . . .+ zr)X] Exp[(1− t)zk−1X] Exp[(t− 1)

∑
k≤i<j≤r

zj
zi
]

× Exp[(t− 1)(
zk
zk−1

+ . . .+
zr

zk−1
)]

which simplifies to

⟨zλk−1

k−1 · · · z
λr
r ⟩Exp[(1− t)(zk−1 + zk + . . .+ zr)X] Exp[(t− 1)

∑
k−1≤i<j≤r

zj
zi
]

showing that the formula (2.9) holds for all 1 ≤ k ≤ r. Taking k = 1 shows equation (2.8) holds. □
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As an immediate consequence of Proposition 2.4.20 we find the following enlightening description

for the Ẽ(µ|λ) functions.

Corollary 2.4.21. For all (µ|λ) ∈ Σ,

(2.10) Ẽ(µ|λ) = lim
n

ϵ
(n)
ℓ(µ)(Eµ∗λ∗0n−(ℓ(µ)+ℓ(λ))).

In particular, for partitions λ, Aλ[X] = (1 − t)ℓ(λ)vλ(t)Pλ[X; q−1, t] where Pλ[X; q−1, t] is the

symmetric Macdonald function. As a consequence the set {Aλ : λ ∈ Y} is a basis of Λ.

Remark. The Pλ[X; q, t] are the symmetric Macdonald functions as defined by Macdonald in [30]

and seen in Cherednik’s work [9] not to be confused with the modified symmetric Macdonald func-

tions H̃µ seen in many places but in particular in the work of Haiman [24]. Further, Corollary

2.4.21 gives an interpretation of the Ẽ(µ|λ) as limits of partially symmetrized non-symmetric Mac-

donald polynomials. Goodberry in [18] and Lapointe in [28] have investigated similar families of

partially symmetric Macdonald polynomials. Up to a change of variables and limiting these different

notions are likely directly related.

In order to prove the first main theorem in this chapter, Theorem 4.2.12, we will require the

following straightforward lemma.

Lemma 2.4.22. For any composition µ there is some nonzero scalar γµ ∈ Q(q, t) such that

σ̃(Ẽµ) = γµAsort(µ)

where γµ = 1 when µ is a partition.

Proof. We know that for all partitions λ, σ̃(Ẽλ) = Aλ so this lemma holds trivially for

partitions. Now we proceed by induction on Bruhat order similarly to the argument in the proof of

Theorem 2.4.3. To show the lemma holds it suffices to show that if µ is a composition and k such

that sk(µ) > µ in Bruhat order and σ̃(Ẽµ) = γµAsort(µ) for γµ ̸= 0 then σ̃(Ẽsk(µ)) = γsk(µ)Asort(µ)

for γsk(µ) ̸= 0. To this end fix such µ and k. Then by Corollary 2.4.4

Ẽsk(µ) =

(
Tk +

(1− t)α̃µ(k + 1)

α̃µ(k)− α̃µ(k + 1)

)
Ẽµ.

From Proposition 2.4.20 σ̃ = limm ϵ(m) so that σ̃Tk = σ̃. Therefore,
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σ̃(Ẽsk(µ)) = σ̃

((
Tk +

(1− t)α̃µ(k + 1)

α̃µ(k)− α̃µ(k + 1)

)
Ẽµ

)
=

(
1 +

(1− t)α̃µ(k + 1)

α̃µ(k)− α̃µ(k + 1)

)
σ̃(Ẽµ)

=

(
α̃µ(k)− tα̃µ(k + 1)

α̃µ(k)− α̃µ(k + 1)

)
γµAsort(µ).

By Lemma 2.4.1 we see that since sk(µ) > µ it follows that α̃µ(k) ̸= tα̃µ(k+1). Hence, γsk(µ) :=(
α̃µ(k)−tα̃µ(k+1)
α̃µ(k)−α̃µ(k+1)

)
γµ ̸= 0 so the result follows. □

Remark. Note that using the recursive formula γsk(µ) =
(
α̃µ(k)−tα̃µ(k+1)
α̃µ(k)−α̃µ(k+1)

)
γµ in the proof of

Lemma 2.4.22, the formula for the eigenvalues α̃µ(k) in Lemma 2.4.1, and the base condition

γµ = 1 for µ a partition, it is possible to give an explicit expression for γµ for any composition µ.

However, all we need for the purposes of this chapter is that γµ ̸= 0 so we will not find such an

explicit expression for γµ.

2.4.3.1. First Main Theorem and a Full Y -Weight Basis of P+
as. Finally, we prove that the

stable-limit non-symmetric Macdonald functions are a basis for P+
as. To do this we will use the

stable-limit symmetrization operator to help distinguish between stable-limit non-symmetric Mac-

donald functions with the same Y -weight.

Theorem 2.4.23. (First Main Theorem) The Ẽ(µ|λ) are a Y -weight basis for P+
as.

Proof. As there are sufficiently many Ẽ(µ|λ) in each graded component of every P(k)+ it

suffices to show that these functions are linearly independent. Certainly, weight vectors in distinct

weight spaces are linearly independent. Using Lemmas 2.4.1 and 2.4.12, we deduce that if Ẽ(µ(1)|λ(1))

and Ẽ(µ(2)|λ(2)) have the same weight then necessarily µ(1) = µ(2). Hence, we can restrict to the

case where we have a dependence relation

c1Ẽ(µ|λ(1)) + . . .+ cN Ẽ(µ|λ(N)) = 0
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for λ(1), . . . , λ(N) distinct partitions. By applying the stable-limit symmetrization operator we see

that

σ̃(c1Ẽ(µ|λ(1)) + . . .+ cN Ẽ(µ|λ(N))) = σ̃(c1Ẽµ∗λ(1) + . . .+ cN Ẽµ∗λ(N)) = 0.

Now by Lemma 2.4.22, σ̃(Ẽµ∗λ(i)) = γµ∗λ(i)Asort(µ∗λ(i)) with nonzero scalars γµ∗λ(i) yielding

0 = c′1Asort(µ∗λ(1)) + . . .+ c′nAsort(µ∗λ(N)).

The partitions λ(i) are distinct so we know that the partitions sort(µ ∗ λ(i)) are distinct as well.

By Corollary 2.4.21 the symmetric functions Asort(µ∗λ(i)) are linearly independent. Thus c′i = 0

implying ci = 0 for all 1 ≤ i ≤ N as desired. □

2.5. Some Recurrence Relations for the Ẽ(µ|λ)

In this section we will discuss a few recurrence relations for the stable-limit non-symmetric Mac-

donald functions. We start by looking at the action of the Demazure-Lusztig operators Ti and the

lowering operators ∂−.

Proposition 2.5.1. For (µ|λ) = (µ1, . . . , µr|λ1, . . . , λk) ∈ Σ if µr ≥ λ1 and µr−1 ̸= 0 then

∂
(r)
−

(
Ẽ(µ1,...,µr|λ1,...,λk)

)
= Ẽ(µ1,...,µr−1|µr,λ1,...,λk).

Proof. This follows immediately from the definitions of Ẽ(µ|λ) and ∂
(r)
− . □

Proposition 2.5.2. Take (µ|λ) ∈ Σ and suppose 1 ≤ i ≤ ℓ(µ) − 1 such that si(µ) > µ and

si(µ) ∈ Compred . Then

Ẽ(si(µ)|λ) =

(
Ti +

(1− t)α̃µ∗λ(i+ 1)

α̃µ∗λ(i)− α̃µ∗λ(i+ 1)

)
Ẽ(µ|λ).

Proof. Since si(µ) > µ we know that si(µ ∗ λ) > µ ∗ λ so by Corollary 2.4.4

Ẽsi(µ∗λ) =

(
Ti +

(1− t)α̃µ∗λ(i+ 1)

α̃µ∗λ(i)− α̃µ∗λ(i+ 1)

)
Ẽµ∗λ.
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Now we know Ti commutes with the operators ∂
(ℓ(µ)+1)
− , . . . , ∂

(ℓ(µ)+ℓ(λ))
− and thus we see that

Ẽ(si(µ)|λ) = ∂
(ℓ(µ)+1)
− · · · ∂(ℓ(µ)+ℓ(λ))

− (Ẽsi(µ∗λ))

= ∂
(ℓ(µ)+1)
− · · · ∂(ℓ(µ)+ℓ(λ))

−

((
Ti +

(1− t)α̃µ∗λ(i+ 1)

α̃µ∗λ(i)− α̃µ∗λ(i+ 1)

)
Ẽµ∗λ

)
=

(
Ti +

(1− t)α̃µ∗λ(i+ 1)

α̃µ∗λ(i)− α̃µ∗λ(i+ 1)

)
∂
(ℓ(µ)+1)
− · · · ∂(ℓ(µ)+ℓ(λ))

− (Ẽµ∗λ)

=

(
Ti +

(1− t)α̃µ∗λ(i+ 1)

α̃µ∗λ(i)− α̃µ∗λ(i+ 1)

)
Ẽ(µ|λ).

□

Proposition 2.5.3. For (µ|λ) = (µ1, . . . , µr|λ) ∈ Σ we have that

TrẼ(µ|λ) =
γµ∗λ

γ(µ1,...,µr−1,0,µr)∗λ
Ẽ(µ1,...,µr−1,0,µr|λ).

Proof. First note that by Corollary 2.4.12

ϕr(Ẽ(µ|λ))

= (Tr(Yr − Yr+1) + (1− t)Yr+1)Ẽ(µ|λ)

= (α̃µ∗λ(r)− 0)TrẼ(µ|λ) + (1− t)(0)Ẽ(µ|λ)

= α̃µ∗λ(r)TrẼ(µ|λ).

and by Lemma 2.4.1 α̃µ∗λ(r) ̸= 0 since µr ̸= 0. Therefore, ϕr(Ẽ(µ|λ)) is nonzero and therefore

must be a Y -weight vector with weight (α̃µ∗λ(1), . . . , α̃µ∗λ(r − 1), 0, α̃µ∗λ(r), 0, . . . ). By using the

explicit formula for the eigenvalues α̃µ∗λ(i) from Lemma 2.4.1 we see that for 1 ≤ i ≤ r, α̃µ∗λ(i) = 0

exactly when µi = 0 and further, for all 1 ≤ i ≤ r with µi ̸= 0, α̃µ∗λ(i) = qµitbi for some bi. Hence

by Theorem 4.2.12 and Corollary 2.4.12, ϕr(Ẽ(µ|λ)) is of the form

ϕr(Ẽ(µ|λ)) =
∑
ν

aνẼ(µ1,...,µr−1,0,µr|ν)
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ν ranges over a finite set of partitions ν and aν are some scalars. Note that we have

σ̃(ϕr(Ẽ(µ|λ))) = σ̃(α̃µ∗λ(r)TrẼ(µ|λ))

and since σ̃Tr = σ̃

σ̃(ϕr(Ẽ(µ|λ))) = α̃µ∗λ(r)σ̃(Ẽ(µ|λ)) = α̃µ∗λ(r)γµ∗λAsort(µ∗λ)

using Lemma 2.4.22. Similarly, we see that

σ̃

(∑
ν

aνẼ(µ1,...,µr−1,0,µr|ν)

)
=
∑
ν

aνγ(µ1,...,µr−1,0,µr)∗νAsort(µ∗ν)

since sort((µ1, . . . , µr−1, 0, µr) ∗ ν) = sort(µ ∗ ν) for all ν.

Thus

Asort(µ∗λ) =
∑
ν

a′νAsort(µ∗ν)

where

a′ν :=
aνγ(µ1,...,µr−1,0,µr)∗ν

α̃µ∗λ(r)γµ∗λ
.

By Corollary 2.4.21 we know that the Aβ are a basis for Λ and so we see that the only possible

partition ν that can contribute a nonzero term in the above expansion is ν = λ. Further, a′λ = 1

and thus aλ =
α̃µ∗λ(r)γµ∗λ

γ(µ1,...,µr−1,0,µr)∗λ
.

Therefore,

ϕr(Ẽ(µ|λ)) = α̃µ∗λ(r)TrẼ(µ|λ) =
α̃µ∗λ(r)γµ∗λ

γ(µ1,...,µr−1,0,µr)∗λ
Ẽ(µ1,...,µr−1,0,µr|λ)

which yields

TrẼ(µ|λ) =
γµ∗λ

γ(µ1,...,µr−1,0,µr)∗λ
Ẽ(µ1,...,µr−1,0,µr|λ).

□

Definition 2.5.4. Define π̃m := X1T
−1
1 · · ·T−1m−1 considered as an operator on P+

m.

Remark. These operators are the same as the corresponding operators of the same name defined

by Ion and Wu up to inversion and some scalars. We have defined the operators as above for

convenience. The operators πm and π̃m are used by Ion and Wu [26] to give operators analogous

to the d+, d
∗
+ operators in At,q.
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Lemma 2.5.5. The sequences of operators (π̃m)m≥1 and (πm)m≥1 converge to operators π̃, π :

P+
as →P+

as respectively with actions given by

• π̃(xa11 · · ·x
ak
k F [X]) = x1T

−1
1 · · ·T−1k xa11 · · ·x

ak
k F [X]

• π(xa11 · · ·x
ak
k F [X]) = xa12 · · ·x

ak
k+1F [X + (q − 1)x1].

Proof. Let (fm)m≥1 be a convergent sequence with limit f ∈ P(k)+. We start by showing

the sequence (π̃m(fm))m≥1 converges to an element of P+
as. It follows directly by the definition of

convergence that there exists some M > k such that for all i and m with m ≥M and k + 1 ≤ i ≤

m− 1, Tifm = fm. Therefore, for all m ≥M

π̃m(fm) = x1T
−1
1 · · ·T−1k fm

which clearly converges to x1T
−1
1 · · ·T−1k f . It follows then that the sequence of operators (π̃m)m≥1

converges to an operator which we call π̃. By considering f = xa11 · · ·x
ak
k F [X] with F ∈ Λ we get

the first formula in the lemma statement above.

Next we will show the sequence (πm(Ξm(f)))m≥1 converges. Expand f as

f =
N∑
i=1

cix
µ(i)

Fi[X]

for ci ∈ Q(q, t), compositions µ(i), and Fi ∈ Λ where we may assume each composition µ(i) has

length k so that for all m ≥ k

Ξm(f) =
N∑
i=1

cix
µ(i)

Fi[x1 + . . .+ xm].

Applying πm to Ξm(f) gives for m ≥ k

πm(Ξm(f)) =
N∑
i=1

cix
µ
(i)
1

2 · · ·xµ
(i)
k

k+1F [qx1 + x2 + . . .+ xm]

so therefore we get

lim
m

πm(Ξm(f)) =
N∑
i=1

cix
µ
(i)
1

2 · · ·xµ
(i)
k

k+1F [X + (q − 1)x1].
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Thus the sequence of operators (πm)m≥1 converges to an operator which we call π. Lastly, by

applying this formula to f = xa11 · · ·x
ak
k F [X] with F ∈ Λ to see the second formula given in the

lemma statement. □

In line with the above results in this section we will now give a partial generalization of the

classical Knop-Sahi relation regarding the action of the π operators on Macdonald polynomials.

Proposition 2.5.6. For all compositions µ

t#{j:µj ̸=0}π̃(Ẽµ) = x1π(Ẽµ) = Ẽ1∗µ.

Proof. Suppose ℓ(µ) = n. Recall that for all m ≥ 1

(Y
(n+m)
n+m )−1 = tn+m−1π−1n+mT−11 · · ·T−1n+m−1.

Therefore, by recalling the eigenvalue notation in Lemma 2.4.1 we have

tn+m−1π−1n+mT−11 · · ·T−1n+m−1Eµ∗0m = (Y
(n+m)
n+m )−1Eµ∗0m = α(m)

µ (n+m)−1Eµ∗0m

so that

tn+m−1α(m)
µ (n+m)x1T

−1
1 · · ·T−1n+m−1Eµ∗0m = x1πn+mEµ∗0m .

From Lemma 2.4.1 we see that

tn+m−1α(m)
µ (n+m) = t#{j:µj ̸=0}

which gives

t#{j:µj ̸=0}x1T
−1
1 · · ·T−1n+m−1Eµ∗0m = t#{j:µj ̸=0}π̃n+m(Eµ∗0m) = x1πn+mEµ∗0m .

From the classical Knop-Sahi relations (see [19]) applied to Eµ∗0m we get

x1πn+mEµ∗0m = E1∗µ∗0m−1 .

Applying Corollary 2.3.2 and Lemma 2.5.5 as m→∞ now gives

t#{j:µj ̸=0}π̃(Ẽµ) = x1π(Ẽµ) = Ẽ1∗µ.
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□

2.6. Constructing Ẽ(µ|λ)-Diagonal Operators from Symmetric Functions

The main goal of the following section of this chapter is to construct an operator on P+
as which is

diagonal in the stable-limit Macdonald function basis, commutes with the limit Cherednik operators

Yi, but does not annihilate Λ. This operator will be constructed from a limit of operators arising

from the action of tmY
(m)
1 + . . .+tmY

(m)
m on P+

m. After finding the eigenvalues of this new operator

we will show that the addition of this operator to the algebra generated by the limit Cherednik

operators has simple spectrum on P+
as.

We begin with the following natural definition.

Definition 2.6.1. For F ∈ Λ define the operator Ψ
(m)
F : P+

m →P+
m by

(2.11) Ψ
(m)
F := F [tmY

(m)
1 + . . .+ tmY (m)

m ].

Further, for a composition µ with ℓ(µ) = n and m ≥ 0 define the scalar κ
(m)
µ (q, t) as

κ(m)
µ (q, t) :=

n+m∑
i=1

tn+mα(m)
µ (i).

Recall from Lemma 2.4.1 that α
(m)
µ (i) is given by Y

(n+m)
i Eµ∗0m = α

(m)
µ (i)Eµ∗0m .

Lemma 2.6.2. For all compositions µ the sequence (κ
(m)
µ (q, t))m≥0 converges to some κµ(q, t) ∈

Q(q, t). Further, κµ(q, t) = κµ∗0k(q, t) for all k ≥ 0 and κµ(q, t) = κsi(µ)(q, t) for all 1 ≤ i ≤ ℓ(µ)−1.

Proof. Using Lemma 2.4.1 we get the following:

κ(m)
µ (q, t) =

n+m∑
i=1

tn+mα(m)
µ (i)

=
n∑

i=1

tn+mα(m)
µ (i) +

n+m∑
i=n+1

t#{j:µj ̸=0}tm+1−(i−n)

=

n∑
i=1

tnα(0)
µ (i)tm1(µi=0) + t#{j:µj ̸=0}

m∑
i=1

tm−i+1

=
∑
µi ̸=0

tnα(0)
µ (i) + tm

∑
µi=0

tnα(0)
µ (i) + t#{j:µj ̸=0}

m∑
i=1

ti.
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Therefore,

(2.12) κµ(q, t) := lim
m

κ(m)
µ (q, t) =

 ∑
i:µi ̸=0

tnα(0)
µ (i)

+
t1+#{j:µj ̸=0}

1− t
∈ Q(q, t).

The last statement regarding κµ∗0k(q, t) and κsi(µ)(q, t) follows now directly from Lemma 2.4.1

and classical DAHA intertwiner theory. □

Remark. Recall from the proof of Lemma 2.4.1 that

tnα(0)
µ = qµitn+1−βµ(i).

Applying this to the Lemma 2.6.2 gives the combinatorial formula

κµ(q, t) =
t1+#{j:µj ̸=0}

1− t
+
∑
µi ̸=0

qµitn+1−βµ(i).

If we consider the partition λ to have an infinite string of 0’s attached to its tail then

κλ(q, t) =

∞∑
i=1

qλiti.

Notice that this is exactly equal to

t

1− t
(1− (1− t)(1− q)Bλ(q, t))

where Bλ(q, t) is the diagram generator of λ in [22].

Corollary 2.6.3. Let λ and ν be partitions. Then κλ(q, t) = κν(q, t) if and only if λ = ν.

Proof. This follows readily from the identity

κλ(q, t) =
∞∑
i=1

qλiti

given in the prior remark. □

In this next result we will show that the sequence of operators (Ψ
(m)
p1 )m≥1 converges to a well

defined map on P+
as. As expected these operators are well-behaved on sequences of the form

ϵ
(m)
ℓ(µ)(Eµ∗λ∗0m−(ℓ(µ)+ℓ(λ))). In fact it is not hard to show that (Ψ

(m)
p1 )m≥1 converges on the former

sequences. However, this is not a sufficient argument to show the convergence of the (Ψ
(m)
p1 )m≥1.

65



In order to obtain a well-defined operator on P+
as from the sequence of operators (Ψ

(m)
p1 )m≥1 one

needs to show that given an arbitrary convergent sequence (fm)m≥1 the corresponding sequence

(Ψ
(m)
p1 (fm))m≥1 converges. Therefore, the difficulty in the following proof is to show that the Ψ

(m)
p1

are well behaved in general.

Theorem 2.6.4. The sequence of operators (Ψ
(m)
p1 )m≥1 converges to an operator Ψp1 : P+

as →

P+
as which is diagonal in the Ẽ(µ|λ) basis with

Ψp1(Ẽ(µ|λ)) = κµ∗λ(q, t)Ẽ(µ|λ).

Proof. Notice that every element of P+
as is a finite Q(q, t)-linear combination of terms of the

form Tσx
λF [X] where σ is a permutation, λ is a partition, and F ∈ Λ. Therefore, to show that

the sequence of operators (Ψ
(m)
p1 )m≥1 converges it suffices using Remark 13 to show that sequences

of the form

(Ψ(m)
p1 (Tσx

λF [x1 + . . .+ xm]))m≥1

converge. For m sufficiently large, Tσ commutes with Ψ
(m)
p1 = tm(Y

(m)
1 + . . . + Y

(m)
m ) so it suffices

to consider only sequences of the form

(Ψ(m)
p1 (xλF [x1 + . . .+ xm]))m≥1.

Let λ be a partition, k := ℓ(λ), F ∈ Λ, and take m > k. Recall that Ỹ
(m)
1 X1 = tmY

(m)
1 X1 from

which it follows directly that Ỹ
(m)
i Xi = tmY

(m)
i Xi for all 1 ≤ i ≤ m. Then for all 1 ≤ i ≤ k we

have that since λi ̸= 0,

tmY
(m)
i (xλF [x1 + . . .+ xm]) = Ỹ

(m)
i (xλF [x1 + . . .+ xm]).

Therefore,

tm(Y
(m)
1 + . . .+ Y

(m)
k )(xλF [x1 + . . .+ xm]) = (Ỹ

(m)
1 + . . .+ Ỹ

(m)
k )(xλF [x1 + . . .+ xm]).

Now since xλF [x1 + . . .+ xm] is symmetric in the variables {k + 1, . . . ,m} we see that
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tm(Y
(m)
k+1 + . . .+ Y (m)

m )(xλF [x1 + . . .+ xm])

= (tm−kTk · · ·T1πmT−1m−1 · · ·T
−1
k+1 + tm−k−1Tk+1 · · ·T1πmT−1m−1 · · ·T

−1
k+2 + . . .+ tTm−1 · · ·T1πm)

× (xλF [x1 + . . .+ xm])

= (tm−kTk · · ·T1 + tm−k−1Tk+1 · · ·T1 + . . .+ tTm−1 · · ·T1)πm(xλF [x1 + . . .+ xm])

= (tm−kTk · · ·T1 + tm−k−1Tk+1 · · ·T1 + . . .+ tTm−1 · · ·T1)(x
λ1
2 · · ·x

λk
k+1F [qx1 + x2 + . . .+ xm])

= (tm−k + tm−k−1Tk+1 + . . .+ tTm−1 · · ·Tk+1)
(
Tk · · ·T1x

λ1
2 · · ·x

λk
k+1F [qx1 + x2 + . . .+ xm]

)
.

Notice that since Tk · · ·T1x
λ1
2 · · ·x

λk
k+1F [qx1 + x2 + . . . + xm] is symmetric in the variables {k +

2, . . . ,m}

ϵ
(m)
k+1(Tk · · ·T1x

λ1
2 · · ·x

λk
k+1F [qx1 + x2 + . . .+ xm]) = Tk · · ·T1x

λ1
2 · · ·x

λk
k+1F [qx1 + x2 + . . .+ xm].

Therefore,

tm(Y
(m)
k+1 + . . .+ Y (m)

m )(xλF [x1 + . . .+ xm])

= (tm−k + . . .+ tTm−1 · · ·Tk+1)ϵ
(m)
k+1(Tk · · ·T1x

λ1
2 · · ·x

λk
k+1F [qx1 + x2 + . . .+ xm])

= t(tm−k−1 + . . .+ 1)ϵ
(m)
k (Tk · · ·T1x

λ1
2 · · ·x

λk
k+1F [qx1 + x2 + . . .+ xm])

where the last equality follows from(
tm−k−1 + tm−k−2Tk+1 + . . .+ Tm−1 · · ·Tk+1

tm−k−1 + tm−k−2 + . . .+ 1

)
ϵ
(m)
k+1 = ϵ

(m)
k .

Putting it all together we see that

Ψ(m)
p1 (xλF [x1 + . . .+ xm])

= tm(Y
(m)
1 + . . .+ Y (m)

m )(xλF [x1 + . . .+ xm])

= tm(Y
(m)
1 + . . .+ Y

(m)
k )(xλF [x1 + . . .+ xm]) + tm(Y

(m)
k+1 + . . .+ Y (m)

m )(xλF [x1 + . . .+ xm])

= (Ỹ
(m)
1 + . . .+ Ỹ

(m)
k )(xλF [x1 + . . .+ xm]) + t(tm−k−1 + . . .+ 1)

× ϵ
(m)
k (Tk · · ·T1x

λ1
2 · · ·x

λk
k+1F [qx1 + x2 + . . .+ xm])
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which by Theorem 2.1.5 and Corollary 2.4.18 converges to

(Y1 + . . .+ Yk)(x
λF [X]) +

t

1− t
ϵk(Tk · · ·T1x

λ1
2 · · ·x

λk
k+1F [X + (q − 1)x1]).

Therefore, the limit operator Ψp1 := limmΨ
(m)
p1 is well defined.

We will now show that the Ẽ(µ|λ) are weight vectors of Ψp1 and compute their corresponding

weight values. Let (µ|λ) ∈ Σ. By Corollary 2.4.21 we have that

Ẽ(µ|λ) = lim
m

ϵ
(m)
ℓ(µ)(Eµ∗λ∗0m−(ℓ(µ)+ℓ(λ))).

Therefore, by Proposition 6.21 from [26], Lemma 2.6.2, and the fact that symmetric polynomials

in the Yi variables commute with the Tj elements it follows that

Ψp1(Ẽ(µ|λ))

= lim
m

Ψ(m)
p1 (ϵ

(m)
ℓ(µ)(Eµ∗λ∗0m−(ℓ(µ)+ℓ(λ))))

= lim
m

tm(Y
(m)
1 + . . .+ Y (m)

m )ϵ
(m)
ℓ(µ)(Eµ∗λ∗0m−(ℓ(µ)+ℓ(λ)))

= lim
m

ϵ
(m)
ℓ(µ)(t

m(Y
(m)
1 + . . .+ Y (m)

m )Eµ∗λ∗0m−(ℓ(µ)+ℓ(λ)))

= lim
m

κ
(m−(ℓ(µ)+ℓ(λ)))
µ∗λ (q, t)ϵ

(m)
ℓ(µ)(Eµ∗λ∗0m−(ℓ(µ)+ℓ(λ)))

= κµ∗λ(q, t)Ẽ(µ|λ).

□

Remark 14. From the proof of Theorem 2.6.4 we see that in particular, for partitions λ we have

that

Ψp1(Aλ[X]) =
t

1− t
(1− (1− t)(1− q)Bλ(q, t))Aλ[X].

We saw that in Corollary 2.4.21 Aλ[X] = (1− t)ℓ(λ)vλ(t)Pλ[X; q−1, t] so, following the argument of

Haiman in [22], the operator t−1(1 − t)Ψp1 is up to a change of variables equal to ∆′. Therefore,

we can view t−1(1 − t)Ψp1 in a certain sense (after changing variables) as extending the operator

∆′ from Λ to P+
as. Further, Theorem 2.6.4 does not follow immediately from the work of Ion and
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Wu in [26] and in particular,

Ψp1 ̸= Y1 + Y2 + . . .

although the latter operator is certainly well defined in a weak sense as a diagonal operator in the

Ẽ(µ|λ) basis. The easiest way to see this is to note that Y1+Y2+ . . . will annihilate Λ whereas Ψp1

acting on the basis Aλ of Λ has nonzero eigenvalues κλ(q, t) ̸= 0.

Theorem 2.6.5 (Second Main Theorem). Let Ỹ denote the Q(q, t)-subalgebra of EndQ(q,t)(P
+
as)

generated by Ψp1 and Yi for i ≥ 1. P+
as has a basis of Ỹ -weight vectors and every Ỹ -weight space

of P+
as is 1-dimensional.

Proof. Since Ψp1 is diagonal in the Ẽ(µ|λ) basis, see Theorem 4.2.12, it commutes with each

Yi. Therefore, Ỹ is a commutative algebra of operators on P+
as so it makes sense to ask about its

weights in P+
as. To show that the Ỹ -weight spaces of P+

as are 1-dimensional it suffices to show that if

(µ(1)|λ(1)) ̸= (µ(2)|λ(2)) for (µ(1)|λ(1)), (µ(2)|λ(2)) ∈ Σ with Ẽ(µ(1)|λ(1)) and Ẽ(µ(2)|λ(2)) having the same

Y -weight then the Ψp1 eigenvalues for Ẽ(µ(1)|λ(1)) and Ẽ(µ(2)|λ(2)) are distinct. Necessarily, from the

proof of Theorem 4.2.12, if Ẽ(µ(1)|λ(1)) and Ẽ(µ(2)|λ(2)) have the same Y -weight then µ(1) = µ(2) = µ.

Since (µ|λ(1)) ̸= (µ|λ(2)) it follows that λ(1) ̸= λ(2) so that sort(µ ∗ λ(1)) ̸= sort(µ ∗ λ(2)). From

Lemma 2.6.2 we then know that κµ∗λ(1) ̸= κµ∗λ(2) so lastly by Theorem 2.6.4 we see that the

Ψp1 eigenvalues for Ẽ(µ|λ(1)) and Ẽ(µ|λ(2)) are distinct. Hence, the Ỹ -weight spaces of P+
as are

1-dimensional.

□

Theorem 2.6.4 motivates the following definition.

Definition 2.6.6. For F ∈ Λ let ΨF : P+
as → P+

as be the diagonal operator in EndQ(q,t)(P
+
as)

in the {Ẽ(µ|λ) : (µ|λ) ∈ Σ} basis given by

ΨF (Ẽ(µ|λ)) := F [κµ∗λ(q, t)]Ẽ(µ|λ).

Notice that by construction every operator ΨF commutes with each of the operators Yi since

from Corollary 4.2.12 we know that the Ẽ(µ|λ) are a basis of P+
as.
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2.7. Higher Delta Operators

At the end of the author’s prior paper [3] it is conjectured that for any symmetric function

F ∈ Λ the sequence of operators (Ψ
(n)
F )n≥1 converges to an operator on P+

as . An affirmation of

this conjecture has direct implications related to the conjectural partially symmetric elliptic Hall

algebras mentioned by Carlsson-Mellit in [8] and the extended double Dyck path algebra Bext
q,t of

González-Gorsky-Simental in [17]. The main purpose of this section is to give a proof of this

conjecture. The proof involves a detailed computation which will be done in stages. We will start

with some of the required preliminaries.

2.7.1. Preliminaries. There are a few elementary technical results we will need before we are

able to prove the main result of this section Theorem 2.7.8.

For the remainder of this section we consider n, k, r with n > k + r ≥ 1. We begin by expressing

certain partially symmetric polynomials in the Cherednik elements Yi in terms of products of

consecutive Cherednik elements.

Lemma 2.7.1.

er

[
tnY

(n)
k+1 + . . .+ tnY (n)

n

]
=

∑
σ∈S

(1k,n−k)
/S

(1k,r,n−k−r)

t−ℓ(σ)Tσt
rnY

(n)
k+1 · · ·Y

(n)
k+rTσ−1

Proof. Notice that for σ ∈ S(1k,n−k)/S(1k,r,n−k−r) the values σ(k + 1), . . . , σ(k + r) are in-

creasing i.e. k + 1 ≤ σ(k + 1) < . . . < σ(k + r) ≤ n− k and uniquely determine σ. As such there is

a natural bijection S(1k,n−k)/S(1k,r,n−k−r) → {(i1, . . . , ir)|k + 1 ≤ i1 < . . . < ir ≤ n− k} given by

σ → (σ(k + 1), . . . , σ(k + r)). Hence, it suffices to show that for all

Y
(n)
σ(k+1) · · ·Y

(n)
σ(k+r) = t−ℓ(σ)TσY

(n)
k+1 · · ·Y

(n)
k+rTσ−1 .

We proceed by induction on the Bruhat order on S(1k,n−k)/S(1k,r,n−k−r). Clearly, this formula

holds for σ = 1.
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Suppose k + 1 = i0 ≤ i1 < . . . < ir ≤ ir+1 = n with ij+1 − ij > 1 for some 0 ≤ j ≤ r. Then

Y
(n)
i1
· · ·Y (n)

ij−1
Y

(n)
ij+1Y

(n)
ij+1

Y
(n)
ij+2
· · ·Y (n)

n

= Y
(n)
i1
· · ·Y (n)

ij−1
(t−1TijY

(n)
ij

Tij )Y
(n)
ij+1

Y
(n)
ij+2
· · ·Y (n)

n

= t−1TijY
(n)
i1
· · ·Y (n)

ir
Tij .

Now if σ, σ′ ∈ S(1k,n−k)/S(1k,r,n−k−r) are the unique elements with σ(k + ℓ) = iℓ and σ′ = sijσ.

Suppose that Y
(n)
σ(k+1) · · ·Y

(n)
σ(k+r) = t−ℓ(σ)TσY

(n)
k+1 · · ·Y

(n)
k+rTσ−1 . Then from the above we find that

Y
(n)
σ′(k+1) · · ·Y

(n)
σ′(k+r)

= Y
(n)
i1
· · ·Y (n)

ij−1
Y

(n)
ij+1Y

(n)
ij+1

Y
(n)
ij+2
· · ·Y (n)

n

= t−1TijY
(n)
i1
· · ·Y (n)

ir
Tij

= t−1TijY
(n)
σ(k+1) · · ·Y

(n)
σ(k+r)Tij

= t−(1+ℓ(σ))TijTσY
(n)
k+1 · · ·Y

(n)
k+rTσ−1Tij

= t−ℓ(σ
′)Tσ′Y

(n)
k+1 · · ·Y

(n)
k+rT(σ′)−1 .

□

Now we may write a product of consecutive Cherednik elements in terms of πn.

Lemma 2.7.2.

trnY
(n)
k+1 · · ·Y

(n)
k+r

= t(n−k)+...+(n−k−r+1)(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)π
r
n(T

−1
n−r · · ·T−1k+1) · · · (T

−1
n−1 · · ·T

−1
k+r).

Proof. We will show this result by induction. For r = 1 we see that

tnY
(n)
k+1 = tn−kTk · · ·T1πnT

−1
n−1 · · ·T

−1
k+1.
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Now we find

t(r+1)nY
(n)
k+1 · · ·Y

(n)
k+r+1

= trnY
(n)
k+1 · · ·Y

(n)
k+rt

nY
(n)
k+r+1

= t(n−k)+...+(n−k−r+1)(Tk · · ·T1) · · · (Tk+r−1 · · ·Tr)π
r
n(T

−1
n−r · · ·T−1k+1) · · · (T

−1
n−1 · · ·T

−1
k+r)t

nY
(n)
k+r+1

= t(n−k)+...+(n−k−r+1)(Tk · · ·T1) · · · (Tk+r−1 · · ·Tr)π
r
n(T

−1
n−r · · ·T−1k+1) · · · (T

−1
n−1 · · ·T

−1
k+r)

×
(
tn−k−rTk+r · · ·T1πnT

−1
n−1 · · ·T

−1
k+r+1

)
= t(n−k)+...+(n−k−r)(Tk · · ·T1) · · · (Tk+r−1 · · ·Tr)π

r
n(T

−1
n−r · · ·T−1k+1) · · · (T

−1
n−1 · · ·T

−1
k+r)

× Tk+r · · ·T1πnT
−1
n−1 · · ·T

−1
k+r+1.

Looking closer we see

(T−1n−r · · ·T−1k+1) · · · (T
−1
n−1 · · ·T

−1
k+r)Tk+r · · ·T1

= (T−1n−r · · ·T−1k+1) · · · (T
−1
n−1 · · ·T

−1
k+r+1)Tk+r−1 · · ·T1

= (T−1n−r · · ·T−1k+1) · · · (T
−1
n−2 · · ·T

−1
k+r−1)Tk+r−1 · · ·T1(T

−1
n−1 · · ·T

−1
k+r+1)

= . . .

= (Tk · · ·T1)(T
−1
n−r · · ·T−1k+2) · · · (T

−1
n−1 · · ·T

−1
k+r+1).
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Therefore,

(Tk · · ·T1) · · · (Tk+r−1 · · ·Tr)π
r
n(T

−1
n−r · · ·T−1k+1) · · · (T

−1
n−1 · · ·T

−1
k+r)Tk+r · · ·T1πnT

−1
n−1 · · ·T

−1
k+r+1

= (Tk · · ·T1) · · · (Tk+r−1 · · ·Tr)π
r
n(Tk · · ·T1)(T

−1
n−r · · ·T−1k+2) · · · (T

−1
n−1 · · ·T

−1
k+r+1)πnT

−1
n−1 · · ·T

−1
k+r+1

= (Tk · · ·T1) · · · (Tk+r−1 · · ·Tr)(Tk+r · · ·Tr+1)π
r
n(T

−1
n−r · · ·T−1k+2) · · · (T

−1
n−1 · · ·T

−1
k+r+1)

× πnT
−1
n−1 · · ·T

−1
k+r+1

= (Tk · · ·T1) · · · (Tk+r−1 · · ·Tr)(Tk+r · · ·Tr+1)π
r+1
n (T−1n−r−1 · · ·T

−1
k+1) · · · (T

−1
n−2 · · ·T

−1
k+r)

× (T−1n−1 · · ·T
−1
k+r+1)

so that

t(r+1)nY
(n)
k+1 · · ·Y

(n)
k+r+1

= t(n−k)+...+(n−k−r)(Tk · · ·T1) · · · (Tk+r · · ·Tr+1)π
r+1
n (T−1n−r−1 · · ·T

−1
k+1) · · · (T

−1
n−1 · · ·T

−1
k+r+1).

