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Abstract

This dissertation consists of three distinct but interconnected studies, each focusing on the

modeling and stability analysis of Connected and Autonomous Vehicle (CAV) platoons under var-

ious traffic conditions. Using car-following (CF) models and macroscopic traffic flow models, this

work explores how different platoon configurations, control strategies, and communication levels

affect traffic flow stability in both homogeneous (fully autonomous) and mixed traffic environments.

The first study presents a novel approach to coordinated vehicle platooning, where the platoon

followers communicate solely with the platoon leader. A dynamic model is proposed to account

for driving safety under communication delays. General linear stability results are mathematically

proven, and numerical simulations are performed to analyze the impact of model parameters in two

scenarios: a ring road with initial disturbance and an infinite road with periodic disturbance. The

simulation outcomes align with the theoretical analysis, demonstrating that the proposed ”look-to-

the-leader” platooning strategy significantly outperforms conventional car-following strategies, such

as following one or two vehicles ahead, in terms of traffic flow stabilization. This study introduces a

new perspective on organizing platoons for connected and autonomous vehicles, with implications

for enhancing traffic stability.

In the second study, we extend the single platoon car-following (CF) model in chapter 2 to some

multi-platoon CF models for connected and autonomous vehicles (CAVs) with flexible platoon sizes

and communication levels. Specifically, we consider forward and backward communication methods

between platoons with delays. Some general results of linear stability are mathematically proven,

and numerical simulations are performed to illustrate the effects of platoon sizes and communication

levels, as well as to demonstrate the potential for stabilizing human-driven vehicles (HDVs) in mixed

traffic conditions. The simulation results are consistent with theoretical analysis, and demonstrate

that in the ring road scenario, CAV platoons can stabilize certain percentage of HDVs. This study

can provide suggestions for the design of communication system of autonomous vehicles (AVs), and

management of mixed traffic flow of CAVs and HDVs.

In the final study, we extend the Aw-Rascle-Zhang (ARZ) non-equilibrium traffic flow model to

take into account the look-ahead capability of connected and autonomous vehicles (CAVs), and the

mixed flow dynamics of human driven and autonomous vehicles. The look-ahead effect of CAVs is

captured by a non-local averaged density within a certain distance (the look-ahead distance). We
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show, using wave perturbation analysis, that increased look-ahead distance loosens the stability

criteria. Our numerical experiments, however, showed that a longer look-ahead distance does not

necessarily lead to faster convergence to equilibrium states. We also examined the impact of spatial

distributions and market penetrations of CAVs and showed that increased market penetration helps

stabilizing mixed traffic while the spatial distribution of CAVs have less effect on stability. The

results revealed the potential of using CAVs to stabilize traffic, and may provide qualitative insights

on speed control in the mixed autonomy environment.

This dissertation provides theoretical insights and practical implications for the design of CAV

control systems, with potential applications in stabilizing mixed traffic flows and improving vehicle

coordination. The findings lay a foundation for future research on integrating advanced control

strategies and extending the models to more complex traffic scenarios.
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CHAPTER 1

A general introduction of traffic flow models

Traffic flow modeling has been a crucial topic in transportation research for nearly a century

[16]. The goal of modeling traffic flow is to better understand and improve the movement of

vehicles on road networks. As road congestion continues to grow and the demand for more efficient

transportation systems rises, traffic flow models have become increasingly important for enhancing

the safety, efficiency, and stability of traffic worldwide. Through traffic flow models, researchers and

engineers can better analyse both individual and collective behavior of traffic dynamics, investigate

causes of traffic congestion and evaluate different traffic control strategies. Broadly, traffic flow

models are mainly classified into two categories: microscopic and macroscopic models.

1.1. Microscopic traffic flow models

Microscopic traffic flow models focus on individual vehicle behaviors and simulate the interac-

tion between vehicles based on their microscopic properties, e.g. position, velocity and acceleration

of each vehicle.

Car-following (CF) models are central to microscopic modeling, describing how a vehicle adjusts

its speed in response to surrounding vehicles. They are often modeled by second-order ordinary

differential equations (ODEs) where the acceleration variables are represented as functions of speed

position variables.

Microscopic models are widely used for simulating platooning systems involving connected and

autonomous vehicles (CAVs), where precise vehicle-to-vehicle interactions are critical. These mod-

els help in developing control strategies that improve traffic efficiency and safety by coordinating

vehicle movements in both homogeneous and mixed traffic environments. However, they are com-

putationally expensive in large-scale networks. More details will be provided in Chapter 2 and

Chapter 3.
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1.2. Macroscopic traffic flow models

Inspired by fluid dynamics [32], macroscopic traffic flow models take a broader approach by

treating traffic as a continuous flow to focus on the collective behavior of vehicles. These models

typically focus on aggregate variables such as traffic density, speed, and flow to capture large-

scale patterns across traffic networks. They are often represented by hyperbolic partial differential

equations (PDEs), which are derived from the principles of conservation laws and momentum [57].

Macroscopic models are particularly powerful for analyzing large-scale traffic management

strategies, such as ramp metering and variable speed limits (VSL) [70,71]. They can also be ap-

plied to mixed traffic environments involving both CAVs and human-driven vehicles (HDVs) [56].

While macroscopic models allow for efficient simulation of traffic over large networks, they lack the

granularity needed to capture the behavior of individual vehicles. Further details on macroscopic

models will be provided in Chapter 4.

1.3. Other models

Other than microscopic and macroscopic models, there are other type of traffic flow models

including mesoscopic traffic flow model [8]. Mesoscopic models offers a middle ground of microscopic

and macroscopic approaches by capturing some level of details in vehicle interactions without diving

into details of every vehicle as in microscopic models. Multi-scale models, on the other hand,

integrate microscopic and macroscopic elements to simulate detailed vehicle interactions in specific

areas (e.g., slow vehicles as moving bottlenecks [9]) while maintaining a macroscopic perspective

across the larger network. To account for uncertainties inherent in human driver behaviors and

communication delays, stochastic models [22] and reinforcement learning (RL) based models [66]

are increasingly explored to offer more insightful modelling and control strategies.
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CHAPTER 2

ODE models: CF models for a single CAV platoon

2.1. Introduction

In recent years, Connected and Autonomous Vehicles (CAVs) have acquired significant global

attention. With the fast development of CAV technologies and their supporting infrastructures,

cooperative car-following (CF), including platooning, are poised to be implemented in the near

future to enhance traffic flow. Platooning is a coordinated driving method for a group of vehicles

that can be analysed as a systematic longitudinal traffic control system [58]. Such systems are

typically modeled using microscopic traffic models, particularly those based on ordinary differential

equations (ODEs).

Pipes [51] was among the first to introduce car-following models in 1953, which described the

behavior of a string of cars. Since then, numerous car-following models with adjustable parameters

have been developed. Bando et al. [2,3] proposed the Optimal Velocity Model (OVM) that replaces

the velocity of the lead vehicle in Pipes’ model with an optimal velocity function. In particular,

OVM can capture traffic instabilities on a ring road without external disturbances. Treiber et

al. [62] introduced the Intelligent Driver Model (IDM), which further accounts for the velocity

difference of the lead vehicle. These models are widely used in traffic simulations and control

design since they are able to represent typical traffic phenomena in relatively simple forms.

The aforementioned models only describe the interaction between two vehicles in a leader-

follower configuration. Several extensions have been developed based on these models. Lenz et

al. [31] introduced a multi-following model based on OVM, which considers the influence of multiple

vehicles ahead. Nakayama et al. [43] proposed a backward-looking model, also based on OVM, to

capture the effect of the vehicle behind on the subject vehicle. Jiang et al. [24] introduced the

Full Velocity Difference Model (FVDM), which accounts for both positive and negative relative

velocity to eliminate unrealistic acceleration and deceleration behaviors. Yu et al. [72] extended

FVDM by incorporating acceleration differences. Lazar et al. [27] provided a comprehensive review
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of OVM-based models from 1995 to 2016. Treiber et al. [63] expanded the IDM to follow multiple

vehicles ahead while considering reaction time and estimation errors. Derbel et al. [10] proposed a

modified version of IDM that enhances vehicle performance and safety.

Car-following models can be integrated with various control designs to evaluate the impact of

CAVs within a mixed traffic environment consisting of both human-driven and autonomous vehi-

cles. Zhu and Zhang [85] modified OVM by introducing a smoothing factor to model autonomous

vehicles (AVs) and analyzed mixed traffic involving both AVs and human-driven vehicles (HDVs).

Jia and Ngoduy [23] developed a platoon-controlled car-following model based on realistic inter-

vehicle communication and designed a consensus-based control system for multiple platoons moving

in unison. Zhang et al. [77] extended Zhu’s model for platooned CAVs by combining multi-following

with weighted relative velocity differences and analyzed the linear stability of the model. Wang

et al. [67] proposed Leading Cruise Control (LCC), a mixed traffic flow control strategy for CAVs

that allows them to adaptively follow the vehicle ahead while pacing the following vehicles. Zhao

et al. [78] introduced safety-critical traffic control (STC), where CAVs maintain safety relative to

both the preceding vehicle and following HDVs, with HDVs modeled using OVM in both Wang’s

and Zhao’s papers. Zhou et al. [83,84] proposed a platoon-based Intelligent Driver Model (P-IDM)

along with an Autonomous Platoon Formation Strategy (APFS) to stabilize CAV platoons under

periodic disturbances. Jin and Meng [25] presented a model combining OVM with a time-delayed

feedback controller, increasing stability by analyzing the transcendental characteristic equation to

eliminate unstable eigenvalues. Sun et al. [61] examined the relationship between string instabil-

ity in IDM-based controllers and traffic oscillations, identifying optimal parameters for CAVs to

improve stability by forming finite-sized platoons.

Theoretically, beyond car-following models, methodologies such as stochastic modeling, con-

strained optimization, and model predictive control (MPC) have also been applied by traffic re-

searchers to address CAV platooning problems. Li [33,34] proposed a stochastic dynamic model

for vehicle platoons and investigated its statistical characteristics. Gong et al. [14] introduced

a multi-agent dynamic system to model platoons, with the control scheme formulated as a con-

strained optimization problem. Zhou et al. [82] developed a series of distributed MPC strategies

for coordinated car-following of CAVs, providing approaches that ensure local, L2, and L∞ stabil-

ities. Graffione et al. [15] introduced an MPC approach to control inter-vehicular distances and
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speed within a vehicle platoon, which improves safety and reduces fuel consumption. Li et al. [35]

developed a platoon control strategy for heterogeneous connected vehicles (CVs) by incorporating a

variable time headway (VTH) spacing policy and a sliding mode controller. Liu et al. [37] adopted

an integrated deep reinforcement learning (DRL) and dynamic programming (DP) approach to

learn autonomous platoon control policies.

