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Abstract

The process of encoding and decoding an original dataset is fundamental to a variety of applica-

tions, including lossy compression in information theory and autoencoders in machine learning. In

this thesis, we propose a framework to study this process through the concepts of codepage and

codebook. Given a data set N and a space of codes F , an ϵ-codepage A is a subset of F that can

encode and then decode N with an acceptable error of ϵ. A codebook, in turn, is a function that

assigns each acceptable error ϵ a corresponding codepage in F . By extending the concept of the

external covering number for a totally bounded set to an arbitrary set, we establish the existence

criteria for both codepages and codebooks in more general settings.

We also explore the problem of optimality, specifically the task of identifying codepages or code-

books that minimize certain cost functions. We define the cost of a codebook as the integral of a

cost function applied to the individual codepages. Two types of cost functions are proposed for the

codepages. In the first type, the cost of each codepage is determined by the cost of the codes it

contains, which is represented by a Borel measure on the space of codes. For the case where N is

totally bounded, we provide criteria for the existence of an optimal codebook. Assuming further

that N belongs to a Heine-Borel space, we derive a formula for the minimum cost. In the second

type, the cost of each codepage takes into account the combined costs of encoding, decoding, and

the error in the encoding-decoding process. We define a topology on the set of codepages based

on the Hausdorff distance and use it to establish criteria for the existence of an optimal codebook

under this cost function. Throughout the thesis, we illustrate these concepts by applying them to

the MNIST dataset.
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CHAPTER 1

Introduction

1.1. Motivation from information theory and machine learning

1.1.1. Information Theory. Information Theory is a field that is chiefly concerned with the

mathematics of measuring, storing, and communicating information [7]. Examples of this include

transferring sound over telephone lines, cell reproduction processes based on DNA information, or

storing data on disks. At the core of both of these is an encoding-decoding process: we want to send

a collection of data through a channel by first using an ‘encoder’ to map the data points into a space

of ‘codes’, which will then be transferred to a receiver, where a ‘decoder’ reconstructs the original

data from the codes, i.e., mapping the codes to the original data space. For storing information this

means compressing data to a smaller size, then decompressing it when used. For communicating

information this means turning original data into a form that is better suited for communicating

over a noisy channel, i.e. one that has the potential to corrupt data traveling through it.

Figure 1.1. At the core of Information Theory is the process of encoding-
transmitting-decoding information.

Lossy compression. One form of data compression is called lossy compression. Suppose we

want to compress a data set (X,P ), where P is a probability measure representing the frequency

of data points in X. In lossy compression, the set E of codes has a smaller size than that of
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the source data X, and thus not all data points can be uniquely encoded, i.e. there is no 1-1

mapping from X to E when |X| > |E|. In this case, an alternative is to encode a subset S of X

with |S| ≤ |E|, while leaving the data points outside of S possibly without a code. We want the

probability that a data point without an associated code in E to be small. Formally, let δ ∈ [0, 1]

represents the risk factor of the compression process, i.e. the largest acceptable probability that

an original data point cannot be uniquely encoded. Notice that this is equivalent to dP (X,S) ≤ δ,

where dp is the symmetric distance defined in Definition 1.2.7. The compression process must

then guarantee that P (S) ≥ 1 − δ, and the set of codes E must have at least as many elements

as S to ensure that S is uniquely encoded. Consequently, there are many ways to encode X

with a risk factor δ. For each of those ways, the corresponding set of codes E can be thought

of as a ‘δ-codepage’, a set of codes that guarantee X can be encoded with risk factor δ. As an

example, suppose X∗ = {a, b, c, d, e}, P = {1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
16}. For δ = 0.125, hence P (S) ≥ 0.875,

S = X∗, {a, b, c}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e} are all possible subsets of X∗ that can be uniquely

encoded. If we choose a binary code, the corresponding 0.125-codepage for X∗ for those S is shown

in Table 1.1.

Table 1.1. Examples of 0.125-codepages for X.

S 0.125-codepage with binary codes

{a, b, c} {0, 1}
{a, b, c, d} {00, 01, 10, 11}
{a, b, c, e} {00, 01, 10, 11}
{a, b, d, e} {00, 01, 10, 11}
{a, b, c, d, e} {000, 001, 010, 100, 011}

Let Sδ be one with the smallest size among such sets S, i.e.

Sδ ∈ argmin{|S| : S measurable subsets of X,P (S) ≥ 1− δ}.

Notice that as δ decreases, the size of |Sδ| must necessarily increase. Specifically, for a finite set X,

the set Sδ can be constructed by progressively adding elements from X in order of their decreasing

probability. This process continues until the probability of S, P (S), satisfies the condition P (S) ≤

1− δ. In the case of the set X∗ constructed earlier, Table 1.2 illustrates the values of Sδ for various

choices of δ, providing a clearer view of how Sδ evolves with different values of δ.

2



Table 1.2. Relation between δ and Sδ.

δ Sδ P (Sδ) Some other possible S’s

1 ∅ 0 {b, c}, {a}, {a, b, c}, {b, c, d, e}
0.5 {a} 1

2 {a, c}, {b, c, d, e}, {a, b, e}
0.25 {a, b} 1

2 + 1
4 {a, b, e}, {a, b, c}, {c, d, e}

0.125 {a, b, c} 1
2 + 1

4 + 1
8 {a, b, c, d}

0.0625 {a, b, c, d} 1
2 + 1

4 + 1
8 + 1

16 {a, b, c, d, e}
0 {a, b, c, d, e} 1 None

For any set of data points X, the raw bit of content [7, Equation (4.15)] of X, H0(X) := log2 |X|

represents a lower bound for the number of yes-no questions that are guaranteed to identify an

element of X, and is used as a measurement of information content of X. For any δ, Hδ(X) :=

log2 |Sδ| is called the essential bit content [7, Equation (4.19)] of X.