□

We need the following standard result.

Lemma 2.7.3.

∑
σ∈S

(1k,n−k)
/S

(1k,r,n−k−r)

t(
n−k
2 )−(n−k−r

2 )−(r2)−ℓ(σ) =
[n− k]t!

[n− k − r]t![r]t!
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Proof. We see the following:

[n− k]t!

=
∑

σ∈S
(1k,n−k)

t(
n−k
2 )−ℓ(σ)

=
∑

σ∈S
(1k,n−k)

/S
(1k,r,n−k−r)

∑
γ∈S

(1k,r,n−k−r)

t(
n−k
2 )−ℓ(σγ)

=
∑

σ∈S
(1k,n−k)

/S
(1k,r,n−k−r)

∑
γ∈S

(1k,r,n−k−r)

t(
n−k
2 )−ℓ(σ)−ℓ(γ)

=
∑

σ∈S
(1k,n−k)

/S
(1k,r,n−k−r)

t(
n−k
2 )−(n−k−r

2 )−(r2)−ℓ(σ)
∑

γ∈S
(1k,r,n−k−r)

t(
n−k−r

2 )+(r2)−ℓ(γ)

= [n− k − r]t![r]t!
∑

σ∈S
(1k,n−k)

/S
(1k,r,n−k−r)

t(
n−k
2 )−(n−k−r

2 )−(r2)−ℓ(σ).

The result follows. □

Using the prior lemmas in this section now shows the following:

Lemma 2.7.4.

er

[
tnY

(n)
k+1 + . . .+ tnY (n)

n

]
ϵ
(n)
k

= t(
r+1
2 )
(
1− tn−k−r+1

1− t

)
· · ·
(
1− tn−k

1− tr

)
ϵ
(n)
k (Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)π

r
nϵ

(n)
k .
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Proof. Putting together Lemmas 2.7.1, 2.7.2, and 2.7.3 we get the following computation:

er

[
tnY

(n)
k+1 + . . .+ tnY (n)

n

]
ϵ
(n)
k

= er

[
tnY

(n)
k+1 + . . .+ tnY (n)

n

]
(ϵ

(n)
k )2

= ϵ
(n)
k er

[
tnY

(n)
k+1 + . . .+ tnY (n)

n

]
ϵ
(n)
k

=
∑

σ∈S
(1k,n−k)

/S
(1k,r,n−k−r)

t−ℓ(σ)ϵ
(n)
k Tσt

rnY
(n)
k+1 · · ·Y

(n)
k+rTσ−1ϵ

(n)
k

=
∑

σ∈S
(1k,n−k)

/S
(1k,r,n−k−r)

t−ℓ(σ)ϵ
(n)
k trnY

(n)
k+1 · · ·Y

(n)
k+rϵ

(n)
k

=

 ∑
σ∈S

(1k,n−k)
/S

(1k,r,n−k−r)

t−ℓ(σ)

 ϵ
(n)
k t(n−k)+...+(n−k−r+1)(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)

× πr
n(T

−1
n−r · · ·T−1k+1) · · · (T

−1
n−1 · · ·T

−1
k+r)ϵ

(n)
k

=

 ∑
σ∈S

(1k,n−k)
/S

(1k,r,n−k−r)

t−ℓ(σ)

 ϵ
(n)
k t(n−k)+...+(n−k−r+1)(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)

× πr
nϵ

(n)
k

= t(
r
2)+r

 ∑
σ∈S

(1k,n−k)
/S

(1k,r,n−k−r)

t(
n−k
2 )−(n−k−r

2 )−(r2)−ℓ(σ)


× ϵ

(n)
k (Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)π

r
nϵ

(n)
k

= t(
r+1
2 ) [n− k]t!

[n− k − r]t![r]t!
ϵ
(n)
k (Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)π

r
nϵ

(n)
k

= t(
r+1
2 )
(
1− tn−k−r+1

1− t

)
· · ·
(
1− tn−k

1− tr

)
ϵ
(n)
k (Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)π

r
nϵ

(n)
k .

□

The next result will be important for the proof of Theorem 2.7.7 where we will need to argue

that the operator er

[
tnY

(n)
k+1 + . . .+ tnY

(n)
n

]
preserves the space x1 . . . xkQ(q, t)[x1, . . . , xn]

S
(1k,n−k)

in the polynomial representation.
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Lemma 2.7.5.

er

[
tnY

(n)
k+1 + . . .+ tnY (n)

n

]
ϵ
(n)
k X1 · · ·Xk

= X1 · · ·Xkt
rk+(r+1

2 )
(
1− tn−k−r+1

1− t

)
· · ·
(
1− tn−k

1− tr

)
× ϵ

(n)
k (T−1k · · ·T−11 )(T−1k+1 · · ·T

−1
2 ) · · · (T−1k+r−1 · · ·T

−1
r )πr

nϵ
(n)
k

Proof.

er

[
tnY

(n)
k+1 + . . .+ tnY (n)

n

]
ϵ
(n)
k X1 · · ·Xk

= t(
r+1
2 )
(
1− tn−k−r+1

1− t

)
· · ·
(
1− tn−k

1− tr

)
ϵ
(n)
k (Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)

× πr
nϵ

(n)
k X1 · · ·Xk

= t(
r+1
2 )
(
1− tn−k−r+1

1− t

)
· · ·
(
1− tn−k

1− tr

)
ϵ
(n)
k (Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)

× πr
nX1 · · ·Xkϵ

(n)
k

= t(
r+1
2 )
(
1− tn−k−r+1

1− t

)
· · ·
(
1− tn−k

1− tr

)
× ϵ

(n)
k (Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)Xr+1 · · ·Xk+rπ

r
nϵ

(n)
k .

Further,

Tk+r−1 · · ·TrXr+1 · · ·Xr+k

= Tk+r−1 · · ·Tr+1(TrXr+1)Xr+2 · · ·Xr+k

= Tk+r−1 · · ·Tr+1(tXrT
−1
r )Xr+2 · · ·Xr+k

= tTk+r−1 · · ·Tr+1XrXr+2 · · ·Xr+kT
−1
r

= tXrTk+r−1 · · ·Tr+1Xr+2 · · ·Xr+kT
−1
r
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= tXrTk+r−1 · · ·Tr+2tXr+1T
−1
r+1Xr+3 · · ·Xr+kT

−1
r

= t2XrXr+1Tk+r−1 · · ·Tr+2Xr+3 · · ·Xr+kT
−1
r+1T

−1
r

= . . .

= tkXr · · ·Xr+k−1T
−1
k+r−1 · · ·T

−1
r .

By applying this argument repeatedly we find that

(Tk · · ·T1) · · · (Tk+r−2 · · ·Tr−1)(Tk+r−1 · · ·Tr)Xr+1 · · ·Xk+r

= tk(Tk · · ·T1) · · · (Tk+r−2 · · ·Tr−1)Xr · · ·Xk+r−1(T
−1
k+r−1 · · ·T

−1
r )

= . . .

= trkX1 · · ·Xk(T
−1
k · · ·T−11 ) · · · (T−1k+r−1 · · ·T

−1
r )

so therefore,

t(
r+1
2 )
(
1− tn−k−r+1

1− t

)
· · ·
(
1− tn−k

1− tr

)
ϵ
(n)
k (Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+r−1 · · ·Tr)

×Xr+1 · · ·Xk+rπ
r
nϵ

(n)
k

= t(
r+1
2 )
(
1− tn−k−r+1

1− t

)
· · ·
(
1− tn−k

1− tr

)
ϵ
(n)
k trkX1 · · ·Xk(T

−1
k · · ·T−11 ) · · · (T−1k+r−1 · · ·T

−1
r )πr

nϵ
(n)
k

= X1 · · ·Xkt
rk+(r+1

2 )
(
1− tn−k−r+1

1− t

)
· · ·
(
1− tn−k

1− tr

)
ϵ
(n)
k (T−1k · · ·T−11 ) · · · (T−1k+r−1 · · ·T

−1
r )πr

nϵ
(n)
k .

□

Lastly, we have the standard coproduct formula for the elementary symmetric functions.

Lemma 2.7.6. er[X + Y ] =
∑r

s=0 es[X]er−s[Y ].
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Proof. Using the definition of er we see that if Z = z1 + z2 + . . . then

er[Z] =
∑

i1<...<ir

zi1 · · · zir

so if we set Z = X + Y we have

er[X + Y ] =
r∑

s=0

∑
i1<...<iℓ

j1<...<jr−s

Xi1 · · ·XisYj1 · · ·Yjr−s =
r∑

s=0

eℓ[X]er−s[Y ].

□

2.7.2. Proof of Convergence. We will now use all of the lemmas proven above to show the

following result:

Proposition 2.7.7. For r ≥ 1 the sequence of operators (Ψ
(n)
er )n≥1 converges to an operator er[∆]

on P+
as . The operators er[∆] satisfy the following properties:

• er[∆](Ẽ(µ|λ)) = er[κsort(µ∗λ)(q, t)]Ẽ(µ|λ)

• [er[∆],Yi] = 0

• [er[∆], Ti] = 0

• [er[∆], es[∆]] = 0

•

er[∆]|x1···xk P(k)+ =

r∑
s=0

s∏
i=1

(
ti

1− ti

)
er−s(Y1, . . . ,Yk)ϵk(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+s−1 · · ·Ts)π

s.

Proof. The structure of the following argument is similar to the proof of Theorem 59 in [3].

Notice that every element of P+
as is a finite Q(q, t)-linear combination of terms of the form

Tσx
λF [X] where σ is a permutation, λ is a partition, and F ∈ Λ. Therefore, to show that the

sequence of operators (Ψ
(n)
er )n≥1 converges it suffices to show that sequences of the form

(Ψ(n)
er (Tσx

λF [x1 + . . .+ xn]))n≥1

converge. For n sufficiently large, Tσ commutes with Ψ
(n)
er = er[t

nY
(n)
1 + . . .+ tnY

(n)
n ] so it suffices

to consider only sequences of the form

(Ψ(n)
er (xλF [x1 + . . .+ xn]))n≥1.
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Let λ be a partition, k := ℓ(λ), F ∈ Λ, and take n > k + r. Set λ′ := (λ1 − 1, . . . , λk − 1). Recall

that Ỹ
(n)
1 X1 = tnY

(n)
1 X1 from which it follows directly that Ỹ

(n)
i Xi = tnY

(n)
i Xi for all 1 ≤ i ≤ n.

Then for all 1 ≤ i ≤ k we have that

tnY
(n)
i X1 · · ·Xk = Ỹ

(n)
i X1 · · ·Xk.

This means that as operators on x1 . . . xk P+
k , t

nY
(n)
i = Ỹ

(n)
i . Note that these operators preserve the

subspace x1 . . . xk P+
k . Further, we may naturally extend this argument to show that as operators

on x1 · · ·xk P+
k for any a1, . . . , ak ≥ 0, and any permutation γ ∈ Sk,

(tnY
(n)
γ(1))

a1 · · · (tnY (n)
γ(k))

ak |x1···xk P+
k
= (Ỹ

(n)
γ(1))

a1 · · · (Ỹ (n)
γ(k))

ak |x1···xk P+
k
.

This is notable because, unlike the Cherednik operators Y
(n)
i , the deformed Cherednik operators

Ỹ
(n)
i do not mutually commute. Therefore again as operators on P+

k , for all 0 ≤ s ≤ r

er−s[t
nY

(n)
1 + . . .+ tnY

(n)
k ]X1 · · ·Xk = er−s(Ỹ

(n)
1 , . . . , Ỹ

(n)
k )X1 · · ·Xk.

Using Lemma 2.7.6 we now find the following:

er[t
nY

(n)
1 + . . .+ tnY (n)

n ](xλF [x1 + . . .+ xn])

= er[(t
nY

(n)
1 + . . .+ tnY

(n)
k ) + (tnY

(n)
k+1 + . . .+ tnY (n)

n )](xλF [x1 + . . .+ xn])

=
r∑

s=0

er−s[t
nY

(n)
1 + . . .+ tnY

(n)
k ]es[t

nY
(n)
k+1 + . . .+ tnY (n)

n ](xλF [x1 + . . .+ xn]).

Importantly, since xλF [x1 + . . .+ xn] is symmetric in k + 1, . . . , n,

ϵ
(n)
k (xλF [x1 + . . .+ xn]) = xλF [x1 + . . .+ xn]

so that by using Lemmas 2.7.4 and 2.7.5 we find
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r∑
s=0

er−s[t
nY

(n)
1 + . . .+ tnY

(n)
k ]es[t

nY
(n)
k+1 + . . .+ tnY (n)

n ](xλF [x1 + . . .+ xn])

=
r∑

s=0

er−s[t
nY

(n)
1 + . . .+ tnY

(n)
k ]es[t

nY
(n)
k+1 + . . .+ tnY (n)

n ]ϵ
(n)
k X1 · · ·Xk(x

λ′
F [x1 + . . .+ xn])

=

r∑
s=0

er−s[t
nY

(n)
1 + . . .+ tnY

(n)
k ]X1 · · ·Xkt

sk+(s+1
2 )
(
1− tn−k−s+1

1− t

)
· · ·
(
1− tn−k

1− ts

)
ϵ
(n)
k

× (T−1k · · ·T−11 )(T−1k+1 · · ·T
−1
2 ) · · · (T−1k+s−1 · · ·T

−1
s )πr

nϵ
(n)
k (xλ

′
F [x1 + . . .+ xn])

=

r∑
s=0

er−s(t
nỸ

(n)
1 , . . . , tnỸ

(n)
k )X1 · · ·Xkt

sk+(s+1
2 )
(
1− tn−k−s+1

1− t

)
· · ·
(
1− tn−k

1− ts

)
ϵ
(n)
k

× (T−1k · · ·T−11 )(T−1k+1 · · ·T
−1
2 ) · · · (T−1k+s−1 · · ·T

−1
s )πr

nϵ
(n)
k (xλ

′
F [x1 + . . .+ xn])

=
r∑

s=0

er−s(t
nỸ

(n)
1 , . . . , tnỸ

(n)
k )t(

s+1
2 )
(
1− tn−k−s+1

1− t

)
· · ·
(
1− tn−k

1− ts

)
ϵ
(n)
k

× (Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+s−1 · · ·Ts)π
s
n(x

λF [x1 + . . .+ xn]).

From here it is clear that

lim
n

Ψ(n)
er (xλF [x1 + . . .+ xn])

=
r∑

s=0

s∏
i=1

(
ti

1− ti

)
er−s(Y1, . . . ,Yk)ϵk(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+s−1 · · ·Ts)π

s(xλF [X])

which is evidently an element of P(k)+ ⊂P+
as . Therefore, the sequence of operators (Ψ

(n)
er )n≥1

converges to an operator on P+
as which we will call er[∆].

We will now prove various properties of er[∆]. For all 1 ≤ i ≤ k − 1 and 0 ≤ s ≤ r
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ϵk(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+s−1 · · ·Ts)π
sTi

= ϵk(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+s−1 · · ·Ts)Ti+sπ
s

= ϵk(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+s−2 · · ·Ts−2)Ti+s−1(Tk+s−1 · · ·Ts)π
s

= . . .

= ϵkTi(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+s−1 · · ·Ts)π
s

= Tiϵk(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+s−1 · · ·Ts)π
s.

Therefore, for any f ∈ x1 · · ·xk P(k)+ by expanding f into a sum of terms of the form Tσx
λF [X]

where σ ∈ Sk and λ is a partition with ℓ(λ) = k we find that

er[∆](f) =
r∑

s=0

s∏
i=1

(
ti

1− ti

)
er−s(Y1, . . . ,Yk)ϵk(Tk · · ·T1)(Tk+1 · · ·T2) · · · (Tk+s−1 · · ·Ts)π

s(f).

Now let (µ|λ) ∈ Φ. Using Corollary 47 in [3] (see Definition 2.4.10) and Proposition 1.7.5 we have

that

er[∆](Ẽ(µ|λ))

= lim
n

er[t
nY

(n)
1 + · · ·+ tnY (n)

n ](ϵ
(n)
ℓ(µ)(Eµ∗λ∗0n−(ℓ(µ)+ℓ(λ))))

= lim
n

ϵ
(n)
ℓ(µ)er[t

nY
(n)
1 + · · ·+ tnY (n)

n ](Eµ∗λ∗0n−(ℓ(µ)+ℓ(λ)))

= lim
n

ϵ
(n)
ℓ(µ)

(
er

[
n∑

i=1

qsort(µ∗λ)iti

]
Eµ∗λ∗0n−(ℓ(µ)+ℓ(λ))

)

= lim
n

er

[
n∑

i=1

qsort(µ∗λ)iti

]
ϵ
(n)
ℓ(µ)(Eµ∗λ∗0n−(ℓ(µ)+ℓ(λ)))

= er[κsort(µ∗λ)(q, t)]Ẽ(µ|λ).
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To see that [er[∆], Ti] = 0 we may check directly:

er[∆]Ti

= lim
n

er[t
nY

(n)
1 + . . .+ tnY (n)

n ]Ti

= lim
n

Tier[t
nY

(n)
1 + . . .+ tnY (n)

n ]

= Tier[∆].

Lastly, since the Ẽ(µ|λ) are a basis of P+
as (Theorem 4.2.12) it follows that for all i, r, s ≥ 1,

• [er[∆],Yi] = 0

• [er[∆], es[∆]] = 0.

□

As an immediate consequence we have the following result confirming the conjecture posed in [3].

Theorem 2.7.8. For any symmetric function F ∈ Λ the sequence of operators (Ψ
(n)
F )n≥1 con-

verges to an operator on P+
as which we may call F [∆]. These operators satisfy the following prop-

erties:

• F [∆](Ẽ(µ|λ)) = F [κsort(µ∗λ)(q, t)]Ẽ(µ|λ)

• [F [∆],Yi] = 0

• [F [∆], Ti] = 0

• [F [∆], G[∆]] = 0.

Proof. Recall that the ring of symmetric functions Λ is generated algebraically by the ele-

mentary symmetric polynomials e1, e2, . . . . For any F ∈ Λ we may write F = f(e1, e2, . . . , er) so

that for all n ≥ 1

Ψ
(n)
F = f(Ψ(n)

e1 , . . . ,Ψ(n)
er ).

By applying Propositions 1.7.6 and 2.7.7 we find that (Ψ
(n)
F )n≥1 converges and that

F [∆] := lim
n

Ψ
(n)
F = f(lim

n
Ψ(n)

e1 , . . . , lim
n

Ψ(n)
er ) = f(e1[∆], . . . , er[∆]).
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For (µ|λ) ∈ Φ we see that

F [∆](Ẽ(µ|λ))

= f(e1[∆], . . . , er[∆])(Ẽ(µ|λ))

= f(e1[κsort(µ∗λ)(q, t)], . . . , er[κsort(µ∗λ)(q, t)])(Ẽ(µ|λ))

= F [κsort(µ∗λ)(q, t)]Ẽ(µ|λ).

The other properties follow directly from Theorem 4.2.12 and Proposition 2.7.7.

□

Example. The operator e2[∆] acts on x1x2x3 P(3)+ as

(Y1Y2 + Y1Y3 + Y2Y3) +
t

1− t
(Y1 + Y2 + Y3)ϵ3T3T2T1π +

t3

(1− t)(1− t2)
ϵ3T3T2T1T4T3T2π

2.

If we instead consider e4[∆] acting on P(0)+ = Λ[X] then we get

t10

(1− t)(1− t2)(1− t3)(1− t4)
ϵπ4.

As an example computation we have that

p2[∆](Ẽ(4,1,2|5,4,2,2,1)) =(
q10t2 + q8t4 + q8t6 + q4t8 + q4t10 + q4t12 + q2t14 + q2t16 + t18 + . . .

)
Ẽ(4,1,2|5,4,2,2,1).

In the next section we will explore a few interesting commutation relations satisfied by the ∆-

operators on P+
as .

2.7.3. Interesting Relations. In this section we compute some of the commutation relations

between the ∆-operators F [∆] and the operator π̃ on P+
as. These relations are conceptually

important because in the case of the finite rank DAHA in type GLn the analogous commutation

relations allow for one to develop a theory of intertwiners and the Knop-Sahi relations for non-

symmetric Macdonald polynomials.
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We start with the following result which will follow easily using the properties of Ion-Wu limits

and particularly Proposition 1.7.6.

Proposition 2.7.9. For F ∈ Λ

π̃F [∆] = F [∆ + (q−1 − 1)Y1]π̃.

Proof. Let F ∈ Λ and Gi, Hi ∈ Λ such that

F [X + Y ] =
∑
i

Gi[X]Hi[Y ].

We may compute directly:

π̃F [∆] = lim
n

π̃nF [tnY
(n)
1 + . . .+ tnY (n)

n ]

= lim
n

F [tnY
(n)
2 + . . .+ tnY (n)

n + q−1tnY
(n)
1 ]π̃n

= lim
n

F [tnY
(n)
1 + . . .+ tnY (n)

n + (q−1 − 1)tnY
(n)
1 ]π̃n

= lim
n

∑
i

Gi[t
nY

(n)
1 + . . .+ tnY (n)

n ]Hi[(q
−1 − 1)tnY

(n)
1 ]π̃n

= lim
n

∑
i

Gi[t
nY

(n)
1 + . . .+ tnY (n)

n ]Hi[(q
−1 − 1)tnY

(n)
1 ]X1T

−1
1 · · ·T−1n−1

= lim
n

∑
i

Gi[t
nY

(n)
1 + . . .+ tnY (n)

n ]Hi[(q
−1 − 1)Ỹ

(n)
1 ]X1T

−1
1 · · ·T−1n−1

= lim
n

∑
i

Gi[t
nY

(n)
1 + . . .+ tnY (n)

n ]Hi[(q
−1 − 1)Ỹ

(n)
1 ]π̃n

=
∑
i

(
lim
n

Gi[t
nY

(n)
1 + . . .+ tnY (n)

n ]
)(

lim
n

Hi[(q
−1 − 1)Ỹ

(n)
1 ]

)(
lim
n

π̃n

)
=
∑
i

Gi[∆]Hi[(q
−1 − 1)Y1]π̃

= F [∆ + (q−1 − 1)Y1]π̃.

□

By applying Proposition 2.7.9 to F = pr we see the following:
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Corollary 2.7.10. For every r ≥ 1

[π̃, pr[∆]] = (q−r − 1)Y r
1 π̃.

Proof. Using Proposition 2.7.9 applied to F [X] = pr[X] gives

π̃pr[∆] = pr[∆ + (q−1 − 1)Y1]π̃ = (pr[∆] + (q−r − 1)Y r
1 )π̃.

□

Lastly, we compute the full commutation relations between the limit Cherednik operators Yi and

π̃. Interestingly, most of these relations mimic the standard finite rank DAHA situation except for

Y1π̃ which now involves ∆.

Proposition 2.7.11.

Yiπ̃ =


π̃Yi−1 i > 1

[π̃,∆]/(q−1 − 1) i = 1.

Proof. For i = 1 we have that from Proposition 2.7.9

π̃∆−∆π̃ = (q−1 − 1)Y1π̃

and hence

Y1π̃ = [π̃,∆]/(q−1 − 1).
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Let i > 1. We see that

Yiπ̃

= lim
n

Ỹ
(n)
i π̃n

= lim
n

(
tn−i+1Ti−1 · · ·T1ρπnT

−1
n−1 · · ·T

−1
i

) (
X1T

−1
1 · · ·T−1n−1

)
= lim

n
tn−i+1Ti−1 · · ·T1ρπnX1T

−1
n−1 · · ·T

−1
i T−11 · · ·T−1n−1

= lim
n

tn−i+1Ti−1 · · ·T1ρX2πnT
−1
n−1 · · ·T

−1
i T−11 · · ·T−1n−1

= lim
n

tn−i+1Ti−1 · · ·T1X2ρπnT
−1
n−1 · · ·T

−1
i T−11 · · ·T−1n−1

= lim
n

tn−i+1Ti−1 · · ·T2(tX1T
−1
1 )ρπnT

−1
n−1 · · ·T

−1
i T−11 · · ·T−1n−1

= lim
n

tn−i+2X1Ti−1 · · ·T2T
−1
1 ρπnT

−1
1 · · ·T−1i−2T

−1
n−1 · · ·T

−1
i T−1i−1 · · ·T

−1
n−1

= lim
n

tn−i+2X1Ti−1 · · ·T2T
−1
1 ρT−12 · · ·T−1i−1πnT

−1
n−1 · · ·T

−1
i T−1i−1 · · ·T

−1
n−1

= lim
n

tn−i+2X1Ti−1 · · ·T2T
−1
1 T−12 · · ·T−1i−1ρπnT

−1
n−1 · · ·T

−1
i T−1i−1 · · ·T

−1
n−1

= lim
n

tn−i+2X1T
−1
1 · · ·T−1i−1Ti−2 · · ·T1ρπnT

−1
i−1 · · ·T

−1
n−2T

−1
n−1 · · ·T

−1
i−1

= lim
n

tn−i+2X1T
−1
1 · · ·T−1i−1Ti−2 · · ·T1ρT

−1
i · · ·T−1n−1πnT

−1
n−1 · · ·T

−1
i−1

= lim
n

tn−i+2X1T
−1
1 · · ·T−1i−1Ti−2 · · ·T1T

−1
i · · ·T−1n−1ρπnT

−1
n−1 · · ·T

−1
i−1

= lim
n

tn−i+2X1T
−1
1 · · ·T−1i−1T

−1
i · · ·T−1n−1Ti−2 · · ·T1ρπnT

−1
n−1 · · ·T

−1
i−1

= lim
n

(
X1T

−1
1 · · ·T−1n−1

) (
tn−i+2Ti−2 · · ·T1ρπnT

−1
n−1 · · ·T

−1
i−1
)

= lim
n

π̃nỸ
(n)
i−1

= π̃Yi−1.

□

2.8. Specialization at t = 0, q =∞

The goal of this section is to determine the specialization of the stable-limit non-symmetric

Macdonald functions Ẽ(µ|λ) at q = ∞ and t = 0. After adjusting for the (q, t)-conventions in
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this thesis, we will see that this specialization generalizes the well known specialization result of

Ion [25] about the non-symmetric Macdonald polynomials. We will show that the specializations

of the Ẽ(µ|λ) give an almost symmetric generalization of the Schur functions s(µ|λ) which satisfy

some positivity properties. Further, we will give an interpretation for the these almost symmetric

Schur functions in terms of Demazure characters.

In order to state and prove the main results of this section we will first need to review some

relevant information about Weyl symmetrization, isobaric divided difference operators, and key

polynomials.

2.8.1. Weyl Symmetrization and Isobaric Divided Difference Operators. We now

recall the definition of the Weyl symmetrization map and its partial symmetrization analogues.

Informally, these maps are the t = 0 specialization of the ϵ
(n)
k maps defined previously.

Definition 2.8.1. Let 0 ≤ k ≤ n. We define the partial Weyl symmetrizer, W
(n)
k , to be the

map

W
(n)
k : Q(q, t)[x1, . . . , xn]→ Q(q, t)[x1, . . . , xn]

S
(1k,n−k)

given by

W
(n)
k (f(x1, . . . , xn)) :=

∑
σ∈S

(1k,n−k)

σ

f(x)
∏

k+1≤i<j≤n

(
1

1− xj/xi

) .

Remark 15. Notice that these maps are defined over Q (over Z in fact) and hence in fact define

maps

W
(n)
k : Q[x1, . . . , xn]→ Q[x1, . . . , xn]

S
(1k,n−k) .

It is not immediately obvious that W
(n)
k (f(x1, . . . , xn)) is a well defined polynomial due to presence

of the nontrivial rational function

∏
k+1≤i<j≤n

(
1

1− xj/xi

)
.

However, we may rewrite the given definition of W
(n)
k as follows. Let δ

(n)
k := 0k∗(n−k−1, . . . , 1, 0).
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W
(n)
k (f(x1, . . . , xn))

=
∑

σ∈S
(1k,n−k)

σ

f(x)
∏

k+1≤i<j≤n

(
1

1− xj/xi

)
=

∑
σ∈S

(1k,n−k)

σ

f(x)
∏

k+1≤i<j≤n

(
xi

xi − xj

)
=

∑
σ∈S

(1k,n−k)

σ

xδ
(n)
k f(x)

∏
k+1≤i<j≤n

(
1

xi − xj

)

=

∑
σ∈S

(1k,n−k)
(−1)ℓ(σ)σ

(
xδ

(n)
k f(x)

)
∏

k+1≤i<j≤n (xi − xj)
.

Since the numerator of the above fraction is an alternating polynomial, i.e. si(g) = −g for k +

1 ≤ i ≤ n − 1, it must be divisible by the Vandermonde determinant
∏

k+1≤i<j≤n (xi − xj) . Thus

W
(n)
k (f(x1, . . . , xn)) must be a polynomial.

Lemma 2.8.2. As elements of EndQ(q,t)(Pn) the operators W
(n)
k satisfy the following:

• (W
(n)
k )2 = W

(n)
k

• σW
(n)
k = W

(n)
k σ for σ ∈ S(k,n−k)

• σW
(n)
k = W

(n)
k for σ ∈ S(1k,n−k)

• W
(n)
k W

(n)
j = W

(n)
k for k < j.

Proof. These properties are straightforward to verify and we leave their verification to the

reader. □

Lemma 2.8.3. For 0 ≤ k ≤ n

W
(n)
k Ξ(n) = Ξ(n)W

(n+1)
k .
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Proof. We begin with the following computation:

W
(n+1)
k (f)

=

∑
σ∈S

(1k,n+1−k)
(−1)ℓ(σ)σ

(
xδ

(n+1)
k f(x)

)
∏

k+1≤i<j≤n+1 (xi − xj)

=
1∏

k+1≤i<j≤n+1 (xi − xj)

∑
σ∈S

(1k,n−k,1)

∑
γ∈S

(1k,n−k,1)
\S

(1k,n+1−k)

(−1)ℓ(σγ)σγ
(
xδ

(n+1)
k f(x)

)

=
1∏

k+1≤i<j≤n+1 (xi − xj)

∑
σ∈S

(1k,n−k,1)

(−1)ℓ(σ)σ
∑

γ∈S
(1k,n−k,1)

\S
(1k,n+1−k)

(−1)ℓ(γ)γ
(
xδ

(n+1)
k f(x)

)

=
1∏

k+1≤i<j≤n+1 (xi − xj)

×
∑

σ∈S
(1k,n−k,1)

(−1)ℓ(σ)σ
(
1− sn ± . . .+ (−1)n−k+1sn · · · sk

)(
xδ

(n+1)
k f(x)

)
.

Now notice that for all k ≤ i ≤ n, sn · · · siXδ
(n+1)
k = Xn+1sn · · · si(Xδ

(n+1)
k −ei). Further, if xn+1|g

then xn+1|σ(g) for any σ ∈ S(1k,n−k,1). Thus we may write

W
(n+1)
k (f) =

1∏
k+1≤i<j≤n+1 (xi − xj)

 ∑
σ∈S

(1k,n−k,1)

(−1)ℓ(σ)σ
(
xδ

(n+1)
k f(x)

)
+ xn+1g


for some polynomial g.

Therefore,

Ξ(n)W
(n+1)
k (f)

= Ξ(n) 1∏
k+1≤i<j≤n+1 (xi − xj)

 ∑
σ∈S

(1k,n−k,1)

(−1)ℓ(σ)σ
(
xδ

(n+1)
k f(x)

)
+ xn+1g


=

x−1k+1 · · ·x
−1
n∏

k+1≤i<j≤n (xi − xj)

 ∑
σ∈S

(1k,n−k,1)

(−1)ℓ(σ)σ
(
Ξ(n)(xδ

(n+1)
k f(x))

)
+ 0


=

x−1k+1 · · ·x
−1
n∏

k+1≤i<j≤n (xi − xj)

 ∑
σ∈S

(1k,n−k,1)

(−1)ℓ(σ)σ
(
xδ

(n+1)
k Ξ(n)(f(x))

) .
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Since we have that x−1k+1 · · ·x
−1
n xδ

(n+1)
k = xδ

(n)
k we see

Ξ(n)W
(n+1)
k (f)

=
1∏

k+1≤i<j≤n (xi − xj)

 ∑
σ∈S

(1k,n−k,1)

(−1)ℓ(σ)σ
(
xδ

(n)
k Ξ(n)(f(x))

)
= W

(n)
k (Ξ(n)(f(x))).

□

The above lemma allows for the following definition.

Definition 2.8.4. Let k ≥ 0 define the operator Wk on P+
as as

Wk := lim
n

W
(n)
k .

As we will prove later, the operators Wk are the t = 0 specializations of the partial Hecke

symmetrizers ϵk.

Definition 2.8.5. Define the isobaric divided difference operators, ξ1, . . . ξn−1, on Pn by

ξi(f) =
xif − xi+1si(f)

xi − xi+1
.

Lemma 2.8.6. We have the following relations:

• ξ2i = ξi

• ξiξi+1ξi = ξi+1ξiξi+1

• ξiξj = ξjξi for |i− j| > 1.

Proof. This will follow from Lemma 2.8.15 proven independently later in this section. □

The above are the generating relations for the 0-Hecke algebra . For any σ ∈ Sn with a reduced

expression σ = si1 · · · sir we define

ξσ = ξi1 · · · ξir .

The following lemma relates the Weyl symmetrizers W
(n)
k to be the isobaric divided difference

operators ξi.
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Lemma 2.8.7. We have the recursion relation:

W
(n)
k = ξn−1 · · · ξk+1W

(n)
k+1.

Proof. We leave this as an exercise to the reader. □

One of the main utilities for defining the maps W
(n)
k is that they generate the Schur polynomials

in the following way.

Proposition 2.8.8 (Weyl Character Formula for GLn). For λ ∈ Y and n ≥ ℓ(λ)

W
(n)
0 (xλ) = sλ(x1, . . . , xn).

2.8.2. Key Polynomials. Here we review some relevant information about the key polyno-

mials.

Definition 2.8.9. Let n ≥ 1. Define the key polynomials to be the unique collection of poly-

nomials {Kα(x1, . . . , xn)}α∈Zn
≥0

determined by the following properties:

• If α1 ≥ . . . ≥ αn then

Kα(x1, . . . , xn) := xα.

• Whenever αi > αi+1

Ksi(α)(x1, . . . , xn) = ξi(Kα(x1, . . . , xn)).

By a simple induction argument we see that for α ∈ Zn
≥0

K(α1,...,αn,0)(x1, . . . , xn, xn+1) = K(α1,...,αn)(x1, . . . , xn).

As such we will refer to Kµ(x) for µ ∈ Compred unambiguously as an element of Z≥0[x1, x2, x3, . . .] ⊂

P+
as .

Remark 16. It is known that the key polynomials {Kα|α ∈ Zk
≥0} for a basis for P+

k .

For λ ∈ Y and n ≥ ℓ(λ)

K0n−ℓ(λ)∗rev(λ)(x1, . . . , xn) = sλ(x1, . . . , xn).
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Further, if α = (α1, . . . , αn) ∈ Zn
≥0 and there exists some 1 ≤ i < j ≤ n with αi < . . . < αj then

Kα(x1, . . . , xn) is symmetric in the variables xi, . . . , xj .

2.8.3. Specialization at t = 0, q =∞.

Definition 2.8.10. Define O ⊂P+
as to be the set of f(x) ∈P+

as such that

f(x) = f(x1, x2, . . . ; q
−1, t) =

∑
i

c(i)xµ
(i)
mλ(i) [X]

for some scalars c(i) = c(i)(q−1, t) ∈ Q[q−1][[t]] ∩ Q(q, t), (µ(i)|λ(i)) ∈ Σ. Let P+
as,Q denote the set

of f(x) ∈P+
as such that

f(x) =
∑
i

c(i)xµ
(i)
mλ(i) [X]

for some scalars c(i) ∈ Q, (µ(i)|λ(i)) ∈ Σ. Define the Q-algebra homomorphism Υ : O →P+
as,Q by

Υ(f(x1, x2, . . . ; q
−1, t)) := f(x1, x2, . . . ; 0, 0).

Equivalently,

Υ(f) := lim
q→∞

lim
t→0

f.

We will need the following lemma.

Lemma 2.8.11. Let fn ∈P+
n ∩O with limn fn = f ∈P+

as . Then f ∈ O and

Υ(f) = lim
n

Υ(fn).

Proof. By the definition of convergence (see Definition 1.7.3) we know that we have for all

n ≥ 1

fn =
N∑
i=1

c(i)n xµ
(i)
mλ(i) [x1 + . . .+ xn]

where c
(i)
n ∈ Q(q, t), (µ(i)|λ(i)) ∈ Σ with limn c

(i)
n = c(i) ∈ Q(q, t) convergent t-adically. Since

fn ∈ P+
n ∩O we know that c

(i)
n = c

(i)
n (q−1, t) ∈ Q[q−1][[t]] ∩ Q(q, t). Since Q[q−1][[t]] is complete

t-adically we must have c(i) ∈ Q[q−1][[t]] ∩Q(q, t). Then it is clear that

f =

N∑
i=1

c(i)xµ
(i)
mλ(i) [X] ∈ O.
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A simple topological argument shows that

lim
q→∞

lim
t→0

c(i)(q−1, t) = lim
n

lim
q→∞

lim
t→0

c(i)n (q−1, t).

Then we find

lim
n

Υ(fn)

= lim
n

Υ

(
N∑
i=1

c(i)n xµ
(i)
mλ(i) [x1 + . . .+ xn]

)

= lim
n

lim
q→∞

lim
t→0

N∑
i=1

c(i)n xµ
(i)
mλ(i) [x1 + . . .+ xn]

= lim
n

N∑
i=1

(
lim
q→∞

lim
t→0

c(i)n

)
xµ

(i)
mλ(i) [x1 + . . .+ xn]

=

N∑
i=1

(
lim
q→∞

lim
t→0

c(i)
)
xµ

(i)
mλ(i) [X]

= Υ(f).

□

Adjusting to the (q, t)-conventions in this thesis we may restate a result of Ion [25] relating the

non-symmetric Macdonald polynomials to the key polynomials.

Theorem 2.8.12. [25] For α ∈ Zn
≥0

Υ(Eα) = Kα.

From Ion’s result we find a known combinatorial formula for the key polynomials using the HHL

combinatorial formula (see 2.2.2) for the non-symmetric Macdonald polynomials. For α ∈ Zn
≥0

denote by L(α) the set of non-attacking labellings σ : α→ [n] such that maj(σ̂) = coinv(σ̂) = 0.