Field experiments and related data analysis can further demonstrate the effectiveness of CAVs

and CAV platoons in stabilizing traffic and reducing fuel consumption. Stern et al. [59] conducted

a ring road experiment with over 20 vehicles, showing that a controlled autonomous vehicle can

dampen stop-and-go waves, reducing total fuel consumption. Lee et al. [30] implemented a large-

scale field experiment involving 100 CAVs functioning as a MegaController on a freeway network

to mitigate stop-and-go waves, marking the largest CAV field experiment to date. Tsugawa et

al. [64] tested a platoon of three trucks on a test track along an expressway, demonstrating a 14%

reduction in fuel consumption. By combining experimental datasets, Zhou et al. [81] investigated

the emissions and fuel consumption (EFC) characteristics in car-following (CF) platoons.

In general, previous studies on CAV platoon control have demonstrated the potential of CAVs

in stabilizing traffic, particularly by developing car-following models that enhance traffic stabil-

ity through advanced control and communication strategies. However, most existing models rely

on communication with multiple vehicles, which increases system complexity and communication

load, especially in mixed-traffic conditions. Additionally, few studies prioritize a platoon struc-

ture that optimally reduces inter-vehicle communication requirements while maintaining robust

stability. Motivated by these research gaps,, in this chapter we make several contributions to CAV

platoon control. We propose a novel platoon CF model that enhances traffic stability by focusing on

coordinated communication strategies, particularly prioritizing the role of the leading vehicle. We

also show the superiority of our models by performing rigorous mathematical stability proofs and

comprehensive numerical simulations. The simulations cover a variety of traffic scenarios, demon-

strating how different parameters can impact the stability of a single platoon. Our findings indicate

that the proposed control strategy significantly outperforms conventional methods in suppressing

traffic oscillations and maintaining string stability.

The remaining parts of this chapter are organized as follows. In section 2.2, the car-following

models for HDVs and platoon-controlled CAVs are introduced. In section 2.3, linear stability
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criteria of the proposed models are presented and proved. In section2.4, numerical simulations on

a ring road and an infinite road are demonstrated and performances of different model parameters

are evaluated. Lastly in section 2.5, the conclusion is drawn and potential directions for future

research are discussed.

2.2. The Non-Platoon and Platoon CF Models

Without loss of generality, we assume a string of N vehicles are moving along a single-lane

road without overtaking. The initial position of the rear bumper of the first vehicle is at 0m of the

road, with the leading vehicle designated as N -th vehicle. In particular, if the single-lane road is a

ring road, the (N +1)-th vehicle is the same as the 1st vehicle. To demonstrate the effectiveness of

the platoon-controller for connected and autonomous vehicles (CAV), we introduce a base model

for human-driven vehicles (HDVs) in Section 2.2.1. In Section 2.2.2, we present the model for

platoon-controlled CAVs, followed by a transition phase model in Section 2.2.3.

2.2.1. Optimal velocity model . A commonly used car-following model to represent human-

driven vehicles (HDVs) is the Optimal Velocity Model (OVM) [3]. OVM has the form

(2.1) ẍi(t) = a [V (xi+1(t)− xi(t))− ẋi(t)] ,

where xi(t), i = 1, 2, . . . N is the position of i-th vehicle at time t on the single-lane road without

overtaking. xi+1(t) − xi(t) ≜ hi(t) is the headway between the i-th and i + 1-th vehicle. ẋi(t),

ẍi(t) are velocity and acceleration of i-th vehicle at time t, V (h) is the optimal velocity function of

headway (head to head distance) h, and a is a sensitivity constant. An example of optimal velocity

function is given in [67], which is equivalent to the form

(2.2) V (h) =


vmax, if h ≥ hmax;

vmax
2

(
1− cos

(
π h−hmin
hmax−hmin

))
, if hmin ≤ h ≤ hmax;

0, if h ≤ hmin,

where hmin is the minimum headway, hmax is the maximum headway, vmax is the maximum velocity

and l is the length of each vehicle. Figure 2.1 is an example plot of 2.2 and the corresponding

fundamental diagram (density-flow diagram).
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(a) Optimal velocity function (b) Fundamental diagram

Figure 2.1. Plot of an optimal velocity function with l = 5m and vmax = 20m/s
and the corresponding fundamental diagram.

2.2.2. Platoon controller: A coordinated car-following strategy . We now consider a

system of CAVs where every following vehicle is connected to the leading autonomous vehicle. In

this setup, the following vehicles have access to the position and speed of the leading vehicle. In

the proposed platoon model, only the position information of the leading vehicle is required. We

further assume that the target (optimal) velocity of a following vehicle in the platoon is based on

its distance from the leading vehicle:

(2.3) ẍi(t) = a

[
V (

xN (t)− xi(t)

N − i
)− ẋi(t)

]
,

where xN is the position of the controlled leading vehicle. We refer 2.3 as the platoon controlled

OVM (P-OVM) model. In this model, the spacing between the platoon leader (the N -th vehicle)

and the i-th following vehicle is scaled and used in the optimal velocity function. This is equivalent

to considering the average spacing of vehicles between the platoon leader and the i-th following

vehicle. Figure 2.2 illustrates this platoon-controlled car-following configuration. Notably, under

this setup, the influence of the immediate preceding vehicle is neglected, which could potentially

result in collisions if position measurement errors or communication delays between the platoon

leader and the following vehicles reach a critical threshold.
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Figure 2.2. Illustration of the platoon-controlled car-following system. Leading
CAV is connected to all followers of the platoon and followers are directly following
the leading CAV

2.2.3. The transition phase model . We can address the previously mentioned safety issue

by adding a local, within platoon vehicle-to-vehicle control to P-OVM. This local control can be

any feedback mechanism that prevents vehicle collisions. For the sake of simplicity in presentation

and analysis, we adopt OVM as the local control mechanism, referring to the combined model as

the Transition Phase Optimal Velocity Model (T-OVM). The model is of the form

(2.4) ẍi = a(V (xi+1 − xi)− ẋi) + b

(
V

(
xN − xi
N − i

)
− ẋi

)
,

where a is the sensitivity to vehicle in front and b is the sensitivity to the leading vehicle. The total

sensitivity is defined as the sum of the sensitivities (a+ b). Figure 2.3 illustrates the car-following

pattern of the T-OVM. With this two-part model, each vehicle within the platoon balances between

maintaining the optimal velocity relative to the vehicle directly in front and the optimal velocity

relative to the platoon leader. This balance helps prevent collisions while simultaneously enhancing

stability.

Figure 2.3. Illustration of the transition phase car-following system. Leading CAV
is connected to all followers inside the platoon and followers are following the leading
CAV and the front CAV simultaneously
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2.3. Stability analysis of the platoon models

If the string of N vehicles are on a ring road with length L and the leading vehicle is following

the last vehicle of the string by the original OVM 2.1, the position of i− th vehicle is the same for

both OVM 2.1 and P-OVM 2.5 under steady state:

(2.5) ei(t) = hi+ V (h)t,

where h = L/N is the equilibrium headway. For the classic optimal velocity model, we have the

following linear stability criterion:

Theorem 2.3.1. The optimal velocity model 2.1 is linearly stable if

(2.6) a > 2V ′(h).

A proof slightly different from [3] is given in Appendix A.1. Then with the platoon controller

applied, it turns out that no stability criteria is required:

Theorem 2.3.2. In the N -vehicle platoon where the leader vehicle follows the last vehicle of

the platoon on a ring road according to OVM (2.1), the platoon-controlled system P-OVM (2.3) is

always linearly stable.

Proof. From previous introduction, P-OVM has the same equilibrium solution of the optimal

velocity model as x0n(t) = en(t) for any car n inside the platoon. Now suppose that all the vehicles

are deviated from the initial position with a small disturbance yn(t), that is,

(2.7) xn(t) = en(t) + yn(t), |yn| ≪ 1.

To linearize the original system, we can do a Taylor expansion of the optimal velocity function

term V (∆xn) and neglect the higher order terms to get

(2.8) ÿn(t) =


a
[
V ′(h)yN (t)−yn(t)

N−n − ẏn(t)
]
, if n ̸= N ;

a [V ′(h)(y1(t)− yN (t))− ẏN (t)] , if n = N.
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Then by the formation of the controller, y1 and yN forms a system of 2 linear ODEs, and the

solution in vector form is:

(2.9) Y =
∑

n=1, N

Cne
λntVn,

where Y = [y1, yN ]T is the vector form, λn and Vn are the eigenvalues and eigenvectors of the

system, and Cn are constants determined by the initial condition. Now suppose that λ is an

eigenvalue of the system, and ξn is the coefficient of yn with the term eλt, then simplified from

(2.8), λ satisfies

(2.10) λ2 + aλ− aV ′(h)(
ξ1
ξN

− 1) = 0,

and

(2.11) λ2 + aλ− aV ′(h)(
ξN

(N − 1)ξ1
− 1

N − 1
) = 0.

Then by comparing these equations we can calculate that ξ1 = ξN or ξ1 = −ξN/(N − 1). And

the first case is only true if we have y1 = yN and the two cars just stay at the same distance from

the original equilibrium. For the other case we have

(2.12) λ2 + aλ− aV ′(h)(− 1

N − 1
− 1) = 0.

Then, by solving the quadratic equation, we have

(2.13) λ =
−a±

√
a2 + 4aV ′(h)(− 1

N−1 − 1))

2
.

For the system to be stable, we need to have the real parts of both λ to be negative. This is true if

V ′(h) > 0 which is always true for any well-defined V (h). Now we just need to check if the same

property holds for the remaining vehicles. By (2.8) we can have a initial guess that the nonlinear

part is yj = ζyN for j ̸= 1, then plug this into (2.8) and compare the coefficients we have

(2.14) ζ = N − j +
j − 1

N − 1
.

Thus the other cars also have the same eigenvalue for the nonlinear part and the system will always

be linearly stable if the problem is well defined. □
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As for the transition phase model, stability clearly depends on both a, b and N . For N

sufficiently large we have the following stability criterion:

Theorem 2.3.3. Assuming that the leading vehicle follows the last vehicle by OVM (2.1) with

sensitivity constant a+ b. Then the transition phase model T-OVM (2.4) is linearly stable if

(2.15)
(a+ b)2

a
> 2V ′(h).

The proof is given in Appendix A.2. Figure 2.4 shows the plot of neutral stability lines for

different sensitivity values. The area above the lines represents stability, while the area below

indicates instability. From the figure, it is evident that as the value of b increases, the unstable

area becomes smaller and eventually disappears when a→ 0.

Figure 2.4. neutral stability lines of the transition phase model for selected per-
centages of leading vehicle sensitivity b/(a + b) = 0%, 20%, 40%, 60%, 80%. Above
each line the region is stable and below is unstable.

2.4. Numerical simulations

To better visualize how stability improves with the application of platoon control, several

numerical experiments are conducted using different road configurations and model parameters.

All simulations are performed in MATLAB 2023b, with a time step of ∆t = 0.1s. The forward

Euler scheme is used to update the velocity variable ẋi and a modified Euler scheme (Heun’s

11



method) is employed to update the position variable xi:

(2.16)


ẋi,j+1 = ẋi,j + ẍi,j∆t;

xi,j+1 = xi,j +
ẋi,j+ẋi,j+1

2 ∆t,

where xi,j is referring to the position of i-th car at j-th time step of simulation. This is equivalent

to the discretizaiton method in [85].