Proposition 2.8.13. For α ∈ Zn
≥0,

Kα =
∑

σ∈L(α)

xσ.
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Proof. From the combinatorial formula for Eα (Theorem 2.2.2) we see that

Eα =
∑

σ:α→[n]
non-attacking

xσq−maj(σ̂)tcoinv(σ̂)
∏

u∈dg′(α)
σ̂(u) ̸=σ̂(d(u))

(
1− t

1− q−(lg(u)+1)t(a(u)+1)

)
.

Note that the values leg(u) and arm(u) are both non-negative so that Eα ∈ O. Therefore, when we

specialize q →∞ and t→ 0 we find that

lim
q→∞

lim
t→0

q−maj(σ̂)tcoinv(σ̂)
∏

u∈dg′(α)
σ̂(u) ̸=σ̂(d(u))

(
1− t

1− q−(lg(u)+1)t(a(u)+1)

)
= 1 (maj(σ̂) = coinv(σ̂) = 0) .

Hence, from Theorem 2.8.12

Kα = Υ(Eα) =
∑

σ:α→[n]
non-attacking
maj(σ̂)=0
coinv(σ̂)=0

xσ =
∑

σ∈L(α)

xσ.

□

Remark 17. Note that maj(σ̂) = 0 is equivalent to Des(σ̂) = ∅ which in turn is equivalent

to σ̂(u) ≤ σ̂(d(u)) i.e. σ̂ is weakly decreasing upwards along columns. The requirement that

coinv(σ̂) = 0 is equivalent to the statement that σ̂ has no co-inversion triples (see Definition

2.2.3). Importantly, for a non-attacking filling σ : α → [n], coinv(σ̂) is equal to the number of

co-inversion triples of σ̂. Thus a non-attacking filling σ is in L(α) if σ̂ is weakly decreasing upwards

along columns and has no co-inversion triples.

As an easy application of Ion’s result we may compute the specializations of all Ẽ(µ|∅).

Proposition 2.8.14. For all µ ∈ Compred, Ẽ(µ|∅) ∈ O and

Υ(Ẽ(µ|∅)) = Kµ.

Proof. Let µ ∈ Compred . From the combinatorial formula Corollary 2.3.2 we may observe

directly that Ẽ(µ|∅) ∈ O. To see this note that each of the scalar coefficients of the expansion of

Ẽ(µ|∅) has the form

q−atb
∏
i

(
1− t

1− q−citdi

)
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for some a, b, ci, di ≥ 0. By expanding the denominators

1

1− q−citdi
=
∑
m≥0

q−mcitmdi

we see that

q−atb
∏
i

(
1− t

1− q−citdi

)
∈ Q[q−1][[t]]

as required.

As Υ(Ẽµ) is now well defined, we may compute directly using Lemma 2.8.11 to find

Υ(Ẽµ)

= lim
n

Υ(Eµ∗0n)

= lim
n
Kµ∗0n

= lim
n
Kµ

= Kµ.

□

In the next lemma we will formalize the notion that the operators ξi,Wk are the q =∞ and t = 0

specializations of Ti, ϵk respectively. This result is standard but we will include its proof for the

sake of completeness.

Lemma 2.8.15. For all k ≥ 0 and i ≥ 1, Υ ◦ Ti|O = ξi ◦Υ|O and Υ ◦ ϵk|O = Wk ◦Υ|O.

Proof. Let f = f(x; q−1, t) ∈P+
as ∩O. Let i ≥ 1 and k ≥ 0.
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First, we have

Υ ◦ Ti(f)

= Υ

(
si(f) + (1− t)xi

f − si(f)

xi − xi+1

)
= siΥ(f) + (1− 0)xi

Υ(f)− siΥ(f)

xi − xi+1

=

(
si + xi

1− si
xi − xi+1

)
f(x; 0, 0)

=

(
(xi − xi+1)si + xi(1− si)

xi − xi+1

)
f(x; 0, 0)

=

(
xi − xi+1si
xi − xi+1

)
f(x; 0, 0)

= ξif(x; 0, 0)

= ξi ◦Υ(f).

If f ∈P(k)+ then

Υ ◦ ϵk(f) = Υ(f)

and

Wk ◦Υ(f) = Υ(f).

Thus we may assume that f ∈P(k+ r)+ for some r ≥ 1 in which case using Lemma 2.8.11 we see

Υ ◦ ϵk(f)

= Υ
(
lim
n

ϵ
(n)
k (Ξ(n)(f))

)
= Υ

lim
n

1

[n− k]t!

∑
σ∈S

(1k,n−k)

t(
n−k
2 )−ℓ(σ)TσΞ

(n)(f)


= lim

n
Υ

 1

[n− k]t!

∑
σ∈S

(1k,n−k)

t(
n−k
2 )−ℓ(σ)TσΞ

(n)(f)


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= lim
n

∑
σ∈S

(1k,n−k)

1

((
n− k

2

)
= ℓ(σ)

)
Υ
(
TσΞ

(n)(f)
)

= lim
n
(Tn−1 · · ·Tk+1) · · · (Tn−1 · · ·Tk+r)Υ(Ξ(n)(f))

= lim
n
(ξn−1 · · · ξk+1) · · · (ξn−1 · · · ξk+r)f(x1, . . . , xn, 0, . . . ; 0, 0)

= lim
n

W
(n)
k f(x1, . . . , xn, 0, . . . ; 0, 0)

= Wk ◦Υ(f)

□

2.8.4. Almost Symmetric Schur Functions. The stable-limit non-symmetric Macdonald

functions Ẽ(µ|λ) were defined in Definition 2.4.10 by applying successive partial-symmetrization

operators to the functions Ẽ(µ∗λ|∅).Given that the operator Ti, ϵk specialize to the ξi,Wk respectively

we may define a set of almost symmetric functions s(µ|λ) analogously.

Definition 2.8.16. Define the almost symmetric Schur functions, s(µ|λ) = s(µ|λ)(x1, x2, . . .),

for (µ|λ) ∈ Σ. by the following recursive formula:

• s(µ|∅) = Kµ

• If µr ≥ λ1 then

s(µ1,...,µr−1|µr,λ1,...,λℓ) = Wr−1(s(µ1,...,µr−1,µr|λ1,...,λℓ)).

Remark 18. We note that from the above recursion it follows that for any λ ∈ Y s(∅|λ) =

sλ. Thus the almost symmetric Schur functions interpolate between the key polynomials and the

Schur functions in infinitely many variables x1, x2, . . . . Lapointe in their paper [28] defines the

m-symmetric Schur functions s(a;λ)(x; t). These functions have the property that s(a;∅)(x; 1) =

Ka(x) and s(∅;λ)(x; 1) = sλ(x) similarly to the functions s(µ|λ)(x) defined above. Further, there

give a basis for P(m)+. However, it is not clear to this author how Lapointe’s m-symmetric Schur

functions are related to the almost symmetric Schur functions. Lapointe defines s(a;λ)(x; t) by first

defining the dual m-symmetric Schur functions s∗(a;λ)(x; t) as an explicit linear combination of the

non-symmetric Hall-Littlewood-Schur basis Hα(x; t)sν [X] (note that X = x1 + . . . here instead of
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Xm = xm+1+ . . .) with explicit combinatorial coefficients (involving certain weighted skew tableaux)

along with a non-degenerate pairing on P(m)+. The s(a;λ)(x; t) are then defined as the dual basis

to the s∗(a;λ)(x; t). In this thesis we have used a purely algebraic/recursive approach in defining our

generalized Schur functions. Any proof that relates these two types of functions would likely be

nontrivial and combinatorial in nature. However, it seems fruitful to understand how these notions

are related as this will likely provide additional insight into the properties of the almost symmetric

functions.

Example. Here we calculate s(2|3,1) directly using the operators ξi and Wk:

s(2|3,1)

= W1W2(s(2,3,1|∅))

= W1W2ξ1(s(3,2,1|∅))

= W1W2ξ1(x
3
1x

2
2x3)

= W1W2(x
3
1x

2
2x3 + x21x

3
2x3)

= W1(x
3
1x

2
2s1[X2] + x21x

3
2s1[X2])

= x31s(2,1)[X1] + x21s(3,1)[X1]

Example. Here we give a list of some examples of almost symmetric Schur functions that are

neither symmetric Schur functions nor key polynomials.

• s(0,1|2) = x21x2 + x21s1[X2] + x22x1 + x22s1[X2] + x1s2[X2] + x2s2[X2] + 2x1x2s1[X2]

• s(2|3,1) = x31s(2,1)[X1] + x21s(3,1)[X1]

• s(2,1|1) = x21x2s1[X2]

• s(1,2|1) = x21x2s1[X2] + x1x
2
2s1[X2]

• s(1|2,1) = x21s(1,1)[X1] + x1s(2,1)[X1].

We are now ready to compute the specializations of the stable-limit non-symmetric Macdonald

functions Ẽ(µ|λ) at q =∞ and t = 0.
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Theorem 2.8.17. For (µ|λ) ∈ Σ, Ẽ(µ|λ) ∈ O and

Υ(Ẽ(µ|λ)) = s(µ|λ)(x).

Proof. Let (µ|λ) ∈ Σ. In order to show that Ẽ(µ|λ) ∈ O it suffices by induction to verify that

each ϵk(f) ∈ O for every f ∈ O. However, this is easy to see using the explicit formula for the

action of ϵk using the Jing vertex operators Br (see 2.4.5). We now proceed by direct computation

using Lemma 2.8.15 and Proposition 2.8.14.

Υ(Ẽ(µ|λ))

= Υ(ϵℓ(µ)(Ẽ(µ∗λ|∅)))

= Wℓ(µ)(Υ(Ẽ(µ∗λ|∅)))

= Wℓ(µ)(Kµ∗λ)

= Wℓ(µ)(s(µ∗λ|∅))

= s(µ|λ).

□

2.8.5. Combinatorial Formula for Almost Symmetric Schur Functions. In this sec-

tion we will compute an explicit combinatorial formula for the monomial expansion of the almost

symmetric Schur functions. Further, we will use this expansion to show that a generalization of

the classical Kostka coefficients for Schur functions are non-negative integers.

Proposition 2.8.18. For (µ|λ) ∈ Σ,

s(µ|λ) = lim
n
Kµ∗0n∗rev(λ).
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Proof. We proceed by direct calculation:

s(µ|λ)

= Wℓ(µ) · · ·Wℓ(µ)+ℓ(λ)s(µ∗λ|∅)

= Wℓ(µ)s(µ∗λ|∅)

= Wℓ(µ)Kµ∗λ

= lim
n

W
(ℓ(µ)+ℓ(λ)+n)
ℓ(µ) (Kµ∗λ∗0n)

= lim
n
(ξℓ(µ)+ℓ(λ)+n−1 · · · ξℓ(µ)+1) · · · (ξℓ(µ)+ℓ(λ)+n−1 · · · ξℓ(µ)+ℓ(λ))(Kµ∗λ∗0n)

= lim
n
Kµ∗0n∗rev(λ).

□

As an immediate consequence we get the following:

Corollary 2.8.19. The set {s(µ|λ)(x)|(µ|λ) ∈ Σ} is a homogeneous Q-basis for P+
as,Q .

Proof. Since the key polynomials are homogeneous and the operators Wk are clearly homoge-

neous, we see that the s(µ|λ) are homogeneous as well. Following similarly to the proof of Theorem

4.2.12, we see that as there are sufficiently many s(µ|λ) in each homogeneous component of P(k)+, it

suffices to show that the s(µ|λ) are linearly independent (overQ). Let (µ(1)|λ(1)), . . . , (µ(m)|λ(m)) ∈ Σ

be distinct. Set r(i) := ℓ(µ(i)) + ℓ(λ(i)). Suppose that for some a(i) ∈ Q,
∑m

i=1 a
(i)s(µ(i)|λ(i)) = 0.

Then

0 =

m∑
i=1

a(i)s(µ(i)|λ(i))

=

m∑
i=1

a(i) lim
n
K

µ(i)∗0n−r(i)∗rev(λ(i))

= lim
n

m∑
i=1

a(i)K
µ(i)∗0n−r(i)∗rev(λ(i))

.
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Now we see that for all sufficiently large n,

m∑
i=1

a(i)K
µ(i)∗0n−r(i)∗rev(λ(i))

= 0

but, since the pairs (µ(i)|λ(i)) are distinct, we know that the key polynomials K
µ(i)∗0n−r(i)∗rev(λ(i))

are linearly independent. Therefore, a(i) = 0 as desired. □

We will need to consider the following combinatorial construction.

Definition 2.8.20. Let (µ|λ) ∈ Σ. Let ω denote the first infinite ordinal i.e. n < ω for all n ∈

{1, 2, . . .}. For a labelling σ : dg′(µ∗ rev(λ))→ {1, 2, . . .} denote by σ⋆ the labelling of d̂g(µ∗ rev(λ))

given by

• σ⋆(u) = σ(u) if u ∈ dg′(µ ∗ rev(λ))

• σ⋆(j, 0) = j for 1 ≤ j ≤ ℓ(µ)

• σ⋆(j, 0) = ω + j − ℓ(µ)− 1 for ℓ(µ) + 1 ≤ j ≤ ℓ(µ) + ℓ(λ).

We naturally extend the definitions in Definition 2.2.1 of non-attacking, coinv, and Des to labellings

of the form σ⋆ which take values in {1, 2, . . .} ∪ {ω + 1, ω + 2, . . .}. Define L(µ|λ) to be the set

of labellings σ : dg′(µ ∗ rev(λ)) → {1, 2, . . .} such that σ⋆ is non-attacking, coinv(σ⋆) = 0, and

Des(σ⋆) = ∅.

Example. We will consider in this example two labellings of the type defined above for the pair

(2|3, 1). Our diagrams in this case are given as follows:

dg′(2, 1, 3) =

d̂g(2, 1, 3) =

Consider the labellings σ1, σ2 : dg
′(2, 1, 3)→ {1, 2, 3, 4} and there corresponding labellings σ⋆

1, σ
⋆
2 :

d̂g(2, 1, 3)→ {1, 2, 3, 4} given by
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σ1 =

1

1 2

1 3 4

→ σ⋆
1 =

1

1 2

1 3 4

1 ω ω + 1

σ2 =

1

1 3

1 2 4

→ σ⋆
2 =

1

1 3

1 2 4

1 ω ω + 1

Both σ1, σ2 are non-attacking with maj(σ⋆
1) = maj(σ⋆

2) = 0. However, coinv(σ⋆
1) = 0 whereas

coinv(σ⋆
2) ̸= 0. To see this note that in the labelling σ2, the boxes

1

3

2

form a coinversion-triple in the sense of [19].

The almost symmetric Schur functions have the following monomial expansion.

Theorem 2.8.21. For (µ|λ) ∈ Σ

s(µ|λ) =
∑

σ∈L(µ|λ)

xσ.

Proof. We start by noticing that from Proposition 2.8.18 we have

s(µ|λ)

= lim
n
Kµ∗0n∗rev(λ)

= lim
n

∑
σ∈L(µ∗0n∗rev(λ))

xσ.
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For all n ≥ 0 there is an injection L(µ ∗ 0n ∗ rev(λ))→ L(µ ∗ 0n+1 ∗ rev(λ)) obtained as follows.

Let σ ∈ L(µ ∗ 0n ∗ rev(λ)). Consider σ′ : dg′(µ ∗ 0n+1 ∗ rev(λ)) given by

• σ′(u) = σ(u) if u ∈ dg′(µ)

• σ′(i, j) = σ(i, j − 1) if (i, j) lies in the rev(λ) component of dg′(µ ∗ 0n+1 ∗ rev(λ)).

In other words, we are simply aligning the rev(λ) parts of each of the diagrams dg′(µ∗0n+1∗rev(λ))

and dg′(µ ∗ 0n ∗ rev(λ)) and copying the corresponding values of σ. It is easy to see that σ′ ∈

L(µ ∗ 0n+1 ∗ rev(λ)) and that the map σ → σ′ is injective. Now we may consider the directed union

L :=
⋃
n≥0
L(µ ∗ 0n ∗ rev(λ))

where we identify the image of L(µ ∗ 0n ∗ rev(λ)) in L(µ ∗ 0n+1 ∗ rev(λ)) for all n ≥ 0. Hence, we

have

s(µ|λ) =
∑
σ∈L

xσ.

Lastly, we show that there exists a simple bijection L → L(µ|λ) such that xσ = xf(σ) for all

σ ∈ L. For σ ∈ L say, σ ∈ L(µ ∗ 0n ∗ rev(λ)), we may define σ′′ : dg′(µ ∗ rev(λ))→ {1, 2, . . .} by

• σ′′(u) = σ(u) if u ∈ dg′(µ)

• σ′′(i, j) = σ(i+ n, j) for (i, j) in the rev(λ) component of dg′(µ ∗ rev(λ)).

Then σ′′ ∈ L(µ|λ) and the map σ → σ′′ is injective. We now show this map is also surjective.

Let γ ∈ L(µ|λ) and N := max{maxu∈dg′(µ∗rev(λ)) σ(u), ℓ(µ) + ℓ(λ)}. Define σ : µ ∗ 0N−ℓ(µ)−ℓ(λ) ∗

rev(λ)→ [N ] similarly to before by copying the values of σ for both the µ and rev(λ) components

of dg′(µ ∗ rev(λ)) onto the corresponding components of dg′(µ ∗ 0N−ℓ(µ)−ℓ(λ) ∗ rev(λ)). Since N was

chosen sufficiently large, σ ∈ L(µ ∗ 0N−ℓ(µ)−ℓ(λ) ∗ rev(λ)). Now σ′′ = γ and xσ
′′
= xγ . Therefore,

s(µ|λ) =
∑
σ∈L

xσ =
∑

σ∈L(µ|λ)

xσ.

□

Since s(µ|λ) ∈ P(ℓ(µ))+ and the set {xαmν [Xℓ(µ)] |(α|ν), ℓ(α) ≤ ℓ(µ)} is a basis for P(k)+ we

may consider the following definition.
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Definition 2.8.22. Define the almost symmetric Kostka coefficients K
(µ|λ)
(α|ν) to be the coef-

ficients of the almost symmetric Schur functions into the monomial basis of P(ℓ(µ))+, i.e.

s(µ|λ) =
∑
(α|ν)

ℓ(α)≤ℓ(µ)

K
(µ|λ)
(α|ν)x

αmν [Xℓ(µ)].

If ℓ(α) > ℓ(µ) we simply set K
(µ|λ)
(α|ν) = 0.

Remark 19. It is straightforward to check that for

K
(∅|λ)
(µ|ν) = δµ,∅Kλ,ν

meaning that the K
(µ|λ)
(α|ν) generalize the classical Kostka coefficients Kλ,ν . On the other extreme, we

find that

K
(µ|∅)
(α|λ) = 0

unless λ = ∅ in which case K
(µ|∅)
(α|∅) is the multiplicity of the weight α in the Demazure character

corresponding to µ. In either case, we see that the Kostka coefficients are non-negative.

Theorem 2.8.23 (Positivity for almost symmetric Kostka coefficients).

K
(µ|λ)
(α|ν) ∈ Z≥0

Proof. Let (µ|λ) ∈ Σ. Using the explicit combinatorial formula in Theorem 2.8.21 we see that

s(µ|λ) =
∑

σ∈L(µ|λ)

xσ.

However, we know s(µ|λ) is symmetric in the variables xℓ(µ)+1, xℓ(µ)+2, . . . so we may group terms

by symmetry to find

∑
σ∈L(µ|λ)

xσ =
∑
ν∈Y

mν [Xℓ(µ)]
∑

σ∈Lν(µ|λ)

x
|σ−1(1)|
1 · · ·x|σ

−1(ℓ(µ))|
ℓ(µ)

where Lν(µ|λ) is the set of labellings σ : µ ∗ rev(λ) → [µ + ℓ(ν)] such that σ ∈ L(µ|λ) and for all

1 ≤ i ≤ ℓ(ν), |σ−1(ℓ(µ) + i)| = νi. Notice that |Lν(µ|λ)| <∞ for all ν.

We may further subdivide the sets Lν(µ|λ) now to account for the value of x
|σ−1(1)|
1 · · ·x|σ

−1(ℓ(µ))|
ℓ(µ) .

For ℓ(α) ≤ ℓ(µ) let L(α|ν)(µ|λ) denote the set of all σ ∈ Lν(µ|λ) such that |σ−1(i)| = (α∗0ℓ(µ)−ℓ(α))i.
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Then

s(µ|λ) =
∑
(α|ν)

|L(α|ν)(µ|λ)|xαmν [Xℓ(µ)].

Thus

K
(µ|λ)
(α|ν) = |L(α|ν)(µ|λ)| ∈ Z≥0.

□

Remark 20. Note that K
(µ|λ)
(α|ν) = |L(α|ν)(µ|λ)| gives a combinatorial formula for the almost sym-

metric Kostka coefficients. This formula generalizes the well known formula Kλ,µ = | SSYT(λ, µ)|

where SSYT(λ, µ) is the set of semistandard Young tableaux with shape λ and content µ.

Example. We saw before that

s(2|3,1) = x31s(2,1)[X1] + x21s(3,1)[X1]

which we can expand as

s(2|3,1)

= x31m(2,1)[X1] + 2x31m(1,1,1)[X1] + x21m(3,1)[X1] + x21m(2,2)[X1] + 2x21m(2,1,1)[X1] + 3x21m(1,1,1,1)[X1]

This gives that, for example, K
(2|3,1)
(2|1,1,1,1) = 3 which corresponds to the 3 diagrams:

2

1 3

1 4 5

1 ω ω + 1

2

1 4

1 3 5

1 ω ω + 1

3

1 4

1 2 5

1 ω ω + 1

Note that the above fillings in the rev(λ) = (1, 3) component are exactly, up to shifting in-

dices, the semistandard Young tableuax of shape (3, 1) with content (1, 1, 1, 1) (and hence standard).

This reflects that in the monomial-Schur expansion of s(2|3,1) there is one copy of x21s(3,1)[X1] and

K(3,1),(1,1,1,1) = 3.
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We also have that K
(2|3,1)
(3|1,1,1,1) = 2 which may be seen by computing the labellings in L(3|1,1,1)(2|3, 1)

directly:

2

1 3

1 1 4

1 ω ω + 1

1

1 2

1 3 4

1 ω ω + 1

From the computation of K
(2|3,1)
(2|1,1,1,1) one might be tempted to guess that there is always a way

to compute the almost symmetric Kostka numbers by classical Kostka numbers in some obvious

manner. However, the example of K
(2|3,1)
(3|1,1,1,1) shows that it is not always so simple. It particular,

the filling

1

1 3

1 2 4

1 ω ω + 1

has a reverse standard filling of rev(λ) but is not in L(3|1,1,1)(2|3, 1) since coinv ̸= 0.

2.8.6. Representation-Theoretic Interpretation. In this section we are going to show

that the monomial-Schur expansions of the s(µ|λ) have non-negative coefficients using the Demazure

character formula by relating s(µ|λ) to the representation theory of parabolic subgroups of the GLn .

Definition 2.8.24. Define the scalars M
(µ|λ)
(α|ν) to be the coefficients of the expansion of the almost

symmetric Schur functions into the monomial-Schur basis of P(ℓ(µ))+, i.e.

s(µ|λ) =
∑
(α|ν)

ℓ(α)≤ℓ(µ)

M
(µ|λ)
(α|ν)x

αsν [Xℓ(µ)].

If ℓ(α) > ℓ(µ) we simply set M
(µ|λ)
(α|ν) = 0.

We wish to show that M
(µ|λ)
(α|ν) ∈ Z≥0 but in order to do so we must first review some representation

theory in type GL .
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Definition 2.8.25. For n ≥ 1 define GLn to be the group of invertible n × n matrices over C.

Let Bn denote the Borel subgroup of upper-triangular matrices in GLn and let Hn denote the group

of diagonal matrices in GLn . For 0 ≤ k ≤ n denote by Pn(k) the group of M ∈ GLn such that

Mij = 0 if either 1 ≤ j < i ≤ k or j ≤ k ≤ i− 1. Lastly, let Ln(k) = Hk×GLn−k ⊂ GLn under the

block diagonal embedding GLk×GLn−k → GLn . Let bn denote the Lie algebra of Bn i.e. the set of

upper triangular n × n matrices over C with the usual commutator product. Let U(bn) denote the

universal enveloping algebra of bn.

Remark 21. Note that

Hn ⊂ Bn ⊂ GLn

and for all 0 ≤ k ≤ n

Hn ⊂ Bn ⊂ Pn(k).

Following terminology standard to Lie theory, Bn and Hn are respectively Borel and Cartan

subgroups of GLn . Further, the group Pn(k) is a parabolic subgroup of GLn with Levi subgroup

Ln(k). Parabolic subgroups of GLn correspond to pairs of choices of a Borel subgroup and a subset of

the set of simple positive roots {ei−ei+1|1 ≤ i ≤ n−1} in type An−1. The group Pn(k) corresponds

to the Borel subgroup Bn and the subset {ei− ei+1|k+1 ≤ i ≤ n− 1}. From standard results in the

the theory of algebraic groups we know that GLn is reductive meaning that any finite dimensional

polynomial (rational) representation of GLn decomposes as direct sum of irreducible polynomial

(rational) representations. Importantly, if V is a polynomial representation of GLn then Hn acts

semi-simply with simultaneous eigenvectors v ∈ V having eigenvalues indexed by a ∈ Zn
≥0 i.e.

z1 0 . . . 0

0 z2 . . . 0
...

...
. . .

...

0 0 . . . zn


v = za11 · · · z

an
n v.

Thus the Hn-weights of polynomials representations of GLn are indexed by Zn
≥0.
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Definition 2.8.26. Given a finite dimensional polynomial representation V of Hn we will denote

by char(V ) ∈ Z[x1, . . . , xn] the formal character of V as

char(V ) =
∑

α∈Zn
≥0

dimHomHn(α, V )xα.

Remark 22. If V is any polynomial representation of GLn then char(V ) is a symmetric polyno-

mial since char(V ) must be invariant under the action of the Weyl group of GLn i.e. Sn. If W

is another polynomial representation then we have that

• char(V ⊕W ) = char(V ) + char(W )

• char(V ⊗W ) = char(V ) char(W ).

Thus we may interpret the map V → char(V ) as giving a ring homomorphism from the virtual

polynomial representation ring of GLn to the symmetric polynomial ring Z[x1, . . . , xn]Sn . This map

is an isomorphism.

It follows from standard representation theory of reductive algebraic groups over C that we have

the following description of the irreducible representations of GLn .

Theorem 2.8.27. The irreducible polynomial representations of GLn are indexed by dominant

integral weights λ = (λ1, . . . , λn) ∈ Zn
≥0 i.e. λ1 ≥ . . . ≥ λn. These representations Vλ have the

following properties:

• char(Vλ) = sλ(x1, . . . , xn); where we truncate λ when necessary to obtain a partition

• There exists a unique highest weight in Vλ. Namely, there exists a unique vector v ∈ Vλ

(up to scaling) such that v is a Hn-weight vector with weight λ and U(bn)v = 0.

• For all σ ∈ Sn

dimHomHn(σ(λ),Vλ) = 1.

Definition 2.8.28. Given a dominant integral weight λ ∈ Zn
≥0 and σ ∈ Sn define the Demazure

module Vλσ(λ) to be the Bn-module

Vλσ := U(bn)v

where v ∈ Vλσ is any weight vector with weight σ(λ).
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Remark 23. Notice that the Demazure module Vλσ is only well defined up to the vector σ(λ).

Therefore, we may instead index these modules as

Vλσ(λ) := V
λ
σ .

Theorem 2.8.29. (Demazure Character Formula) [1] Given a dominant integral weight λ and

σ ∈ Sn

char(Vλσ(λ)) = Kσ(λ).

Remark 24. The Demazure character formula in full generality gives a similar formula to the

above for all semisimple Lie types. The first complete proof of the Demazure character formula was

given by Andersen [1] by realizing the Demazure modules as spaces of sections of vector bundles of

Schubert varieties and showing that the singularities of Schubert varieties are rational.

Definition 2.8.30. Let (µ|λ) ∈ Σ. For all n ≥ ℓ(µ) + ℓ(λ) define

V(n)(µ|λ) := Vsort(µ∗λ)∗0
n−ℓ(sort(µ∗λ))

µ∗0n−ℓ(µ)−ℓ(λ)∗rev(λ) .

If α ∈ Compred and ℓ(α) ≤ k we will write χ(n)(α|λ) for the irreducible Ln(k) = Hk×GLn−k-

module given by

χ(n)(α|λ) := (α ∗ 0k−ℓ(α))⊗ Vλ∗0n−k−ℓ(λ)

where we are using the shorthand α ∗ 0k−ℓ(α) to represent the corresponding 1-dimensional repre-

sentation of Hk .

We may relate the almost symmetric Schur functions s(µ|λ) to Demazure characters via key

polynomials directly from the following simple lemma.

Lemma 2.8.31. Let (µ|λ) ∈ Σ. Then

s(µ|λ) = lim
n

charV(n)(µ|λ).

Proof. In Proposition 2.8.18 we saw that

s(µ|λ) = lim
n
Kµ∗0n∗rev(λ) = lim

n
Kµ∗0n−ℓ(µ)−ℓ(λ)∗rev(λ).
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Using the Demazure character formula we see that

Kµ∗0n−ℓ(µ)−ℓ(λ)∗rev(λ) = char
(
Vsort(µ∗λ)∗0

n−ℓ(sort(µ∗λ))

µ∗0n−ℓ(µ)−ℓ(λ)∗rev(λ)

)
so the result follows. □

We require the following simple lemma.

Lemma 2.8.32. Suppose λ is an integral dominant weight of GLn and α ∗ β = σ(λ) for some

σ ∈ Sn with β weakly decreasing. Then Vλα∗β is a Pn(ℓ(α)) submodule of Vλ.

Proof. Let k = ℓ(α). Since Pn(k) is the semidirect product of Bn and Ln(k) we only need

to show that Vλα∗β is preserved under action by both Bn and Ln(k). Since Vλα∗β is by definition a

Bn-module it suffices to show that Vλα∗β is preserved under the action of Idk ×GLn−k .

We will proceed by induction using raising and lowering operators. To start fix v0 ∈ Vλα∗β to be

a nonzero vector with weight α ∗ β. Then for all k + 1 ≤ i < j ≤ n, since β is weakly decreasing,

Ejiv = 0 ∈ Vλα∗β. Suppose now that v0, v1, . . . , vm+1 is a sequence of weight vectors in Vλα∗β with

vr+1 = Eirjrvr for all 0 ≤ r ≤ m for some 1 ≤ ir < jr ≤ n and that

Ejivr ∈ Vλα∗β

for all k + 1 ≤ i < j ≤ n and 0 ≤ r ≤ m. Note that any weight vector in Vλα∗β may be obtained

using such a chain. Now fix some k + 1 ≤ i < j ≤ n. We see that

Ejivm+1

= EjiEimjmvm

= (EimjmEji + [Eji, Eimjm ]) vm

= Eimjm (Ejivm) + [Eji, Eimjm ]vm.

By assumption Ejivm ∈ Vλα∗β so that, since im < jm, Eimjm (Ejivm) ∈ Vλα∗β. Therefore, it suffices

to show that [Eji, Eimjm ]vm ∈ Vλα∗β.
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There are a few cases we must consider. First, assume i = im. Then

[Eji, Eimjm ]vm = (Ejjm − δj,jmEii) vm = Ejjmvm − cvm

for some scalar c. If j ≤ jm then Ejjmvm ∈ Vλα∗β automatically. If instead j > jm, then k + 1 ≤

i = im < jm so Ejjmvm ∈ Vλα∗β by the inductive hypothesis. Either way [Eji, Eimjm ]vm ∈ Vλα∗β.

Now assume j = jm. Then

[Eji, Eimjm ]vm = (δi,imEjj − Eimi) vm = cvm − Eimivm

for some scalar c. If im ≤ i then Eimivm ∈ Vλα∗β automatically. If im > i then, since k + 1 ≤ i,

Eimivm ∈ Vλα∗β by the inductive hypothesis. In either case, [Eji, Eimjm ]vm ∈ Vλα∗β. Lastly, if i ̸= im

and j ̸= jm then [Eji, Eimjm ] = 0 so [Eji, Eimjm ]vm = 0 ∈ Vλα∗β trivially. □

Since the group Ln(k) is reductive we obtain the following representation theoretic interpretation

for the coefficients M
(µ|λ)
(α|γ) .

Theorem 2.8.33. Let (µ|λ), (α|γ) ∈ Σ. For all sufficiently large n

M
(µ|λ)
(α|γ) = dimHomLn(ℓ(µ))

(
χ(n)(α|ν),V(n)(µ|λ)

)
∈ Z≥0.

Proof. From Lemma 2.8.31 and the definition of the coefficients M
(µ|λ)
(α|γ) we see that for n

sufficiently large ∑
(α|ν)

ℓ(α)≤ℓ(µ)

M
(µ|λ)
(α|ν)x

αsν [xℓ(µ)+1 + . . .+ xn] = charV(n)(µ|λ).

From Lemma 2.8.32 we may decompose V(n)(µ|λ) into irreducible Ln(ℓ(µ)) submodules as

V(n)(µ|λ) =
⊕
(α|ν)

ℓ(α)≤ℓ(µ)

χ(n)(α|ν)⊕d
(n)
(α|ν)

where d
(n)
(α|ν) = dimHomLn(ℓ(µ))

(
χ(n)(α|ν),V(n)(µ|λ)

)
. Notice that

charχ(n)(α|ν) = xαsν [xℓ(µ)+1 + . . .+ xn].
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Putting this together we find that for all n sufficiently large

∑
(α|ν)

ℓ(α)≤ℓ(µ)

M
(µ|λ)
(α|ν)x

αsν [xℓ(µ)+1 + . . .+ xn]

= charV(n)(µ|λ)

= char
⊕
(α|ν)

ℓ(α)≤ℓ(µ)

χ(n)(α|ν)⊕d
(n)
(α|ν)

=
∑
(α|ν)

ℓ(α)≤ℓ(µ)

charχ(n)(α|ν)⊕d
(n)
(α|ν)

=
∑
(α|ν)

ℓ(α)≤ℓ(µ)

d
(n)
(α|ν) charχ

(n)(α|ν)

=
∑
(α|ν)

ℓ(α)≤ℓ(µ)

dimHomLn(ℓ(µ))

(
χ(n)(α|ν),V(n)(µ|λ)

)
xαsν [xℓ(µ)+1 + . . .+ xn].

Lastly, as the terms xαsν [xℓ(µ)+1 + . . . + xn] for ℓ(α) ≤ ℓ(µ) are linearly independent we may

compare coefficients to obtain the result. □

As a consequence of the above theorem we obtain a second proof of Theorem 2.8.23.

Corollary 2.8.34. Let (µ|λ), (α|γ) ∈ Σ. For all sufficiently large n

|L(α|ν)(µ|λ)| =
∑
γ∈Y
| SSYT(γ, ν)| × dimHomLn(ℓ(µ))

(
χ(n)(α|γ),V(n)(µ|λ)

)
.
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Proof. First, we expand the Schur functions sγ [Xℓ(µ)] into the monomial symmetric function

basis:

s(µ|λ) =
∑
(α|γ)

ℓ(α)≤ℓ(µ)

M
(µ|λ)
(α|γ)x

αsγ [Xℓ(µ)]

=
∑
(α|γ)

ℓ(α)≤ℓ(µ)

M
(µ|λ)
(α|γ)x

α
∑
ν∈Y

Kγ,νmν [Xℓ(µ)]

=
∑
(α|ν)

ℓ(α)≤ℓ(µ)

∑
γ∈Y

Kγ,νM
(µ|λ)
(α|γ)

xαmν [Xℓ(µ)].

From here we find

K
(µ|λ)
(α|ν) =

∑
γ∈Y

Kγ,νM
(µ|λ)
(α|γ) .

Lastly, by combining the formulaKγ,ν = | SSYT(γ, ν)|, the expression forM
(µ|λ)
(α|γ) in Theorem 2.8.33,

and the equation K
(µ|λ)
(α|ν) = |L(α|ν)(µ|λ)| from the proof of Theorem 2.8.23 we conclude the desired

result. □

Remark 25. The inverse Kostka coefficients K
(−1)
γ,λ are given by

mγ =
∑
λ

K
(−1)
γ,λ sλ.

Notice that

δγ,λ =
∑
µ

K(−1)
γ,µ Kµ,λ.

The inverse Kostka coefficients are known from the work of Eg̃eciolg̃u-Remmel [13] to have an

explicit combinatorial formula involving signed rim hook tabloids which we will not detail here.

In the same way we obtained Corollary 2.8.34 we may instead expand each mλ into the Schur basis

to obtain for all sufficiently large n

dimHomLn(ℓ(µ))

(
χ(n)(α|ν),V(n)(µ|λ)

)
=
∑
γ∈Y

K(−1)
γ,ν × |L(α|γ)(µ|λ)|.
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Using the combinatorial formula for the K
(−1)
γ,λ we see that this gives a purely combinatorial formula.

However, this is not a non-negative combinatorial formula as the inverse Kostka coefficients are

often negative.

By carefully taking direct limits of groups and their corresponding modules in the right way it is

possible to simplify the expression in Theorem 2.8.33:

M
(µ|λ)
(α|γ) = dimHomL∞(ℓ(µ))

(
χ(∞)(α|ν),V(∞)(µ|λ)

)
.
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CHAPTER 3

Murnaghan-Type Representations for the Elliptic Hall Algebra

3.1. Introduction

The space of symmetric functions, Λ, is a central object in algebraic combinatorics deeply connect-

ing the fields of representation theory, geometry, and combinatorics. In his influential paper [29],

Macdonald introduced a special basis Pλ[X; q, t] for Λ over Q(q, t) simultaneously generalizing many

other important and well-studied symmetric function bases like the Schur functions sλ[X]. These

symmetric functions Pλ[X; q, t], called the symmetric Macdonald functions, exhibit many striking

combinatorial properties and can be defined as the eigenvectors of a certain operator ∆ : Λ → Λ

called the Macdonald operator constructed using polynomial difference operators. It was discovered

through the works of Bergeron, Garsia, Haiman, Tesler, and many others [23] [4] [5] that variants

of the symmetric Macdonald functions called the modified Macdonald functions H̃λ[X; q, t] have

deep ties to the geometry of the Hilbert schemes Hilbn(C2). On the side of representation theory, it

was shown first in full generality by Cherednik [9] that one can recover the symmetric Macdonald

functions by considering the representation theory of certain algebras called the spherical double

affine Hecke algebras (DAHAs) in type GLn.

The positive elliptic Hall algebra (EHA), E +, was introduced by Burban and Schiffmann [6]

as the positive subalgebra of the Hall algebra of the category of coherent sheaves on an elliptic

curve over a finite field. This algebra has connections to many areas of mathematics including,

most importantly for the present situation, to Macdonald theory. In [34], Schiffmann and Vasserot

realize E + as a stable limit of the positive spherical DAHAs in type GLn. They show further that

there is a natural action of E + on Λ aligning with the spherical DAHA representations originally

considered by Cherednik. In particular, the action of P0,1 ∈ E + gives the Macdonald operator ∆.

The action of E + on Λ can be realized as the action of certain generalized convolution operators

on the torus equivariant K-theory of the schemes Hilbn(C2).
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Dunkl and Luque in [12] introduced symmetric and non-symmetric vector-valued (vv.) Mac-

donald polynomials. The term vector-valued here refers to polynomial-like objects of the form∑
α cαX

α ⊗ vα for some scalars cα, monomials Xα, and vectors vα lying in some Q(q, t)-vector

space. The non-symmetric vv. Macdonald polynomials are distinguished bases for certain DAHA

representations built from the irreducible representations of the finite Hecke algebras in type A.

These DAHA representations are indexed by Young diagrams and exhibit interesting combinatorial

properties relating to periodic Young tableaux. The symmetric vv. Macdonald polynomials are dis-

tinguished bases for the spherical (i.e. Hecke-invariant) subspaces of these DAHA representations.

Naturally, the spherical DAHA acts on this spherical subspace with the special element Y1+ . . .+Yn

of spherical DAHA acting diagonally on the symmetric vv. Macdonald polynomials.

Dunkl and Luque in [12] (and in later work of Colmenarejo, Dunkl, and Luque [10] and Dunkl

[11]) only consider the finite rank non-symmetric and symmetric vv. Macdonald polynomials. It

is natural to ask if there is an infinite-rank stable-limit construction using the symmetric vv.

Macdonald polynomials to give generalized symmetric Macdonald functions and an associated

representation of the positive elliptic Hall algebra E +. In this chapter, we will describe such

a construction (Thm. 4.2.12). We will obtain a new family of graded E +-representations W̃λ

indexed by Young diagrams λ and a natural generalization of the symmetric Macdonald functions

PT indexed by certain labellings of infinite Young diagrams built as limits of the symmetric vv.

Macdonald polynomials. For combinatorial reasons there is essentially a unique natural way to

obtain this construction. For any λ we will consider the increasing chains of Young diagrams

λ(n) = (n − |λ|, λ) for n ≥ |λ| + λ1 to build the representations W̃λ. These special sequences

of Young diagrams are central to Murnaghan’s theorem [32] regarding the reduced Kronecker

coefficients. As such we refer to the E +-representations W̃λ as Murnaghan-type. For λ = ∅ we

recover the E + action on Λ and the symmetric Macdonald functions Pµ[X; q, t]. We will obtain a

Pieri rule for the action of the multiplication operators e•r on the generalized symmetric Macdonald

function basis PT . After studying the particular case of the e1-Pieri coefficients we will show that

the modules W̃λ are cyclic generated by their unique elements of minimal degree PTmin
λ

. Lastly,

we will show that these Murnaghan-type representations W̃λ are mutually non-isomorphic.

The existence of these representations of the elliptic Hall algebra raises many questions about

possible new relations between Macdonald theory and geometry. Other authors have constructed
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families of E +-representations [14] [15]. Although there should exist a relationship between the

Murnaghan-type representations W̃λ and those of other authors, the construction in this thesis

appears to be distinct from prior E +-module constructions.

For technical reasons (regarding the misalignment of the spectrum of the Cherednik operators

Yi) we will need to reprove many of the results of Dunkl and Luque in [12] using a re-oriented

version of the Cherednik operators θi. Since the elements θi are not uniformly conjugate to the

Yi on the vector-valued polynomial spaces Vλ, we are not immediately able to use the results of

Dunkl and Luque. However, many of these results follow from very similar proofs in this chapter.

This alternative choice of conventions greatly assists during the construction of the generalized

Macdonald functions PT . The θi satisfy additional stability properties which the Yi fail to satisfy.

The combinatorics underpinning the non-symmetric vv. Macdonald polynomials originally defined

by Dunkl and Luque is also nearly identical but with reversed orientation to the conventions

appearing in this chapter.

3.1.1. Overview. Here we will give a brief overview of this chapter. First, in Section 3.2 we

will introduce and review relevant combinatorial definitions and notations. In Section 3.3 we will

reprove many of the results of Dunkl-Luque but for the re-oriented Cherednik operators including

describing the non-symmetric v.v. Macdonald polynomials Fτ and their associated Knop-Sahi

relations (Prop. 3.3.5). We define (Def. 3.3.12) the DAHA modules Vλ(n) and connecting maps

Φ
(n)
λ : Vλ(n+1) → Vλ(n) which will be used in the stable-limit process. Next in Section 3.4, we

describe the spherical subspacesW
(n)
λ of Hecke invariants of V

(n)
λ and the symmetric v.v. Macdonald

polynomials PT including an explicit expansion of the PT into the Fτ (Cor. 3.4.5). We will use

the connecting maps to define the stable-limit spaces W̃λ and show in Thm. 3.4.13 that they

possess a graded action of E + having a distinguished basis of generalized symmetric Macdonald

functions PT . In Section 3.5 we will obtain a Pieri formula (Cor. 3.5.9) for the action of e•r on the

generalized Macdonald functions P. Lastly in Section 3.6, we will look at an interesting family of

(q, t) product-series identities (Thm. 3.6.12) which follow naturally from the algebra/combinatorics

in the prior sections of the chapter.
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3.2. Diagrams and Labellings

We start with a description of many of the combinatorial objects which we will need for the

remainder of this chapter.

Definition 3.2.1. Denote by Y the set of all partitions. Given a partition λ = (λ1, . . . , λr) we

set ℓ(λ) := r and |λ| := λ1 + . . . + λr. For λ = (λ1, . . . , λr) ∈ Y and n ≥ nλ := |λ| + λ1 we set

λ(n) := (n− |λ|, λ1, . . . , λr). We will identify partitions as defined above with Young diagrams of

the corresponding shape in English notation i.e. justified up and to the left.

Fix a partition λ with |λ| = n. We will require each of the following combinatorial constructions

for types of labelling of the Young diagram λ. If a diagram λ appears as the domain of a labelling

function then we are referring to the set of boxes of λ as the domain.

• A non-negative reverse Young tableau RYT≥0(λ) is a labelling T : λ → Z≥0 which is

weakly decreasing along rows and columns.

• A non-negative reverse semi-standard Young tableau RSSYT≥0(λ) is a labelling T :

λ→ Z≥0 which is weakly decreasing along rows and strictly decreasing along columns.

• A standard Young tableau SYT(λ) is a labelling τ : λ → {1, . . . , n} which is strictly

increasing along rows and columns.

• A non-negative periodic standard Young tableau PSYT≥0(λ) is a labelling τ : λ →

{jqb : 1 ≤ j ≤ n, b ≥ 0} in which each 1 ≤ j ≤ n occurs in exactly one box of λ and

where the labelling is strictly increasing along rows and columns. Here we order the formal

products jqm by jqm < kqℓ if m > ℓ or in the case that m = ℓ we have j < k. Note that

SY T (λ) ⊂ PSYT≥0(λ).

Define τ rsλ , τ csλ ∈ SYT(λ) to be the row-standard and column-standard labellings of λ respectively.

Example.

17q7 15q5 16q5 11q3 7q1 2q0

14q6 12q4 13q4 9q2 8q0

10q2 4q1 5q1 6q1

3q1 1q0

∈ PSYT≥0(6, 5, 4, 2)
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Definition 3.2.2. Given a box, □, in a Young diagram λ we define the content of □ as c(□) :=

a − b where □ = (a, b) as drawn in the N × N grid (English notation). Let τ ∈ PSYT≥0(λ) and

1 ≤ i ≤ n. Whenever τ(□) = iqb for some box □ ∈ λ we will write

• cτ (i) := c(□)

• wτ (i) := b.

Set wτ := (wτ (1), . . . , wτ (n)) ∈ Zn
≥0. Let 1 ≤ j ≤ n−1 and suppose that for some boxes □1,□2 ∈ λ

that τ(□1) = jqm and τ(□2) = (j + 1)qℓ. Let τ ′ be the labelling defined by τ ′(□1) = (j + 1)qm,

τ ′(□2) = jqℓ, and τ ′(□) = τ(□) for □ ∈ λ\{□1,□2}. If τ ′ ∈ PSYT≥0(λ) then we write sj(τ) := τ ′.

Let Ψ(τ) ∈ PSYT≥0(λ) be the labelling defined by whenever τ(□) = kqa then either Ψ(τ)(□) =

(k − 1)qa when k ≥ 2 or Ψ(τ)(□) = nqa+1 when k = 1.

We give the set PSYT≥0(λ) a partial order ≥ defined by the following cover relations.

• For all τ ∈ PSYT≥0(λ), Ψ(τ) > τ.

• If wτ (i) < wτ (i+ 1) then si(τ) > τ.

• If wτ (i) = wτ (i+ 1) and cτ (i)− cτ (i+ 1) > 1 then si(τ) > τ.

Define the map pλ : PSYT≥0(λ) → RYT≥0(λ) by pλ(τ)(□) = b whenever τ(□) = iqb. We will

write PSYT≥0(λ;T ) for the set of all τ ∈ PSYT≥0(λ) with pλ(τ) = T ∈ RYT≥0(λ).

Example. Ψ



1q7 3q5 5q5 8q2 12q1 17q0

2q6 4q5 6q5 14q0 16q0

7q2 10q1 11q1 15q0

9q1 13q0


=

17q8 2q5 4q5 7q2 11q1 16q0

1q6 3q5 5q5 13q0 15q0

6q2 9q1 10q1 14q0

8q1 12q0

We will frequently require the basic lemma regarding the ordering ≤ on PSYT≥0(λ).

Lemma 3.2.3. Let λ ∈ Y and T ∈ RYT≥0(λ). There are unique min(T ), top(T ) ∈ PSYT≥0(λ;T )

such that for all τ ∈ PSYT≥0(λ) with pλ(τ) = T , min(T ) ≤ τ ≤ top(T ).

Proof. We can explicitly construct the elements top(T ),min(T ) directly. Define top(T ) by

first filling in the boxes □ ∈ λ of λ with the values qT (□). Now we label these boxes with the values

{1, · · · , n} by first decomposing λ into skew diagrams where T is constant on each sub-diagram.

This gives us an increasing chain of Young diagrams λ(1) ⊂ . . . ⊂ λ(r) = λ. Next we fill each
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diagram λ(i) with the values {|λ(1)|+ . . .+ |λ(i−1)|+ 1, . . . , |λ(1)|+ . . .+ |λ(i)|} in column-standard

order. This gives a value iqa in each box of λ.

For min(T ), we proceed similarly by first first filling in the boxes □ ∈ λ of λ with the values

qT (□). Then we decompose λ into the same skew diagrams as before. Now we fill each diagram λ(i)

with the values {n − (|λ(1)| + . . . + |λ(i−1)|), . . . , n − (|λ(1)| + . . . + |λ(i)|)} in row-standard order.

This gives a value iqa in each box of λ.

□

Example. Given T =

7 5 5 2 1 0

6 5 5 0 0

2 1 1 0

1 0

∈ RYT≥0(6, 5, 4, 2) we have that

min(T ) =

17q7 12q5 13q5 10q2 6q1 1q0

16q6 14q5 15q5 2q0 3q0

11q2 7q1 8q1 4q0

9q1 5q0

and top(T ) =

1q7 3q5 5q5 8q2 12q1 17q0

2q6 4q5 6q5 14q0 16q0

7q2 10q1 11q1 15q0

9q1 13q0

.

Definition 3.2.4. Let λ ∈ Y with |λ| = n and T ∈ RYT≥0(λ). Define ν(T ) ∈ Zn
≥0 to be the vector

formed by listing the values of T in decreasing order i.e. ν(T ) = sort(wτ ) for any τ ∈ PSYT≥0(λ;T ).

Define S(T ) ∈ SYT(λ) by ordering the boxes of λ according to □1 ≤ □2 if and only if

• T (□1) > T (□2) or

• T (□1) = T (□2) and □1 comes before □2 in the column-standard labelling of λ.

We will often write as a shorthand □1 <T □2 whenever S(T )(□1) < S(T )(□2). Define the statistic

bT ∈ Z≥0 by

bT :=
n∑

i=1

ν(T )i(cS(T )(i) + i− 1).

Lastly, define the composition µ(T ) of n as follows. Decompose λ into horizontal strips h1, . . . , hm

where T is constant on each strip. We order these strips so that the min(T ) labels in hi are strictly

less than those in hi+1 for all i. Note that, unless T ∈ RSSYT≥0(λ), we may have horizontal strips
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with the same T -value touching in adjacent rows. We see that each of these horizontal strips hi has

some labels ai, . . . , ai + ri.. Then µ(T ) is given as (r1, . . . , rm).

Remark 26. For every T ∈ RYT≥0(λ) we can recover T from the pair (S(T ), ν(T )) by labelling

λ with the entries of ν(T ) following the order of S(T ). Further, the standard Young tableau S(T )

is the largest such tableau following the partial order defined in Definition 3.2.2.

Below is an example calculation of the various data which we associate to T ∈ RYT≥0(λ).

Example. For T ∈ RYT≥0(6, 5, 4, 2) as in Example 3.2 we have that

S(T ) =

1 3 5 8 12 17

2 4 6 14 16

7 10 11 15

9 13

∈ SYT(6, 5, 4, 2),

ν(T ) = (7, 6, 5, 5, 5, 5, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0) ∈ Z17
≥0,

bT = 0 + 0 + 15 + 15 + 30 + 30 + 8 + 20 + 5 + 8 + 10 + 15 + 0 + 0 + 0 + 0 + 0 = 156,

and µ(T ) = (1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1).

The next definition will be crucial for many of the results in this chapter.

Definition 3.2.5. Let λ ∈ Y, with |λ| = n and τ ∈ PSYT≥0(λ) with T = pλ(τ). An ordered pair

of boxes (□1,□2) ∈ λ × λ is called an inversion pair of τ if S(T )(□1) < S(T )(□2) and i > j

where τ(□1) = iqa, τ(□2) = jqb for some a, b ≥ 0. The set of all inversion pairs of τ will be denoted

by Inv(τ). We will use the shorthand I(T ) for the set Inv(min(T )).

Example. In the labelling

17q7 12q5 13q5 10q2 6q1 1q0

16q6 14q5 15q5 2q0 3q0

11q2 7q1 8q1 4q0

9q1 5q0

we have that the pairs (17q7, 12q5),

(14q5, 13q5), and (5q0, 4q0) are all inversions. Here we have referred to boxes according to their

labels.

In the following definition our conventions for the Bruhat ordering differ from many other au-

thors and from the conventions seen previously in Chapter 1. These conventions are use to help
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properly state some triangularity properties later in the chapter. However, one may obtain the

below definition from the more standard conventions in [19] by reversing the order of the entries

of each vector (a1, . . . , an) → (an, . . . , a1) and rewriting their Bruhat ordering from this reversed

perspective.

Definition 3.2.6. Define the reversed Bruhat ordering ⪯ on Zn
≥0 using the following cover rela-

tions for λ ∈ Zn
≥0:

• if i < j with λi < λj then λ ≺ (i, j)λ

• if i < j with λi + 1 < λj then λ ≻ λ+ ei − ej .

Here ei denotes the i-th standard basis vector of Zn and (i, j) ∈ Sn denotes the simple transposition

swapping i and j. For α = (α1, α2, . . . , αn) ∈ Zn
≥0 we define γ̃(α) := (α2, . . . , αn, α1 + 1). We will

write sort(α) for the vector formed by listing the entries of α in weakly decreasing order. We define

Stab(α) to be the corresponding stabilizer subgroup of Sn for α i.e. the set of all σ ∈ Sn with

σ(α) = α.

We require the following simple lemma regarding the interplay between the map γ̃ on Zn
≥0 and

the ordering ≺ .

Lemma 3.2.7. If α, β ∈ Zn
≥0 satisfy α ≺ β then γ̃(α) ≺ γ̃(β).

Proof. We will show that if α, β ∈ Zn
≥0 and β covers α with respect to the Bruhat order then

γ̃(α) ≺ γ̃(β). We will proceed in cases. Let λ ∈ Zn
≥0.

First, suppose 1 < i < j and λi < λj . Then

γ̃(λ) ≺ (i− 1, j − 1)γ̃(λ) = γ̃((i, j)λ).

Now suppose 1 < j and λ1 < λj . Then

γ̃((1, j)λ) ≻ γ̃((1, j)λ) + ej − en ⪰ (j, n)(γ̃((1, j)λ) + ej − en) = γ̃(λ).

If now we have that 1 < i < j and λi < λj − 1 then

γ̃(λ) ≻ γ̃(λ) + ei−1 − ej−1 = γ̃(λ+ ei − ej).
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Lastly, consider the case when 1 < j and λ1 < λj − 1. If λ1 + 2 = λj then

γ̃(λ) ≻ (j − 1, n)γ̃(λ) = γ̃(λ+ e1 − ej).

Instead if λ1 < λj − 2 then

γ̃(λ) ≻ (j − 1, n)γ̃(λ) ≻ (j − 1, n)γ̃(λ) + ej−1 − en = γ̃(λ+ e1 − ej).

□

Here we review some necessary details about the extended affine symmetric groups.

Definition 3.2.8. Define Ŝn to be the extended affine symmetric group given by

Ŝn := Sn ⋉ Zn

where Sn acts on Zn by coordinate permutations. Denote by t1, . . . , tn the standard generators of

Zn ⊂ Ŝn. Further, we define the special element γ̃n ∈ Ŝn given by

γ̃n := tnsn−1 . . . s1.

For any β ∈ Zn we will write

tβ := tβ1
1 · · · t

βn
n .

Define the positive submonoid of Ŝn, Ŝ
+
n , as the monoid generated by {s1, . . . , sn−1, γ̃n} (i.e. no

γ̃−1n s).

The length ℓ(σ) of σ ∈ Ŝn is the minimal number of si required to express σ in terms of the

generators {s1, . . . , sn−1, γ̃n}. We denote by Ŝn/Sn the set of minimal length left coset represen-

tatives of Ŝn with respect to the subgroup Sn. We will denote the set of positive minimal length

coset representatives of Ŝn with respect to the subgroup Sn by
(
Ŝn/Sn

)+
:= (Ŝn/Sn) ∩ Ŝ+

n . If

µ = (µ1, . . . , µr) is a composition of n = µ1 + . . .+ µr then we will define the Young subgroup Sµ

of Sn corresponding to µ as Sµ := Sµ1 × · · · × Sµr ⊂ Sn. We will write Sn/Sµ for the set of

minimal length left coset representatives for Sn with respect to the subgroup Sµ.

For β ∈ Zn define σβ ∈ Ŝn by

σβ := σtsort(β)
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where σ is the unique minimal length coset representative in Sn/SStab(sort(β)) such that σ(sort(β)) =

β.

The next two lemmas are standard in the theory of (extended) affine permutations and we leave

them to the reader to verify.

Lemma 3.2.9. We have that

Ŝn/Sn = {σβ|β ∈ Zn}

and (
Ŝn/Sn

)+
= {σβ|β ∈ Zn

≥0}.

Lemma 3.2.10. For all α ∈ Zn
≥0 we have the following:

• If α is weakly decreasing then σα = tα.

• If si(α) ≻ α then σsi(α) = siσα.

• If si(α) = α then siσα = σαsσ−1(i) where σ is the minimal length permutation with

σ(sort(α)) = α.

• σγ̃n(α) = γ̃n(σα).

Recall that in Definition 3.2.2 we only defined si(τ) for τ ∈ PSYT≥0(λ) in the situation where

swapping the i and i + 1 labels in the boxes of τ resulted in an element of PSYT≥0(λ). We now

generalize this notion to elements of Ŝ+
n .

Definition 3.2.11. Suppose zr · · · z1 is a reduced word in Ŝ+
n written in the generators zi ∈

{s1, . . . , sn−1, γ̃n}. We define inductively on r ≥ 1 if zr−1 · · · z1(τ) ∈ PSYT≥0(λ) the element

zr · · · z1(τ) of PSYT≥0(λ) as either

• Ψ(zr−1 · · · z1(τ)) if zr = γ̃n

• si(zr−1 · · · z1(τ)) if zr = si and swapping the i and i+1 labels in the boxes of zr−1 · · · z1(τ)

results in an element of PSYT≥0(λ).

Otherwise we will leave this symbol undefined. This definition is only dependent on the element

zr · · · z1 of Ŝ+
n in that if zr · · · z1 = z′r · · · z′1 is another reduced word then zr · · · z1(τ) is defined if

and only if z′r · · · z′1(τ) is defined. Thus we will write σ(τ) = zr · · · z1(τ) unambiguously in this

situation if σ = zr · · · z1.
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We will need the following result later in the chapter.

Lemma 3.2.12. For T ∈ RYT≥0(λ) we have that

top(T ) = ζ
ν(T )1−ν(T )2
1 · · · ζν(T )n

n (S(T ))

where for all 1 ≤ i ≤ n

ζi := (si · · · sn−1Ψ)i.

Proof. One may check by direct computation that if T ∈ RYT≥0(λ) and 1 ≤ i ≤ n then

ζi(top(T ))) is well defined according to Definition 3.2.11 and in particular, ζi(top(T )) = top(T ′)

where T ′(□) = T (□)+1 for S(T )(□) ≤ i and T ′(□) = T (□) otherwise. Note that S(T ) = S(T ′) so

applying ζi does not change the underlying diagram ordering corresponding to the labelling T. Thus

given any T ∈ RYT≥0(λ) by applying each ζi one at a time we see that ζ
ν(T )1−ν(T )2
1 · · · ζν(T )n

n (S(T ))

must equal top(T ). □

We will need to identify an explicit bijection between PSYT≥0(λ) and
(
Ŝn/Sn

)+
× SYT(λ).

We already have a map PSYT≥0≥0(λ) →
(
Ŝn/Sn

)+
given by τ → σwτ . This is not bijective so

we will use elements of SYT(λ) to refine this map to yield a bijection. We now identify the correct

choice of SYT(λ) for a given τ ∈ PSYT≥0≥0(λ).

Definition 3.2.13. For τ ∈ PSYT≥0(λ) we define S(τ) ∈ SYT(λ) by the following recursion:

• S(top(T )) := S(T ) as defined in Definition 3.2.4

• If wτ (i) < wτ (i+ 1) then S(si(τ)) = S(τ).

• S(Ψ(τ)) = S(τ)

• If wτ (i) = wτ (i + 1) and cτ (i) − cτ (i + 1) > 1 then S(si(τ)) = sjS(τ) where j = σ−1(i)

and σ is the minimal length permutation with σ(sort(wτ )) = wτ .

Proposition 3.2.14. For τ ∈ PSYT≥0(λ)

τ = σwτ (S(τ)).

Proof. Using Lemma 3.2.10 and Lemma 3.2.12 we see that for all T ∈ RYT≥0(λ)

σwtop(T )
(S(pλ(top(T )))) = σν(T )(S(T )) = tν(T )(S(T )) = ζ

ν(T )1−ν(T )2
1 · · · ζν(T )n

n (S(T )) = top(T ).
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Let τ ∈ PSYT≥0(λ;T ) and suppose for sake of induction that τ = σwτ (S(τ)). Now let si(τ) < τ. If

wτ (i) > wτ (i+ 1) then S(si(τ)) = S(τ) and σwsi(τ)
= siσwτ so that

σwsi(τ)
(S(si(τ))) = siσwτ (S(τ)) = si(τ).

In the case instead that wτ (i) = wτ (i+ 1) with cτ (i+ 1)− cτ (i) > 1 then S(si(τ)) = sj(S(τ)) and

σwsi(τ)
= σwτ where j = σ−1(i) and σ is the minimal length permutation with σ(sort(wτ )) = wτ .

Then

σwsi(τ)
(S(si(τ)))

= σwτ (sjS(τ))

= (σwτ sj)(S(τ))

= (siσwτ )(S(τ))

= si(τ).

□

We may now obtain the desired bijection.

Proposition 3.2.15. The map Ξλ : PSYT≥0(λ)→
(
Ŝn/Sn

)+
× SYT(λ) given by

Ξλ(τ) := (σwτ , S(τ))

is a bijection.

Proof. It is immediate from Proposition 3.2.14 that Ξλ is bijective onto its image. But it is

straightforward to check inductively that given any σ ∈
(
Ŝn/Sn

)+
and S ∈ SYT(λ), σ(S) is a well

defined element of PSYT≥0(λ) in the sense of Definition 3.2.11. This shows that Ξλ is surjective

and thus bijective. □

3.2.1. Intertwiner Relations. We will require the following lemmas regarding the inter-

twiner relations for the θ
(n)
i operators. These relations involve the following special element.

Definition 3.2.16. Define γn := XnTn−1 · · ·T1.
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The element γn behaves predictably with the θ
(n)
i operators.

Lemma 3.2.17. The following hold:

• θiγn = γnθi+1 for 1 ≤ i ≤ n− 1

• θnγn = γnqθ1.

Proof. Let 1 ≤ i ≤ n− 1. We find that

θiγn = t−(n−i)T−1i−1 · · ·T
−1
1 πnTn−1 · · ·TiXnTn−1 · · ·T1

= t−(n−i)T−1i−1 · · ·T
−1
1 πnTn−1XnTn−2 · · ·TiTn−1 · · ·T1

= t−(n−i)T−1i−1 · · ·T
−1
1 πntXn−1T

−1
n−1Tn−2 · · ·TiTn−1 · · ·T1

= t−(n−(i+1))T−1i−1 · · ·T
−1
1 XnπnT

−1
n−1Tn−2 · · ·TiTn−1 · · ·T1

= t−(n−(i+1))XnT
−1
i−1 · · ·T

−1
1 πnT

−1
n−1Tn−2 · · ·Ti(Tn−1 · · ·T1).

From the braid relations we see that for all 1 ≤ j ≤ n− 2

Tj(Tn−1 · · ·T1) = (Tn−1 · · ·T1)Tj+1

and hence

t−(n−(i+1))XnT
−1
i−1 · · ·T

−1
1 πnT

−1
n−1Tn−2 · · ·Ti(Tn−1 · · ·T1)

= t−(n−(i+1))XnT
−1
i−1 · · ·T

−1
1 πnT

−1
n−1(Tn−1 · · ·T1)Tn−1 · · ·Ti+1

= t−(n−(i+1))XnT
−1
i−1 · · ·T

−1
1 πnTn−2 · · ·T1Tn−1 · · ·Ti+1

= t−(n−(i+1))XnT
−1
i−1 · · ·T

−1
1 Tn−1 · · ·T2πnTn−1 · · ·Ti+1

= t−(n−(i+1))XnT
−1
i−1 · · ·T

−1
1 Tn−1 · · ·T2T1T

−1
1 πnTn−1 · · ·Ti+1

= t−(n−(i+1))XnTn−1 · · ·T1T
−1
i · · ·T−12 T−11 πnTn−1 · · ·Ti+1

= (XnTn−1 · · ·T1)(t
−(n−(i+1))T−1i · · ·T−11 πnTn−1 · · ·Ti+1)

= γnθi+1.
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Now we consider the last case:

θnγn = T−1n−1 · · ·T
−1
1 πnTn−1 · · ·T1

= T−1n−1 · · ·T
−1
1 qX1πnTn−1 · · ·T1

= t−(n−1)XnTn−1 · · ·T1qπnTn−1 · · ·T1

= (XnTn−1 · · ·T1)(qt
−(n−1)πnTn−1 · · ·T1)

= γnqθ1.

□

Recall the definition of the intertwiner elements φi in Definition 1.4.4. As is standard in DAHA

theory we will use the elements {φ1, . . . , φn−1, γn} to define intertwiner operators corresponding to

elements of Ŝ+
n .

Definition 3.2.18. For any σ ∈ Ŝ+
n with σ = (si1 · · · sij1 )γ̃n · · · γ̃n(sij1+...+jr−1+1 · · · sij1+...+jr

)

written minimally in terms of the generators {s1, . . . , sn−1, γ̃} define φσ ∈ Dn by

φσ := (φi1 · · ·φij1
)γn · · · γn(φij1+...+jr−1+1 · · ·φij1+...+jr

) ∈ Dn .

In particular, we have that φsi = φi and φγ̃n = γn.

The main utility of considering the intertwiner operators φσ comes from the next lemma.

Lemma 3.2.19. If v is a θ(n)-weight vector in some Dn-module with weight α = (α1, . . . , αn) and

σ ∈ Sn with φσ(v) ̸= 0 then φσ(v) is a θ(n)-weight vector with weight ασ given by the following

recursion:

• αsi = (α1, . . . , αi+1, αi, . . . αn)

• αγ̃n = (α2, . . . , αn, qα1)

• (ασ2)σ1 = ασ1σ2 .

Proof. This result follows easily by using induction on Ŝ+
n using the relations in Proposition

1.4.5 and Lemma 3.2.17. We leave the details to the reader. □
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3.3. DAHA Modules from Young Diagrams

3.3.1. Irreducible Representations of H n. The following definition gives a description

of the irreducible representations of H n. There are many equivalent methods for defining these

representations but we choose to specify eigenvectors for the Jucys-Murphy elements θi directly as

we will require these eigenvectors throughout this chapter.

Definition 3.3.1. Let λ ∈ Y with |λ| = n. Define Sλ to be the H n-module spanned by eτ for

τ ∈ SYT(λ) defined by the following relations:

• θi(eτ ) = tcτ (i)eτ

• If si(τ) > τ then φi(eτ ) = (tcτ (i) − tcτ (i+1))esi(τ).

• If the labels i, i+ 1 are in the same row in τ then Ti(eτ ) = eτ .

• If the labels i, i+ 1 are in the same column in τ then Ti(eτ ) = −teτ .

Using the relations from Proposition 1.4.2 we can show the following more explicit form for the

action of the Ti on the SYT(λ) basis:

• If si(τ) > τ then

Ti(eτ ) = esi(τ) +
(1− t)tcτ (i)

tcτ (i) − tcτ (i+1)
eτ .

• If si(τ) < τ then

Ti(eτ ) = −
(tcτ (i+1)+1 − tcτ (i))(tcτ (i)+1 − tcτ (i+1))

(tcτ (i+1) − tcτ (i))2
esi(τ) +

(1− t)tcτ (i)

tcτ (i) − tcτ (i+1)
eτ .

Proposition 3.3.2. Definition 3.3.1 is well-posed i.e. the action of the operators Ti on Sλ define

an irreducible H n-module.

Proof. As this construction is standard we will only give an outline. It follows from stan-

dard theory for the finite Hecke algebra H n (analogous to that of the symmetric group Sn in

characteristic 0) that there exists an irreducible representation of H n, Sλ, corresponding to the

partition λ with a basis of weight vectors for the Jucys-Murphy elements θi, vτ say, indexed by

τ ∈ SYT(λ). Further, the weights are given by θi(vτ ) = tcτ (i)vτ . As these weights are all distinct

it follows that this basis is unique up to re-normalization by nonzero scalars. The presentation

given in Definition 3.3.1 fixes a specific normalization given by choosing first eτrsλ
= vτrsλ

and then

building the full basis eτ using the intertwiner φi relations in Proposition 1.4.2 with the choice that
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whenever si(τ) > τ we have that φi(eτ ) = (tcτ (i) − tcτ (i+1))esi(τ). Up to an initial arbitrary choice

for the scalar multiple of eτrsλ
, this uniquely determines the rest of the coefficients of the eτ . □

Remark 27. The set {λ ∈ Y : |λ| = n} gives a full set of irreducible H n-modules up to

isomorphism. Note that for τ, τ ′ ∈ SYT(λ), the θ-weights of eτ = eτ ′ are equal if and only if

τ = τ ′.

In the following lemma we identify a particular map between finite Hecke algebra representations

which will be central in the stable-limit construction later in the chapter.

Lemma 3.3.3. Let λ ∈ Y and n ≥ nλ. Let □0 be the unique square in the skew-diagram

λ(n+1)/λ(n). Consider the map q
(n)
λ : Sλ(n+1) → Sλ(n) given for τ ∈ SYT(λ(n+1)) as

q
(n)
λ (eτ ) :=


eτ |

λ(n)
τ(□0) = n+ 1

0 τ(□0) ̸= n+ 1.

Then q
(n)
λ is a H n-module map.

Proof. Let τ ∈ SYT(λ(n+1)). First, assume that τ(□0) ̸= n+ 1 so that q
(n)
λ (eτ ) = 0. Then for

1 ≤ i ≤ n − 1, from the relations in Definition 3.3.1, we see that Ti(eτ ) is either a scalar multiple

of eτ or a linear combination of eτ and esi(τ). In either case q
(n)
λ (Ti(eτ )) = 0 = Tiq

(n)
λ (eτ ). Now

assume τ(□0) = n + 1. We will be more detailed about this case as we will need to be careful

about the combinatorics regarding the coefficients of expanding Ti(eτ ) into the SYT(λ(n)) basis.

For 1 ≤ i ≤ n− 1 we have the cases

• Ti(eτ ) = eτ if i, i+ 1 are in the same row of τ

• Ti(eτ ) = −teτ if i, i+ 1 are in the same column of τ

• Ti(eτ ) = esi(τ) +
(1−t)tcτ (i)

tcτ (i)−tcτ (i+1) eτ if si(τ) > τ

• Ti(eτ ) = − (tcτ (i+1)+1−tcτ (i))(tcτ (i)+1−tcτ (i+1))

(tcτ (i+1)−tcτ (i))2
esi(τ) +

(1−t)tcτ (i)

tcτ (i)−tcτ (i+1) eτ if si(τ) < τ.

In any of these cases since τ(□0) = n + 1 and 1 ≤ i ≤ n − 1, we have that si(τ)(□0) = n + 1

as well. Further, the placement of the boxes labelled i, i+ 1 in the labellings τ, si(τ) is unchanged

when restricted to λ(n) i.e. in the labellings τ |λ(n) , si(τ)|λ(n) . Let τ ′ := τ |λ(n) . Therefore we have

the cases:

• q
(n)
λ (Ti(eτ )) = eτ |

λ(n)
= Tiq

(n)
λ (eτ ) if i, i+ 1 are in the same row of τ

130



• q
(n)
λ (Ti(eτ )) = −teτ |

λ(n)
= Tiq

(n)
λ (eτ ) if i, i+ 1 are in the same column of τ

• q
(n)
λ (Ti(eτ )) = esi(τ ′) +

(1−t)tcτ ′ (i)

tcτ ′ (i)−tcτ ′ (i+1) eτ ′ = Tiq
(n)
λ (eτ ) if si(τ) > τ

• q
(n)
λ (Ti(eτ )) = − (tcτ ′ (i+1)+1−tcτ ′ (i))(tcτ ′ (i)+1−tcτ ′ (i+1))

(tcτ ′ (i+1)−tcτ ′ (i))2
esi(τ ′) +

(1−t)tcτ ′ (i)

tcτ ′ (i)−tcτ ′ (i+1) eτ ′ = Tiq
(n)
λ (eτ ) if

τ > si(τ).

Thus in all cases we have that q
(n)
λ (Ti(eτ )) = Tiq

(n)
λ (eτ ). Hence, q

(n)
λ is a H n-module map. □

3.3.2. The D+
n -module Vλ. We begin by defining a collection of DAHA modules indexed by

Young diagrams λ ∈ Y . These modules are the same as those appearing in [12] but we take the

approach of using induction from A n to D+
n for their definition.

Definition 3.3.4. Let λ ∈ Y with |λ| = n. Define the D+
n -module Vλ to be the induced module

Vλ := Ind
D+

n
A n

ρ∗n(Sλ).

The modules Vλ naturally have the basis given by Xα ⊗ eτ where Xα is a monomial and τ ∈

SYT(λ). We will refer to this as the standard basis of Vλ. Using the theory of intertwiners for DAHA

and some combinatorics we are able to show the following structural results. The Fτ appearing

below are the version of the non-symmetric vv. Macdonald polynomials from [12] following our

conventions. These do not align with the non-symmetric vv. Macdonald polynomials of [12].

The next result is fundamental to the rest of this chapter and will be used repeatedly. Recall the

definition of the θ
(n)
i elements from Definition 1.4.4.

Proposition 3.3.5. There exists a basis of Vλ consisting of θ(n)-weight vectors {Fτ : τ ∈

PSYT≥0(λ)} with distinct θ(n)-weights such that the following hold:

• θ
(n)
i (Fτ ) = qwτ (i)tcτ (i)Fτ

• If τ ∈ SYT(λ) then Fτ = 1⊗ eτ .

• If si(τ) > τ then(
tT−1i +

(t− 1)qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

)
(Fτ ) = Fsi(τ).

• FΨ(τ) = qw1(τ)Xnπ
−1
n (Fτ ).

Proof. Using Mackey Decomposition we find
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gr.Res
D+

n

θ(n)(Vλ)

= gr.Res
D+

n

θ(n) Ind
D+

n
A n

ρ∗n(Sλ)

=
⊕

σ∈(Ŝn/Sn)
+

(
ResA n

θ(n) ρ
∗
n(Sλ)

)σ
=

⊕
σ∈(Ŝn/Sn)

+

τ∈SYT(λ)

Q(q, t)(φσ ⊗ eτ ).

As a consequence we find that the set {φσ⊗eτ}(σ,τ)∈(Ŝn/Sn)
+×∈SYT(λ)

is a generalized θ(n)-weight

basis for Vλ. We now define

Fτ := gτφσwτ
⊗ eS(τ)

of Vλ where the scalars gτ are to be chosen uniquely to satisfy the conditions detailed in this

proposition’s statement. It is easy to check that since every τ ∈ PSYT≥0(λ) may be obtained by

applying σwτ to S(τ) the scalars gτ are uniquely determined by setting gτrsλ
= 1. By Proposition

3.2.15 this assignment produces a basis for Vλ labelled by PSYT≥0(λ). Further, by induction using

Lemma 3.2.19 and Proposition 3.2.14 we see that no matter our choice of nonzero scalars gτ each

Fτ is a θ(n)-weight vector with θ
(n)
i (Fτ ) = qwτ (i)tcτ (i)Fτ .

The only remaining step to justify is that if τ ∈ PSYT≥0(λ) then γn(Fτ ) agrees with Xnπ
−1
n (Fτ )

up to some nonzero scalar. We see that

γn(Fτ )

= XnTn−1 · · ·T1(Fτ )

= Xnπ
−1
n πnTn−1 · · ·T1(Fτ )

= tn−1Xnπ
−1
n θ1(Fτ )

= tn−1qwτ (1)tcτ (1)Xnπ
−1
n (Fτ ).