2.4.1. Ring road with initial disturbance. In this subsection, simulations are conducted on

a ring road with a total length of the ring road is L = 264m with 12 vehicles. For model parameters,

we use the optimal velocity function given by (2.2) setting hmin = 7m, hmax = 37m, vmax = 20m/s

and l = 5m. This results in an equilibrium headway h = L/N = 22m and an equilibrium velocity

V (h) = 10 m/s. The initial position and velocity of the i-th vehicle deviate from the equilibrium

states (ei, V (h)) with random perturbation uniformly distributed on the interval [0, 5]. The initial

condition of the model can be written as

(2.17)


xi(0) = ei(0) + ri;

ẋi(0) = V (h) + ri,

where ri, ri are random numbers generated from uniform distribution on [0, 5], and ei(0) = hi can

be calculated from 2.5.

Simulation 1.1: Comparison between OVM and P-OVM

To demonstrate the stability improvement of P-OVM, we tested sensitivity constants a =

0.4, 0.8, 1.6, 2.4 for both OVM and P-OVM under the same initial conditions. Simulation results

are shown for the original OVM and platoon-controlled OVM in Figures 2.5-2.8. Figures 2.5, 2.6

are the 3-D plots of headways of all vehicles under OVM and P-OVM, respectively, with different

values of a. Figures 2.7, 2.8 are the velocity profiles of the 6th vehicle under OVM and P-OVM,

respectively, with different values of a.
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(a) a = 0.4 (b) a = 0.8

(c) a = 1.6 (d) a = 2.4

Figure 2.5. Headway profile of OVM with sensitivity constant a =
0.4, 0.8 , 1.6, 2.4
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(a) a = 0.4 (b) a = 0.8

(c) a = 1.6 (d) a = 2.4

Figure 2.6. Headway profile of P-OVM with sensitivity constant a =
0.4, 0.8 , 1.6, 2.4
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(a) a = 0.4 (b) a = 0.8

(c) a = 1.6 (d) a = 2.4

Figure 2.7. Velocity profile of 6th vehicle of OVM with sensitivity constant a =
0.4, 0.8 , 1.6, 2.4
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(a) a = 0.4 (b) a = 0.8

(c) a = 1.6 (d) a = 2.4

Figure 2.8. Velocity profile of 6th vehicle of P-OVM with sensitivity constant
a = 0.4, 0.8 , 1.6, 2.4

The simulation results show that the OVM is unstable for a = 0.4, 0.8, 1.6. At a = 0.4,

negative headway are generated, indicating a risk of collisions due to low sensitivity. For a = 2.4

although the OVM is stable, the initial acceleration for the selected vehicle is unrealistically high.

In contrast, the P-OVM remains stable for all selected values of a the model is stable and a with

sensitivity primarily affecting the convergence speed. For greater values of a, traffic converge to

the equilibrium state faster. Yet when a is sufficiently large, further improvements in convergence

become negligible, as the original OVM is already stable.

Simulation 1.2: Test of T-OVM parameters
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To test the performance of T-OVM, four cases of sensitivity pair: (a, b) = (0.5, 0.1), (0.1, 0.5),

(1, 0.2), (0.6, 0.6) are tested under the same initial conditions. The extreme cases where a = 0 or

b = 0 are not considered as they essentially reduce to OVM or P-OVM, respectively. Simulation

results are in Figures 2.9-2.10. Figure 2.9 is the headway profile of all 12 vehicles in 3-D plot with

different pairs of sensitivity constants, and Figure 2.10 is the velocity profile of the 6th vehicle.

(a) (a, b) = (0.5, 0.1) (b) (a, b) = (0.1, 0.5)

(c) (a, b) = (1, 0.2) (d) (a, b) = (0.6, 0.6)

Figure 2.9. Headway profile of T-OVM with sensitivity constant (a, b) =
(0.5, 0.1), (0.1, 0.5), (1, 0.2), (0.6, 0.6)
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(a) (a, b) = (0.5, 0.1) (b) (a, b) = (0.1, 0.5)

(c) (a, b) = (1, 0.2) (d) (a, b) = (0.6, 0.6)

Figure 2.10. Velocity profile of 6th vehicle of T-OVM with sensitivity constant
(a, b) = (0.5, 0.1), (0.1, 0.5), (1, 0.2), (0.6, 0.6)

The simulation results show that as the percentage of sensitivity to the leading vehicle increases,

the traffic stream becomes more stable. Additionally, for higher total sensitivity (a + b) lower

percentages of leading vehicle sensitivity is required to achieve string stability, which aligns with

the theoretical results (see figure 2.4).

Simulation 1.3: Comparison of T-OVM with two cars ahead following

To show the effectiveness of following the platoon leader, we compare the T-OVM 2.4 with the

front multi-following OVM (F-OVM) of two cars in [31]:

(2.18) ẍi = a(V (xi+1 − xi)− ẋi) + b

(
V

(
xi+2 − xi

2

)
− ẋi

)
,
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where the sensitivity b is for the second vehicle in front. Two cases of sensitivity pair: (a, b) =

(0.8, 0.4), (0.2, 0.4) are tested. Simulation results are in Figures 2.11, 2.12. Figure 2.11 is the

headway profile of all 12 vehicles in 3-D plot with T-OVM and F-OVM and Figure 2.12 is the

velocity profile of the 6th vehicle.

(a) T-OVM with (a, b) = (0.8, 0.4) (b) F-OVM with (a, b) = (0.8, 0.4)

(c) T-OVM with (a, b) = (0.2, 0.4) (d) F-OVM with (a, b) = (0.2, 0.4)

Figure 2.11. Headway profile of T-OVM and F-OVM with sensitivity constant
(a, b) = (0.8, 0.4), (0.2, 0.4)
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(a) T-OVM with (a, b) = (0.8, 0.4) (b) F-OVM with (a, b) = (0.8, 0.4)

(c) T-OVM with (a, b) = (0.2, 0.4) (d) F-OVM with (a, b) = (0.2, 0.4)

Figure 2.12. Velocity profile of 6th vehicle of T-OVM and F-OVM with sensitivity
constant (a, b) = (0.8, 0.4), (0.2, 0.4)

From the simulation results we can observe that for the same setting of sensitivity parameters,

T-OVM can suppress the disturbance and the platoon remains stable while F-OVM cannot. Fur-

thermore, the stabilizing effect of the T-OVM becomes more prominent when the following vehicles

respond more strongly to the leader in the T-OVM, while the destabilizing effect in the F-OVM

becomes stronger when the following vehicle respond more strongly to the second vehicle ahead.

These findings demonstrate the superiority of applying T-OVM in stabilizing CAV platoons.

2.4.2. Infinite road with periodic disturbance. In addition to the initial disturbance, it is

also valuable to examine whether platoon control can enhance stability under periodic disturbances.

In this subsection we consider N = 10 vehicles travelling on an infinite road with a free flow speed

20



of vmax = 30m/s and a uniform length of l = 5m. The optimal velocity function VI(h) for the

infinite road simulation is equivalent to a triangular fundamental diagram:

(2.19) VI(h) =


vmax, if ρ(h) ≤ ρc;

vmax∗ρc(ρ(h)−ρmax)
ρ(h)(ρc−ρmax)

, if ρc ≤ ρ(h) ≤ ρmax;

0, if ρ ≥ ρmax,

where ρ(h) = l/h is the occupancy of vehicles on the road where ρ = 0 indicates an empty road,

and ρ = 1 represents full vehicle occupancy. ρc = 5/37 is the critical occupancy where flow is

maximized and ρmax = 5/7 is the jam occupancy. Figure 2.13 is a plot of the optimal velocity

function and corresponding triangular fundamental diagram.

(a) Optimal velocity function (b) Triangular fundamental diagram

Figure 2.13. Plot of an optimal velocity function with l = 5m and vmax = 30m/s
and the corresponding triangular fundamental diagram.

During the simulation time, the leading CAV tries to maintain at an equilibrium speed but it

encounters sinusoidal disturbance, which is similar to [83]. The equilibrium speed is v0 = 15m/s

and the equilibrium headway is h = 22m. And if we denote p as the duration of each period of the

sinusoidal disturbance and A as the amplitude of the disturbance, then the velocity of the leading

vehicle can be written as:

(2.20) vN = v0 +A sin

(
2π

p
t

)
,
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where the periods are set to p = 5, 10, 15, 20s, with an amplitude A = 5m/s. OVM and P-OVM

with sensitivity constant a = 1.2, 2.4 are tested with a simulation duration is 60 seconds for all cases.

Simulation results are shown in Figures 2.14-2.17. Figure 2.14, 2.15 are the headway profiles of OVM

and P-OVM with sensitivity constant a = 1.2 under different perturbation frequency. Figure 2.16,

2.17 are the headway profiles of OVM and P-OVM with sensitivity constant a = 2.4 under different

perturbation frequency. To further show the difference in the P-OVM cases, Table 2.1 presents the

average oscillations across all vehicles for various sensitivity constants and perturbations.

(a) p = 20 (b) p = 15

(c) p = 10 (d) p = 5

Figure 2.14. Headway profile of OVM with sensitivity constant a = 1.2 and period
parameter p = 5, 10, 15, 20
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(a) p = 20 (b) p = 15

(c) p = 10 (d) p = 5

Figure 2.15. Headway profile of P-OVM with sensitivity constant a = 1.2 and
period parameter p = 5, 10, 15, 20
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(a) p = 20 (b) p = 15

(c) p = 10 (d) p = 5

Figure 2.16. Headway profile of OVM with sensitivity constant a = 2.4 and period
parameter p = 5, 10, 15, 20
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sensitivity/period p = 5 p = 10 p = 15 p = 20

a = 1.2 0.5055m 0.8966m 1.1276m 1.3279m

a = 2.4 0.4256m 0.7382m 0.9882m 1.2049m

Table 2.1. The average oscillations (in meters) across all vehicles for sensitivity
constant a = 1.2, 2.4 and period parameter p = 5, 10, 20, 30

(a) p = 20 (b) p = 15

(c) p = 10 (d) p = 5

Figure 2.17. Headway profile of P-OVM with sensitivity constant a = 2.4 and
period parameter p = 5, 10, 15, 20

From the simulation results, we observe that when the frequency of the sinusoidal disturbance

is high (p = 5), the disturbance amplitude can decrease even without platoon control, despite

the OVM being unstable at a = 1.2. This is possibly due to the frequent changes of the optimal

velocity and the delayed reaction inherent in OVM. However, with the P-OVM, the headways
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stabilize around the equilibrium state for all vehicles, and the oscillations are smaller. Stability

improves slightly for a = 2.4 compared to a = 1.2, suggesting that a high level of sensitivity is not

necessary for CAVs. In summary, P-OVM enhances string stability under periodic disturbances.

2.5. Conclusions

In this chapter, we introduced two models: a platoon model with a coordinated following

strategy (P-OVM) and a transition phase model with adjustable parameters (T-OVM). While

P-OVM was theoretically proven to be always linearly stable, its practical application may be

constrained by safety concerns when both control and state measurements are prone to errors. We

also analyzed the stability of the base and transition phase models, providing conditions for their

stability. To verify the theoretical findings, numerical simulations were performed on both a ring

road with an initial disturbance and an infinite road with periodic disturbances. Several model

parameters were tested and analyzed. The simulation results confirmed that the proposed platoon

control guarantees linear stability for all sensitivity constants, with the constants influencing how

quickly disturbances are attenuated within the platoon. For the transition phase model, with a

fixed total sensitivity, stability improved with increased sensitivity to the leading vehicle, in line

with theoretical predictions.

The proposed P-OVM and T-OVM significantly outperformed the HDVs’ model (OVM) in

suppressing disturbances and maintaining string stability. These models are simple forms of pla-

tooning that multi-following models tend to focus on, representing a significant improvement over

previous multi-following models. With the rapid development of CAV technologies, the proposed

platoon control strategy offers a promising solution for mitigating traffic oscillations.

This chapter can be extended in various directions for future research, including: (1) incorpo-

rating communication delays into the proposed models and analyzing their impact on stability; (2)

extend the proposed models to multiple CAV platoons with interactions; (3) examining more com-

plex road conditions, such as multi-lane ring roads with mixed CAVs and HDVs, with adjustments

to the control design for the leading vehicle; (4) conducting field experiments with CAVs to test

the proposed control design under various traffic and road conditions.
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CHAPTER 3

ODE models: CF models for multiple CAV platoons

3.1. Introduction

In this chapter we start with reviewing studies related to adaptive cruise control (ACC), as the

CF related papers have already been discussed in detail in Chapter 2.

Control strategies for groups of CAVs, particularly ACC and Cooperative Adaptive Cruise

Control (CACC), have been extensively studied to improve vehicle platooning efficiency and safety

[40,65]. ACC primarily focuses on maintaining safe distances between vehicles by adjusting speed

based on sensor data, achieving better results than typical human drivers. However, it operates

in a decentralized manner without relying on vehicle-to-vehicle (V2V) communication. On the

other hand, CACC utilizes V2V communication to enable more precise control and coordination

among CAV platoons [4, 55, 79]. Additionally, the quality of communications plays a crucial

role in the stability of CAV platoons, as shown in studies on robust communication and stability

analysis [13, 73, 74]. These studies highlight the advantages of CACC over ACC, particularly

regarding communication and coordination within platoons.

Beyond ACC and CACC, advanced control strategies such as Model Predictive Control (MPC),

reinforcement learning (RL), and stochastic optimization have been explored to further improve the

performance of CAVs in complex traffic scenarios. Several related papers are reviewed in chapter

2.

Despite the growing trend of investigating the stability of longitudinal interactions among mul-

tiple CAV platoons, few studies have explored their implications using ODE-based CF models or in

mixed traffic scenarios involving HDVs. To address this research gap, this chapter propose a founda-

tional framework for multiple platoons of CAVs that is adaptable to various CF models and control

designs. We extend a recently proposed single-platoon CF model [21] to a multi-platoon model

that accommodates different control strategies and communication capabilities between platoons.

Particularly, when the platoon sizes are set uniformly to one, the model degenerates to a classic
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CF model for HDVs, or AVs equipped with backward detection. Theoretically, we demonstrate

that the stability of the multi-platoon models depends on the platoon size and communication

level: larger platoon sizes and enhanced communication contribute to increased stability, while

minimal delays between platoons have a negligible effect on stability. Numerical simulations on a

ring road, involving different vehicle arrangements and mixed traffic scenarios with various sizes

of CAV platoons and HDVs in different ratios and orders, support our theoretical findings. The

simulation results also demonstrate that HDVs benefit from following CAV platoons, even when

the CAV platoons are not specially designed to control the HDVs.

The remaining part of this chapter is organized as follows. In 3.2, we introduce the CF models

for single and multiple platoons of CAVs. In 3.3, stability criteria of the proposed models are

presented and proved. In section 3.4, we perform numerical simulations for the proposed models

with various traffic assignments on a ring road. The impact of delay and connectivity are analysed.

Lastly in section 3.5, conclusion and possible extensions are given.

3.2. Models for CAV platoons

3.2.1. General assumptions. We assume that there are m CAV platoons on a single lane

road with no overtaking allowed, where m ≥ 1. The m-th platoon is the leading platoon, and Ni

denotes the size of the i-th platoon. Within the i-th platoon the Ni-th car is the leading vehicle.

Moreover, if the single lane road is a ring road, the m-th platoon is following the 1st platoon.

We select the commonly used Optimal Velocity Model (OVM) [3] as the base CF model for

human driven vehicles (HDVs). The OVM is expressed as

(3.1) ẍi(t) = a [V (xi+1(t)− xi(t))− ẋi(t)] ,

where xi(t), i = 1, 2, . . . N is the position of i-th vehicle at time t. xi+1(t)−xi(t) ≜ hi(t) represents

the spatial headway between the i-th and i + 1-th vehicle. ẋi(t), ẍi(t) denotes the velocity and

acceleration of the i-th vehicle at time t, respectively. V (h) is the optimal velocity function of

headway (head to head distance) h, and a is a sensitivity constant. An example of optimal velocity
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function is as follows:

(3.2) V (h) =


vf , if h ≥ hf ;

vf
2

(
1− cos

(
π h−hs
hf−hs

))
, if hs ≤ h ≤ hf ;

0, if h ≤ hs,

where hs is the standstill headway, hf is the free flow headway, vf is the free flow speed and l is

the length of each vehicle. This is equivalent to the function in [67]. Figure 3.1 is an example plot

of (3.2) and the corresponding fundamental diagram (density-flow diagram) as in [21].

(a) Optimal velocity function (b) Fundamental diagram

Figure 3.1. Plot of an optimal velocity function and the corresponding fundamen-
tal diagram.

3.2.2. Single platoon: base model. Before investigating multi-platoon models, it is essen-

tial to develop a robust single-platoon CF model. In [21], it is shown that if a platoon is sufficiently

close to its equilibrium state, the platoon controlled OVM (P-OVM) is always stable under small

initial disturbances and periodic disturbances. The proposed model is of the form

(3.3) ẍi(t) = a

[
V (

xN (t)− xi(t)

N − i
)− ẋi(t)

]
, i = 1, 2, . . . , N

where N represents the platoon size, and xN is the position of the controlled leading vehicle. Figure

3.2 is a visual interpretation of this model.

However, the reliability of (3.3) assumes that platoon followers can precisely acquire information

from the leading vehicle with no delay, which is unrealistic for a large number of CAVs. Therefore,
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Figure 3.2. CF pattern of a single platoon

a multi-platoon system (where one platoon follows annother) serves as a viable formation strategy

for managing long strings of vehicles, helping to mitigate the effects of communication delays and

instabilities in centralized controls. In the following subsections, we provide some examples of

multi-platoon models where we assume that each platoon is governed by (3.3) and the speed of

platoon leaders are controlled as inputs. We will neglect the effects of communication delays and

minor adjustments within each platoon.

3.2.3. Multi-platoon: no inter-connection . If there is no communication between pla-

toons, we assume that the leading vehicle of each platoon only follows the last vehicle of the platoon

ahead, as shown in Figure 3.3. If no additional control is applied, the platoon leaders are directly

Figure 3.3. CF pattern of multiple platoons with no inter-platoon communication.

following the vehicle ahead according to the OVM:

(3.4) ẍi,Ni = a(V (xi+1,1 − xi,Ni)− ẋi,Ni),

where 1 ≤ i ≤ m−1. For the followers within each platoon, the centralized platoon controller (3.3)

is applied:

(3.5) ẍi,j = a

[
V

(
xi,Ni − xi,j
Ni − j

)
− ẋi,j

]
,

where 1 ≤ i ≤ m and 1 ≤ j ≤ Ni − 1. In particular, if we have platoon size Nm = 1 or 2 for all m,

the proposed model reduces to the OVM for HDVs.
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3.2.4. Multi-platoon: two-way inter-connection . In this subsection we suppose each

platoon can communicate with platoons ahead and behind, with some delays (i.e. the platoons

are two-way connected), as shown in Figure 3.4. In this case, we can model the platoon leaders to

Figure 3.4. CF pattern of multiple platoons with forward and backward inter-
platoon communication.

follow both the platoon leader in front and the one behind, similar to the model for autonomous

vehicles proposed in [85]:

(3.6) ẍi,1 = a

[
(1 + p)V

(
∆i(t− td)

Ni

)
− pV

(
∆i−1(t− td)

Ni−1

)
− ẋi,1

]
,

where ∆i(t) = xi+1,1(t) − xi,1(t) is the headway between the i-th and i + 1-th platoon leader, p

is the smoothing factor for the platoon in the back, and td is the constant communication delay

between platoons. For the followers we apply the same equation (3.5) as in the previous model.

In particular, if the platoon size Nm = 1 and td = 0 for all m, (3.6) becomes equivalent to the

modified OVM with autonomous vehicles in [85].

Remark 3.2.1. The proposed frame work can be applied to any general second order CF models

and combined with control strategies such as delayed feedback control, CACC, MPC, etc. However,

the main focus of this chapter is to present a basic framework for multi-platoon CAVs, so we have

kept the models as simple as possible with minimal parameters.

3.3. Stability analysis

In this section, we analyse the stability of the models in section 3.2 through linear stability

analysis. The steady-state (equilibrium) solution of all the aforementioned models on a ring road

of length L with Ntot =
∑m

i=1Ni vehicles is

(3.7) ei,j(t) = h(N1 + · · ·+Ni−1 + j) + V (h)t,
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where h = L/Ntot is the equilibrium headway. To analyse the effect of platoon sizes, for the

stability analysis we assume that for the multi-platoon models all the platoons are of a uniform

size, denoted as N . Then for the no-connection model proposed in Subsection 3.2.3, the following

stability criterion holds:

Theorem 3.3.1. The no-connection multi-platoon model (3.4, 3.5) with identical platoon size

N is stable if

(3.8) a >
2NV ′(h)

(N − 1)2 + 1
.

Proof. Assume that for each vehicle there is a small deviation from the equilibrium solution:

(3.9) xi,j(t) = ei,j(t) + yi,j(t), |yi,j | ≪ 1.