132



Therefore, there is no issue in defining the coefficient gΨ(τ) so that FΨ(τ) = qwτ (1)Xnπ
−1
n (Fτ ).

□

Example.

F 1q 2q
3

= t−2X1X2 ⊗ e 1 2
3

+ t−2
(

1− t

1− qt2

)
X2X3 ⊗ e 1 3

2

+
t−2

1 + t

(
1− t

1− qt2

)
X2X3 ⊗ e 1 2

3

− t−3
(

1− t

1− qt2

)
X1X3 ⊗ e 1 3

2

+
t−1

1 + t

(
1− t

1− qt2

)
X1X3 ⊗ e 1 2

3

Remark 28. Note that from Proposition 3.3.5 we get that

γn(Fτ ) = tn−1+cτ (1)FΨ(τ).

By induction we see that

γrn(Fτ ) = tr(n−1)tcτ (1)+...+cτ (r)FΨr(τ).

We now look at the A n-submodules of Vλ.

Proposition 3.3.6. The D+
n -module Vλ has the following decomposition into A n-submodules:

Res
D+

n
A n

Vλ =
⊕

T∈RYT≥0(λ)

UT

where UT := spanQ(q,t){Fτ |τ ∈ PSYT≥0(λ;T )}. Further, each A n-module UT is irreducible.

Proof. Let T ∈ RYT≥0(λ). Note that it follows immediately from Proposition 3.3.5 that each

UT is a A n-submodule of Vλ. Further, trivially UT ∩ UT ′ = ∅ for T ̸= T ′ since the Fτ are a basis

for Vλ and the sets PSYT≥0(λ;T ) partition PSYT≥0(λ). Therefore,

Res
D+

n
A n

Vλ =
⊕

T∈RYT≥0(λ)

UT .

Now let T ∈ RYT≥0(λ). If U ⊂ UT is a nonzero A n-submodule then U must contain some θ(n)

weight vector as UT is spanned by θ(n) weight vectors. Thus there exists some τ ∈ PSYT≥0(λ;T )

with Fτ0 ∈ U. But then it is follows readily from Proposition 3.3.5 that by using intertwiner
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operators φi given any τ ∈ PSYT≥0(λ) we may find A ∈ A n such that A(Fτ0) = Fτ . Therefore,

U = UT and hence UT is irreducible. □

Remark 29. It follows by using Frobenius Reciprocity and Proposition 3.3.6 that in fact there

are surjective A n module maps

IndA n
A µ(T )

χT → UT

where χT is the 1-dimensional representation of A µ(T ) determined by the θ(n)-weight of Fmin(T ) and

Ti → 1 for relevant Ti. Thus each UT is a quotient of an induced module from a parabolic subalgebra

of A n . In the case of T ∈ RSSYT≥0(λ) this map is an isomorphism. We may witness the implied

bijection between PSYT≥0(λ;T ) and Sn/Sµ(T ) combinatorially using the map σ → σ(min(T )) for

σ ∈ Sn/Sµ(T ). It is straightforward to check by decomposing λ into horizontal strip diagrams where

T is constant along rows that this map is actually an isomorphism of posets.

The following lemma exhibits triangularity for the T−1i operators with respect to the reversed

Bruhat order on Zn
≥0.

Lemma 3.3.7. For 1 ≤ i ≤ n− 1 and a ≥ 0,

(tT−1i )Xa
i+1 = Xa

i (tT
−1
i ) + (t− 1)Xi+1

Xa
i −Xa

i+1

Xi −Xi+1
.

Further, every monomial occurring in the term Xi+1
Xa

i −Xa
i+1

Xi−Xi+1
is strictly lower than Xa

i with respect

to the Bruhat ordering ⪯. Consequently, it follows that for any α ∈ Zn
≥0 with si(α) ⪰ α the

following expansion holds for some scalars cβ

(tT−1i )Xα = Xsi(α)(tT−1i ) +
∑

β≺si(α)

cβX
β.
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Proof. We start with

tT−1i Xa
i+1 = (Ti + t− 1)Xa

i+1

= TiX
a
i+1 + (t− 1)Xa

i+1

= Xa
i Ti + (1− t)Xi

Xa
i+1 −Xa

i

Xi −Xi+1
− (1− t)Xa

i+1

= Xa
i (tT

−1
i + 1− t) + (1− t)Xi

Xa
i+1 −Xa

i

Xi −Xi+1
− (1− t)Xa

i+1

= Xa
i tT

−1
i + (1− t)Xa

i − (1− t)Xa
i+1 + (1− t)Xi

Xa
i+1 −Xa

i

Xi −Xi+1

= Xa
i tT

−1
i + (t− 1)Xi+1

Xa
i+1 −Xa

i

Xi+1 −Xi
.

Further,

Xi+1
Xa

i+1 −Xa
i

Xi+1 −Xi
= Xa

i+1 +Xa−1
i+1 Xi + . . .+X2

i+1X
a−2
i +Xi+1X

a−1
i

so that

tT−1i Xa
i+1 = Xa

i tT
−1
i + (t− 1)(Xa

i+1 +Xa−1
i+1 Xi + . . .+X2

i+1X
a−2
i +Xi+1X

a−1
i ).

Now let α ∈ Zn
≥0 with si(α) ≻ α i.e. αi < αi+1. Then

tT−1i Xα

= tT−1i Xα1
1 · · ·X

αi−1

i−1 Xαi
i X

αi+1

i+1 X
αi+2

i+2 · · ·X
αn
n

= Xα1
1 · · ·X

αi−1

i−1 X
αi+2

i+2 · · ·X
αn
n tT−1i Xαi

i X
αi+1

i+1

= Xα1
1 · · ·X

αi−1

i−1 Xαi
i Xαi

i+1X
αi+2

i+2 · · ·X
αn
n tT−1i X

αi+1−αi

i+1

= Xα1
1 · · ·X

αi−1

i−1 Xαi
i Xαi

i+1X
αi+2

i+2 · · ·X
αn
n

×
(
X

αi+1−αi

i tT−1i + (t− 1)(X
αi+1−αi

i+1 +X
αi+1−αi−1
i+1 Xi + . . .+Xi+1X

αi+1−αi−1
i )

)
= Xsi(α)tT−1i + (t− 1)

αi+1−αi−1∑
j=0

Xα+j(ei−ei+1).
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Lastly, from Definition 3.2.6 it is clear that for all 0 ≤ j ≤ αi+1−αi−1, si(α) ≻ α+j(ei−ei+1). □

Now we show that each Fτ has a triangular monomial expansion of a certain form. It will be

important to identify explicitly the vector-valued leading term of the Fτ as this will be crucial when

defining the stable-limits of the symmetric v.v. Macdonald polynomials.

Corollary 3.3.8. For τ ∈ PSYT≥0(λ) each Fτ has a triangular monomial expansion with respect

to the reversed Bruhat order on Zn
≥0 of the form

Fτ = Xwτ ⊗ f(τ) +
∑
β≺wτ

Xβ ⊗ vβ

for some vβ ∈ Sλ where f(τ) ∈ Sλ is given by the following recurrence relations:

• If τ ∈ SYT(λ) then f(τ) = eτ .

• f(Ψ(τ)) = t−(n−1)Tn−1 · · ·T1(f(τ))

• If wτ (i) < wτ (i+ 1) then f(si(τ)) = tT−1i f(τ).

• If wτ (i) = wτ (i+ 1) and cτ (i)− cτ (i+ 1) > 1 then

f(si(τ)) =

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

)
(f(τ)).

Proof. We will proceed by induction with respect to the partial ordering on PSYT≥0(λ)

defined in Definition 3.2.2. We will at the same time verify the recurrence relations given for

f(τ) ∈ Sλ given above.

From Proposition 3.3.5 we know that if τ ∈ SYT(λ) then Fτ = 1⊗ eτ . Hence, Fτ trivially has a

triangular monomial expansion of the correct form in this case and that f(τ) = eτ .

In what follows assume that for τ ∈ PSYT≥0(λ) we have that

Fτ = Xwτ ⊗ f(τ) +
∑
β≺wτ

Xβ ⊗ vβ

for some vβ ∈ Sλ.

136



First, we see that

FΨ(τ) = qw1(τ)Xnπ
−1
n (Fτ )

= qw1(τ)Xnπ
−1
n Xwτ ⊗ f(τ) +

∑
β≺wτ

qw1(τ)Xnπ
−1
n Xβ ⊗ vβ

= qw1(τ)q−w1(τ)X γ̃(wτ )π−1n ⊗ f(τ) +
∑
β≺wτ

qw1(τ)q−β1X γ̃(β)π−1n ⊗ vβ

= X γ̃(wτ ) ⊗ ρn(π
−1
n )f(τ) +

∑
β≺wτ

X γ̃(β) ⊗ qw1(τ)−β1ρn(π
−1
n )vβ

= X γ̃(wτ ) ⊗ t−(n−1)Tn−1 · · ·T1f(τ) +
∑
β≺wτ

X γ̃(β) ⊗ qw1(τ)−β1t−(n−1)Tn−1 · · ·T1vβ.

From Lemma 3.2.7 we know that if β ≺ wτ then γ̃(β) ≺ γ̃(wτ ). Therefore, we find that FΨ(τ) has

the expansion

FΨ(τ) = X γ̃(wτ ) ⊗ t−(n−1)Tn−1 · · ·T1f(τ) +
∑

β≺γ̃(τ)

Xβ ⊗ v′β

for some v′β ∈ Sλ. From this we see that f(Ψ(τ)) = t−(n−1)Tn−1 · · ·T1(f(τ)).

Now suppose si(τ) > τ. From Proposition 3.3.5 we get

Fsi(τ) =

(
tT−1i +

(t− 1)qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

)
(Fτ )

=

(
tT−1i +

(t− 1)qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

)Xwτ ⊗ f(τ) +
∑
β≺wτ

Xβ ⊗ vβ


= tT−1i

Xwτ ⊗ f(τ) +
∑
β≺wτ

Xβ ⊗ vβ


+

(
(t− 1)qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

)Xwτ ⊗ f(τ) +
∑
β≺wτ

Xβ ⊗ vβ

 .

For any β < wτ using Lemma 3.3.7 we find that

tT−1i Xβ ⊗ vβ =
∑

β′≺si(wτ )

Xβ′ ⊗ uβ′,β
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for some uβ′,β ∈ Sλ; that is to say, each of the monomials Xβ′
that appears in the standard basis

expansion of tT−1i Xβ ⊗ vβ must have β′ ≺ si(wτ ).

Assume wτ (i) < wτ (i+ 1). By Lemma 3.3.7 we see

(tT−1i )Xwτ ⊗ f(τ) = Xsi(wτ )(tT−1i )⊗ f(τ) +
∑

β≺si(wτ )

cβX
β ⊗ f(τ)

= Xsi(wτ ) ⊗ (tT−1i )f(τ) +
∑

β≺si(wτ )

cβX
β ⊗ f(τ).

Therefore, Fsi(τ) has the expansion

Fsi(τ) = Xsi(wτ ) ⊗ tT−1i f(τ) +
∑

β≺si(wτ )

Xβ ⊗ v′β

where v′β ∈ Sλ. Since si(wτ ) = wsi(τ) we have

Fsi(τ) = Xwsi(τ) ⊗ tT−1i f(τ) +
∑

β≺wsi(τ)

Xβ ⊗ v′β

and f(si(τ)) = tT−1i f(τ).

Now assume instead that wτ (i) = wτ (i+ 1) and cτ (i)− cτ (i+ 1) > 1. Then TiX
wτ = XwτTi so

Fsi(τ) =

(
tT−1i +

(t− 1)qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

)
(Fτ )

=

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

)
(Fτ )

=

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

)Xwτ ⊗ f(τ) +
∑
β≺wτ

Xβ ⊗ vβ


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=

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

)
Xwτ ⊗ f(τ) +

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

) ∑
β≺wτ

Xβ ⊗ vβ

= Xwτ

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

)
⊗ f(τ) +

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

) ∑
β≺wτ

Xβ ⊗ vβ

= Xwτ ⊗

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

)
f(τ) +

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

) ∑
β≺wτ

Xβ ⊗ vβ.

Therefore, since wτ = wsi(τ) we find that

Fsi(τ) = Xwsi(τ) ⊗

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

)
f(τ) +

∑
β≺wsi(τ)

Xβ ⊗ v′β

for some v′β ∈ Sλ and

f(si(τ)) =

(
tT−1i +

(t− 1)tcτ (i+1)

tcτ (i) − tcτ (i+1)

)
(f(τ)).

□

Using the ζi operators on PSYT≥0(λ) we may compute f(top(T )) explicitly.

Proposition 3.3.9. For T ∈ RYT≥0(λ) we have that

f(top(T )) = C
ν(T )1−ν(T )2
1 · · ·C ν(T )n

n (eS(T ))

where define for 1 ≤ i ≤ n,

Ci :=
(
(tT−1i ) · · · (tT−1n−1)(t

−(n−1)Tn−1 · · ·T1)
)i

.

Proof. Using the recurrence relations in Corollary 3.3.8 for the elements f(τ) and Proposition

3.2.14 we see that for any T ∈ RSSYT≥0(λ) since

top(T ) = ζ
ν(T )1−ν(T )2
1 · · · ζν(T )n

n (S(T ))

with each ζi := (si · · · sn−1Ψ)i then we have a similar expression for f(top(T )):

f(top(T )) = C
ν(T )1−ν(T )2
1 · · ·C ν(T )n

n (eS(T ))
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where Ci :=
(
(tT−1i ) · · · (tT−1n−1)(t

−(n−1)Tn−1 · · ·T1)
)i

is obtained by replacing each sj and Ψ in

ζi with tT−1j and t−(n−1)Tn−1 · · ·T1 respectively. Importantly, when we apply ζi to any element of

the form top(T ′) we never perform any swaps sj(τ) > τ such that wτ (j) = wτ (j + 1) and hence

never require the more complicated recurrence relation:

f(sj(τ)) =

(
tT−1j +

(t− 1)tcτ (j+1)

tcτ (j) − tcτ (j+1)

)
(f(τ)).

□

The Ci operators can be identified concretely using the θj elements of the finite Hecke algebra.

Lemma 3.3.10. For all 1 ≤ i ≤ n,

Ci = Ai · · ·A1

where Aj := t−(j−1)θ
−1
j .

Proof. Let 0 ≤ k ≤ i− 1. We first show by induction that

(ti−1θ
−1
i ) · · · (ti−k−1θ−1i−k) = (Ti−1 · · ·T1)

k+1(Tk+1 · · ·Ti−1)(Tk · · ·Ti−2) · · · (T1 · · ·Ti−k−1).

To start we see that for k = 0 we have

ti−1θ
−1
i = Ti−1 · · ·T 2

1 · · ·Ti−1 = (Ti−1 · · ·T1)
1(T1 · · ·Ti−1).
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Now suppose that for 0 ≤ k ≤ i− 2 the formula above holds. Then

(ti−1θ
−1
i ) · · · (ti−(k+1)θ

−1
i−(k+1))

= (Ti−1 · · ·T1)
k+1(Tk+1 · · ·Ti−1)(Tk · · ·Ti−2) · · · (T1 · · ·Ti−k−1)(t

i−(k+1)θ
−1
i−(k+1))

= (Ti−1 · · ·T1)
k+1(Tk+1 · · ·Ti−1)(Tk · · ·Ti−2) · · · (T1 · · ·Ti−k−1)(Ti−k−2 · · ·T 2

1 · · ·Ti−k−2)

= (Ti−1 · · ·T1)
k+1(Tk+1 · · ·Ti−1)(Tk · · ·Ti−2) · · · (T2 · · ·Ti−k)(T1 · · ·Ti−k−1)(Ti−k−2 · · ·T1)

× (T1 · · ·Ti−k−2)

= (Ti−1 · · ·T1)
k+1(Tk+1 · · ·Ti−1)(Tk · · ·Ti−2) · · · (T2 · · ·Ti−k)(Ti−k−1 · · ·T2)(T1 · · ·Ti−k−1)

× (T1 · · ·Ti−k−2)

= (Ti−1 · · ·T1)
k+1(Tk+1 · · ·Ti−1)(Tk · · ·Ti−2) · · · (T2 · · ·Ti−k)(Ti−k−1 · · ·T1)(T2 · · ·Ti−k−1)

× (T1 · · ·Ti−k−2)

= (Ti−1 · · ·T1)
k+1(Tk+1 · · ·Ti−1)(Tk · · ·Ti−2) · · · (T3 · · ·Ti−k+1)(T2 · · ·Ti−k)(Ti−k−1 · · ·T1)

× (T2 · · ·Ti−k−1)(T1 · · ·Ti−k−2)

= (Ti−1 · · ·T1)
k+1(Tk+1 · · ·Ti−1)(Tk · · ·Ti−2) · · · (T3 · · ·Ti−k+1)(Ti−k · · ·T1)(T3 · · ·Ti−k)

× (T2 · · ·Ti−k−1)(T1 · · ·Ti−k−2)

= · · ·

= (Ti−1 · · ·T1)
k+1(Ti−1 · · ·T1)(Tk+2 · · ·Ti−1)(Tk+1 · · ·Ti−2) · · · (T1 · · ·Ti−k−2)

= (Ti−1 · · ·T1)
k+2(Tk+2 · · ·Ti−1)(Tk+1 · · ·Ti−2) · · · (T1 · · ·Ti−k−2).

By taking k = i− 1 we find

(ti−1θ
−1
i ) · · · (t0θ−11 ) = (Ti−1 · · ·T1)

i.
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Now we see that

Ci =
(
(tT−1i ) · · · (tT−1n−1)(t

−(n−1)Tn−1 · · ·T1)
)i

= t−i(i−1)(Ti−1 · · ·T1)
i

= t−i(i−1)(ti−1θ
−1
i ) · · · (t0θ−11 )

= t−2(i−1)−2(i−2)−...−2(1)−2(0)(ti−1θ
−1
i ) · · · (t0θ−11 )

= (t−(i−1)θ
−1
i ) · · · (t−0θ−11 )

= Ai · · ·A1

where Aj := t−(j−1)θ
−1
j . □

Putting the results of this section together gives the following:

Corollary 3.3.11. For T ∈ RYT≥0(λ), the triangular expansion of Ftop(T ) has the form

Ftop(T ) = t−bTXν(T ) ⊗ eS(T ) +
∑

β≺ν(T )

Xβ ⊗ vβ

for some vβ ∈ Sλ.

Proof. First, notice that for T ∈ RYT≥0(λ) wtop(T ) = ν(T ). From Proposition 3.3.9 and

Lemma 3.2.12

f(top(T )) = C
ν(T )1−ν(T )2
1 · · ·C ν(T )n

n (eS(T ))

= A
ν(T )1−ν(T )2
1 (A1A2)

ν(T )2−ν(T )3 · · · (A1 · · ·An)
ν(T )n(eS(T ))

= A
(ν(T )1−ν(T )2)+...+(ν(T )n−1−ν(T )n)+ν(T )n
1 · · ·A(ν(T )n−1−ν(T )n)+ν(T )n

n−1 Aν(T )n
n (eS(T ))

= (θ
−1
1 )ν(T )1 · · · (θ−1n )ν(T )n(eS(T ))

= t−ν(T )1(cS(T )(1)−(1−1)) · · · t−ν(T )n(cS(T )(n)−(n−1))eS(T )

= t−
∑n

i=1 ν(T )i(cS(T )(i)+i−1)eS(T )

= t−bT eS(T ).
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Therefore, the leading term of Ftop(T ) is

Xwtop(T ) ⊗ f(top(T )) = t−bTXν(T ) ⊗ eS(T ).

□

3.3.3. Connecting Maps Between Vλ(n). We now construct special maps between the v.v.

polynomial DAHA modules which satisfy particular stability properties.

Definition 3.3.12. Let λ ∈ Y. For n ≥ nλ define Φ
(n)
λ : Vλ(n+1) → Vλ(n) as the Q(q, t)-linear

map given on any element Xα ⊗ v ∈ Vλ(n+1) by

Φ
(n)
λ (Xα ⊗ v) = 1(αn+1 = 0)Xα1

1 · · ·X
αn
n ⊗ q

(n)
λ (v).

Proposition 3.3.13. The map Φ
(n)
λ satisfies the following relations:

• Φ
(n)
λ Ti = TiΦ

(n)
λ for 1 ≤ i ≤ n− 1

• Φ
(n)
λ Xi = XiΦ

(n)
λ for 1 ≤ i ≤ n

• Φ
(n)
λ Xn+1 = 0

• Φ
(n)
λ t−nπn+1Tn = t−(n−1)πnΦ

(n)
λ

• Φ
(n)
λ θ

(n+1)
i = θ

(n)
i Φ

(n)
λ for 1 ≤ i ≤ n

• Φ
(n)
λ (θ

(n+1)
n+1 − tn−|λ|) = 0.

Proof. From Lemma 3.3.3 and Definition 3.3.12 it follows immediately for all 1 ≤ i ≤ n − 1

and 1 ≤ j ≤ n that Φ
(n)
λ Ti = TiΦ

(n)
λ , Φ

(n)
λ Xj = XjΦ

(n)
λ , and Φ

(n)
λ Xn+1 = 0.

Let Xα ⊗ v ∈ Vλ(n+1) . By direct calculation we find
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Φ
(n)
λ t−nπn+1Tn(X

α1
1 · · ·X

αn+1

n+1 ⊗ v)

= Φ
(n)
λ t−nπn+1X

α1
1 · · ·X

αn−1

n−1 Tn(X
αn
n X

αn+1

n+1 ⊗ v)

= Φ
(n)
λ t−nXα1

2 · · ·X
αn−1
n πn+1Tn(X

αn
n X

αn+1

n+1 ⊗ v)

= t−nXα1
2 · · ·X

αn−1
n Φ

(n)
λ πn+1Tn(X

αn
n X

αn+1

n+1 ⊗ v)

= t−nXα1
2 · · ·X

αn−1
n Φ

(n)
λ πn+1

(
Xαn

n+1X
αn+1
n Tn ⊗ v + (1− t)Xn

Xαn
n X

αn+1

n+1 −Xαn
n+1X

αn+1
n

Xn −Xn+1
⊗ v

)

= t−nXα1
2 · · ·X

αn−1
n

× Φ
(n)
λ

(
qαnXαn

1 X
αn+1

n+1 πn+1Tn ⊗ v + (1− t)Xn+1πn+1
Xαn

n X
αn+1

n+1 −Xαn
n+1X

αn+1
n

Xn −Xn+1
⊗ v

)

= 1(αn+1 = 0)t−nqαnXαn
1 Xα1

2 · · ·X
αn−1
n Φ

(n)
λ (1⊗ ρn+1(πn+1Tn)v)

= 1(αn+1 = 0)t−nqαnXαn
1 Xα1

2 · · ·X
αn−1
n Φ

(n)
λ (1⊗ tnT−11 · · ·T−1n−1v)

= 1(αn+1 = 0)qαnXαn
1 Xα1

2 · · ·X
αn−1
n ⊗ T−11 · · ·T−1n−1q

(n)
λ (v).

On the other hand we see

t−(n−1)πnΦ
(n)
λ (Xα

1 · · ·X
αn+1

n+1 ⊗ v)

= 1(αn+1 = 0)t−(n−1)πn(X
α1
1 · · ·X

αn
n ⊗ q

(n)
λ (v))

= 1(αn+1 = 0)t−(n−1)qαnXαn
1 Xα1

2 · · ·X
αn−1
n ⊗ ρn(πn)(q

(n)
λ (v))

= 1(αn+1 = 0)qαnXαn
1 Xα1

2 · · ·X
αn−1
n ⊗ T−11 · · ·T−1n−1q

(n)
λ (v).

Therefore, Φ
(n)
λ t−nπn+1Tn = t−(n−1)πnΦ

(n)
λ as desired.
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Now let 1 ≤ i ≤ n. We see that

Φ
(n)
λ θ

(n+1)
i = Φ

(n)
λ t−(n−i+1)T−1i−1 · · ·T

−1
1 πn+1Tn · · ·Ti

= ti−1T−1i−1 · · ·T
−1
1 (Φ

(n)
λ t−nπn+1Tn)Tn−1 · · ·Ti

= ti−1T−1i−1 · · ·T
−1
1 (t−(n−1)πnΦ

(n)
λ )Tn−1 · · ·Ti

= t−(n−i)T−1i−1 · · ·T
−1
1 πnTn−1 · · ·TiΦ

(n)
λ

= θ
(n)
i Φ

(n)
λ .

Now let α ∈ Zn+1
≥0 and τ ∈ SYT(λ(n+1)). We find

Φ
(n)
λ θ

(n+1)
n+1 (Xα ⊗ eτ )

= Φ
(n)
λ T−1n · · ·T−11 πn+1(X

α ⊗ eτ )

= Φ
(n)
λ T−1n · · ·T−11 qαn+1X

αn+1

1 Xα1
2 · · ·X

αn
n+1 ⊗ ρn+1(πn+1)eτ

= qαn+1Φ
(n)
λ T−1n · · ·T−11 X

αn+1

1 Xα1
2 · · ·X

αn
n+1(1⊗ tnT−11 · · ·T−1n (eτ )).

Now if αn+1 > 0 then this evaluates to 0 since

Φ
(n)
λ T−1n · · ·T−11 X1 = t−nΦ

(n)
λ Xn+1Tn · · ·T1 = 0.

Hence,

Φ
(n)
λ θ

(n+1)
n+1 (Xα ⊗ eτ ) = 1(αn+1 = 0)Φ

(n)
λ T−1n · · ·T−11 Xα1

2 · · ·X
αn
n+1(1⊗ tnT−11 · · ·T−1n (eτ )).

Now we by repeatedly applying Lemma 3.3.7 we see that as maps Vλ(n+1) → Vλ(n)
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Φ
(n)
λ T−1n · · ·T−12 (T−11 Xα1

2 )Xα2
3 · · ·X

αn
n+1

= Φ
(n)
λ T−1n · · ·T−12

(
Xα1

1 T−11 + (1− t−1)X2
Xα1

1 −Xα1
2

X1 −X2

)
Xα2

3 · · ·X
αn
n+1

= Xα1
1 Φ

(n)
λ T−1n · · ·T−11 Xα2

3 · · ·X
αn
n+1 + (1− t−1)Φ

(n)
λ T−1n · · ·T−12 X2

Xα1
1 −Xα1

2

X1 −X2
Xα2

3 · · ·X
αn
n+1

= Xα1
1 Φ

(n)
λ T−1n · · ·T−11 Xα2

3 · · ·X
αn
n+1

+ (1− t−1)t−(n−2)Φ
(n)
λ Xn+1Tn−1 · · ·T2

Xα1
1 −Xα1

2

X1 −X2
Xα2

3 · · ·X
αn
n+1

= Xα1
1 Φ

(n)
λ T−1n · · ·T−11 Xα2

3 · · ·X
αn
n+1 + 0

= Xα1
1 Φ

(n)
λ T−1n · · ·T−13 (T−12 Xα2

3 )T−11 Xα3
4 · · ·X

αn
n+1

= . . .

= Xα1
1 Xα2

2 Φ
(n)
λ T−1n · · ·T−11 Xα3

4 · · ·X
αn
n+1

= . . .

= Xα1
1 · · ·X

αn
n Φ

(n)
λ T−1n · · ·T−11 .

As usual let □0 denote the unique square of the skew diagram λ(n+1)/λ(n). Returning to our main

calculation now shows

Φ
(n)
λ θ

(n+1)
n+1 (Xα ⊗ eτ )

= 1(αn+1 = 0)Φ
(n)
λ T−1n · · ·T−11 Xα1

2 · · ·X
αn
n+1(1⊗ tnT−11 · · ·T−1n (eτ ))

= 1(αn+1 = 0)Xα1
1 · · ·X

αn
n Φ

(n)
λ T−1n · · ·T−11 (1⊗ tnT−11 · · ·T−1n (eτ ))

= 1(αn+1 = 0)Xα1
1 · · ·X

αn
n Φ

(n)
λ (1⊗ tnT−1n · · ·T−11 T−11 · · ·T−1n (eτ ))

= 1(αn+1 = 0)Xα1
1 · · ·X

αn
n Φ

(n)
λ (1⊗ θ

(n+1)
n+1 (eτ ))
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= 1(αn+1 = 0)Xα1
1 · · ·X

αn
n Φ

(n)
λ (1⊗ tcτ (n+1)eτ )

= tcτ (n+1)
1(αn+1 = 0)Xα1

1 · · ·X
αn
n ⊗ q

(n)
λ (eτ )

= tc(□0)1(αn+1 = 0)1(τ(□0) = n+ 1)Xα1
1 · · ·X

αn
n ⊗ eτ |λ(n)

= tn−|λ|1(αn+1 = 0)1(τ(□0) = n+ 1)Xα1
1 · · ·X

αn
n ⊗ eτ |λ(n)

= Φ
(n)
λ (tn−|λ|Xα ⊗ eτ ).

Therefore,

Φ
(n)
λ (θ

(n+1)
n+1 − tn−|λ|) = 0.

□

Corollary 3.3.14. Let n ≥ nλ and □0 = λ(n+1)/λ(n). For τ ∈ PSYT≥0(λ
(n+1)) we have

Φ
(n)
λ (Fτ ) :=


Fτ |

λ(n)
τ(□0) = n+ 1

0 τ(□0) ̸= n+ 1.

Proof. We will first deal with the case when τ(□0) = n + 1. Let T ∈ RYT≥0(λ
(n)) and

let T ′ ∈ RYT≥0(λ
(n+1)) with T ′(□0) = 0 and T ′|λ(n) = T |λ(n) . By looking at the eigenval-

ues of θ
(n+1)
1 , . . . , θ

(n+1)
n on Ftop(T ′) and the eigenvalues of θ

(n)
1 , . . . , θ

(n)
n on Ftop(T ) we see that

Φ
(n)
λ (Ftop(T ′)) = βFtop(T ) for some scalar β. We will now show that β = 1. From Corollary 3.3.11

we know that

Ftop(T ′) = t−bT ′Xν(T ′) ⊗ eS(T ′) +
∑

β≺ν(T ′)

Xβ ⊗ v′β

and

Ftop(T ) = t−bTXν(T ) ⊗ eS(T ) +
∑

β≺ν(T )

Xβ ⊗ vβ

for some vβ ∈ Sλ(n) and v′β ∈ Sλ(n+1) . Since T ′(□0) = 0 and T ′|λ(n) = T |λ(n) , it follows that bT ′ = bT ,

ν(T ′) = ν(T ) ∗ 0, and q
(n)
λ (eS(T ′)) = eS(T ). Therefore,

Φ
(n)
λ (t−bT ′Xν(T ′) ⊗ eS(T ′)) = t−bTXν(T ) ⊗ eS(T ).
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Now if β ≺ ν(T ′) then Φ
(n)
λ (Xβ ⊗ v′β) = 1(βn+1 = 0)Xβ1

1 · · ·X
βn
n ⊗ q

(n)
λ (v′β) cannot be of the form

Xν(T )⊗w for any w ∈ Sλ(n) . As such the coefficient of Xν(T )⊗eS(T ) in the standard basis expansion

of Φ
(n)
λ (Ftop(T ′)) is t

−bT . Since this agrees with the same coefficient in the expansion of Ftop(T ) we

know that β = 1 and thus Φ
(n)
λ (Ftop(T ′)) = Ftop(T ).

Now consider any τ ′ ∈ PSYT≥0(λ
(n+1)) with τ ′(□0) = n+1. Let T ′ := pλ(n+1)(τ) ∈ RYT≥0(λ

(n+1)).

Then T ′(□0) = 0 so if we set T := T ′|λ(n) we have that Φ
(n)
λ (Ftop(T ′)) = Ftop(T ).Write τ := τ ′|λ(n) .As

seen before there exists a sequence τ < si1(τ) < . . . < sir · · · si1(τ) = top(T ). Since τ ′(□0) = n+ 1,

we see that τ ′ < si1(τ
′) < . . . < sir · · · si1(τ ′) = top(T ′) as well. For each 1 ≤ j ≤ r we will consider

using the intertwiner operators from Proposition 3.3.5 to obtain Fsij sij−1
···si1 (τ) from Fsij−1

···si1 (τ).

We have thattT−1ij
+

(t− 1)q
wsij−1

···si1 (τ)(ij+1)
t
csij−1

···si1 (τ)(ij+1)

q
wsij−1

···si1 (τ)(ij)
t
csij−1

···si1 (τ)(ij) − q
wsij−1

···si1 (τ)(ij+1)
t
csij−1

···si1 (τ)(ij+1)

 (Fsij−1
···si1 (τ))

= Fsij (sij−1
···si1 (τ)).

Now the same exact formula holds with τ replaced by τ ′. Importantly, we have that wsij−1
···si1 (τ)(ij+

1) = wsij−1
···si1 (τ ′)(ij + 1) and csij−1

···si1 (τ)(ij + 1) = csij−1
···si1 (τ ′)(ij + 1). Therefore, we may write

Dj(Fsij−1
···si1 (τ)) = Fsij sij−1

···si1 (τ)

and

Dj(Fsij−1
···si1 (τ ′)) = Fsij sij−1

···si1 (τ ′)

for Dj ∈ A n ⊂ A (n,1) of the form Dj = Tij + αj where αj ∈ Q(q, t). Here we have used tT−1ij
=

Tij + t − 1. By using the quadratic relation for Tij we may locally invert the operator Dj in the

sense that there exists operators Cj ∈ A n with

Fsij−1
···si1 (τ) = Cj(Fsij sij−1

···si1 (τ))

and

Fsij−1
···si1 (τ ′) = Cj(Fsij sij−1

···si1 (τ ′)).
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Therefore, if we assume that Φ
(n)
λ (Fsij sij−1

···si1 (τ ′)) = Fsij sij−1
···si1 (τ) then

Φ
(n)
λ (Fsij−1

···si1 (τ ′))

= Φ
(n)
λ (Cj(Fsij sij−1

···si1 (τ ′)))

= CjΦ
(n)
λ (Fsij sij−1

···si1 (τ ′))

= CjFsij sij−1
···si1 (τ)

= Fsij−1
···si1 (τ).

Thus by induction, since we know Φ
(n)
λ (Ftop(T ′)) = Ftop(T ), it follows that Φ

(n)
λ (Fτ ′) = Fτ .

Lastly, we consider the case of τ(□0) ̸= n+ 1. Then τ(□0) = iqa with either i ̸= n+ 1 or a ≥ 0.

If a > 0 then τ = Ψ(τ ′) for some τ ′ and thus from Proposition 3.3.5 we know Xn+1 divides Fτ .

Since Φ
(n)
λ Xn+1 = 0 it follows that Φ

(n)
λ (Fτ ) = 0. Now suppose a = 0 and i ̸= n+ 1. Notice for any

m ≥ nλ that the largest power of t occurring in the θ(m)-weight of any Fτ ′ with τ ′ ∈ PSYT≥0(λ
(m))

is exactly tm−|λ|−1. Since i ̸= n + 1 we know that if Φ
(n)
λ (Fτ ) = βFτ ′ for some nonzero scalar β

and τ ′ ∈ PSYT≥0(λ
(n+1)) then the maximal power of t occurring in the θ(n)-weight of Fτ ′ is t

n−|λ|

coming from

θi(Fτ ′)

= θi(Φ
(n)
λ (Fτ ))

= Φ
(n)
λ (θi(Fτ )))

= Φ
(n)
λ (tc(□0)Fτ )

= Φ
(n)
λ (tn−|λ|Fτ )

= tn−|λ|Fτ ′ .

Thus Φ
(n)
λ (Fτ ) cannot be a θ(n)-weight vector in Vλ(n) and so β = 0. □

The maps Φ
(n)
λ possess another important stability property.
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Proposition 3.3.15. For all ℓ ∈ Z \ {0} and n ≥ nλ,

Φ
(n)
λ

n+1∑
j=1

(θ
(n+1)
j )ℓ −

∑
□∈λ(n+1)

tℓc(□)

 =

 n∑
j=1

(θ
(n)
j )ℓ −

∑
□∈λ(n)

tℓc(□)

Φ
(n)
λ .

Proof. Let ℓ ∈ Z \ {0} and n ≥ nλ. As usual let □0 denote the unique square of the skew

diagram λ(n+1)/λ(n). Directly from Proposition 3.3.13 we see

Φ
(n)
λ

n+1∑
j=1

(θ
(n+1)
j )ℓ −

∑
□∈λ(n+1)

tℓc(□)


= Φ

(n)
λ

 n∑
j=1

(θ
(n+1)
j )ℓ −

∑
□∈λ(n)

tℓc(□)

+Φ
(n)
λ

(
(θ

(n+1)
n+1 )ℓ − tℓc(□0)

)

=

 n∑
j=1

(θ
(n)
j )ℓ −

∑
□∈λ(n)

tℓc(□)

Φ
(n)
λ +Φ

(n)
λ

(
(θ

(n+1)
n+1 )ℓ − tℓ(n−|λ|)

)
.

It follows from the relation Φ
(n)
λ

(
θ
(n+1)
n+1 − tn−|λ|

)
= 0 and the fact that θ

(n+1)
n+1 is invertible on

Vλ(n+1) that

Φ
(n)
λ

(
(θ

(n+1)
n+1 )ℓ − tℓ(n−|λ|)

)
= 0.

Therefore,

Φ
(n)
λ

n+1∑
j=1

(θ
(n+1)
j )ℓ −

∑
□∈λ(n+1)

tℓc(□)

 =

 n∑
j=1

(θ
(n)
j )ℓ −

∑
□∈λ(n)

tℓc(□)

Φ
(n)
λ .

□

3.4. Positive EHA Representations from Young Diagrams

3.4.1. The Dsph
n -modules Wλ(n). We now turn to the corresponding spherical DAHA mod-

ules and symmetric v.v. polynomials to the positive DAHA modules Vλ and the non-symmetric

v.v. polynomials Fτ considered in the prior sections.

Definition 3.4.1. For λ ∈ Y with |λ| = n define the Dsph
n -module Wλ := ϵ(n)(Vλ).

The Fτ expansions of any symmetrized element of any A n submodule UT satisfy a simple set of

recurrence relations.
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Lemma 3.4.2. Let T ∈ RSSYT≥0(λ) and v ∈ ϵ(n)(UT ). Suppose that v has the following expansion

into the Fτ basis:

v =
∑

τ∈PSYT≥0(λ;T )

κτFτ .