Since the platoon leader is just following the last vehicle of the platoon in front, for the first and

last vehicle of each platoon they formulate an sub-system of ODEs of 2m equations. And we can

linearize the sub-system by doing Taylor expansion of yi,j and neglect higher order terms to get

(3.10) ÿi,N (t) = a
[
V ′(h)(yi+1,1(t)− yi,N (t))− ẏi,N (t)

]
for platoon leaders, and

(3.11) ÿi,1(t) = a

[
V ′(h)

yi,N (t)− yi,1(t)

N − 1
− ẏi,1(t)

]
for the platoon tails, where i is referring to all the integers that satisfies 1 ≤ i ≤ m throughout the

proof. The (m + 1)-th platoon is the same as the 1st platoon. Then if λ is an eigenvalue of the

linear ODE system, and ξi,j are the corresponding coefficients of yi,j , simplified from (3.11, 3.10)

we have

(3.12) λ2 + aλ− aV ′(h)

(
ξi+1,1

ξi,N
− 1

)
= 0,

and

(3.13) λ2 + aλ− aV ′(h)

(
ξi,N

(N − 1)ξi,1
− 1

N − 1

)
= 0.
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Then with the same λ, the constant parts of (3.12) and (3.13) are identical, and we can denote it

by r. Then the real parts of λ can be rewritten as

(3.14) Re(λ) =
1

2

(
−a+

√
(d+

√
d2+e2

2 )

) ,
where d = a2 + 4Re(r) and e = 4Im(r). The sub-system (3.11, 3.10) is stable if Re(λ) < 0, which

can be simplified to

(3.15) a >

∣∣∣∣ Im2(r)

Re(r)
V ′(h)

∣∣∣∣ .
Now it remains to show (3.8) implies (3.15). Note that

(3.16)
m∏
i=1

ξi+1,1

ξi,N

ξi,N
ξi,1

= 1

holds since m+ 1 = 1 on the ring road, combining with (3.12, 3.13) we have r satisfies

(3.17) ((N − 1)r + 1)m(r + 1)m = 1.

Then we can solve for r to get

(3.18) r =
−N ±

√
N2 − 4(N − 1)(1− exp(2πkim ))

2(N − 1)
,

where k = 1, 2, . . . ,m. Let θ = 2πk
m and l = 1/(N − 1), then

(3.19) − Im2(r)

Re(r)
=

√
d22 + e22 − d2

l + 1±
√√

d22+e22+d2
2

,

where d2 = (l+1)2−4l(1−cos θ) and e2 = 4l sin θ. Therefore (3.19) can be considered as a function

of θ, and for l < 1 this is a decreasing function for θ > 0. Then we can obtain

(3.20)

∣∣∣∣ Im2(r)

Re(r)

∣∣∣∣ < lim
θ→0+

(
− Im2(r)

Re(r)

)
=

2N

(N − 1)2 + 1
.

Combined (3.20) with (3.15), the sub-system (3.11, 3.10) is stable if the stability criterion (3.8)

holds. For the remaining vehicles inside each platoon, the solution is only determined by the leading
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vehicle of the platoon. And by linearization of (3.5) we can rewrite yi,j as

(3.21) yi,j =

(
N − j +

j − 1

N − 1

)
yi,N ,

which is a linear function of yi,N . This means the stability of the multi-platoon system is the same

as the sub-system (3.11, 3.10). Therefore stability criterion (3.8) holds. □

Figure 3.5 is the plot of stability regions with different platoon size of the no-connection model.

Remark 3.3.1. For all the stability plots, each neutral stability line separates the graph into

two regions: the region above the line is stable and the region below the line is unstable.

Figure 3.5. Neutral stability lines of the multi-platoon model with no connection
of platoon size N = 2, 3, 4, 5, 6.

Using similar approaches, for the two-way connected model proposed in Subsection 3.2.4, the

following stability criterion applies:
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Theorem 3.3.2. The two-way connected multi-platoon model (3.6, 3.5) with identical platoon

size N is stable if

(3.22) a >
2V ′(h)

(1 + 2p)(N − 2tdV ′(h))
.

Proof. For the connected model (3.6, 3.5) we follow the assumptions of previous works, e.g.

[47,80] such that higher orders of the constant delay td are neglected. And after linearization, for

the connected multi-platoon system in Subsection 3.2.4, The m platoon leaders form a system of

m linear ODEs:

(3.23) ÿi,N (t) = a

[
V ′(h)(1 + p)

∆i,N (t− td)

N
− V ′(h)p

∆i−1,N (t− td)

N
− ẏi,N (t)

]
.

Then if λ is an eigenvalue of the system, by reserving first order of td via Taylor expansion, we have

(3.24) λ2 + a(1 + 2p)λ− (1− λtd)
aV ′(h)

N
(1− eiθ) = 0,

where θ is the same as in the proof of Theorem 3.3.1. Then by simplifying the condition Re(λ) < 0,

the stability criterion is equivalent to

(3.25) 4k(1− cos θ) + 8atdk
2(1− cos θ)2 > k2 sin2 θ,

where k = a/(N · V ′(h)). Then let θ → 0 we can get the stability criterion given in Theorem

3.3.2. □

Figure 3.6 is the plot of the front connected model’s stability regions (p = 0, td = 0). We

observe that the connected model exhibits larger stability regions than the non-connected model.

However, the difference diminishes as platoon size increases. Figure 3.7 is the plot of the two-way

connected model’s stability regions with different delays of backward sensitivity p = 0.3 and platoon

size N = 4. From this figure, we can observe that the effect of delay become larger as it get close to

1.6s. Additionally, if the delay reach 2s then the model becomes consistently unstable for headways

between 20 and 25 meters.

Remark 3.3.2. For the effect of backward sensitivity p we refer to [43,85].
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Figure 3.6. Neutral stability lines of the multi-platoon model with front connection
of platoon size N = 2, 3, 4, 5, 6 and zero-delay.

3.4. Numerical simulations

3.4.1. General information. We use MATLAB 2024a for both simulation and plots. All the

simulations are performed on a single-lane ring road. To acquire more realistic results, we modified

the OVM by adding a maximum acceleration constraint and an emergency braking system as

follows:

• Maximum acceleration constraint: Due to mechanical limits, the maximum allowable ac-

celeration can be less than the theoretical value predicted by the optimal velocity model.

For the simulations in this section, we add a constant maximum acceleration constraint,

denoted as am.

• Emergency braking system: To avoid collisions, we implement an emergency braking sys-

tem. If the headway of two adjacent vehicles get smaller than the safety headway hm
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Figure 3.7. Neutral stability lines of the multi-platoon model with two-way con-
nection of platoon size N = 4 and delay td = 0, 0.4, 0.8, 1.2, 1.6s.

(which is a function of the current speed and relative speed between the two vehicles),

then the vehicle behind brakes with emergency braking deceleration ab.

The modified OVM for HDVs is then given by

(3.26) ¨̃xi =


min (ẍi, am) , if xi(t)− xi+1(t) ≥ hm;

ab, if xi(t)− xi+1(t) < hm,

where the acceleration term ẍi is given by (3.1).We modify the multi-platoon models accordingly

by substituting ẍi with other acceleration functions. The solutions of the models are obtained in

discrete forms using a modified Euler scheme:

(3.27)


ẋi,j+1 = ẋi,j + ¨̃xi,j∆t;

xi,j+1 = xi,j +
ẋi,j+ẋi,j+1

2 ∆t,
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where ∆t is the uniform time step size, xi,j , ẋi,j , ¨̃xi,j are the position, velocity, acceleration of the

i-th car at the j-th time step of simulation, respectively. This scheme is equivalent to the ones

in [85] and [21]. We also use a consistent time step size of ∆t = 0.1 seconds.

The model parameters are set as follows: The total length of the ring road is L = 2640m, with

a total of Ntot = 120 vehicles. All simulations run for the same duration T = 4000 seconds. We

set the maximum acceleration constraint to am = 3m/s2, the emergency braking deceleration to

ab = −8m/s2 and define the safety headway as

(3.28) hm(vi, vi+1) =
(vi − vi+1)

2

|2ab|
+ τ(vi − vi+1) + l,

where vi is the speed of the i-th vehicle, τ = 4 is the constant time headway for safety, and l = 5m

is the length of each vehicle. We fix the forward sensitivity as a = 0.6 and backward sensitivity

as p = 0.3 if available. The optimal velocity function is given by equation (3.2), with parameters

hmin = 7m, hmax = 37m, vmax = 20m/s. The equilibrium headway and velocity are calculated as

h = L/N = 22m and V (h) = 10 m/s, respectively. The initial position and velocity of the i-th

vehicle are deviated from the equilibrium states (ei, V (h)) with random perturbations uniformly

distributed on the interval [−5/2, 5/2]. The initial condition of the model is given by

(3.29)


xi(0) = ei(0) + ri,

ẋi(0) = V (h) + ri

where ri, ri are random values generated from a uniform distribution over [−5/2, 5/2], and ei(0) = hi

can be calculated from equation (3.7). In the following subsections, we introduce three sets of sim-

ulations involving CAV platoons of varying platoon sizes, communication levels, and distributions

in mixed traffic.

Remark 3.4.1. For readers interested in variations of sensitivity parameters, studies including

[3], [31], [85], [21] explore different sensitivity parameter settings in various simulations.

3.4.2. Experiments of identical CAV platoons. In this subsection, we conduct experi-

ments on traffic flow consisting solely of identically-sized CAV platoons, aiming to investigate the

effects of various factors such as platoon size, connectivity, and communication delay.
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3.4.2.1. Different platoon sizes without delay. In this simulation, we aim to show the effect

of platoon size and connectivity without delay. The platoon sizes are selected as N = 2, 3, 4, 5,

and the connectivity options between platoons include no-connection, front-connection, and two-

way connection. Figure 3.8 is the headway plots for the no-connection model with platoon size

N = 2, 3, 4 during 3800s to 4000s, and for N = 5 from 0s to 200s. In these plots, 20 vehicles are

selected at even intervals, starting from the 1st to the 120th vehicle, with every 6th vehicle chosen

for representation.

(a) N = 2 (b) N = 3

(c) N = 4 (d) N = 5

Figure 3.8. Plots of headways for selected vehicles with no-connection for platoon
sizes N = 2, 3, 4, 5.

Remark 3.4.2. For the headway plots in this section, if the vehicles have not stabilized after

4000s, we select every 6th vehicle from the 1st to the 120th for plotting, with the time interval
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spanning from 3800 to 4000 seconds. If the vehicles have stabilized, the headway plots will instead

cover the time period from 0s until stabilization (60, 200, or 300s, depending on the scenario).

Figure 3.9 is the plots of minimum and maximum speeds of all vehicles corresponding to Figure

3.8. Figure 3.10 is the headway plots for front-connected platoons of size N = 2, 3, 4 and for

(a) N = 2 (b) N = 3

(c) N = 4 (d) N = 5

Figure 3.9. Plots of minimum and maximum speeds of platoons with no-
connection and size N = 2, 3, 4, 5.

two-way connected platoons of size N = 2.

From the simulation results, we observe that stability of CAV platoons can be improved by

increasing both platoon size and connectivity. Moreover, with two-way connections, the equilibrium

state can be achieved with platoons consisting of just two CAVs. However, this condition is only
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(a) N = 2 front (b) N = 3 front

(c) N = 4 front (d) N = 2 two-way

Figure 3.10. Plots of headways for selected vehicles with front connection for
platoon sizes N = 2, 3, 4, two-way connection for platoon size N = 2.

guaranteed if the intra-platoon connections are robust and the inter-platoon communication is

without delay.

3.4.2.2. Fixed platoon size with different delays. In this simulation, we aim to find the effects of

inter-platoon communication delay. We fix the platoon size at N = 4 and select different constant

delays for both the front-connected model and two-way connected model. Figure 3.11 is the headway

plots for the two-way connected model with communication delays td = 0.4, 0.8, 1.2, 1.6s. Figure

3.12 is the plots of minimum and maximum speeds of all vehicles corresponding to Figure 3.11.

From the simulation results, we observe that increasing communication delays between platoons

negatively impacts the stability of CAV platoons. Moreover, the variance in headways grows
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(a) td = 0.4s (b) td = 0.8s

(c) td = 1.2s (d) td = 1.6s

Figure 3.11. Plots of headways for selected vehicles with two-way connection for
platoon size N = 4 and communication delays td = 0.4, 0.8, 1.2, 1.6s.

exponentially with increased delay, which aligns with theoretical analysis. These findings can guide

CAV manufacturers in setting standards for sensors and other hardware components that influence

communication delays.

3.4.3. Experiments of CAV platoons mixed with HDVs. One potential benefit of im-

plementing CAV platoons in traffic flow is their stabilizing effect when mixed with HDVs (which

can be treated as CAV platoons of size 1 with no communication). In this subsection, we test

various distributions of CAV platoons and HDVs on the ring road described in Subsection 3.4.1 to

evaluate their impact on traffic flow stability.
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(a) td = 0.4s (b) td = 0.8s

(c) td = 1.2s (d) td = 1.6s

Figure 3.12. Plots of minimum and maximum speeds of platoons with no-
connection of size N = 4 and communication delays td = 0.4, 0.8, 1.2, 1.6s.

3.4.3.1. Segregated CAV platoons and HDVs. We first consider the scenario where CAV platoons

and HDVs are segregated into two distinct groups, each forming its own string of vehicles. The

platoon configurations are set with sizes of N = 6 or N = 8, with no inter-platoon connections.

Figure 3.13 is the headway plots for segregated traffic with CAV platoons of size N = 6 with either

24 or 30 HDVs, and CAV platoons of size N = 8 with either 32 or 40 HDVs.

From this simulation, we observe that platoons of size N = 6 can stabilize up to 30 HDVs,

slightly less than 32 HDVs stabilized by platoons of size N = 8.(It is worth noting that with 40

HDVs, the traffic flow is nearly stable.) Moreover, if the model does not reach equilibrium, the
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(a) N = 6; 24 HDVs (b) N = 6; 30 HDVs

(c) N = 8; 32 HDVs (d) N = 8; 40 HDVs

Figure 3.13. Headway plots for segregated traffic with CAV platoons of size N = 6
with 30 and 36 HDVs and CAV platoons of size N = 8 with 32 and 40 HDVs.

speed variation of HDVs is smaller when they are positioned closer to the tail CAV of the platoons,

suggesting that HDVs are also prone to string instability.

3.4.3.2. Evenly mixed CAV platoons and HDVs. Another appraoch to distributing the vehicles

is to mix CAV platoons and HDVs as evenly as possible, i.e. each platoon is follow by a fixed

number of HDVs. We again assume that the CAV platoons are not connected, as the distance

between platoon leaders is longer than flows of only CAV platoons, which could result in increased

delays. Figure 3.14 is the headway plots for evenly mixed traffic, where CAV platoons of size N = 6

are followed by 2 or 3 HDVs, and CAV platoons of size N = 8 are followed by 5 or 6 HDVs.
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Remark 3.4.3. One of the platoons may be followed by a different number of HDVs to balance

the distribution.

(a) N = 6; 2 HDV followers (b) N = 6; 3 HDV followers

(c) N = 8; 5 HDV followers (d) N = 8; 6 HDV followers

Figure 3.14. Headway plots for evenly mixed traffic with each CAV platoon of
size N = 6 followed by 2 or 3 HDVs, and CAV platoon of size N = 8 followed by 5
or 6 HDVs.

From this simulation, we observed that in evenly mixed distributions, platoons of sizeN = 6 can

stabilize up to 30 HDVs, while platoons of size N = 8 can stabilize up to 48 HDVs. This suggests

that larger platoons act as more effective controllers of traffic stability. However, in scenarios with

segregated distributions of N = 8 with 40 HDVs, the traffic flow is nearly stable, indicating that the

improvements provided by the even distribution are relatively minor. where stability is not fully
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achieved, the speed variation among HDVs decreases more significantly when they are positioned

closer to the platoons, consistent with previous observations.

3.5. Conclusions

In this chapter, we have extended a recently proposed single platoon CF model to accommodate

multiple platoons. By treating the leading vehicle of each platoon considered as control inputs,

we developed two distinct control designs that account for varying degrees of connectivity between

platoons. We showed that our proposed multi-platoon models are consistent with foundational

car-following models when the platoon size is reduced to 1.

Through linear stability analysis, we demonstrated that both platoon size and the level of inter-

platoon communication can enhance system stability. The results of numerical experiments with

varied platoon size and connectivity are consistent with theoretical analysis. Furthermore, when

testing configurations that mixed CAV platoons with HDVs, we observed that HDVs benefit from

following CAV platoons—even without specific design considerations for HDV control.

A notable outcome of our analysis is that the influence of inter-platoon connections diminishes

as platoon sizes increase. This suggests that, from a manufacturing standpoint, enhancing V2V

communication within platoons should be prioritized over V2I communications. Another finding is

that the stability of mixed traffic flow exhibits similar characteristics in scenarios where CAV pla-

toons are either evenly distributed or segregated—a result that consists with a study of macroscopic

models of mixed flow [20].

This chapter provides a solid foundation for future innovations in CAV technologies and opens

several avenues for further exploration. Integration with other control strategies, such as feed-

back and optimal control, could significantly enhance stability, safety, and comfort for travelers.

Additionally, addressing fairness within the model and considering dynamic leader switching and

platoon reformation could lead to more practical and equitable applications. Extending the pro-

posed platoon models to accommodate more complex traffic scenarios, such as multi-lane roads and

signalized intersections, would broaden the models’ applicability.
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CHAPTER 4

PDE models: Macroscopic models for CAVs and HDVs

4.1. Introduction and Review of Related Work

4.1.1. Hydrodynamic traffic flow models. Hydrodynamic traffic flow models, often given

in the form of partial differential equations (PDEs) have been widely studied in the traffic science

literature. They have wide applications and are often used in traffic simulation, state estimation and

control design. The most classic of them is the Lighthill-Whitham-Richards (LWR) model [36,54],

which has the form

(4.1) ρt + (ρV (ρ))x = 0,

where ρ is the density of traffic at location x and time t, and V (ρ) is the equilibrium velocity

as a function of density. The LWR model is essentially a scalar conservation law endowed with a

equation of state that captures average driver behavior under stationary (or equilibrium) conditions.

The LWR model is capable of modeling transitions from one stationary state to another, in the

form of shock or acceleration waves. However, it lacks the ability to model some notable traffic flow

phenomena, such as stop-and-go waves and traffic hysteresis. Various models, collectively known

as higher-order traffic flow models, have been proposed to overcome LWR model’s deficiencies.

For example, analogous to shallow channel water flows, Payne and Whitham [50,68] respectively

introduced a momentum equation to capture speed evolution away from equilibrium, and proposed

the first higher-order model:


ρt + (ρv)x = 0,

vt + vvx = V (ρ)−v
τ − c20

ρ ρx,

(4.2)

where τ is a relaxation time constant and c0 < 0 is the ”traffic sound speed”. But this model

has two main drawbacks: it can produce negative travel speed (’wrong way travel’) and traffic
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information can travel faster than vehicles, which violates the anisotropic property of traffic flow—

that is, vehicles cannot push other vehicles from behind to speed them up. To solve these problems,

there are two models independently introduced in [1,76], and the inhomogeneous Aw-Rascle-Zhang

(ARZ) model has the form: 
ρt + (ρv)x = 0,

(v + h(ρ))t + v(v + h(ρ))x = V (ρ)−v
τ ,

(4.3)

where the constant c0 in PW model is substituted by the convective derivative (∂t + v∂x) of the

pressure function h(ρ) accounting for drivers’ anticipation of downstream density changes.

The ARZ model has been widely used and studied since it was first proposed. Theoretical and

numerical solutions of the ARZ model have been studied in e.g. [28,39,41]. Others have extended

the ARZ model: for example, Lebacque et al [29] generalised the ARZ model to the generic second

order models (GSOM) where the pressure term is generalised to a non-linear velocity term. The

GSOM model have then been used for data fitting [11] and extended with non-local densities [5,17].

4.1.2. Multi-class hydrodynamic traffic flow models. Real-world traffic has vehicles of

different types and performances, which can be categorized into vehicle classes. Each class of

vehicles may interact with others in different ways and this can be captured by extending the

aforementioned models to multi-class hydrodynamic traffic flow models. Starting with an extension

of the LWR model, Wong and Wong [69] proposed a multi-class LWR model with heterogeneous

drivers characterized by their choice of free-flow speeds. In particular, they gave an isotropic case

where the speed of each class is a function of the total density. In a separate work, Zhang and

Jin [75] proposed a multi-class LWR model considering critical density such that when traffic

concentration reached a critical value, all the class of vehicles are mixed together and move as a

group, and below the critical density the model is similar to Wong and Wong’s model. Ngoduy and

Liu [49] proposed a generalized multi-class first-order simulation model based on an approximate

Riemann solver, which is able to explain certain non-linear traffic phenomena on freeways. Logghe

and Immers [38] proposed a new model where vehicle classes interact in a non-cooperative way,

where slow vehicles act as moving bottlenecks for fast vehicles while fast vehicles have no influence

on slow vehicles. Such relations have been previous presented in [44]. Qian et al [52] developed a

macroscopic heterogeneous traffic flow model with pragmatic cross-class interaction rules.
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There are also studies that proposed non-equilibrium hydrodynamic models for mixed traffic

flow, e.g. [19, 42, 45, 46, 48]. Specifically, Ngoduy et al [48] proposed a multi-class gas-kinetic

model where one class of vehicles are able to receive a warning massage when there is downstream

congestion and further extended it in [45,46] to include cooperative adaptive cruise control (CACC).

Mohan and Ramadurai [42] extends the ARZ model to a multi-class model using area occupancy

(AO) which can capture the unique phenomena in lane-free traffic. Huang et al [19] proposed a

multi-class model where human driven vehicles (HDVs) are modeled by the ARZ model and CAVs

are modeled by a mean-field game. They also performed linear stability analysis for the mean-field

game model.