Then for each τ ∈ PSYT≥0(λ;T ) with 1 ≤ i ≤ n− 1 such that si(τ) > τ we have the relation

κsi(τ) =

(
qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)+1

)
κτ .

As a consequence, if κtop(T ) ̸= 0 then each coefficient κτ is also nonzero.

Proof. Let τ ∈ PSYT≥0(λ;T ) and 1 ≤ i ≤ n− 1 with si(τ) > τ. Note that Q(q, t){Fτ , Fsi(τ)}

is a 2-dimensional submodule for Q(q, t)[Ti]. The Ti-invariant subspace of Q(q, t){Fτ , Fsi(τ)} is given

by Q(q, t)(1 + tT−1i )Fτ . From Proposition 3.3.5 we find

(1 + tT−1i )Fτ = Fτ + tT−1i Fτ

= Fτ + Fsi(τ) +
(1− t)qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)
Fτ

= Fsi(τ) +
qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)+1

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)
Fτ .

Since v =
∑

τ∈PSYT≥0(λ;T ) κτFτ is Ti-invariant then we know that in particular κτFτ + κsi(τ)Fsi(τ)

is also Ti-invariant and therefore must be a scalar multiple of (1 + tT−1i )Fτ . Therefore,

κτFτ + κsi(τ)Fsi(τ) = κsi(τ)Fsi(τ) +
qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)+1

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)
κsi(τ)Fτ

and so

κsi(τ) =

(
qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)+1

)
κτ .

□

Using the recurrence relations in Lemma 3.4.2 and the irreducibility of each of the A n submodules

of Vλ we may determine which T ∈ RYT≥0(λ) have a non-zero space of H n-invariants ϵ
(n)(UT ).
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Proposition 3.4.3. For λ ∈ Y with |λ| = n and T ∈ RYT≥0(λ),

dimQ(q,t)ϵ
(n)(UT ) =


1 T ∈ RSSYT≥0(λ)

0 T /∈ RSSYT≥0(λ).

Proof. By Proposition 3.3.6 each A n-module UT is irreducible with simple θ(n) spectrum.

This implies that dimQ(q,t)ϵ
(n)(UT ) ≤ 1 for any T ∈ RYT≥0(λ). Further, we have that ϵ(n)(UT ) is

zero if for any θ(n)-weight vector v in UT , ϵ
(n)(v) is zero. If T ∈ RYT≥0(λ)\RSSYT≥0(λ) then there

exists a pair of boxes □1,□2 ∈ λ with □1 directly above □2 such that T (□1) = T (□2) = a. Hence,

top(T )(□1) = iqa and top(T )(□2) = (i+1)qa for some 1 ≤ i ≤ n− 1. Then Ti(Ftop(T )) = −tFtop(T )

which implies that ϵ(n)(Ftop(T )) = 0. Thus ϵ(n)(UT ) = 0.

Alternatively, now suppose T ∈ RSSYT≥0(λ). Following Lemma 3.4.2 we construct a vector

v ∈ UT of the form

v =
∑

τ∈PSYT≥0(λ;T )

κτFτ

where κtop(T ) = 1 and if si(τ) > τ then

κsi(τ) =

(
qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)+1

)
κτ .

These coefficients κτ have the property that if si(τ) > τ then

Ti(κτFτ + κsi(τ)Fsi(τ)) = κτFτ + κsi(τ)Fsi(τ).

By construction v ̸= 0 since qwτ (i)tcτ (i)−qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i)−qwτ (i+1)tcτ (i+1)+1 ̸= 0 whenever si(τ) > τ. We will show that

Ti(v) = v for all 1 ≤ i ≤ n− 1 and thus ϵ(n)(UT ) ̸= 0.
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We find that

Ti(v)

=
∑

τ∈PSYT≥0(λ;T )

κτTi(Fτ )

=
∑

(τ,si(τ)) PSYT≥0(λ)
2

si(τ)>τ

Ti

(
κτ (Fτ ) + κsi(τ)(Fsi(τ))

)
+

∑
τ∈PSYT≥0(λ)

i,i+1 same row of τ

κτTi(Fτ )

+
∑

τ∈PSYT≥0(λ)
i,i+1 same column of τ

κτTi(Fτ )

=
∑

(τ,si(τ)) PSYT≥0(λ)
2

si(τ)>τ

(
κτ (Fτ ) + κsi(τ)(Fsi(τ))

)
+

∑
τ∈PSYT≥0(λ)

i,i+1 same row of τ

κτFτ

+
∑

τ∈PSYT≥0(λ)
i,i+1 same column of τ

(−t)κτFτ .

Thus

Ti(v)− v =
∑

τ∈PSYT≥0(λ)
i,i+1 same column of τ

(1 + t)κτFτ .

Lastly, since T ∈ RSSYT≥0(λ) there cannot be any τ ∈ PSYT≥0(λ;T ) with i, i+1 occurring in the

same column as necessarily this would imply that T would have redundant values in those boxes

contradicting the fact that T is reverse semi-standard. Hence, the above sum vanishes and we find

Ti(v) = v. □

Finally, we are able to define the symmetric v.v. Macdonald polynomials following the conventions

of this chapter.

Definition 3.4.4. Let T ∈ RSSYT≥0(λ). Define PT ∈ ϵ(n)(UT ) to be the unique element of the

form

PT = Ftop(T ) +
∑
y

κyFy

where the sum above ranges over y ∈ PSYT≥0(λ) with pλ(y) = T and y < top(T ).

153



Now we are able to explicitly compute the Fτ expansion of each PT using the recurrence relations

found in Lemma 3.4.2.

Corollary 3.4.5. For all T ∈ RSSYT≥0(λ),

PT =
∑

τ∈PSYT≥0(λ;T )

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
Fτ .

Proof. For τ ∈ PSYT≥0(λ;T ) let

κτ =
∏

(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
.

From Lemma 3.4.2 it suffices to show that

• κtop(T ) = 1

• If si(τ) > τ then κsi(τ) =
(

qwτ (i)tcτ (i)−qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i)−qwτ (i+1)tcτ (i+1)+1

)
κτ .

It is easy to see that Inv(top(T )) = ∅ so κtop(T ) = 1. Now suppose si(τ) > τ. Let □(i),□(i+1) ∈ λ

denote the boxes of λ with τ(□(i)) = iqa and τ(□(i+1)) = (i + 1)qb for some a, b ≥ 0. It is

straightforward to check that

Inv(si(τ)) = {(□(i),□(i+1))} ⊔ Inv(τ).

Therefore,

κsi(τ)

=
∏

(□1,□2)∈Inv(si(τ))

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)

=

(
qT (□(i))tc(□

(i))+1 − qT (□(i+1))tc(□
(i+1))

qT (□(i))tc(□
(i)) − qT (□(i+1))tc(□

(i+1))

) ∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)

=

(
qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)+1

)
κτ .

□

We look now at the action of the special spherical DAHA elements P
(n)
(0,ℓ).
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Proposition 3.4.6. Let |λ| = n. The set {PT : T ∈ RSSYT≥0(λ)} is a Q(q, t)[θ±11 , . . . , θ±1n ]Sn-

weight basis for Wλ. Further, for ℓ ∈ Z \ {0}

P
(n)
(0,ℓ)(PT ) =

(∑
□∈λ

qℓT (□)tℓc(□)

)
PT .

Consequently, P
(n)
(0,1) acts on Wλ with simple spectrum{∑

□∈λ
qT (□)tc(□) : T ∈ RSSYT≥0(λ)

}
.

Proof. It follows directly from Proposition 3.3.6 and Proposition 3.4.3 that the set {PT : T ∈

RSSYT≥0(λ)} is a linear basis for Wλ. We need to show that the PT are Q(q, t)[θ±11 , . . . , θ±1n ]Sn-

weight vectors. Let T ∈ RSSYT≥0(λ). Then from Definition 3.4.4 we know that

PT = βϵ(n)(Ftop(T ))

for some nonzero scalar β depending on T. Then for any ℓ ∈ Z \ {0} we have that n∑
j=1

(θ
(n)
j )ℓ

 (PT )

=

 n∑
j=1

(θ
(n)
j )ℓ

 (βϵ(n)(Ftop(T )))

= βϵ(n)

 n∑
j=1

(θ
(n)
j )ℓ

 (Ftop(T ))


= βϵ(n)

 n∑
j=1

qℓwtop(T )(j)tℓctop(T )(j)

Ftop(T )


= βϵ(n)

((∑
□∈λ

qℓT (□)tℓc(□)

)
Ftop(T )

)

=

(∑
□∈λ

qℓT (□)tℓc(□)

)
βϵ(n)(Ftop(T ))

=

(∑
□∈λ

qℓT (□)tℓc(□)

)
PT .

Hence, PT is a Q(q, t)[θ±11 , . . . , θ±1n ]Sn-weight vector.
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Now let S ∈ RSSYT≥0(λ) and suppose that

∑
□∈λ

qT (□)tc(□) =
∑
□∈λ

qS(□)tc(□).

Fix any d ∈ Z. Since q and t are algebraically independent over Q,

∑
□∈λ

c(□)=d

qT (□) =
∑
□∈λ

c(□)=d

qS(□).

Since the labelling T is reverse semi-standard, the values of T (□) for □ ∈ λ with c(□) = d are all

distinct and strictly decreasing down the d-diagonal. Of course, the same is true for S. Therefore,

the values of T and S agree along the d-diagonal of λ. As d ∈ Z was general it follows that T = S.

Thus the spectrum of the operator P
(n)
0,1 on Wλ is simple.

□

As mentioned previously, the non-symmetric v.v. Macdonald polynomials do not align with

those of Dunkl-Luque. However, we are able to show that, once symmetrized, the symmetrized v.v.

polynomials agree.

Corollary 3.4.7. The symmetric vector valued Macdonald polynomials of Dunkl-Luque [12]

agree with the PT of this chapter up to nonzero scalars.

Proof. The D+
n -modules Vλ in this thesis are isomorphic (after aligning conventions) to the

D+
n -modules Mλ in Dunkl-Luque’s paper. Dunkl and Luque characterize the symmetric vector

valued Macdonald polynomials as eigenvectors with distinct eigenvalues for the operator Y
(n)
1 +. . .+

Y
(n)
n acting on ϵ(n)(Mλ). Here Y

(n)
i are the standard Cherednik elements given in our conventions

by Y
(n)
i = tn−i+1Ti−1 · · ·T1πnT

−1
n−1 · · ·T

−1
i . A simple calculation shows that the spherical DAHA

elements ϵ(n)(Y
(n)
1 + . . .+ Y

(n)
n )ϵ(n) and ϵ(n)(θ

(n)
1 + . . .+ θ

(n)
n )ϵ(n) are both nonzero scalar multiples

of ϵ(n)πnϵ
(n). Since the spectrum of ϵ(n)πnϵ

(n) acting on Wλ is simple, it follows that the PT

are eigenvectors for ϵ(n)(Y
(n)
1 + . . . + Y

(n)
n )ϵ(n) and hence agree with the symmetric vector valued

Macdonald polynomials of Dunkl-Luque up to re-normalization. □

3.4.2. Stable Limit of the Wλ(n). Finally, we identify a special stability property for the PT

elements.
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Corollary 3.4.8. For T ∈ RSSYT≥0(λ
(n)) let T ′ ∈ RSSYT≥0(λ

(n+1)) be such that T (□) =

T ′(□) for □ ∈ λ(n) and T ′(□0) = 0 for □0 ∈ λ(n+1)/λ(n). Then

Φ
(n)
λ (PT ′) = PT .

Proof. Note that restriction from λ(n+1) to λ(n) identifies PSYT≥0(λ
(n);T ) as the subset of

τ ∈ PSYT≥0(λ
(n+1);T ′) with τ(□0) = n + 1. Thus by using Corollary 3.3.14 in conjunction with

Corollary 3.4.5 we find that

Φ
(n)
λ (PT ′)

=
∑

τ∈PSYT≥0(λ(n+1);T ′)

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
Φ
(n)
λ (Fτ )

=
∑

τ∈PSYT≥0(λ
(n+1);T ′)

τ(□0)=n+1

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
Fτ |

λ(n)

=
∑

τ∈PSYT≥0(λ
(n+1);T ′)

τ(□0)=n+1

∏
(□1,□2)∈Inv(τ |λ(n) )

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
Fτ |

λ(n)

=
∑

τ∈PSYT≥0(λ(n);T )

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
Fτ

= PT .

□

This stability allows for the following definition.

Definition 3.4.9. Let λ ∈ Y. Define the infinite diagram λ(∞) :=
⋃

n≥nλ
λ(n). Define Ω(λ) to be

the set of all labellings T : λ(∞) → Z≥0 such that

• |{□ ∈ λ(∞) : T (□) ̸= 0}| <∞

• T decreases weakly across rows

• T decreases strictly down columns.
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For T ∈ Ω(λ) we define the degree of T as deg(T ) :=
∑

□∈λ(∞) T (□). Define the rank of T , rk(T ),

to be the minimal n ≥ nλ such that T |λ(∞)\λ(n) = 0.

Define the space W
(∞)
λ to be the inverse limit lim←−Wλ(n) with respect to the maps Φ

(n)
λ . Let W̃λ

be the subspace of all bounded X-degree elements of W
(∞)
λ . For T ∈ Ωλ define the generalized

Macdonald function

PT := lim
n

PT |
λ(n)
∈ W̃λ.

Example. For λ = (3, 2, 1)

λ(∞) =

. . .

and

5 3 3 2 1 0 0 0 . . .

3 2 0

1 1

0

∈ Ω(λ).

Remark 30. The degree of each PT is given simply as

deg(PT ) = deg(T ) =
∑

□∈λ(∞)

T (□).

It is clear from definition that the set of all PT for T ∈ Ω(λ) gives a Q(q, t)-basis of W̃λ.

Using the stability of the action of the P
(n)
(0,ℓ) operators we may define the following operators.

Definition 3.4.10. For ℓ ∈ Z\{0} define the operator ∆̃(∞)
r : W

(∞)
λ →W

(∞)
λ to be the stable-limit

∆̃
(∞)
ℓ := lim

n

 n∑
j=1

(θ
(n)
j )ℓ −

∑
□∈λ(n)

tℓc(□)

 .

A simple calculation shows the following:
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Lemma 3.4.11. For all ℓ ∈ Z \ {0} and T ∈ Ω(λ),

∆̃
(∞)
ℓ (PT ) =

 ∑
□∈λ(∞)

(qℓT (□) − 1)tℓc(□)

PT .

Proof. Let ℓ ∈ Z \ {0} and T ∈ Ω(λ). Then

∆̃
(∞)
ℓ (PT )

= lim
n

 n∑
j=1

(θ
(n)
j )ℓ −

∑
□∈λ(n)

tℓc(□)

(lim
n

PT |
λ(n)

)

= lim
n

 n∑
j=1

(θ
(n)
j )ℓ −

∑
□∈λ(n)

tℓc(□)

 (PT |
λ(n)

)

= lim
n

 ∑
□∈λ(n)

qℓT (□)tℓc(□) −
∑

□∈λ(n)

tℓc(□)

PT |
λ(n)

= lim
n

 ∑
□∈λ(n)

(qℓT (□) − 1)tℓc(□)

PT |
λ(n)

.

Importantly, for n ≥ rk(T )

∑
□∈λ(n)

(qℓT (□) − 1)tℓc(□) =
∑

□∈λ(∞)

(qℓT (□) − 1)tℓc(□).
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Therefore,

lim
n

 ∑
□∈λ(n)

(qℓT (□) − 1)tℓc(□)

PT |
λ(n)

= lim
n

 ∑
□∈λ(∞)

(qℓT (□) − 1)tℓc(□)

PT |
λ(n)

=

 ∑
□∈λ(∞)

(qℓT (□) − 1)tℓc(□)

 lim
n

PT |
λ(n)

=

 ∑
□∈λ(∞)

(qℓT (□) − 1)tℓc(□)

PT .

□

Corollary 3.4.12. For ℓ ∈ Z \ {0} the operator ∆̃
(∞)
ℓ restricts to an operator on W̃λ.

Proof. Let ℓ ∈ Z\{0}. We know that the set {PT |T ∈ Ω(λ)} is a basis for W̃λ. From Lemma

3.4.11 we further know that ∆̃
(∞)
ℓ acts diagonally on this basis. Therefore, ∆̃

(∞)
ℓ restricts to an

operator on W̃λ. □

Example. For T ∈ Ω(3, 2, 1) as is Example 3.4.2,

∆̃
(∞)
1 (PT ) =

(
(q5 − 1) + (q3 − 1)(t−1 + t1 + t2) + (q2 − 1)(t0 + t3) + (q − 1)(t−2 + t−1 + t4)

)
PT .

3.4.3. Positive Elliptic Hall Algebra Action on W̃λ. Combining every result of this chap-

ter thus far we are able to define a novel family of positive EHA representations.

Theorem 3.4.13. For λ ∈ Y, W̃λ is a graded E +-module with action determined for ℓ ∈ Z \ {0}

and r > 0 by

• Pr,0 → qrp•r

• P0,ℓ → ∆̃
(∞)
ℓ .

Further, W̃λ is spanned by a basis of eigenvectors {PT }T∈Ω(λ) with distinct eigenvalues for the

Macdonald operator ∆ = ∆̃
(∞)
1 .
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Proof. It suffices to establish that the map E + → EndQ(q,t)(W̃λ) satisfies the generating

relations of E + . Any such relation is a non-commutative polynomial expression in E + of the form

F (P0,−r, . . . , P0,−1P0,1, . . . , P0,r, P1,0, . . . , Ps,0) = 0

for some r > 0 and s > 0. By an argument of Schiffmann-Vasserot (Lemma 1.3 in [34]), there are

automorphisms Γ(n) of D sph
n such that for all ℓ ∈ Z\{0} and s > 0, Γ(n)(P

(n)
0,ℓ ) = P

(n)
0,ℓ −

∑
□∈λ(n) tℓc(□)

and Γ(n)(P
(n)
s,0 ) = P

(n)
s,0 . By applying the canonical quotient maps Πn : W̃λ → Wλ(n) we see using

Cor. 3.3.15 that as maps

ΠnF (P0,−r, . . . , P0,−1, P0,1, . . . , P0,r, P1,0, . . . , Ps,0)

= F (Γ(n)(P
(n)
0,−r), . . . ,Γ

(n)(P
(n)
0,−1),Γ

(n)(P
(n)
0,1 ), . . . ,Γ

(n)(P
(n)
0,r ),Γ

(n)(P
(n)
1,0 ), . . . ,Γ

(n)(P
(n)
s,0 ))Πn

= Γ(n)(F (P
(n)
0,−r, . . . , P

(n)
0,−1, P

(n)
0,1 , . . . , P

(n)
0,r , P

(n)
1,0 , . . . , P

(n)
s,0 ))Πn = 0.

As this holds for all n ≥ nλ, it follows that F (P0,−r, . . . , P0,−1, P0,1, . . . , P0,r, P1,0, . . . , Ps,0) = 0

in EndQ(q,t)(W̃λ) as desired. The last statement regarding the spectrum of ∆ follows directly from

Prop. 3.4.6 and Cor. 3.4.8. □

Remark 31. For T ∈ Ω(λ) and ℓ ∈ Z \ {0},

P0,ℓ(PT ) =

 ∑
□∈λ(∞)

(
qℓT (□) − 1

)
tℓc(□)

PT .

Remark 32. For λ = ∅, W̃∅ = Λq,t recovers the standard representation of E + . In this case,

Ω(∅) = Y and Pµ = Pµ[X; q−1, t] (up to nonzero scalar).

Now we identify a special element of each W̃λ.

Definition 3.4.14. For any λ ∈ Y define the labelling Tmin
λ of λ(∞) by

Tmin
λ (□) = #{□′ ∈ λ(∞)|□′ strictly below □}.

Lemma 3.4.15. The labelling Tmin
λ is the unique element of Ω(λ) of lowest degree dλ :=

∑
i≥1 iλi.
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Proof. It is immediate that since λ is a partition Tmin
λ ∈ Ω(λ). Further, by construction each

entry of Tmin
λ is chosen minimally in that for any T ∈ Ω(λ) and □ ∈ λ(∞), Tmin

λ (□) ≤ T (□). To

see this simply note that if T ∈ Ω(λ) and □ ∈ λ(∞) then if □′ is the box directly below □ then

T (□) > T (□′). Hence, T (□) must be at least as large as the number of boxes strictly below □.

Therefore, Tmin
λ has the minimal degree among all elements of Ω(λ). Lastly, the number of boxes

□ ∈ λ(∞) with Tmin
λ (□) = i is λi so deg(Tmin

λ ) = dλ as defined above. □

Proposition 3.4.16. For λ, µ ∈ Y distinct, W̃λ ≇ W̃µ as graded E + modules.

Proof. Let λ, µ ∈ Y and suppose that f : W̃λ → W̃µ is a graded E + module isomorphism.

Then by Lemma 3.4.15 we know that

f(PTmin
λ

) = αPTmin
µ

for some nonzero scalar α ∈ Q(q, t). Further,

P0,1(f(PTmin
λ

)) = f(P0,1(PTmin
λ

))

= f((
∑

□∈λ(∞)

(qT
min
λ (□) − 1)tc(□))PTmin

λ
)

=

 ∑
□∈λ(∞)

(qT
min
λ (□) − 1)tc(□)

 f(PTmin
λ

)

=

 ∑
□∈λ(∞)

(qT
min
λ (□) − 1)tc(□)

αPTmin
µ

.

On the other hand,

P0,1(αPTmin
µ

) =

 ∑
□∈µ(∞)

(qT
min
µ (□) − 1)tc(□)

αPTmin
µ

.

By assumption α ̸= 0 so

∑
□∈λ(∞)

(qT
min
λ (□) − 1)tc(□) =

∑
□∈µ(∞)

(qT
min
µ (□) − 1)tc(□).
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This gives ∑
□∈λ(nλ)

(qT
min
λ (□) − 1)tc(□) =

∑
□∈µ(nµ)

(qT
min
µ (□) − 1)tc(□)

which after limiting q → 0 gives

∑
□∈λ

tc(□) =
∑
□∈µ

tc(□).

By comparing the coefficient of td for all d ∈ Z on both sides of the above equality we see that λ

and µ have the same number of boxes on each diagonal and are therefore equal.

□

3.5. Pieri Rule for Generalized Macdonald Functions

The goal of this section is to derive and utilize an explicit combinatorial formula for the action of

the multiplication operators er[X]• on W̃λ. We will show investigate the e1 Pieri coefficients in more

depth and show that they satisfy a simple non-vanishing conditions. We will use this non-vanishing

to prove that the W̃λ modules are cyclic.

3.5.1. Pieri Rule Preliminaries. We begin first by establishing some useful lemmas.

Lemma 3.5.1. For T ∈ RYT≥0(λ)

ϵ(n)(Fmin(T )) =
[µ(T )]t!

[n]t!

∑
σ∈Sn/Sµ(T )

t

(
(n2)−(

µ(T )
2 )

)
−ℓ(σ)

Tσ(Fmin(T )).

Proof. The result follows from the following simple calculation:
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ϵ(n)(Fmin(T ))

=
1

[n]t!

∑
σ∈Sn

t(
n
2)−ℓ(σ)Tσ(Fmin(T ))

=
1

[n]t!

∑
σ∈Sn/Sµ(T )

∑
γ∈Sµ(T )

t(
n
2)−ℓ(σγ)Tσγ(Fmin(T ))

=
1

[n]t!

∑
σ∈Sn/Sµ(T )

∑
γ∈Sµ(T )

t(
n
2)−ℓ(σ)−ℓ(γ)TσTγ(Fmin(T ))

=
1

[n]t!

∑
σ∈Sn/Sµ(T )

∑
γ∈Sµ(T )

t

(
(n2)−(

µ(T )
2 )

)
−ℓ(σ)

t(
µ(T )
2 )−ℓ(σ)Tσ(Fmin(T ))

=
1

[n]t!

∑
σ∈Sn/Sµ(T )

t

(
(n2)−(

µ(T )
2 )

)
−ℓ(σ)

Tσ(Fmin(T ))

 ∑
γ∈Sµ(T )

t(
µ(T )
2 )−ℓ(σ)


=

[µ(T )]t!

[n]t!

∑
σ∈Sn/Sµ(T )

t

(
(n2)−(

µ(T )
2 )

)
−ℓ(σ)

Tσ(Fmin(T )).

□

Lemma 3.5.2. For RSSYT≥0(λ) and σ ∈ Sn/Sµ(T )

Tσ(Fmin(T )) = Fσ(min(T )) +
∑

τ<σ(min(T ))

κτFτ

for some scalars κτ .

Proof. We will proceed by induction using the fact that PSYT≥0(λ;T ) is isomorphic to

Sn/Sµ(T ) as posets which we saw in Remark 29. Certainly, the statement holds trivially for

τ = min(T ). Take some σ(min(T )) = τ ∈ PSYT≥0(λ;T ) with si(τ) > τ and suppose that

Tσ(Fmin(T )) = Fσ(min(T )) +
∑

τ ′<σ(min(T ))

κτ ′Fτ ′
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for some scalars κτ . Then using Proposition 3.3.5

Tsiσ(Fmin(T ))

= TiTσ(Fmin(T ))

= TiFτ +
∑

τ ′<σ(min(T ))

κτ ′TiFτ ′

= Fsi(τ) +
(1− t)qwτ (i)tcτ (i)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)
Fτ

+
∑

τ ′<σ(min(T ))

κτ ′

(
Fsi(τ ′) +

(1− t)qwτ ′ (i)tcτ ′ (i)

qwτ ′ (i)tcτ ′ (i) − qwτ ′ (i+1)tcτ ′ (i+1)
Fτ ′

)

= F(siσ)(min(T )) +
∑

τ ′<(siσ)(min(T ))

κ′τ ′Fτ ′ .

□

The above lemmas may now be used to compute the symmetrization of each Fτ in terms of the

PT basis.

Proposition 3.5.3. For T ∈ RSSYT≥0(λ)

ϵ(n)(Fmin(T )) =
[µ(T )]t!

[n]t!
PT .

Proof. Recall from Definition 3.4.4 that the coefficient of Ftop(T ) in PT is 1. We know that

from the proof of Proposition 3.4.3 that since T ∈ RSSYT≥0(λ),

ϵ(n)(Fmin(T )) = αPT

for some nonzero scalar α. Let σ0 denote the longest element of Sn/Sµ(T ). Note that σ0(min(T )) =

top(T ). We now use Lemmas 3.5.1 and 3.5.2 to compute the coefficient of Ftop(T ) in ϵ(n)(Fmin(T ))
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determining α :

ϵ(n)(Fmin(T ))

=
[µ(T )]t!

[n]t!

∑
σ∈Sn/Sµ(T )

t

(
(n2)−(

µ(T )
2 )

)
−ℓ(σ)

Tσ(Fmin(T ))

=
[µ(T )]t!

[n]t!

∑
σ∈Sn/Sµ(T )

t

(
(n2)−(

µ(T )
2 )

)
−ℓ(σ)

Fσ(min(T )) +
∑

τ<σ(min(T ))

κστFτ


=

[µ(T )]t!

[n]t!
Fσ0(min(T ))t

(
(n2)−(

µ(T )
2 )

)
−ℓ(σ0) +

∑
τ<σ0(min(T ))

κ′τFτ

=
[µ(T )]t!

[n]t!
Ftop(T ) +

∑
τ<top(T )

κ′τFτ .

Therefore, α = [µ(T )]t!
[n]t!

. □

Lemma 3.5.4. For τ ∈ PSYT≥0(λ) with pλ(τ) = T ∈ RSSYT≥0(λ)

ϵ(n)(Fτ ) =
∏

(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1) − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)
ϵ(n)(Ftop(T )).

Proof. Let T ∈ RSSYT≥0(λ) and τ ∈ PSYT≥0(λ;T ) with si(τ) > τ. Then using Proposition

3.3.5 we see

ϵ(n)(Fsi(τ))

= ϵ(n)

((
Ti +

(t− 1)qwτ (i)tcτ (i)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

)
Fτ

)

=

(
1 +

(t− 1)qwτ (i)tcτ (i)

qwτ (i)tcτ (i) − qwτ (i+1)tcτ (i+1)

)
ϵ(n)(Fτ )

=

(
qwτ (i+1)tcτ (i+1) − qwτ (i)tcτ (i)

qwτ (i+1)tcτ (i+1) − qwτ (i)tcτ (i)

)
ϵ(n)(Fτ ).
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Now using an induction argument nearly identical to the proof of Corollary 3.4.5 we see that for

any τ ∈ PSYT≥0(λ;T )

ϵ(n)(Fτ ) =
∏

(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1) − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)
ϵ(n)(Ftop(T )).

□

Corollary 3.5.5. For pλ(τ) = T ∈ RSSYT≥0(λ)

ϵ(n)(Fτ ) = KT (q, t)
∏

(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1) − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)
PT

where

KT (q, t) :=
[µ(T )]t!

[n]t!

∏
(□1,□2)∈Inv(min(T ))

(
qT (□1)tc(□1) − qT (□2)tc(□2)+1

qT (□1)tc(□1) − qT (□2)tc(□2)

)
.

Proof. We begin by noting that from Lemma 3.5.4 applied to min(T ):

ϵ(n)(Fmin) =
∏

(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1) − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)
ϵ(n)(Ftop(T )).

But from Proposition 3.5.3 we know that ϵ(n)(Fmin) =
[µ(T )]t!
[n]t!

PT so

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1) − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)
ϵ(n)(Ftop(T )) =

[µ(T )]t!

[n]t!
PT .

Thus

ϵ(n)(Ftop(T )) = KT (q, t)PT

as defined in the corollary statement above.

Lastly, we can now use Lemma 3.5.4 to finish the proof. □

The last lemma of this section relates the action of er[X]• to the action of γrn on symmetrized

elements.

Lemma 3.5.6. For 1 ≤ r ≤ n, ϵ(n)er[X1 + . . .+Xn]ϵ
(n) = t−((n−1)+...+(n−r))er[

1−tn
1−t ]ϵ

(n)γrnϵ
(n).

Proof. First, we will show by induction that for 1 ≤ r ≤ n

γrn = t(n−1)+...+(n−r)(T−1n−1 · · ·T
−1
1 )(T−1n−1 · · ·T

−1
2 T1) · · · (T−1n−1 · · ·T

−1
r Tr−1 · · ·T1)X1 · · ·Xr.
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For r = 1 we see that

γn = XnTn−1 · · ·T1 = tn−1T−1n−1 · · ·T
−1
1 X1.

Now suppose this equation holds for some 1 ≤ r ≤ n− 1. Then we have

γr+1
n

= γrnγn

= t(n−1)+...+(n−r)(T−1n−1 · · ·T
−1
1 )(T−1n−1 · · ·T

−1
2 T1) · · · (T−1n−1 · · ·T

−1
r Tr−1 · · ·T1)

×X1 · · ·Xrt
n−1T−1n−1 · · ·T

−1
1 X1

= t(n−1)+...+(n−r)tn−1(T−1n−1 · · ·T
−1
1 )(T−1n−1 · · ·T

−1
2 T1) · · · (T−1n−1 · · ·T

−1
r Tr−1 · · ·T1)

×X1 · · ·XrT
−1
n−1 · · ·T

−1
1 X1

= t(n−1)+...+(n−r)tn−1(T−1n−1 · · ·T
−1
1 )(T−1n−1 · · ·T

−1
2 T1) · · · (T−1n−1 · · ·T

−1
r Tr−1 · · ·T1)T

−1
n−1 · · ·T

−1
r+1

×X1 · · ·XrT
−1
r · · ·T−11 X1.

A simple calculation verifies that

X1 · · ·XrT
−1
r · · ·T−11 = t−rTr · · ·T1X2 · · ·Xr+1.

Therefore,

γr+1
n

= t(n−1)+...+(n−r)tn−1(T−1n−1 · · ·T
−1
1 )(T−1n−1 · · ·T

−1
2 T1) · · · (T−1n−1 · · ·T

−1
r Tr−1 · · ·T1)T

−1
n−1 · · ·T

−1
r+1

× t−rTr · · ·T1X1X2 · · ·Xr+1

= t(n−1)+...+(n−r)+(n−(r+1))(T−1n−1 · · ·T
−1
1 )(T−1n−1 · · ·T

−1
2 T1) · · · (T−1n−1 · · ·T

−1
r Tr−1 · · ·T1)

× (T−1n−1 · · ·T
−1
r+1Tr · · ·T1)X1 · · ·Xr+1

which is of the correct form.
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Now we see that for any 1 ≤ r ≤ n,

ϵ(n)γrnϵ
(n)

= ϵ(n)t(n−1)+...+(n−r)(T−1n−1 · · ·T
−1
1 )(T−1n−1 · · ·T

−1
2 T1) · · · (T−1n−1 · · ·T

−1
r Tr−1 · · ·T1)X1 · · ·Xrϵ

(n)

= t(n−1)+...+(n−r)ϵ(n)X1 · · ·Xrϵ
(n).

Suppose that 1 = i0 ≤ i1 < . . . < ir ≤ ir+1 = n with ij < ij+1 − 1 for some 0 ≤ j ≤ r. Then

Xi1 · · ·Xij−1Xij+1Xij+1Xij+2 · · ·Xir

= Xi1 · · ·Xij−1(t
−1T−1ij

XijT
−1
ij

)Xij+1Xij+2 · · ·Xir

= tT−1ij
Xi1 · · ·Xij−1XijXij+1Xij+2 · · ·XirT

−1
ij

= tT−1ij
Xi1 · · ·XirT

−1
ij

which shows that

ϵ(n)Xi1 · · ·Xij−1Xij+1Xij+1Xij+2 · · ·Xirϵ
(n) = tϵ(n)Xi1 · · ·Xirϵ

(n).

It follows that for any 1 ≤ i1 < . . . < ir ≤ n

ϵ(n)Xi1 · · ·Xirϵ
(n) = t(ir−r)+...+(i1−1)ϵ(n)X1 · · ·Xrϵ

(n).
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Now we see

ϵ(n)er[X1 + . . .+Xn]ϵ
(n)

= ϵ(n)

 ∑
1≤i1<...<ir≤n

Xi1 · · ·Xir

 ϵ(n)

=
∑

1≤i1<...<ir≤n
ϵ(n)Xi1 · · ·Xirϵ

(n)

=
∑

1≤i1<...<ir≤n
t(ir−r)+...+(i1−1)ϵ(n)X1 · · ·Xrϵ

(n)

=
∑

1≤i1<...<ir≤n
t(ir−r)+...+(i1−1)t−((n−1)+...+(n−r))ϵ(n)γrnϵ

(n)

= t−((n−1)+...+(n−r))

 ∑
1≤i1<...<ir≤n

t(i1−1)+...+(ir−r)

 ϵ(n)γrnϵ
(n)

= t−((n−1)+...+(n−r))er(1, . . . , t
n−1)ϵ(n)γrnϵ

(n)

= t−((n−1)+...+(n−r))er

[
1− tn

1− t

]
ϵ(n)γrnϵ

(n).

□

170



3.5.2. Pieri Rule. Using the above lemmas, we may derive an explicit formula for the action

of er[X]• on the symmetric v.v. Macdonald polynomials in the finite variable situation. We will

then use the stability of the PT to derive a similar formula for the PT .

Theorem 3.5.7. For T ∈ RSSYT≥0(λ) and 1 ≤ r ≤ n we have the expansion

er[X1 + . . .+Xn]PT =
∑
S

d
(r)
S,TPS

where

d
(r)
S,T

t(
r
2)er

[
1−tn
1−t

]
KS(q, t)

=
∑

τ∈PSYT≥0(λ;T )
s.t.

Ψr(τ)∈PSYT≥0(λ;S)

tcτ (1)+...+cτ (r)H(τ,Ψr(τ))

where H(τ,Ψr(τ)) is given by

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

) ∏
(□1,□2)∈Inv(Ψr(τ))

(
qS(□1)tc(□1) − qS(□2)tc(□2)

qS(□1)tc(□1) − qS(□2)tc(□2)+1

)

and T ′ ranges over all T ′ ∈ RSSYT≥0(λ) one can obtain from T by adding r to the boxes of T

with at most one 1 being added to each box.

Proof. Using Lemma 3.4.5 and Remark 28 we find

er[X1 + . . .+Xn]PT

= ϵ(n)er[X1 + . . .+Xn]ϵ
(n)(PT )

= t−((n−1)+...+(n−r))er

[
1− tn

1− t

]
ϵ(n)γrnϵ

(n)(PT )

= t−((n−1)+...+(n−r))er

[
1− tn

1− t

]
ϵ(n)γrn(PT )

= t−((n−1)+...+(n−r))er

[
1− tn

1− t

]

× ϵ(n)γrn
∑

τ∈PSYT≥0(λ;T )

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
Fτ
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= t−((n−1)+...+(n−r))er

[
1− tn

1− t

]

×
∑

τ∈PSYT≥0(λ;T )

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
ϵ(n)γrn(Fτ )

= t−((n−1)+...+(n−r))er

[
1− tn

1− t

] ∑
τ∈PSYT≥0(λ;T )

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)

× ϵ(n)(tr(n−1)tcτ (1)+...+cτ (r)FΨr(τ))

= t(
r
2)er

[
1− tn

1− t

] ∑
τ∈PSYT≥0(λ;T )

tcτ (1)+...+cτ (r)
∏

(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)

× ϵ(n)(FΨr(τ)).

From Corollary 3.5.5,

ϵ(n)(FΨr(τ))

= 1 (pλ(Ψ
r(τ)) ∈ RSSYT≥0(λ))Kpλ(Ψr(τ))(q, t)

×
∏

(□1,□2)∈Inv(Ψr(τ))

(
qT (□1)tc(□1) − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)
Ppλ(Ψr(τ)).

Hence, by collecting coefficients around each PS for S ∈ RSSYT≥0(λ) we see that

er[X1 + . . .+Xn]PT =
∑
S

d
(r)
S,TPS

where d
(r)
S,T are as given in the theorem statement above.

Lastly, if τ ∈ PSYT≥0(λ;T ) then the boxes of λ containing the labels 1, . . . , r (with some powers

of q given by T ) are exactly those boxes □ ∈ λ with pλ(Ψ
r(τ))(□) = T (□) + 1. Thus if S =

pλ(Ψ
r(τ)) ∈ RSSYT≥0(λ) then we may obtain S from T by adding the value 1 to r boxes of T

with at most one 1 added to each box.
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□

Definition 3.5.8. For S, T ∈ Ω(λ) and r ≥ 1 define d
(r)
S,T ∈ Q(q, t) by

er[X]PT =
∑

S∈Ω(λ)

d
(r)
S,T PS .