4.1.3. CAVs as agents for traffic stabilization. Traffic flow of HDVs can be unstable even

without an external disturbance. For example, in [60], a field experiment on a ring road with human

driven vehicles showed that stop-and-go waves can arise without the presence of any bottlenecks

when there are sufficient number of vehicles on the road. A recent field experiment, on the other

hand, showed that such stop-and-go waves can be eliminated with a single AV (Autonomous Vehicle)

as a control agent to pace HDV traffic for the vehicles involved [59]. Such improvements were also

found in a larger field experiment of over 100 CAVs [30]. This stabilization effect of an AV or

CAVs as a control agent has also been widely studied through traffic simulation using microscopic

car-following models, e.g. [6,67,78]. In these studies, it is shown that a single AV can stabilize

multiple HDVs on a single-lane road by using its sensing capabilities and feedback control to adjust

its speed.

4.1.4. The main contributions of this chapter. In this chapter, we enhance the under-

standing on the look-ahead effect of CAVs in traffic flow modelling by extending the ARZ model

with a non-local density parameter, which simulates the forward-looking capabilities of CAVs.

This modification allows for a more realistic representation of how autonomous technologies might

influence traffic flow dynamics.

We undertake a comprehensive theoretical stability analysis using wave perturbation methods

and demonstrate that the extended model for CAVs can achieve greater stability over longer look-

ahead distances, offering a theoretical foundation for integrating CAVs into traffic systems.
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Additionally, we further extend our model to a multi-class framework, accommodating both

HDVs and CAVs. This extension is crucial to evaluate the stabilization effect of CAVs in various

traffic conditions with presence of HDVs. Through extensive simulations referencing the studies

above, we evaluate how different configurations of look-ahead distances and vehicle distributions

impact traffic flow stability.

The findings of this study contribute to the ongoing discussions on traffic management in

the mixed autonomy environments. One of them suggests that moderate look-ahead distances

might provide optimal stability conditions. Another notable finding is that with a relatively low

penetration rate of CAVs, the mixed flow can be effectively stabilized, which is consistent with

previous studies. Furthermore, evenly distributed CAVs achieve marginally better stabilization

results compared to segregated distributions.

The remainder of the chapter is organized as follows: Section 4.2 introduces the modified

ARZ model and interprets it as a model for CAVs. Section 4.3 gives a stability analysis of the

model using wave perturbation. Section 4.4 formulates a multi-class extension of the modified ARZ

model for mixed CAV-HDV traffic and in Section 4.5 parameters of both models are analysed via

numerical experiments to test the stability of CAVs under different conditions. Lastly in Section

4.6 conclusion is drawn and directions of future research are proposed.

4.2. An extended ARZ model with look-ahead effect

We first extend the ARZ model to take into account the look-ahead capability of CAVs without

explicitly modeling CAVs and HDVs as distinct classes. Here we assume that the CAVs are all

equipped with range sensors and vehicle to vehicle communication to enable them to observe the

density of a certain distance ahead, say LD. A visualised demonstration of this is given in Figure

4.1.

Figure 4.1. A CAV’s front observation of the traffic density of a certain distance
in front.
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Instead of responding to the motion of the immediate vehicle in front, a CAV can take advantage

of this look-ahead capability and adopt a speed that is based on the average traffic condition within

this look-ahead distance, therefore reducing over- or under- reaction and smoothing its trajectory.

This will in turn lead to greater stability of traffic. Following this argument, we modify the Aw-

Rascle-Zhang model with a new relaxation term that takes into account this look-ahead effect on

traffic flow as follows:

(4.4)



ρt + (ρv)x = 0,

(v + h(ρ))t + v(v + h(ρ))x =
v − V (ρ∗)

τ
,

ρ∗(LD) =

∫ x+LD

x ρ(t, ξ)dξ

LD
,

where the relaxation of v is toward an equilibrium speed V (ρ∗) with ρ∗ as the average traffic density

in the observation region [x, x + LD]. The observed average density is calculated by integration.

Moreover, if LD goes to 0 the model reduces to the original ARZ model. We can also generalize

the average density with a weight function for biased observation:

Remark 4.2.1. A more general weighted average density ρ∗(LD, w) with weight function w(x)

can be defined as

(4.5) ρ∗(LD, w) =

∫ x+LD

x w(ξ)ρ(t, ξ)dξ

LD
,

where w(x) satisfies
∫ x+LD

x w(ξ)dξ = 1/LD. With the weighted density, CAVs are considering

vehicles in front with different sensitivities, similar to the microscopic multi-following model in [31].

With the look-ahead (weighted) average density we are primarily focusing on the CACC logic

in CAVs. There are many other complex dynamics and controls which can be implemented into the

model (4.4).

Additionally for periodic boundary conditions (i.e. traffic on a ring road), partial observation

(look-ahead) is equivalent to full observation (look-ahead of the entire road) when LD = L, the

length of the ring road.

For readers who are interested in the theoretical analysis such as solution existence, this model

can be implicitly written as the non-local traffic model in [17] that is proven well defined under

certain constraints.
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4.3. Stability analysis of the extended ARZ model

In this section we will follow the classic wave perturbation analysis approach [26] [12] [53] to

analyze the stability of the extended ARZ model (4.4).

For a given initial state (ρ0, v0), the steady state solution of the ARZ model is (ρ, v) =

(ρ0, V (ρ0)) for some 0 < ρ0 < ρj where ρj is the jam density. Now assume that the initial condition

is perturbed by a small periodic disturbance:

(4.6) ρ = ρ0 + ρ̃; v = V (ρ0) + ṽ,

where

(4.7) ρ̃ = Reikx+σt; ṽ = V eikx+σt

with R, V has infinitesimal constant scales, and k, σ are constants for the perturbation’s frequency

and amplitude, respectively.

By neglecting second or higher order terms of R and V we can derive a linear system

(4.8)

 σ + ikψ ikρ0

σϕ+ ikψϕ− ζ
τ σ + ikψ + 1

τ

R
U

 =

0
0


where ψ = V (ρ0) > 0, ϕ = h′(ρ) > 0, ζ = (eikLD − 1)V ′(ρ)/(ikLD).

Follow the calculation process in [53], we can deduce that traffic is stable when

(4.9) h′(ρ) +
| sin(kLD)|

kLD
V ′(ρ) > 0

Since | sinx|/x is a decreasing function of x, this equation implies that with certain level of oscillation

frequency, stability criteria does not depend on τ and the range of stability can be increased with

LD.

Remark 4.3.1. In particular if ρ(x + L) = ρ(x) for all x ∈ R, then if LD = L we have full

observation of the road and the model will be always stable. In this case ρ∗ = ρ0 which implies that

all the vehicles are relaxing toward equilibrium speed.
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4.4. A multiclass extension of the ARZ model with look-ahead effect

In this section, we propose a model for mixed autonomy traffic where HDVs and CAVs are

modeled as distinctive classes. Similar to [19], in our model the HDVs are reacting to total density

of traffic at its position. If we let ρh denote density of HDVs and ρc denote the density of CAVs,

then the model has the form

(4.10a)

(4.10b)

(4.10c)

(4.10d)

(4.10e)



ρht + (ρhvh)x = 0,(
vh + h(ρs)

)
t
+ vh

(
vh + h(ρs)

)
x
=
vh − V (ρs)

τ
,

ρct + (ρcvc)x = 0,

(vc + h(ρs))t + vc (vc + h(ρs))x =
vc − V (ρ∗)

τ
,

ρs = ρh + ρc,

where vh is the speed of HDVs and vc is the speed of CAVs. To highlight the look-ahead effect, for

the CAVs we assume that they have the same pressure function and relaxation constant as HDVs.

With similar reasons we assume that CAVs and HDVs follow the same FD. For such mixed flow

the stability can depend on the ratio and distribution of vehicles, and the control method of CAVs,

which means that it is hard to obtain the stability condition analytically for the traffic flow model

given in (4.10). In this chapter, we resort to numerical solutions of (4.10) to explore the stability

properties of this multi-class non-equilibrium model, which will be presented in the next section.

Remark 4.4.1. Practically, in mixed autonomy CAVs might be capable to observe both density

and speed of surrounding HDVs to change their speed accordingly, which means the pressure term

and relaxation term can be defined with consideration of the density of HDVs. We will consider

such extensions in future work.

4.5. Numerical solutions

In order to obtain numerical solutions for (4.4) and (4.10), we adapted a forward scheme with

an approximate Riemann solver in [53] that has low computation cost and preserves properties

of finite volume methods. To calculate the average density, we use a Riemann sum to give an

estimation of the integration term. Given ∆t, ∆x as time and space step size, q = ρ(v+ h(ρ)) as a
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conserved flux variable, i, n as space step variable and time step variable, and suppose that LD/∆t

is a non-negative integer, then the update rule for approximate solutions of (4.4) can be written as

(4.11a)

(4.11b)

(4.11c)



ρn+1
i = ρni − ∆t

∆x

(
(Fρ)

n
i+ 1

2

− (Fρ)
n
i− 1

2

)
ρ∗i =

∑LD/∆t
j=1 ρn+1

j

LD/∆t

qn+1
i = qni − ∆t

∆x

(
(Fq)

n
i+ 1

2

− (Fq)
n
i− 1

2

)
− ∆t

τ

(
V (ρ∗i ) + h(ρn+1

i )
)

where the update of the approximated flow qn+1
i is calculated after the update of the approxi-

mated density ρn+1
i , and the update of the relaxation term adopts an implicit scheme to improve

numerical stability. The average density ρ∗i is calculated by Riemann sum and the numerical fluxes

(Fρ)
n
i+ 1

2

, (Fq)
n
i+ 1

2

are calculated by the Harten, Lax and van Leer (HLL) approximate Riemann

solver [18]. The update rule for approximate solutions of (4.10) can be similarly written by sepa-

rately updating solutions of HDVs and CAVs using (4.11).

For the model parameter values, we assumed that vehicles are on a ring road with length

L = 1000 meters, and set ∆t = 0.05s, ∆x = 5m, τ = 3s, h(ρ) = 8 ∗ ((ρ − 10)/(140 − ρ))1/2m/s,

similar to [19]. The equilibrium speed model is a smooth function that combined the Greenshields

model [16] and the Triangular FD model [7]:

(4.12) V (ρ) =



vf , if ρ ≤ ρf ;

vf

(
1−

ρ− ρf
ρj − ρf

)
, if ρf ≤ ρ ≤ ρj ;

0, if ρ ≥ ρj ,

where ρf = 10veh/km is the free flow density, ρj = 140veh/km is the jam density and vf = 20m/s

is the free flow speed. The initial density is a sinusoidal wave perturbation of equilibrium state

similar to [19] as well:

(4.13) ρ0(x) = 0.4 ∗ ρj + 0.1 ∗ ρj ∗ sin(2πx/L),
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where for mixed flow we substitute ρ by ρs. The initial velocity is then set as v0(x) = V (ρ0(x)). In

the following subsections we will use two cases to evaluate the asymptotic stability of both models

under different LD and vehicle mixes.

4.5.1. Investigation of the look-ahead effect. In this scenario we evaluate the look-ahead

distance LD on the convergence of the extended ARZ model. We will consider LD = 15, 100, 1000m

and compare the model results with those from the ARZ model (LD → 0+). For LD = 0+, 100m

we set the time duration as T = 600s and the others as T = 1200s. The numerical results of density

and velocity evolution are shown in Figures 4.2-4.5.