Remark 33. Note that from Theorem 3.5.7 it is clear for T ∈ Ω(λ) and r ≥ 1 that each S ∈ Ω(λ)

such that d
(r)
S,T ̸= 0 will necessarily be obtained from T by adding r to the boxes of T with at most

one 1 being added to each box. As such the set of such S is finite. Further, any such S has

rk(S) ≤ rk(T ) + r.

As an immediate consequence of Theorem 3.5.7 and the definition of PT from Definition 3.4.9

we obtain the following result.

Corollary 3.5.9 (Pieri Rule). Let S, T ∈ Ω(λ) and r ≥ 1. For all n ≥ rk(T ) + r

d
(r)
S,T = d

(r)
S|

λ(n) ,T |λ(n)
.

3.5.3. Non-vanishing for e1 Pieri Coefficients. In this section we will prove that if T, S

satisfy a simple combinatorial relationship then d
(1)
T ′.T ̸= 0. This will be instrumental in the proof

that the modules W̃λ are cyclic.

Definition 3.5.10. Let λ ∈ Y and T ∈ RSSYT≥0(λ). A box □0 in λ is T -raisable if the labelling

S defined by

S(□) =


T (□) □ ̸= □0

T (□) + 1 □ = □0.

is also in RSSYT≥0(λ). We say that S is obtained by raising the box □0 of T. Further, we say that

□0 is a S-lowerable box in λ.

We will write T ↑ S if S may be obtained by raising one box of T.

Remark 34. We may define a partial order ⊑ on the set RSSYT≥0(λ) simply by

T ⊑ S ↔ ∀ □ ∈ λ(∞), T (□) ≤ S(□).
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Then the relation T ↑ S defined in Definition 3.5.10 is simply the cover relation of ⊑ . Lastly, we

may extend the definitions of raisable/lowerable boxes and of the relation T ↑ S to Ω(λ) analogously

in the obvious way.

We require the following lemmas.

Lemma 3.5.11. Let τ ∈ PSYT≥0(λ;T ) for T ∈ RSSYT≥0(λ). If (□1,□2) ∈ Inv(τ) with T (□1) =

T (□2) then c(□2)− c(□1) ≥ 2.

Proof. Since T ∈ RSSYT≥0(λ), for all n ≥ 0 the set of boxes {□ ∈ λ|T (□) = n} is a

skew-diagram consisting of a union of disjoint horizontal strips. Suppose (□1,□2) ∈ Inv(τ) with

T (□1) = T (□2) = n. Then □1 and □2 cannot be in the same horizontal strip component of

{□ ∈ λ|T (□) = n}. Further, □1 must be to the left of □2. Hence, c(□2)− c(□1) ≥ 2. □

Lemma 3.5.12. Let T ∈ RSSYT≥0(λ). Given a T -raisable box of λ, □0, there exists a unique

τ ∈ PSYT≥0(λ;T ) such that

• τ(□0) = 1qa for some a ≥ 0

• inv(τ) = S(T )(□0)− 1.

Proof. Since the count inv(τ) = S(T )(□0)− 1 is tight there exists at most one such labelling.

We may simply define τ ∈ PSYT≥0 by labelling the boxes □ ∈ λ with □ <T □0 with the labels

{2, . . . , S(T )(□0) − 1 following the box ordering S(T ). We then fill the boxes □ >T □0 with the

values {S(T )(□0), . . . , n} following the box ordering S(T ). Thus τ has exactly S(T )(□0)−1 inversion

pairs. □

Lemma 3.5.13. Let T, T ′ ∈ RSSYT≥0(λ) with T ↑ T ′. Let □0 be the box of λ on which T and T ′

differ. Let τ ∈ PSYT≥0(λ;T ) with Ψ(τ) ∈ PSYT≥0(λ;T
′). Then we have the following:

• Inv(τ) = {(□1,□2) ∈ Inv(τ)|□i ̸= □0} ⊔ {(□,□0)|□ <T □0}

• Inv(Ψ(τ)) = {(□1,□2) ∈ Inv(Ψ(τ))|□i ̸= □0} ⊔ {(□0,□)|□0 <T ′ □}

• {(□1,□2) ∈ Inv(τ)|□i ̸= □0} = {(□1,□2) ∈ Inv(Ψ(τ))|□i ̸= □0}.

Proof. This result follows by simple case work which we leave to the reader. □

Putting these lemmas together we may show the following:
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Theorem 3.5.14. Let λ ∈ Y and T, T ′ ∈ RSSYT≥0(λ) with T ↑ T ′. Then d
(1)
T ′,T ̸= 0.

Proof. Let □0 be the T -raisable box on which T and T ′ differ. From 3.5.7 we see that

d
(1)
T ′,T

(1−t
n

1−t )KT ′(q, t)
=

∑
τ∈PSYT≥0(λ;T )

s.t.
Ψ(τ)∈PSYT≥0(λ;T

′)

tcτ (1)
∏

(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
×

∏
(□1,□2)∈Inv(Ψ(τ))

(
qT

′(□1)tc(□1) − qT
′(□2)tc(□2)

qT ′(□1)tc(□1) − qT ′(□2)tc(□2)+1

)
.

Therefore, it suffices to show that the sum on the right hand side of the above equation is nonzero.

If τ ∈ PSYT≥0(λ;T ) with Ψ(τ) ∈ PSYT≥0(λ;T
′) then cτ (1) = c(□0). Hence, we may factor

out the term tcτ (1) = tc(□0) outside the sum. From Lemma 3.5.13 we have the following for any

τ ∈ PSYT≥0(λ;T ) with Ψ(τ) ∈ PSYT≥0(λ;T
′):

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

) ∏
(□1,□2)∈Inv(Ψ(τ))

(
qT

′(□1)tc(□1) − qT
′(□2)tc(□2)

qT ′(□1)tc(□1) − qT ′(□2)tc(□2)+1

)

=
∏

□<T□0

(
qT (□)tc(□)+1 − qT (□0)tc(□0)

qT (□)tc(□) − qT (□0)tc(□0)

) ∏
□0<T ′□

(
qT (□0)+1tc(□0) − qT (□)tc(□)

qT (□0)+1tc(□0) − qT (□)tc(□)+1

)

×
∏

(□1,□2)∈Inv(τ)
□i ̸=□0

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)
.

The first two products above are nonzero and do not depend on τ and can therefore be brought

outside the summation ∑
τ∈PSYT≥0(λ;T )

s.t.
Ψ(τ)∈PSYT≥0(λ;T

′)

.

Hence, it suffices to show that

∑
τ∈PSYT≥0(λ;T )

s.t.
Ψ(τ)∈PSYT≥0(λ;T

′)

∏
(□1,□2)∈Inv(τ)

□i ̸=□0

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)
̸= 0.

Notice that we can rewrite the above product terms in the following way:
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∏
(□1,□2)∈Inv(τ)

□i ̸=□0

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)

= tinv(τ)−S(T )(□0)+1
∏

(□1,□2)∈Inv(τ)
□i ̸=□0

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)

Therefore,

∑
τ∈PSYT≥0(λ;T )

s.t.
Ψ(τ)∈PSYT≥0(λ;T

′)

∏
(□1,□2)∈Inv(τ)

□i ̸=□0

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)

=
∑

τ∈PSYT≥0(λ;T )
s.t.

Ψ(τ)∈PSYT≥0(λ;T
′)

tinv(τ)−S(T )(□0)+1
∏

(□1,□2)∈Inv(τ)
□i ̸=□0

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)

Now we have by definition for any inversion pair (□1,□2) that T (□2) − T (□1) ≤ 0. Therefore,

by limiting q →∞ we see that

lim
q→∞

∑
τ∈PSYT≥0(λ;T )

s.t.
Ψ(τ)∈PSYT≥0(λ;T

′)

tinv(τ)−S(T )(□0)+1
∏

(□1,□2)∈Inv(τ)
□i ̸=□0

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)

=
∑

τ∈PSYT≥0(λ;T )
s.t.

Ψ(τ)∈PSYT≥0(λ;T
′)

tinv(τ)−S(T )(□0)+1
∏

(□1,□2)∈Inv(τ)
□i ̸=□0

T (□1)=T (□2)

(
1− tc(□2)−c(□1)−1

1− tc(□2)−c(□1)+1

)
.

Using Lemma 3.5.11 we see that for each of the inversion pairs (□1,□2) ∈ Inv(τ) for τ in

PSYT≥0(λ;T ) with Ψ(τ) ∈ PSYT≥0(λ;T
′) and T (□1) = T (□2) that c(□2) − c(□1) − 1 ≥ 1.

Therefore, if we limit t→ 0
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lim
t→0

∑
τ∈PSYT≥0(λ;T )

s.t.
Ψ(τ)∈PSYT≥0(λ;T

′)

tinv(τ)−S(T )(□0)+1
∏

(□1,□2)∈Inv(τ)
□i ̸=□0

T (□1)=T (□2)

(
1− tc(□2)−c(□1)−1

1− tc(□2)−c(□1)+1

)

=
∑

τ∈PSYT≥0(λ;T )
s.t.

Ψ(τ)∈PSYT≥0(λ;T
′)

1 (inv(τ) = S(T )(□0)− 1) lim
t→0

∏
(□1,□2)∈Inv(τ)

□i ̸=□0

T (□1)=T (□2)

(
1− tc(□2)−c(□1)−1

1− tc(□2)−c(□1)+1

)

=
∑

τ∈PSYT≥0(λ;T )
s.t.

Ψ(τ)∈PSYT≥0(λ;T
′)

1 (inv(τ) = S(T )(□0)− 1)
∏

(□1,□2)∈Inv(τ)
□i ̸=□0

T (□1)=T (□2)

(1)

= #{τ ∈ PSYT≥0(λ;T )|Ψ(τ) ∈ PSYT≥0(λ;T
′), inv(τ) = S(T )(□0)− 1}.

By Lemma 3.5.12, #{τ ∈ PSYT≥0(λ;T )|Ψ(τ) ∈ PSYT≥0(λ;T
′), inv(τ) = S(T )(□0) − 1} = 1

which in particular is not 0. Therefore, d
(1)
T ′,T ̸= 0. □

Using stability we find the following:

Corollary 3.5.15. Let λ ∈ Y and T, T ′ ∈ Ω(λ) with T ↑ T ′. Then d
(1)
T ′.T ̸= 0.

Proof. From Corollary 3.5.9 we know that for all n ≥ rk(T ) + 1

d
(1)
T ′,T = d

(1)
T ′|

λ(n) ,T |λ(n)
.

Since T ′ is obtained from T by increasing the value of a single box of T by 1 we know that the

same must be true for T ′|λ(n) and T |λ(n) for all n ≥ rk(T ) + 1. Therefore, from Theorem 3.5.14 we

conclude that d
(1)
T ′,T = d

(1)
T ′|

λ(n) ,T |λ(n)
̸= 0. □

The non-vanishing of the e1 Pieri coefficients is sufficient to prove that the W̃λ are cyclic E +-

modules.

Corollary 3.5.16. For λ ∈ Y, W̃λ is a cyclic E +-module.
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Proof. We will show that PTmin
λ

is a cyclic vector for W̃λ i.e. E +PTmin
λ

= W̃λ. It suffices to

show that for every T ∈ Ω(λ) there exists some X ∈ E + with X(PTmin
λ

) = PT . Notice that given

any T ∈ Ω(λ) we may choose any lowerable box □1 of T and obtain a labelling T1 ∈ Ω(λ) by

subtracting the value of 1 from □1 in the labelling T. Continuing in this process yields a sequence

of labellings T1, T2, . . . with Ti+1 ↑ Ti which must eventually terminate as deg(Ti) = deg(T )− i. It

is easy to verify that the only element of Ω(λ) without any lowerable boxes is Tmin
λ so the sequence

T1, T2, . . . must end at Tmin
λ . Reversing this process shows that any T ∈ Ω(λ) may be obtained from

Tmin
λ by a sequence Tmin

λ = T1, . . . , Tn = T with Ti ↑ Ti+1. Hence, by induction it suffices to show

that if T ↑ T ′ then there exists X ∈ E + such that X(PT ) = PT ′ .

Let T, T ′ ∈ Ω(λ) with T ↑ T ′. Consider the element X ∈ E + defined by

X :=
∏
T↑S
S ̸=T ′

(
P0,1 −

∑
□∈λ(∞)(qS(□) − 1)tc(□)∑

□∈λ(∞)(qT
′(□) − qS(□))tc(□)

)
.

The denominator of the above product is nonzero since P0,1 acts with simple spectrum on W̃λ.

Further, as mentioned before the set of S ∈ Ω(λ) with T ↑ S is finite so the above product is finite.

We have that for T ↑ V

X(PV ) =
∏
T↑S
S ̸=T ′

(
P0,1 −

∑
□∈λ(∞)(qS(□) − 1)tc(□)∑

□∈λ(∞)(qT
′(□) − qS(□))tc(□)

)
(PV )

=
∏
T↑S
S ̸=T ′

(∑
□∈λ(∞)(qV (□) − qS(□))tc(□)∑
□∈λ(∞)(qT

′(□) − qS(□))tc(□)

)
PV

= δV,T ′ PV .

From Corollary 3.5.15 we know that d
(1)
T ′,T ̸= 0. Therefore, we may consider the element X ′ ∈ E +

defined by

X ′ :=
q−1

d
(1)
T ′,T

XP1,0.
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We find that

X ′(PT ) =
q−1

d
(1)
T ′,T

XP1,0(PT )

=
q−1

d
(1)
T ′,T

Xqe•1(PT )

=
1

d
(1)
T ′,T

X(
∑
T↑S

d
(1)
S,T PS)

=
1

d
(1)
T ′,T

∑
T↑S

d
(1)
S,T δS,T ′ PS

= PT ′ .

□

3.6. Family of (q, t) Product-Sum Identities

In the final section of this chapter we will investigate an interesting family of (q, t) product-sum

identities which are derived using the combinatorics underpinning the structure of the generalized

symmetric Macdonald functions PT along with some elementary non-archimedean analysis.

Definition 3.6.1. A non-negative asymptotic periodic standard Young tableau with base shape

λ ∈ Y is a labelling τ : λ(∞) → {iqa : i ≥ 1, a ≥ 0} such that

• τ is strictly increasing along rows and columns

• The set of boxes □ ∈ λ(∞) such that τ(□) = iqa for some i ≥ 1 and a > 0 is finite

• For all i ≥ 1 there exists a unique □ ∈ λ(∞) such that τ(□) = iqa for some a ≥ 0.

We will write APSYT≥0(λ) for the set of all non-negative asymptotic periodic standard Young

tableaux with base shape λ ∈ Y . If τ ∈ APSYT≥0(λ) has that for every □ ∈ λ, τ(□) = iq0

for some i ≥ 1 then we will call τ an asymptotic standard Young tableau with base shape λ. We

will write ASYT(λ) for the set of asymptotic standard Young tableau with base shape λ. As an

abuse of notation will write pλ : APSYT≥0(λ) → Ω(λ) for the map given on τ ∈ APSYT≥0(λ) by

pλ(τ)(□) = a whenever τ(□) = iqa for some i ≥ 1. We will let APSYT≥0(λ;T ) denote the set of

all τ ∈ APSYT≥0(λ) with pλ(τ) = T.
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Definition 3.6.2. For T ∈ Ω(λ) define S(T ) ∈ ASYT(λ) by ordering the boxes of λ(∞) according

to □1 ≤ □2 if and only if

• T (□1) > T (□2) or

• T (□1) = T (□2) and □1 comes before □2 in the column-standard labelling of λ(∞).

Let τ ∈ APSYT≥0(λ;T ). An ordered pair of boxes (□1,□2) ∈ λ(∞) × λ(∞) is called an inversion

pair of τ if S(T )(□1) < S(T )(□2) and τ(□1) = iqa τ(□2) = jqb for some i > j and a, b ≥ 0. The

set of all inversion pairs of τ will be denoted by Inv(τ). We will write inv(τ) = | Inv(τ)|. Define

rk(τ) to be the minimal n ≥ nλ such that τ |λ(∞)/λ(n) has consecutive labels.

Example. Consider T ∈ Ω(3, 2, 1) from Example 3.4.2. Then

τ =

1q3 2q3 3q3 5q2 7q2 12q1 13q0 14q0 15q0 . . .

4q2 6q2 11q1

8q1 9q1

10q0

∈ APSYT≥0(3, 2, 1;T ),

S(T ) =

1 2 3 6 7 11 13 14 15 . . .

4 5 10

8 9

12

,

and rk(T ) = 12.

Recall Corollary 3.5.5 for the definition of KT (q, t).

Proposition 3.6.3. For T ∈ RSSYT≥0(λ)

1

KT (q, t)
=

∑
τ∈PSYT≥0(λ;T )

tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)
.

Proof. Using Corollary 3.4.5 and Corollary 3.5.5 we find
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PT = ϵ(n)(PT )

= ϵ(n)

 ∑
τ∈PSYT≥0(λ;T )

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
Fτ


=

∑
τ∈PSYT≥0(λ;T )

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
ϵ(n)(Fτ )

=
∑

τ∈PSYT≥0(λ;T )

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)

)
KT (q, t)

×
∏

(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1) − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)
PT

= KT (q, t)

 ∑
τ∈PSYT≥0(λ;T )

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)PT .

Therefore,

1

KT (q, t)
=

∑
τ∈PSYT≥0(λ;T )

∏
(□1,□2)∈Inv(τ)

(
qT (□1)tc(□1)+1 − qT (□2)tc(□2)

qT (□1)tc(□1) − qT (□2)tc(□2)+1

)

=
∑

τ∈PSYT≥0(λ;T )

tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)
.

□

Our goal now is to compute the limit of both sides of the equation in Proposition 3.6.3 along

sequences of the form (λ(n))n≥nλ
. One side gives an infinite product and the other a power series

which are dealt with separately. We require the following straightforward lemmas.

Lemma 3.6.4. For τ ∈ APSYT≥0(λ;T ), rk(τ)− rk(T ) ≤ inv(τ) ≤
(
rk(τ)
2

)
.
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Proof. Any inversion pair (□1,□2) ∈ Inv(τ) has□1,□2 ∈ λ(rk(τ)). Therefore, trivially inv(τ) ≤(
rk(τ)
2

)
.

For the other side of the inequality, we only need to consider the case when rk(τ) > rk(T ) since

inv(τ) ≥ 0. Let □0 be the unique square of λ(rk(τ))/λ(rk(τ)). Then by of the definition of rank

τ(□0) ̸= rk(τ). Further, for any □ ∈ λ(rk(τ))/λ(rk(T )) we must have that τ(□) ̸= rk(τ) as τ must

be strictly increasing to the right along the horizontal strip λ(rk(τ))/λ(rk(T )). Therefore, if □1 is the

box of λ(rk(T )) with τ(□1) = rk(τ)qa for some a ≥ 0 then for all □ ∈ λ(rk(τ))/λ(rk(T )) we find that

(□1,□) ∈ Inv(τ). Therefore, inv(τ) ≥ rk(τ)− rk(T ). □

Lemma 3.6.5. For k ≥ 0 there are only finitely many τ ∈ APSYT≥0(λ;T ) with rk(τ) ≤ k.

Proof. The map {τ ∈ APSYT≥0(λ;T )| rk(τ) ≤ k} → PSYT≥0(λ
(k);T ) given by τ → τ |λ(k) is

easily seen to be a bijection. Since PSYT≥0(λ
(k);T ) is a finite set we are done. □

Corollary 3.6.6. For k ≥ 0 there are only finitely many τ ∈ APSYT≥0(λ;T ) with inv(τ) ≤ k.

Proof. If inv(τ) ≤ k then by Lemma 3.6.4 we know that rk(τ) ≤ k + rk(T ). Thus by Lemma

3.6.5

#{τ | inv(τ) ≤ k} ≤ #{τ | rk(τ) ≤ k + rk(T )} <∞.

□

Lemma 3.6.7. For T ∈ RSSYT≥0(λ), the set I(T ) = Inv(min(T )) consists of all pairs of boxes

(□1,□2) ∈ λ × λ with □1 <T □2 except those pairs with T (□1) = T (□2) and □1 before □2 in the

same row.

Proof. This follows immediately from the definition of min(T ). □

Now we deal with the limit of products.

Proposition 3.6.8. Let T ∈ Ω(λ). The sequence (KT |
λ(n)

(q, t))n≥nλ
converges with respect to the

t-adic topology on Q(q)((t)) to

(1− t)rk(T )[µ(T |λ(rk(T )))]t!∏
□∈λ(rk(T ))

(
1− q−T (□)trk(T )−|λ|−c(□)

) ∏
(□1,□2)∈I(T |λ(rk(T )) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)
.
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Proof. Let n ≥ rk(T ). From Lemma 3.6.7 we know

I(T |λ(n)) = I(T |λ(rk(T ))) ⊔ {(□1,□2)|□1 ∈ λ(rk(T )),□2 ∈ λ(n)/λ(rk(T ))}.

Therefore,

∏
(□1,□2)∈I(T |λ(n) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)

=
∏

(□1,□2)∈I(T |λ(rk(T )) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)

×
∏

□1∈λ(rk(T ))

∏
□2∈λ(n)/λ(rk(T ))

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)

=
∏

(□1,□2)∈I(T |λ(rk(T )) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

) ∏
□∈λ(rk(T ))

n−|λ|−1∏
i=rk(T )−|λ|

(
1− q−T (□)ti−c(□)+1

1− q−T (□)ti−c(□)

)
.

Note that the following product telescopes:

n−|λ|−1∏
i=rk(T )−|λ|

(
1− q−T (□)ti−c(□)+1

1− q−T (□)ti−c(□)

)

=

(
1− q−T (□)trk(T )−|λ|−c(□)+1

1− q−T (□)trk(T )−|λ|−c(□)

)(
1− q−T (□)trk(T )−|λ|−c(□)+2

1− q−T (□)trk(T )−|λ|−c(□)+1

)
· · ·

(
1− q−T (□)t(n−|λ|−1)−c(□)+1

1− q−T (□)t(n−|λ|−1)−c(□)

)

=

(
1− q−T (□)tn−|λ|−c(□)

1− q−T (□)trk(T )−|λ|−c(□)

)
.

Thus
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∏
(□1,□2)∈I(T |λ(n) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)

=
∏

(□1,□2)∈I(T |λ(rk(T )) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

) ∏
□∈λ(rk(T ))

(
1− q−T (□)tn−|λ|−c(□)

1− q−T (□)trk(T )−|λ|−c(□)

)
.

Now µ(Tλ(n)) = µ(Tλ(rk(T ))) ∗ (n− rk(T )) so

[µ(Tλ(n))]t! = [µ(Tλ(rk(T )))]t! · [n− rk(T )]t!.

Putting this together gives

KT |
λ(n)

(q, t)

=
[µ(T |λ(n))]t!

[n]t!

∏
(□1,□2)∈I(T |λ(n) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)

= [µ(Tλ(rk(T )))]t!
[n− rk(T )]t!

[n]t!

∏
(□1,□2)∈I(T |λ(rk(T )) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)

×
∏

□∈λ(rk(T ))

(
1− q−T (□)tn−|λ|−c(□)

1− q−T (□)trk(T )−|λ|−c(□)

)
.

From here it is simple to see
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lim
n→∞

KT |
λ(n)

(q, t)

= lim
n→∞

[µ(Tλ(rk(T )))]t!
[n− rk(T )]t!

[n]t!

∏
(□1,□2)∈I(T |λ(rk(T )) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)

×
∏

□∈λ(rk(T ))

(
1− q−T (□)tn−|λ|−c(□)

1− q−T (□)trk(T )−|λ|−c(□)

)

= [µ(Tλ(rk(T )))]t!
∏

(□1,□2)∈I(T |λ(rk(T )) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)

× lim
n→∞

[n− rk(T )]t!

[n]t!

∏
□∈λ(rk(T ))

(
1− q−T (□)tn−|λ|−c(□)

1− q−T (□)trk(T )−|λ|−c(□)

)

= [µ(Tλ(rk(T )))]t!
∏

(□1,□2)∈I(T |λ(rk(T )) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)
(1− t)rk(T )

×
∏

□∈λ(rk(T ))

(
1− q−T (□)trk(T )−|λ|−c(□)

)−1

=
(1− t)rk(T )[µ(T |λ(rk(T )))]t!∏

□∈λ(rk(T ))

(
1− q−T (□)trk(T )−|λ|−c(□)

) ∏
(□1,□2)∈I(T |λ(rk(T )) )

(
1− qT (□2)−T (□1)tc(□2)−c(□1)+1

1− qT (□2)−T (□1)tc(□2)−c(□1)

)
.

□

We will now deal with the series side. For this we need the following lemmas. Here we write

|f(q, t)| for the t-adic norm of f(q, t) ∈ Q(q)((t)) normalized so that |tn| = 2−n.

Lemma 3.6.9. For a ̸= 0 and b ∈ Z

∣∣∣∣1− qatb−1

1− qatb+1

∣∣∣∣ =

1 b ≥ 1

2 b = 0

4 b ≤ −1.
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Proof. We proceed in cases. If b ≥ 1 then∣∣∣∣1− qatb−1

1− qatb+1

∣∣∣∣ = |1− qatb−1|
|1− qatb+1|

= 1.

If b = 0, ∣∣∣∣1− qat−1

1− qat

∣∣∣∣ = ∣∣∣∣t−1−qa + t

1− qat

∣∣∣∣ = |t−1| | − qa + t|
|1− qat|

= 2.

Lastly, if b ≤ −1 then ∣∣∣∣1− qatb−1

1− qatb+1

∣∣∣∣ = |1− qatb−1|
|1− qatb+1|

=
2−b+1

2−b−1
= 4.

□

Lemma 3.6.10. Let τ ∈ APSYT≥0(λ;T ). If (□1,□2) ∈ Inv(τ) with c(□2) − c(□1) ≤ 0 then

□1,□2 ∈ λ(rk(T )).

Proof. Suppose (□1,□2) ∈ Inv(τ) with either □1 ∈ λ(∞)/λ(rk(T )) or □2 ∈ λ(∞)/λ(rk(T )).

Then, since λ(∞)/λ(rk(T )) is a horizontal strip, necessarily □2 ∈ λ(∞)/λ(rk(T )) and □1 ∈ λ(rk(T )).

Thus c(□2) ≥ c(□1) + 1. □

Using these lemmas gives the following:

Proposition 3.6.11. Let T ∈ Ω(λ). The sequence of sums ∑
τ∈PSYT≥0(λ(n);T |

λ(n) )

tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)
n≥nλ

converges with respect to the t-adic topology on Q(q)((t)) to the series

∑
τ∈APSYT≥0(λ;T )

tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)
∈ Q(q)((t)).

Proof. Our method will be to first verify that the above infinite series over τ ∈ APSYT≥0(λ;T )

is convergent in Q(q)((t)) and then argue that the above sums over τ ∈ PSYT≥0(λ
(n);T |λ(n))

converge to the same element of Q(q)((t)).

We begin by noting that from Lemma 3.6.10 we have the (sufficient but egregiously unoptimal)

upper bound

#{(□1,□2) ∈ Inv(τ)|c(□1)− c(□2) ≤ −1} ≤
(
rk(T )

2

)
.
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Recall that if T (□1) = T (□2) then by Lemma 3.5.11 c(□2)− c(□1) ≥ 2. Thus using Lemma 3.6.9

we find ∣∣∣∣∣∣
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)∣∣∣∣∣∣ ≤ 4(
rk(T )

2 )

and hence ∣∣∣∣∣∣tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)∣∣∣∣∣∣ ≤ 2− inv(τ)4(
rk(T )

2 ).

Recall that (from the strong triangle inequality) if (fm(q, t))m≥1 is any sequence in Q(q)((t))

then the series
∑∞

m=0 fm(q, t) is convergent in Q(q)((t)) if and only if limm→∞ |fm(q, t)| = 0. In

turn, this is equivalent to the property that for every r ≥ 0 there are only finitely many m ≥ 1

with |fm(q, t)| ≥ 2−r. From Corollary 3.6.6 we find that for any r ≥ 0 there are only finitely many

τ ∈ APSYT≥0(λ;T ) with

inv(τ) ≤ 2

(
rk(T )

2

)
+ r =⇒ 2− inv(τ)4(

rk(T )
2 ) ≥ 2−r.

Thus there are only finitely many τ ∈ APSYT≥0(λ;T ) with∣∣∣∣∣∣tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)∣∣∣∣∣∣ ≥ 2−r.

We conclude that the series

S :=
∑

τ∈APSYT≥0(λ;T )

tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)

is convergent in Q(q)((t)).

Now let n ≥ rk(T ).
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∣∣∣∣∣∣∣S −
∑

τ∈PSYT≥0(λ(n);T |
λ(n) )

tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∑

τ∈APSYT≥0(λ;T )
rk(τ)>n

tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)∣∣∣∣∣∣∣∣∣
≤ max

τ∈APSYT≥0(λ;T )
rk(τ)>n

∣∣∣∣∣∣tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)∣∣∣∣∣∣
≤ 2−(n+1−rk(T ))4(

rk(τ)
2 ).

Hence,

lim
n→∞

∣∣∣∣∣∣∣S −
∑

τ∈PSYT≥0(λ(n);T |
λ(n) )

tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)∣∣∣∣∣∣∣
≤ lim

n→∞
2−(n+1−rk(T ))4(

rk(τ)
2 )

= 0.

□

We immediately arrive at the following product-series formula:

Theorem 3.6.12. For T ∈ Ω(λ) we have the following equality in Q(q)((t)) :∏
□∈λ(rk(T ))

(
1− q−T (□)trk(T )−|λ|−c(□)

)
(1− t)rk(T )[µ(T |λ(rk(T )))]t!

∏
(□1,□2)∈I(λ(rk(T )))

(
1− qT (□2)−T (□1)tc(□2)−c(□1)

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)

=
∑

τ∈APSYT≥0(λ;T )

tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)
.
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Remark 35. Note that the powers of q appearing in the Theorem 3.6.12 are all non-positive i.e.

the sum and product are elements of Q[q−1]((t)). In particular, we may limit q →∞ to obtain the

prod-sum equality in Q((t)) :

∏
□∈λ(rk(T ))

T (□)=0

(
1− trk(T )−|λ|−c(□)

)
(1− t)rk(T )[µ(T |λ(rk(T )))]t!

∏
(□1,□2)∈I(λ(rk(T )))

T (□1)=T (□2)

(
1− tc(□2)−c(□1)

1− tc(□2)−c(□1)+1

)

=
∑

τ∈APSYT≥0(λ;T )

tinv(τ)
∏

(□1,□2)∈Inv(τ)
T (□1)=T (□2)

(
1− tc(□2)−c(□1)−1

1− tc(□2)−c(□1)+1

)
.

By noting that the product term in Theorem 3.6.12 is a finite product of rational terms we

observe the following:

Corollary 3.6.13. For T ∈ Ω(λ),

∑
τ∈APSYT≥0(λ;T )

tinv(τ)
∏

(□1,□2)∈Inv(τ)

(
1− qT (□2)−T (□1)tc(□2)−c(□1)−1

1− qT (□2)−T (□1)tc(□2)−c(□1)+1

)
∈ Q(q, t).

Example. Here we give a few simple examples of this (q, t) identity. Consider λ = ∅ and T =

1 0 0 . . . ∈ Ω(∅). Then we get

1− q−1t

1− t
=

∞∑
k=0

tk
k∏

j=1

(
1− q−1tj−1

1− q−1tj+1

)
.

Now consider λ = (1) and T =
1 0 0 . . .

0
∈ Ω(1). In this case we get

(1− q−1t)(1− t2)(1− q−1t−1)

(1− t)2(1− q−1)

=
∞∑

i,j=1

ti+j−3
i−2∏
k=1

(
1− q−1tk−1

1− q−1tk+1

) j−1∏
k=2

(
1− tk−1

1− tk+1

)
×

(
1(j ≤ i− 1)t

(
1− q−1t−2

1− q−1

)
+ 1(i+ 1 ≤ j)

(
1− q−1

1− q−1t2

))
.

189



Interestingly, in both of these cases we can write the series part of these identities as a finite sum

of hypergeometric series.
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CHAPTER 4

Double Dyck Path Algebra Representations From DAHA

4.1. Introduction

The algebra Bq,t was introduced by Carlsson-Gorsky-Mellit [7] as an algebra which has a natural

geometric action on the equivariant K-theory of the parabolic flag Hilbert schemes of points in

C2. This work built on the prior work of Schiffmann-Vasserot [34] who constructed a geometric

action of the elliptic Hall algebra E on the equivariant K-theory of the Hilbert schemes of points

in C2. These construction are part of a larger story in Macdonald theory of relating geometric

properties of the Hilbert schemes of points in C2 to the algebraic combinatorics underlying the

modified Macdonald symmetric functions H̃µ and of the Macdonald operator ∆ (which acts on the

space of symmetric functions Λ). Importantly, Bq,t is intimately related to the double Dyck path

algebra Aq,t introduced by Carlsson-Mellit in their proof of the Shuffle Theorem [8] regarding the

Frobenius character of the space of diagonal coinvariants and the combinatorics of Dyck paths.

The quiver path algebra Bq,t has relations very similar to the positive double affine Hecke alge-

bras (DAHA) in type GL, D+
n , introduced by Cherednik [9]. In fact, Bq,t contains many copies

of affine Hecke algebras of type GL. However, there is no direct algebraic relation (no algebra

homomorphisms) between Bq,t (nor Aq,t) and DAHAs. Nevertheless, there are approaches to more

indirectly relate these algebras. Ion-Wu [26] defined an algebra called the stable-limit DAHA along

with a polynomial representation on the space of almost symmetric functions P+
as which, in a

sense, globalizes the polynomial representation of Aq,t (and as we will see later Bq,t). They used

a stable-limit procedure to define this representation from the polynomial representations of the

finite rank DAHAs D+
n . This representation of the stable-limit DAHA is much larger than the

polynomial representation of Bq,t but the limit Cherednik operators of Ion-Wu, in a sense, behave

better on a certain subspace of P+
as given by the following direct sum:

⊕
k≥0

x1 · · ·xkQ(q, t)[x1, . . . , xk]⊗ Λ.
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This subspace aligns with the polynomial representation of Bq,t.

Motivated by the construction of Ion-Wu we will in this chapter develop a method for constructing

modules for Bq,t directly from the representation theory of DAHA in type GL. We will use a stable-

limit construction similar to Ion-Wu but will not require any additional non-archimedean topological

considerations as they did. First, we will show (Proposition 4.2.4) that given any D+
n module V

we may construct an action of the subalgebra B(n)
q,t on the space L•(V ) defined by

L•(V ) =
⊕

0≤k≤n
Lk(V ) :=

⊕
0≤k≤n

X1 · · ·Xkϵk(V ).

Here ϵk are the partial trivial idempotents of the finite Hecke algebra. Each space may be considered

as a module for the partially symmetrized positive DAHA, ϵk D+
n ϵk. It will be immediate to show

(Theorem 4.2.5) that the map V → L•(V ) is indeed a functor. We show (Proposition 4.2.7) that in

the case of the polynomial representations V
(n)
pol of DAHA that L•(V

(n)
pol ) is a B(n)

q,t -module quotient

of the restriction of the polynomial representation of Bq,t to B(n)
q,t .

Afterwards, we will use stable-limits of the representations L•(V ) of B(n)
q,t to build representations

of Bq,t. This construction will require the input of an infinite family of representations of DAHAs,

(V (n))n≥n0 , along with some connecting maps, Π(n) : V (n+1) → V (n), satisfying some special

assumptions. Most interestingly, we require that the following relations holds:

Π(n)πn+1Tn = πnΠ
(n).

This is the same relation used by Ion-Wu in their construction of the limit Cherednik operators

and is related to certain natural embeddings of the extended affine symmetric groups S̃n ↪→ S̃n+1.

We call such families C =
(
(V (n))n≥n1 , (Π

(n))n≥n1

)
compatible and construct spaces Lk(C) given

by

Lk(C) := lim
←

Lk(V
(n)).

These are the stable-limits of the spaces Lk(V
(n)) with respect to the maps Π(n). Finally, we package

together these spaces to form L•(C) given as

L•(C) :=
⊕
k≥0

Lk(C)
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which may be also thought of as the stable-limit of the B(n)
q,t modules L•(V

(n)). We show (Theorem

4.2.12) that there is a natural action of Bq,t on L•(C) determined by the B(n)
q,t module structures on

L•(V
(n)). This construction is also functorial.

Lastly, we will use our construction of the functor C → L•(C) to define (Theorem 4.3.5) a large

family of Bq,t modules, L•(Ind(Cλ)), indexed by partitions λ. These representations in a sense

extend the Murnaghan-type representations of the positive elliptic Hall algebra previously defined

by the author [2]. As such we call these the Murnaghan-type representations of Bq,t. For λ = ∅,

L•(Ind(C∅)) recovers the polynomial representation of Bq,t.

In a recent paper González-Gorsky-Simental [17] defined an extension Bext
q,t of Bq,t containing

certain additional ∆-operators as well as a class of representations of Bext
q,t called calibrated with

special properties. Further, they construct a large class of calibrated Bext
q,t representations built

from certain posets with exceptional properties. The author conjectures that the Murnaghan-type

representations of Bq,t, L•(Ind(Cλ)), have extended actions by Bext
q,t which are calibrated. More

generally, there should be a special set of conditions on a compatible sequence C which guarantees

that L•(C) has an extended action by Bext
q,t which is calibrated.

4.1.1. Conventions Change. In an effort to better align conventions with the papers [8], [7],

and [17] one minor change are made in this section of the thesis. Namely, we will for the remainder

of this section swap the roles played by the in-determinants q and t. This means, for example, that

the quadratic relation for the finite Hecke algebra now reads (Ti − 1)(Ti + q) = 0.

4.2. Main Construction

4.2.1. Additional Relations. We will often write A X
n for the subalgebra of D+

n generated

by T1, . . . , Tn−1, X1, . . . , Xn. We will consider D+
n as a graded algebra with

• deg(Ti) = deg(Yi) = 0

• deg(Xi) = 1.

It is straightforward to check the following additional relations which are all standard in DAHA

theory. We will require all of these relations later in this chapter. Some of these relations appeared

in Chapter 1.

Remark 36. For the element πn we have:
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• πnXi = Xi+1πn for 1 ≤ i ≤ n− 1

• πnTi = Ti+1πn for 1 ≤ i ≤ n− 1

• π2
nTn−1 = T1π

2
n.