(a) Density evolution (b) Velocity evolution

Figure 4.2. Density and velocity evolution of the ARZ model (LD → 0), where
the flow is not stable.

From the numerical results, we can observe that in all cases look-ahead helps stabilizing traffic,

as the only unstable case is when LD → 0+. However, longer look-ahead distance is not equivalent

to faster convergence to equilibrium state. With full observation, i.e. LD = 1000m, or a shorter

partial observation ( LD = 15m ) the convergence speed is much slower than with LD = 100m. In

the case of LD = 15m, the look-ahead effect is not significant since this is no better than follow

one-vehicle ahead. With the much longer LD, the redundant information from far away is also built

into drivers’ response, and hence can be detrimental rather than beneficial to traffic stability when

traffic conditions vary significantly over space. There seems to be a theoretical optimal look-ahead

distance for achieving greater convergence and traffic stability, which may depend on parameter
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(a) Density evolution (b) Velocity evolution

Figure 4.3. Density and velocity evolution of the modified model with LD = 15m.

(a) Density evolution (b) Velocity evolution

Figure 4.4. Density and velocity evolution of the modified model with LD = 100m.

settings and even initial and boundary traffic conditions. We will explore this problem in our future

work.

4.5.2. Investigation of stability in mixed autonomy traffic. In this scenario we inves-

tigate the potential of using CAVs to smooth and stabilize mixed traffic flow, considering two

different spatial distributions of CAVs in the traffic mix.

4.5.2.1. Even distribution. We first consider CAVs evenly distributed in the mixed traffic with

penetration rates of 10%, 20%, 40%. Based on the results of the single-class model, we choose the

observation distance LD = 100m for CAVs. For 10% and 20% penetration rates we set the time
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(a) Density evolution (b) Velocity evolution

Figure 4.5. Density and velocity evolution of the modified model with LD =
1000m.

duration to be T = 1200s and for 40% we set T = 600s. The numerical results of density and

velocity evolution are shown in Figures 4.6-4.8.

Remark 4.5.1. For the mixed plot we plot the evolution of the total density and the HDVs’

velocity, since traffic flow of pure CAVs are already shown stable.

(a) Density evolution (b) Velocity evolution

Figure 4.6. Density and velocity evolution of the mixed flow model with 10% of
CAVs evenly distributed.

From these results, we can observe that 20 percent of CAVs can stabilize the mixed flow to

smaller oscillations, and 40 percent of CAVs has faster convergence to equilibrium state, while 10
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(a) Density evolution (b) Velocity evolution

Figure 4.7. Density and velocity evolution of the mixed flow model with 20% of
CAVs evenly distributed.

(a) Density evolution (b) Velocity evolution

Figure 4.8. Density and velocity evolution of the mixed flow model with 40% of
CAVs evenly distributed.

percent of CAVs fails to stabilize the traffic. Such results are consistent with those from a similar

study [19].

4.5.2.2. Segregated distribution. Now we consider another type of distribution such that CAVs

and HDVs are segregated into two parts. With the same penetration rates, we let CAVs concentrate

at around x = 500m and HDVs concentrate at the remaining locations. In details, the initial density
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of CAVs is given as

(4.14) ρc(x) =


0.999ρs, if 1−r

2 L < x < 1+r
2 L,

0.001ρs, otherwise.

,

where r is the percentage of CAVs, and ρh can be calculated by ρh = ρs − ρc. The small densities

is designed for numerical stability. We set the same simulation time as in the evenly distributed

case. The numerical results of density and velocity evolution are shown in Figures 4.9-4.11.

(a) Density evolution (b) Velocity evolution

Figure 4.9. Density and velocity evolution of the mixed flow model with 10% of
concentrated CAVs.

These results showed that the segregated distributions of mixed flow have similar asymptotic

behaviors as even distributions. The main difference is that the initial waves have larger scales for

segregated distributions where the HDVs are concentrated, since HDV traffic is less stable than

CAV traffic. Overall the convergence of mixed traffic is slower than the results obtained in [19],

possibly due to large oscillations and inadequate information utilized from HDVs. One possible

improvement is to add predictive or feedback controls as previously investigated in car-following

models e.g. [25,82].

4.6. Concluding remarks

This chapter make extensions to a second order non-equilibrium traffic flow model, i.e. the ARZ

model, to take into account the look-ahead capabilities of CAVs, either in a single-class or multi-class
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(a) Density evolution (b) Velocity evolution

Figure 4.10. Density and velocity evolution of the mixed flow model with 20% of
concentrated CAVs.

(a) Density evolution (b) Velocity evolution

Figure 4.11. Density and velocity evolution of the mixed flow model with 40% of
concentrated CAVs.

context. The look-ahead effect is captured by a modification of the relaxation term, which can be

interpreted as CAVs attempt to adopt a target speed based on the average traffic conditions within

its spatial observation range, similar to multi-following microscopic traffic models. The stability

properties of both extended models are analysed through wave perturbation analysis, and the results

show that a longer observation range yields a less restrictive stability condition. Numerical solution

using forward schemes with approximate Riemann solvers is provided,and numerical experiments

are carried out to examine the effects of various parameters and the spatial distribution of CAVS
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on both the stability of mixed autonomy traffic, and CAVs’ ability to stabilize mixed traffic flow. It

is found that higher penetration rate of CAVs stabilize mixed traffic flow faster, which is consistent

with similar studies in [19].

Our study reveals several new insights on mixed autonomy traffic. One interesting finding

is that having more information of traffic conditions does not necessarily translate into better

control of traffic. In our particular setting, a moderate look-ahead distance of 100m enables faster

convergence to equilibrium than having the full observation of road conditions on the entire ring

road. Another interesting finding is that the distribution of vehicles have little effect on long-term

stability of mixed traffic flow, but the initial oscillations for segregated distribution have larger

amplitudes than that in the even distribution case. These insights can help CAV manufacturers

design more effective control algorithm that can benefit both parties in mixed autonomy traffic,

and traffic engineers to better manage mixed autonomy flow through leveraging the sensing and

control capabilities of CAVs.
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CHAPTER 5

Conclusions and future work

This dissertation presented a comprehensive investigation into the behavior and stability of

CAVs in both homogeneous (fully autonomous) and mixed traffic scenarios involving HDVs. Using

a combination of ODE-based CF models and PDE-based macroscopic models, we analyzed different

factors’ effects on traffic stability, including platoon sizes, communication levels, and look-ahead

distances.

The first study introduces a single-platoon car-following model, where vehicles communicate

solely with the platoon leader. This model is analyzed through linear stability theory and numer-

ical simulations, showing that improved communication can enhance traffic stability. The second

study extends this model to a multi-platoon framework, accommodating various platoon sizes and

communication levels between platoons. Theoretical results demonstrate that larger platoons and

higher communication capabilities contribute to increased stability, and simulations show that in

mixed traffic human-driven vehicles (HDVs) benefit from following CAV platoons. The third study

shifts to a macroscopic perspective, extending the ARZ model to capture the dynamics of mixed

traffic with CAVs and HDVs. The findings highlight the positive impact of CAVs’ look-ahead

capabilities on traffic flow stability.

There are several promising directions for future research. One potential avenue is the inte-

gration of advanced control strategies, such as MPC and RL, which could further improve the

adaptability and performance of CAVs in dynamic traffic environments. Another important area

for exploration is the application of these models to multi-lane roads and urban settings, where

lane-changing behavior and signalized intersections can occur. Furthermore, conducting field ex-

periments to validate the theoretical and numerical findings of this dissertation would offer valuable

insights and refine the models based on empirical data.

To summarize, this dissertation has made considerable contributions to the understanding of

CAVs in both homogeneous and mixed traffic systems. The theoretical analyses and simulations
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offer a strong foundation for future work in control design and management of CAVs, with the

potential to enhance traffic stability and efficiency as CAV technologies continue to develop.
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APPENDIX A

Appendices

A.1. Proof of Theorem 2.3.1

In this section we give the proof of Theorem 2.3.1:

Proof. Similar to proof of 2.3.2, we consider small deviation yi from the equilibrium solution

and neglect higher order. Then we have

(A.1) ÿi(t) = a
[
V ′(h)(yi+1(t)− yi(t))− ẏi(t)

]
, yN+1 = y1,

which is a linear ODE system with N equations. Suppose that λ is an eigenvalue of the system,

and ξi is the coefficient of yi with the term eλt, then simplified from A.1, λ satisfies

(A.2) λ2 + aλ− aV ′(h)(
ξi+1

ξi
− 1) = 0

This means ξi+1/ξi = r is fixed for given λ, and note that
∏N

i=1(ξi+1/ξi) = 1, we have

(A.3) r = e
2πk
N

i, k = 1, 2, . . . , N.

Therefore λ satisfies

(A.4) λ2 + aλ− aV ′(h)(e
2πk
N

i − 1) = 0,

for some k = 1, 2, . . . , N . Then, to have a stable system of yn, the real parts of any λ should be

negative. By considering the solution of λ with smaller real parts we have

(A.5) a−

√
d+

√
d2 + e2

2
> 0,

where d = a2 + 4aV ′(h) cos 2πk
N − 4aV ′(h) and e = −4aV ′(h) sin 2πk

N . For the system to be stable,

we need this condition to be satisfied for every k. Let θ ≜ 2πk
N , then (A.5) can be simplified to

(A.6) −V ′(h) cos2 θ + a cos θ + V ′(h)− a < 0.
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(A.6) holds if (2.6) holds, otherwise for N sufficiently large we can let cos θ = a/2V ′(h) and (A.6)

will fail. □

A.2. Proof of Theorem 2.3.3

In this section we give the proof of Theorem 2.3.3:

Proof. Again we consider small deviation yi from the equilibrium solution and neglect higher

order. Then we have

(A.7) ÿi(t) =


a [V ′(h)(yi+1(t)− yi(t))− ẏi(t)] + b

[
V ′(h)yN (t)−yi(t)

N−i − ẏi(t)
]
, if i ̸= N ;

(a+ b) [V ′(h)(yi+1(t)− yi(t))− ẏi(t)] , if i = N,

which is a linear ODE system with N equations. Suppose that λ is an eigenvalue of the system,

and ξi is the coefficient of yi with the term eλt, then simplified from (A.7), λ satisfies

(A.8) λ2 + (a+ b)λ− aV ′(h)(
ξi+1

ξi
− 1)− bV ′(h)

N − i
(
ξN
ξi

− 1) = 0, if i ̸= N

and

(A.9) λ2 + (a+ b)λ− (a+ b)V ′(h)(
ξ1
ξN

− 1) = 0.

When N is very large (N → ∞), bV ′(h)/(N − i) is very small for most i, and the last term of (A.8)

has minimal effect. This means ξi+1/ξi will converge to eigenvalues given in (A.3). Then λ will

converge to values given by

(A.10) λ2 + (a+ b)λ− aV ′(h)(e
2πk
N

i − 1) = 0.

Follow the same steps of previous proof we can find the stability criterion (2.15). □
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