The elements ϵ
(n)
k are the partial trivial idempotents. They satisfy the relations:

• (ϵ
(n)
k )2 = ϵ

(n)
k

• ϵ
(n)
k Ti = Tiϵ

(n)
k = ϵ

(n)
k for k + 1 ≤ i ≤ n− 1

• Tiϵ
(n)
k = ϵ

(n)
k Ti for 1 ≤ i ≤ k − 1

• ϵ
(n)
k = 1

[n−k]q !
∑

σ∈S
(1k,n−k)

qℓ(σ)T−1σ

• ϵ
(n)
k =

(
1+qT−1

k+1+...+qn−k−1T−1
n−1···T

−1
k+1

1+q+...+qn−k−1

)
ϵ
(n)
k+1

• ϵ
(n)
k ϵ

(n)
ℓ = ϵ

(n)
min(k,ℓ).

We have that the important element π̃n := X1T
−1
1 · · ·T−1n−1 satisfies the relations:

• π̃nYi = Yi+1π̃n for 1 ≤ i ≤ n− 1

• π̃ntYn = Y1π̃n

• π̃nTi = Ti+1π̃n for 1 ≤ i ≤ n− 2

• π̃2
nTn−1 = T1π̃

2
n.

Note that the last two of these relations only depend of the structure of the subalgebra A X
n of D+

n

and thus hold more generally for all 2 ≤ k ≤ n:

• (X1T
−1
1 · · ·T−1k−1)Ti = Ti+1(X1T

−1
1 · · ·T−1k−1) for 1 ≤ i ≤ k − 2

• (X1T
−1
1 · · ·T−1k−1)

2Tk−1 = T1(X1T
−1
1 · · ·T−1k−1)

2.

Lastly, we have the following expansion of the Hecke algebra analogues of the Jucys-Murphy

elements the standard Tσ basis:

qn−kT−1k · · ·T−1n−1T
−1
n−1 · · ·T

−1
k = 1 + (q − 1)(T−1k + qT−1k+1T

−1
k + . . .+ qn−k−1T−1n−1 · · ·T

−1
k ).

4.2.2. B(n)
q,t Modules From D+

n . In this section we will take any graded D+
n module V and

construct a corresponding graded B(n)
q,t module L•(V ). To do this we will first define the spaces

which constitute L•(V ).

Definition 4.2.1. For any graded D+
n module V and 0 ≤ k ≤ n define the space Lk = Lk(V ) as

Lk := X1 · · ·Xkϵk(V ). We let L• = L•(V ) denote the space L• :=
⊕

0≤k≤n Lk.
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For the remainder of this section let V be a graded module for D+
n . We are going to now construct

operators Ti, zi, d+, d− on L• which we will show generate a representation of B(n)
q,t .

Definition 4.2.2. Define the operators

• Ti : Lk → Lk for 1 ≤ i ≤ k − 1

• zi : Lk → Lk for 1 ≤ i ≤ k

• d+ : Lk → Lk+1 for 0 ≤ k ≤ n− 1

• d− : Lk → Lk−1 for 1 ≤ k ≤ n

as follows:

• Ti(v) is defined by the action of Ti on V

• zi(v) := Yi(v) as defined by the action of Yi on V

• d+(v) := −qkX1T
−1
1 · · ·T−1k v

• d−(v) := (1− q)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T
−1
k )(v).

It is not immediately obvious that these operators are well defined i.e. that their ranges are

correctly specified above. We show this now.

Lemma 4.2.3. If v ∈ Lk then Ti(v), zj(v) ∈ Lk for all 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k. If k ≤ n− 1

then d+(v) ∈ Lk+1 and if 1 ≤ k then d−(v) ∈ Lk−1.

Proof. Let v ∈ Lk say, v = X1 · · ·Xkϵk(w) for w ∈ V. First we have,

Ti(v) = TiX1 · · ·Xkϵk(w)

= X1 · · ·Xkϵk(Tiw) ∈ Lk.
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Next we have

z1(v) = Y1X1 · · ·Xkϵk(w)

= qnπT−1n−1 · · ·T
−1
1 X1 · · ·Xkϵk(w)

= qnπT−1n−1 · · ·T
−1
k X1 · · ·XkT

−1
k−1 · · ·T

−1
1 ϵk(w)

= qnπX1 · · ·Xk−1T
−1
n−1 · · ·T

−1
k XkT

−1
k−1 · · ·T

−1
1 ϵk(w)

= qnX2 · · ·XkπT
−1
n−1 · · ·T

−1
k XkT

−1
k−1 · · ·T

−1
1 ϵk(w)

= qnX2 · · ·Xktq
−(n−k)X1πTn−1 · · ·TkT

−1
k−1 · · ·T

−1
1 ϵk(w)

= tqkX1 · · ·XkπTn−1 · · ·TkT
−1
k−1 · · ·T

−1
1 ϵk(w)

= X1 · · ·XkπTn−1 · · ·Tkϵk(tq
kT−1k−1 · · ·T

−1
1 w).

Now for all k < i ≤ n− 1 we have

TiπTn−1 · · ·Tk = πTi−1Tn−1 · · ·Tk

= πTn−1 · · ·Ti+1Ti−1TiTi−1Ti−2 · · ·Tk

= πTn−1 · · ·Ti+1TiTi−1TiTi−2 · · ·Tk

= πTn−1 · · ·TkTi.

Therefore, we have

X1 · · ·XkπTn−1 · · ·Tkϵk(tq
kT−1k−1 · · ·T

−1
1 w)

= X1 · · ·Xkϵk(tq
kπTn−1 · · ·TkT

−1
k−1 · · ·T

−1
1 w)

which is clearly in Lk.

Now for any 1 < i ≤ k since Yi = q−1Ti−1Yi−1Ti−1 we see that

Yi = q−i+1Ti−1 · · ·T1Y1T1 · · ·Ti−1
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and so

zi = q−i+1Ti−1 · · ·T1Y1T1 · · ·Ti−1.

Since T1 · · ·Ti−1v ∈ Lk we see that Y1(T1 · · ·Ti−1v) ∈ Lk as well and so

zi(v) = q−i+1Ti−1 · · ·T1Y1T1 · · ·Ti−1(v) = q−i+1Ti−1 · · ·T1Y1(T1 · · ·Ti−1v) ∈ Lk.

We now look at d+. We find that

d+(v) =

= −qkX1T
−1
1 · · ·T−1k (v)

= −qkX1T
−1
1 · · ·T−1k (X1 · · ·Xkϵk(w))

= −T1 · · ·TkXk+1(X1 · · ·Xkϵk(w))

= −T1 · · ·TkX1 · · ·Xk+1ϵk(w)

= −X1 · · ·Xk+1(T1 · · ·Tkϵk(w))

= −X1 · · ·Xk+1(T1 · · ·Tkϵk+1ϵk(w))

= X1 · · ·Xk+1ϵk+1(−T1 · · ·Tkϵk(w)) ∈ Lk+1.

Lastly, we look at d−. We suppose v ∈ Lk+1 say, v = X1 · · ·Xk+1ϵk+1(w) for w ∈ V. We get that

d−(v)

= (1− q)(1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T
−1
k+1)(v)

= (1− q)(1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T
−1
k+1)(X1 · · ·Xk+1ϵk+1(w))

= (1− q)(1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T
−1
k+1)(ϵk+1(X1 · · ·Xk+1w))

= (1− q)(1 + q + . . .+ qn−k−1)ϵk(X1 · · ·Xk+1w)

= X1 · · ·Xkϵk((1− qn−k)Xk+1w) ∈ Lk.

□
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Now we will show that the collection of operators Ti, zj , d−, d+ acting on the space L• generates

an action of Bq,t.

Proposition 4.2.4. L• is a B(n)
q,t -module.

Proof. We will show that the operators Ti, zj , d−, d+ on L• defined in Definition 4.2.2 satisfy

the relations in Definition 1.6.1. Note first that the relations involving only Ti’s and zj ’s follow

immediately from their definition and the fact that V is a D+
n -module.

We will start by verifying the relations between d+ and the Ti. We will for the remainder of this

proof let v ∈ Lk and specify various conditions on k as needed. Suppose 0 ≤ k ≤ n − 1. Then for

1 ≤ i ≤ k − 1 using the braid relations we see directly that d+Ti(v) = Ti+1d+(v).

Now if 0 ≤ k ≤ n− 2 we see from the braid relations and the fact that Tk+1(v) = v

T−11 d2+(v)

= T−11 d+(−qkX1T
−1
1 · · ·T−1k (v))

= T−11 (−qk+1X1T
−1
1 · · ·T−1k+1)(−q

kX1T
−1
1 · · ·T−1k (v))

= q2k+1T−11 X1T
−1
1 T−12 · · ·T−1k+1X1T

−1
1 · · ·T−1k (v)

= q2kX2T
−1
2 · · ·T−1k+1X1T

−1
1 · · ·T−1k (v)

= q2kX1X2T
−1
2 · · ·T−1k+1T

−1
1 · · ·T−1k (v)

= q2kX1X2T
−1
2 · · ·T−1k+1T

−1
1 · · ·T−1k Tk+1(v)

= q2kX1X2T1T
−1
2 · · ·T−1k+1T

−1
1 · · ·T−1k (v)

= q2k+1X1T
−1
1 X1T

−1
2 · · ·T−1k+1T

−1
1 · · ·T−1k (v)

= q2k+1X1T
−1
1 T−12 · · ·T−1k+1X1T

−1
1 · · ·T−1k (v)

= (−qk+1X1T
−1
1 · · ·T−1k+1)(−q

kX1T
−1
1 · · ·T−1k (v))

= d2+(v).
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We will now show that d+zi = zi+1d+. Suppose 1 ≤ i ≤ k ≤ n − 1. Then we have by using

Remark 36

zi+1d+(v)

= −qkYi+1X1T
−1
1 · · ·T−1k (v)

= −qkYi+1X1T
−1
1 · · ·T−1k T−1k+1 · · ·T

−1
n−1(v)

= −qkYi+1(X1T
−1
1 · · ·T−1n−1)(v)

= −qk(X1T
−1
1 · · ·T−1n−1)Yi(v)

= −qkX1T
−1
1 · · ·T−1k YiT

−1
k+1 · · ·T

−1
n−1(v)

= −qkX1T
−1
1 · · ·T−1k Yi(v)

= d+(zi(v)).

Next we note that the relations between just d− and the Ti follow trivially from the fact that

d− : Lk+1 → Lk is a scalar multiple of ϵk|Lk+1
which follows from the relations (see Remark 36).

Further, the relation zid− = d−zi also follows easily from the fact that YiTj = TjYi for i /∈ {j, j+1}.

Now we are left to show that the relations involving φ := 1
q−1 [d+, d−] hold. Notice that φ may

be computed for 1 ≤ k ≤ n− 1 as

(q − 1)φ(v)

= [d+, d−](v)

= (d+d− − d−d+)(v)

= d+((1− q)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T
−1
k )(v))− d−(−qkX1T

−1
1 · · ·T−1k v)
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= (1− q)(−qk−1X1T
−1
1 · · ·T−1k−1)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T

−1
k )(v)

− (1− q)(1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T
−1
k+1)(−q

kX1T
−1
1 · · ·T−1k v)

= (q − 1)qk−1X1T
−1
1 · · ·T−1k−1

×
(
(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T

−1
k )− q(1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T

−1
k+1)T

−1
k

)
= (q − 1)qk−1X1T

−1
1 · · ·T−1k−1

so that

φ(v) = qk−1X1T
−1
1 · · ·T−1k−1(v).

Let 2 ≤ k ≤ n. Then

qφd−(v)

= qφ(1− q)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T
−1
k )v

= q(1− q)qk−2X1T
−1
1 · · ·T−1k−2(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T

−1
k )v

= (1− q)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T
−1
k )qk−1X1T

−1
1 · · ·T−1k−2(v)

= d−φTk−1(v).

Let us now show that T1φd+ = qd+φ. Suppose 1 ≤ k ≤ n− 2. Then

T1φd+(v)

T1φ(−qkX1T
−1
1 · · ·T−1k )(v)

= T1(q
kX1T

−1
1 · · ·T−1k )(−qkX1T

−1
1 · · ·T−1k )(v)

= −q2kT1X1T
−1
1 · · ·T−1k X1T

−1
1 · · ·T−1k (v)

= −q2kT1(XT−11 · · ·T−1k )2(v)
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= −q2k(X1T
−1
1 · · ·T−1k )2Tk(v)

= −q2kX1T
−1
1 · · ·T−1k X1T

−1
1 · · ·T−1k−1(v)

= q(−qkX1T
−1
1 · · ·T−1k )(qk−1X1T

−1
1 · · ·T−1k−1)(v)

= qd+φ(v).

Lastly, we show that z1(qd+d−− d−d+) = qt(d+d−− d−d+)zk. Take 1 ≤ k ≤ n− 1. Then we find

z1(qd+d− − d−d+)

= z1(qd+d−(v)− d−d+(v))

= z1

(
qd+(1− q)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T

−1
k )(v)− d−(−qkX1T

−1
1 · · ·T−1k )(v)

)
= Y1q(1− q)(−qk−1X1T

−1
1 · · ·T−1k−1)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T

−1
k )(v)

− Y1(1− q)(1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T
−1
k+1)(−q

kX1T
−1
1 · · ·T−1k )(v)

= (q − 1)qkY1X1T
−1
1 · · ·T−1k−1

×
(
1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T

−1
k+1 − (1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T

−1
k+1T

−1
k )
)
(v)

= (q − 1)qkY1X1T
−1
1 · · ·T−1k−1

(
1 + (q − 1)(T−1k + qT−1k+1T

−1
k + . . .+ qn−k−1T−1n−1 · · ·T

−1
k )
)
(v)

= (q − 1)qkY1X1T
−1
1 · · ·T−1k−1

(
qn−kT−1k · · ·T−1n−1T

−1
n−1 · · ·T

−1
k

)
(v)

= qn(q − 1)Y1π̃T
−1
n−1 · · ·T

−1
k (v)

= qn(q − 1)π̃(tYn)T
−1
n−1 · · ·T

−1
k (v)
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Continuing we find:

= tqn(q − 1)X1T
−1
1 · · ·T−1k−1(T

−1
k · · ·T−1n−1YnT

−1
n−1 · · ·T

−1
k )(v)

= tqn(q − 1)X1T
−1
1 · · ·T−1k−1(q

−(n−k)Yk)(v)

= tqk(q − 1)X1T
−1
1 · · ·T−1k−1Yk(v)

= qt(q − 1)
(
qk−1X1T

−1
1 · · ·T−1k−1

)
Yk(v)

= qt(q − 1)φzk(v)

= qt[d+, d−]zk(v).

□

Corollary 4.2.5. The map W → L•(W ) is a covariant functor D+
n −Mod→ B(n)

q,t −Mod .

Proof. Suppose ϕ : U → W is a homogeneous D+
n -module map. Now for any 0 ≤ k ≤ n we

see that if v = X1 · · ·Xkϵk(u) ∈ Lk(U) then

ϕ(v) = ϕ(X1 · · ·Xkϵk(u)) = X1 · · ·Xkϵk(ϕ(u)) ∈ Lk(W ).

Thus ϕ yields a map ϕ• : L•(U)→ L•(W ) given by restricting ϕ to each of the subspaces Lk(U) ⊂ U.

From Definition 4.2.2 we see that each of the operators Ti, zi, d−, d+ is expressed entirely in terms

of the action of D+
n on U and as such we conclude that ϕ• is a B(n)

q,t module map. □

4.2.3. The Polynomial Case. The goal of this section is to relate the B(n)
q,t modules L•(W )

constructed above to the polynomial representation V pol
• of Bq,t in the case when W = V

(n)
pol . We

will show that there are natural maps

x1 · · ·xkQ(q, t)[x1, . . . , xk]⊗ Λ→ x1 · · ·xkQ(q, t)[x1, . . . , xn]
S

(1k,n−k)

which are B(n)
q,t module projections. This is nontrivial since the definitions of zi and d− are quite

different in both modules. We will use the work of Ion-Wu to bridge this gap.

Definition 4.2.6. [26] Recall Definition 1.3.12 from Chapter 1. Consider the following opera-

tors given on f ∈ Q(q, t)[x1, . . . , xk]⊗ Λ as follows:
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• Ti(f) := si(f) + (1− q)xi
f−si(f)
xi−xi+1

• d+(f) := −qkX1T
−1
1 · · ·T−1k (f)

• d−(x
a1
1 · · ·x

ak+1

k+1 F [Xk+1]) := xa11 · · ·x
ak
k F [Xk − u−1] Exp[(1− q)uXk] |uak+1

• zi(f) = Yi(f) := limm Ỹ
(m)
i Ξ(m)(f)

where Yi are the limit Cherednik operators, limm is the limit as defined by Ion-Wu (with q and t

swapped) and Ỹ
(m)
i are the deformed Cherednik operators.

We can use the work of Ion-Wu to relate the above Bq,t module P• to the Bq,t module W pol
•

defined by Carlsson-Gorsky-Mellit as follows.

Theorem. [26] The maps Ti, d+, d−, zi on P• define a representation of Bq,t. This representa-

tion is isomorphic to the Bq,t representation on W pol
• :=

⊕
k≥0(y1 · · · yk)−1V

pol
k defined by Carlsson-

Gorsky-Mellit via the map Φ• =
⊕

k≥0Φk defined by

Φk(x
a1
1 · · ·x

ak
k F [Xk]) := ya1−11 · · · yak−1k F

[
X

q − 1

]
.

Remark 37. Ion-Wu in their paper also construct the additional operator d∗+ on P• from which

they obtain an action of Aq,t on P•. Further, they show that this Aq,t module is isomorphic to the

standard Aq,t representation as defined by Mellit [31] which is the same as the Carlsson-Gorsky-

Mellit action of Aq,t on W pol
• . The result as stated above is thus a strictly weaker result than the

main theorem of Ion-Wu but as we are only interested in the subalgebra Bq,t of Aq,t, we will only

require the above result as stated.

By the above theorem of Ion-Wu we find that each of the spaces y1 · · · ykW pol
k = V pol

k gets mapped

by Φ−1k to the space x1 · · ·xkQ(q, t)[x1, . . . , xk]⊗Λ which we will call Lpol
k . Thus we see that Bq,t acts

on the space Lpol
• :=

⊕
k≥0 L

pol
k ⊂ P• . For all n ≥ 0 can relate Lpol

• to L•(V
(n)
pol ) in the following

way:

Proposition 4.2.7. The map Ξ
(n)
• : Lpol

• → L•(V
(n)
pol ) defined component-wise by Ξ(n) is a B(n)

q,t

module map.

Proof. We need to show that Ξ(n) commutes with the operators Ti, zi, d+, d− as defined on

both of the spaces Lpol
• and L•(V

(n)
pol ) respectively. For Ti and d+ this is immediate. For zi we note
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that from the construction of the deformed Cherednik operators Ỹ
(n)
i [26] we have that if 1 ≤ i ≤ k

then

Ỹ
(n)
i Xi = Y

(n)
i Xi.

Further, from Ion-Wu we also know that (using this chapter’s conventions) for all n ≥ i

Y
(n)
i Xi Ξ

(n) = Ξ(n)Y
(n+1)
i Xi.

Thus for f ∈ Lpol
k and 1 ≤ i ≤ k we find

Y
(n)
i Ξ(n)(f) = Ξ(n)Yi(f)

and so

ziΞ
(n) = Ξ(n)zi.

Let 0 ≤ k ≤ n− 1 and f = x1 · · ·xk+1g for g ∈ Q(q, t)[x1, . . . , xk]. From Chapter 2, we know that

d−(f) = lim
m

(
1 + qT−1k+1 + . . .+ qm−k−1T−1m−1 · · ·T

−1
k+1

1 + q + . . .+ qm−k−1

)
Ξ(m)(f)

=

(
1

1 + q + q2 + . . .

)
lim
m

(
1 + qT−1k+1 + . . .+ qm−k−1T−1m−1 · · ·T

−1
k+1

)
Ξ(m)(f)

= (1− q) lim
m

(
1 + qT−1k+1 + . . .+ qm−k−1T−1m−1 · · ·T

−1
k+1

)
Ξ(m)(f)

= (1− q) lim
m

(
1 + qT−1k+1 + . . .+ qm−k−1T−1m−1 · · ·T

−1
k+1

)
X1 · · ·Xk+1Ξ

(m)(g).

Now if m ≥ k then

Ξ(m)
(
1 + qT−1k+1 + . . .+ qm−kT−1m · · ·T−1k+1

)
X1 · · ·Xk+1

Ξ(m)
(
1 + qT−1k+1 + . . .+ qm−k−1T−1m−1 · · ·T

−1
k+1

)
X1 · · ·Xk+1 + Ξ(m)qm−kT−1m · · ·T−1k+1X1 · · ·Xk+1

=
(
1 + qT−1k+1 + . . .+ qm−k−1T−1m−1 · · ·T

−1
k+1

)
X1 · · ·Xk+1Ξ

(m) + Ξ(m)Xm+1Tm · · ·Tk+1X1 · · ·Xk

=
(
1 + qT−1k+1 + . . .+ qm−k−1T−1m−1 · · ·T

−1
k+1

)
X1 · · ·Xk+1Ξ

(m).
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Therefore,

Ξ(n)(d−(f))

= (1− q)
(
1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T

−1
k+1

)
X1 · · ·Xk+1Ξ

(n)(g)

= (1− q)
(
1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T

−1
k+1

)
Ξ(n)(X1 · · ·Xk+1g)

= (1− q)
(
1 + qT−1k+1 + . . .+ qn−k−1T−1n−1 · · ·T

−1
k+1

)
Ξ(n)(f)

= d−Ξ
(n)(f).

Thus Ξ(n)d− = d−Ξ
(n) and so Ξ

(n)
• is a B(n)

q,t module map. □

Remark 38. Since Lpol
• is isomorphic as a Bq,t module to V pol

• via the map Φ• and from Propo-

sition 4.2.7 we know that Ξ(n) : Lpol
• → L•(V

(n)
pol ) is a B(n)

q,t module quotient, it follows that L•(V
(n)
pol )

is a B(n)
q,t module quotient of Res

Bq,t

B(n)
q,t

V pol
• .

4.2.4. Bq,t Modules From Compatible Sequences. We will now build representations for

the full Bq,t algebra given certain special families of DAHA representations.

Definition 4.2.8. Let C =
(
(V (n))n≥n1 , (Π

(n))n≥n1

)
be a collection of Q(q, t)-vector spaces and

maps Π(n) : V (n+1) → V (n) with n1 ≥ 1. We call C a compatible sequence if the following

conditions hold:

• Each V (n) is a graded D+
n -module

• The maps Π(n) : V (n+1) → V (n) are degree-preserving.

• Each map Π(n) is a A X
n module map.

• Π(n)Xn+1 = 0

• Π(n)πn+1Tn = πnΠ
(n).

Given compatible sequences C =
(
(V (n))n≥n1 , (Π

(n))n≥n1

)
and D =

(
(W (n))n≥n2 , (Ψ

(n))n≥n2

)
a

homomorphism ϕ : C → D is a collection of maps ϕ = (ϕ(n))n≥max(n1,n2) with ϕ(n) : V (n) → W (n)

such that

• ϕ(n) are degree-preserving D+
n module maps.

• ϕ(n)Π(n) = Ψ(n)ϕ(n+1).
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We will write C for the category of compatible sequences.

Remark 39. The importance of the relation Π(n)πn+1Tn = πnΠ
(n) can be traced back to at least

the work of Ion-Wu [26] on their stable-limit DAHA. This relation allowed Ion-Wu to construct

the limit Cherednik operators on the space of almost symmetric functions utilizing a remarkable

stability relation for the classical Cherednik operators. We will be following a similar idea in a

different setting in this section of the chapter.

This relation may be interpreted as relating to the natural inclusion map on extended affine

symmetric groups Ŝn → Ŝn+1 given by si → si for 1 ≤ i ≤ n− 1 and π → πsn. Diagrammatically,

this map sends the crossing diagram for some σ ∈ Ŝn on n-strands to the corresponding crossing

diagram on (n+ 1)-strands where we send n+ 1 to itself.

For the remainder of this section we fix a compatible sequence C =
(
(V (n))n≥n0 , (Π

(n))n≥n0

)
. It

is easy to check that for 0 ≤ k ≤ n, Π(n)(Lk(V
(n+1))) ⊂ Lk(V

(n)) so that the following definition

makes sense.

Definition 4.2.9. For k ≥ 0 define Lk = Lk(C) to be the stable-limit Lk := lim← Lk(V
(n))

with respect to the maps Π(n). We define L• = L•(C) as L• =
⊕

k≥0 Lk . We will write Π
(n)
• :

L•(V
(n+1))→ L•(V

(n)) for the map obtained by restricting Π(n) to each component Lk(V
(n+1)).

If we let Ṽ denote the stable-limit of the spaces V (n) with respect to the maps Π(n) then we can

reinterpret the spaces Lk as

Lk = {v ∈ X1 · · ·XkṼ | Ti(v) = v for i > k}.

Lemma 4.2.10. For n ≥ n0 the map Π
(n)
• : L•(V

(n+1))→ L•(V
(n)) is a B(n)

q,t -module map.

Proof. By definition Π(n) is a A X
n -module map so for 1 ≤ i ≤ k−1, Π(n)Ti = TiΠ

(n). Further,

we also know that if k ≤ n− 1 then Π(n)d+ = d+Π
(n) since on Lk, d+ = −qkX1T

−1
1 · · ·T−1k .
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Now let 1 ≤ k ≤ n and v ∈ Lk say, v = X1 · · ·Xkϵk(w). We see that from a nearly identical

calculation to one seen in the proof of Proposition 4.2.7

Π(n)d−(v)

= Π(n)(1− q)(1 + qT−1k + . . .+ qn+1−kT−1n · · ·T−1k )(v)

= Π(n)(1− q)(1 + qT−1k + . . .+ qn+1−kT−1n · · ·T−1k )(X1 · · ·Xkϵk(w))

= Π(n)(1− q)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T
−1
k )(X1 · · ·Xkϵk(w))

+ Π(n)(1− q)qn+1−kT−1n · · ·T−1k X1 · · ·Xkϵk(w)

= (1− q)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T
−1
k )Π(n)(X1 · · ·Xkϵk(w))

+ Π(n)(1− q)Xn+1Tn · · ·TkX1 · · ·Xk−1ϵk(w)

= (1− q)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T
−1
k )Π(n)(X1 · · ·Xkϵk(w))

= (1− q)(1 + qT−1k + . . .+ qn−kT−1n−1 · · ·T
−1
k )Π(n)(v)

= d−Π
(n)(v).

Lastly, let 1 ≤ i ≤ k. Using the relation Π(n)πn+1Tn = πnΠ
(n) we find

Π(n)zi(v)

= Π(n)Yi(v)

= Π(n)qn−i+2Ti−1 · · ·T1πn+1T
−1
n · · ·T−1i (v)

= Π(n)qn−i+2Ti−1 · · ·T1πn+1T
−1
n · · ·T−1i (X1 · · ·Xkϵk(w))

= Π(n)qn−i+2Ti−1 · · ·T1πn+1T
−1
n · · ·T−1i Xi(X1 · · ·Xi−1Xi+1 · · ·Xkϵk(w))

= Π(n)q2Ti−1 · · ·T1πn+1Xn+1Tn · · ·Ti(X1 · · ·Xi−1Xi+1 · · ·Xkϵk(w))
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= Π(n)q2tTi−1 · · ·T1X1πn+1Tn · · ·Ti(X1 · · ·Xi−1Xi+1 · · ·Xkϵk(w))

= q2tTi−1 · · ·T1X1Π
(n)πn+1Tn · · ·Ti(X1 · · ·Xi−1Xi+1 · · ·Xkϵk(w))

= q2tTi−1 · · ·T1X1πnΠ
(n)Tn−1 · · ·Ti(X1 · · ·Xi−1Xi+1 · · ·Xkϵk(w))

= q2Ti−1 · · ·T1πnXnTn−1 · · ·Ti(X1 · · ·Xi−1Xi+1 · · ·XkΠ
(n)(ϵk(w))

= qn−i+1Ti−1 · · ·T1πnT
−1
n−1 · · ·T

−1
i Xi(X1 · · ·Xi−1Xi+1 · · ·XkΠ

(n)(ϵk(w))

= qn−i+1Ti−1 · · ·T1πnT
−1
n−1 · · ·T

−1
i Π(n)(X1 · · ·Xkϵk(w))

= ziΠ
(n)(v).

□

As an immediate consequence of Lemma 4.2.10 and Lemma 1.7.2 we may make the following

definition.

Definition 4.2.11. We define the graded Bq,t module structure on L• given by the stable-limit

of the graded B(n)
q,t modules L

(n)
• with respect to the maps Π

(n)
• : L

(n+1)
• → L

(n)
• .

Example. In the case of the polynomial representations of D+
n , V

(n)
pol , we see using Proposition

4.2.7 that L•(Cpol) ∼= V pol
• where

Cpol :=
(
(V

(n)
pol )n≥1, (Ξ

(n)
• )n≥1

)
.

The construction in Definition 4.2.11 associates to any compatible sequence C a graded module

L•(C) of Bq,t. We can easily see that this construction is functorial.

Theorem 4.2.12. (Main Theorem) The map C → L•(C) is a covariant functor C→ Bq,t−Mod .

Proof. This follows immediately using the functoriality described in Remark 11 and from

the fact that the operators on L•(C) are described entirely in terms of the action of each D+
n on

V (n). □

Remark 40. Recently, González-Gorsky-Simental [17] introduced the extended algebra Bext
q,t and

the notion of calibrated Bext
q,t modules. The extended algebra Bext

q,t contains additional ∆-operators
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with specific relations motivated by the ∆-operators in Macdonald theory. Calibrated Bext
q,t modules

are those modules with a basis of joint eigenvectors for the zi’s and the additional operators ∆pm

with simple nonzero spectrum.

In the case of the polynomial representations of DAHAs, the Bq,t representation L•(Cpol) has an

extended action by Bext
q,t using ∆-operators and this representation is calibrated. It is an interesting

question to figure out exactly which properties of the family of DAHA modules Cpol allow for this

extended calibrated action by Bext
q,t .

4.3. Compatible Sequences From AHA

In this section we give a method for defining compatible sequences. We will consider families of

representations for the affine Hecke algebras A n in type GL with special properties which we call

pre-compatible. These families of representations for A n can then be induced to give representations

of the corresponding D+
n which can be shown to be compatible after carefully defining the correct

connecting maps.

Definition 4.3.1. Let C =
(
(U (n))n≥n0 , (κ

(n))n≥n0

)
be a collection of Q(q, t)-vector spaces and

maps κ(n) : U (n+1) → U (n) with n1 ≥ 1. We call C a pre-compatible sequence if the following

hold:

• Each U (n) is a graded A n module (grading is arbitrary)

• The maps κ(n) : U (n+1) → U (n) are degree preserving H n module maps

• κ(n)πn+1Tn = πnκ
(n).

Given any pre-compatible sequence C we define the spaces (V
(n)
C )n≥n0 by

V
(n)
C := Ind

D+
n

A n
U (n)

which we endow with the grading inherited by Q(q, t)[X1, . . . , Xn]⊗U (n) (which is isomorphic as a

vector space). Define the maps (Π
(n)
C : V

(n+1)
C → V

(n)
C )n≥n0 by

Π
(n)
C (Xα1

1 · · ·X
αn+1

n+1 ⊗ v) := 1(αn+1 = 0)⊗ κ(n)(v).

We will write Ind(C) for the family

Ind(C) :=
(
(V

(n)
C )n≥n0 , (Π

(n)
C )n≥n0

)
.
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Proposition 4.3.2. If C is pre-compatible then Ind(C) is compatible.

Proof. By construction each space V
(n)
C is a graded D+

n module and the maps Π
(n)
C are degree

preserving A X
n maps with Π

(n)
C Xn+1 = 0. Thus we only need to show that Π

(n)
C πn+1Tn = πnΠ

(n)
C .

To see this we have the following:

Π
(n)
C πn+1Tn(X

α1
1 · · ·X

αn+1

n+1 ⊗ v)

= Xα1
2 · · ·X

αn−1
n Π

(n)
C πn+1Tn(X

αn
n X

αn+1

n+1 ⊗ v)

= Xα1
2 · · ·X

αn−1
n Π

(n)
C πn+1

((
Xαn+1

n Xαn
n+1Tn + (1− q)Xn

Xαn
n X

αn+1

n+1 −X
αn+1
n Xαn

n+1

Xn −Xn+1

)
⊗ v

)

= Xα1
2 · · ·X

αn−1
n Π

(n)
C πn+1

(
Xαn+1

n Xαn
n+1 ⊗ Tnv

)
+ (1− q)Xα1

2 · · ·X
αn−1
n Π

(n)
C πn+1Xn

Xαn
n X

αn+1

n+1 −X
αn+1
n Xαn

n+1

Xn −Xn+1
(1⊗ v)

= Xα1
2 · · ·X

αn−1
n Π

(n)
C X

αn+1

n+1 (tX1)
αnπn+1 (1⊗ Tnv)

+ (1− q)Xα1
2 · · ·X

αn−1
n Π

(n)
C Xn+1πn+1

Xαn
n X

αn+1

n+1 −X
αn+1
n Xαn

n+1

Xn −Xn+1
(1⊗ v)

= Xα1
2 · · ·X

αn−1
n Π

(n)
C X

αn+1

n+1 (tX1)
αnπn+1 (1⊗ Tnv)

= 1(αn+1 = 0)(tX1)
αnXα1

2 · · ·X
αn−1
n Π

(n)
C (1⊗ πn+1Tn(v))

= 1(αn+1 = 0)(tX1)
αnXα1

2 · · ·X
αn−1
n ⊗ κ(n)(πn+1Tn(v))

= 1(αn+1 = 0)(tX1)
αnXα1

2 · · ·X
αn−1
n ⊗ πnκ

(n)(v)

= 1(αn+1 = 0)(tX1)
αnXα1

2 · · ·X
αn−1
n πn ⊗ κ(n)(v)

= πn

(
1(αn+1 = 0)Xα1

1 · · ·X
αn
n ⊗ κ(n)(v)

)
= πnΠ

(n)
C (Xα1

1 · · ·X
αn+1

n+1 ⊗ v).

Thus Π
(n)
C πn+1Tn = πnΠ

(n)
C and so Ind(C) is compatible. □

We will now give a large family of pre-compatible sequences built from Young diagrams. The

modules in these sequences are the same (up to changing conventions) as the modules in [12] and

Chapter 3.
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Definition 4.3.3. Define the Q(q, t)-algebra homomorphism ρn : A n →H n by

• ρn(Ti) = Ti for 1 ≤ i ≤ n− 1

• ρn(πn) = T−11 · · ·T−1n−1.

For a H n-module V we will denote by ρ∗n(V ) the A n-module with action defined for v ∈ V and

X ∈ A n by X(v) := ρn(X)(v).

Definition 4.3.4. Recall from Definition 3.3.1 the irreducible H n-modules Sλ corresponding to

λ ∈ Y . Note that the roles of q and t have been reversed in this chapter. For n ≥ nλ define the A n

modules U
(n)
λ := ρ∗n(Sλ(n)) and maps κ

(n)
λ : U

(n+1)
λ → U

(n)
λ given for τ ∈ SYT(λ(n+1)) as

κ
(n)
λ (eτ ) :=


eτ |

λ(n)
τ(□0) = n+ 1

0 τ(□0) ̸= n+ 1.

where □0 is the unique square in λ(n+1)/λ(n).

We consider the A n modules U
(n)
λ as graded with the trivial grading i.e. U

(n)
λ = U

(n)
λ (0). We will

write Cλ for the family

Cλ :=
(
(U

(n)
λ )n≥nλ

, (κ
(n)
λ )n≥nλ

)
.

Remark 41. As constructed, the elements eτ of the A n module U
(n)
λ are not weight vectors

for the Cherednik elements Yi but rather for the reversed orientation Cherednik elements θi given

by θi = qi−1T−1i−1 · · ·T
−1
1 πTn−1 · · ·Ti. Explicitly, we have that for τ ∈ SYT(λ) and 1 ≤ i ≤ n,

θi(eτ ) = qcτ (i)eτ .

Theorem 4.3.5. For any λ, Ind(Cλ) is a compatible sequence with L•(Ind(Cλ)) a nonzero graded

Bq,t module.
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Proof. It is easy from the explicit Ti relations given in Definition 4.3.4 to verify that for every

n ≥ nλ the map κ
(n)
λ : U

(n+1)
λ → U

(n)
λ is a H n module map. We therefore also have that

κ
(n)
λ πn+1Tn

= κ
(n)
λ ρn+1(πn+1)Tn

= κ
(n)
λ T−11 · · ·T−1n Tn

= κ
(n)
λ T−11 · · ·T−1n−1

= T−11 · · ·T−1n−1κ
(n)
λ

= πnκ
(n)
λ .

Hence, Cλ is a pre-compatible sequence and so by Proposition 4.3.2 it follows that Ind(Cλ) is a

compatible sequence. Thus we may consider the graded Bq,t module L•(Ind(Cλ)).

To show that L•(Ind(Cλ)) is nonzero it suffices to show that L0(Ind(Cλ)) is nonzero. This is

space is the stable-limit of the symmetrized spaces ϵ
(n)
0 (Ind

D+
n

A n
U

(n)
λ ) with respect to the maps κ

(n)
λ .

However, this space is the Murnaghan-type representation W̃λ of the positive elliptic Hall algebra of

shape λ from the Chapter 3. This space is infinite dimensional for any λ and so clearly L0(Ind(Cλ))

is nonzero. □

We can show further that for all k ≥ 0, Lk(Ind(Cλ)) is infinite dimensional. To see this note that

dk+ : L0(Ind(Cλ))→ Lk(Ind(Cλ)) is given by

(−qk−1X1T
−1
1 · · ·T−1k−1) · · · (−q

2X1T
−1
1 T−12 )(−qX1T

−1
1 )(−X1)

which is clearly injective. Thus since L0(Ind(Cλ)) = W̃λ is infinite-dimensional the same is true for

Lk(Ind(Cλ)).

As the Bq,t modules L•(Ind(Cλ)) contain the Murnaghan-type representation W̃λ of EHA we will

refer to these modules as the Bq,t modules of Murnaghan-type.

Remark 42. The author conjectures that each of the Murnaghan-type Bq,t modules, L•(Ind(Cλ)),

has an extended action by Bext
q,t and that these extended modules are calibrated. Evidence for this

conjecture comes from chapter 3 where we constructed ∆-operators on the space W̃λ = L0(Ind(Cλ))
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which have distinct nonzero spectrum. Extending these ∆-operators to the whole space L•(Ind(Cλ))

is nontrivial.
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