Figure 1.2. Blue curve illustrates relation between δ and Hδ(X). Yellow, orange,
and red curves illustrate H0(S) for another set of possible S.

In general, since each codepage can only encode a subset of X up to a certain risk factor δ, to

encode a larger subset of X we need a “finer” codepage. Hence for any X it is natural to have a

’codebook’ which is a collection of codepages. We think of a ‘codebook’ as a formula that assigns

with risk factor an associated codepages. Since there are many possible codepages for each risk

factor δ, there are more than one possible codebooks.
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Noisy Channel Coding. One simple example of noisy channel coding is the repetition code.

Assume that we want to transmit a source message that consists entirely of numbers 0 and 1 over

a noisy channel. To represent the noise level of the channel, we let p ∈ [0, 1] be the probability that

the channel will flip the value of transmitted data either from 0 to 1, or 1 to 0. We first encode

the source message by a repetition code, where each digit is repeated N times. To decode the

transmitted message, a decoder would then look at the received message N digits at the time and

take a majority vote. Table 1.3 illustrates an example of repetition code for noisy channel coding

with the message ‘011001’, with N = 3.

Table 1.3. An example of repetition code for noisy channel coding with the mes-
sage ‘011001’, with N = 3.

Original message 0 1 1 0 0 1

Encoded message 000 111 111 000 000 111
Transmitted message 010 011 110 001 010 100
Decoded message 0 1 1 0 0 0

Assuming N is odd, by direct computation the error probability pE(N, p) can be computed as

pE(N, p) =
N∑

n=(N+1)/2

(
N

n

)
pn(1− p)N−n.

Figure 1.3. In this graph the x-axis is the number of repetitions N , and y-axis is
the error probability pE , for p = 0.1.
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Figure 1.3 shows that for any fixed p, as N increases, pE tends to decrease. Notice that this means

for any given acceptable error p∗E > 0, there are more than one repetition code (more than one

N) that guarantees the coding process satisfies the error term p∗E , i.e. pE(N, p) ≤ p∗E . Again,

the values N such that pE(N, p) ≤ p∗E represent the ‘p∗E-codepages’, i.e. the associated set of

codes must have length N times the length of the elements in the original source. The integer

N∗ = min{N : pE(N, p) ≤ p∗E} represents an ‘optimal codepage’, one that minimizes the necessary

length of the codes in the codepage. Any function p∗E 7→ N such that pE(N, p) ≤ p∗E represents a

‘codebook’, a formula for choosing a codepage for different error terms.

Autoencoder. [4] Similar ideas can also be found in Machine learning, in particular Autoencoder.

An autoencoder is an unsupervised neural network. Consider an original set of data that belongs

to a finite-dimensional metric space (X, d) and is equipped with a probability measure µ. An

autoencoder consists of a finite dimensional latent space Y and 2 parametrized functions: fθ : X →

Y (encoder), and gθ : Y → X(decoder).

Figure 1.4. Autoencoder.

In a simple autoencoder, the machine learns by adjusting the parameter θ in order to minimize

the expected difference between the original data points x and the reconstructed data gθ ◦ fθ(x);

EL
(
x, gθ ◦ fθ(x)

)
, where L is some loss function that measures the difference between the original
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and reconstructed data. In other words, we want to solve the problem

(1.1) argmin
θ

EL
(
x, gθ ◦ fθ(x)

)
.

The idea of autoencoder is that by restricting the latent space Y in some way, the machine is forced

to learn the deeper structure of the original data source rather than simply copying the original

data one-to-one. The most straightforward way of doing this is making dim(Y ) < dim(X), which

is called undercomplete autoencoder.

Similar to the examples of lossy compression and noisy channel coding, we observe an encoding-

decoding process with an error term that we want to minimize. One challenge in using an autoen-

coder is determining an appropriate dimension for the latent space Y . If the dimension of Y is too

small, the error term might be excessively large, leading to a poor reconstruction of the original

data. Conversely, if the dimension of Y is too large, the autoencoder may struggle to learn the

underlying structure of the data. For example, setting dim(Y ) = dim(X) would most likely result

in gθ ◦ fθ behaving just like the identity function. Thus, an interesting question arises: how do we

determine a suitable dim(Y ) that is neither too small nor too large? To this end, we may apply a

similar procedure discussed in lossy compression and noisy channel coding. We first set a limit for

the error, specifying ϵ > 0, and require that

argmin
θ

EL
(
x, gθ ◦ fθ(x)

)
≤ ϵ.

In other words, there exists a pair fθ : X → Y and gθ : Y → X such that EL
(
x, gθ ◦ fθ(x)

)
≤ ϵ.

Any Y where such a pair fθ and gθ exist is referred to as an ‘ϵ-codepage’, in a context similar to

those previously discussed. For any ϵ > 0 given, there are many such ‘ϵ-codepages’. Among them,

an optimal one minimizing a suitable cost function may be chosen as the latent space Y with the

minimum dimension. Also, since smaller ϵ typically gives “finer” codepages, we can consider a

collection of ‘codepages’, where each ϵ > 0 has an associated ‘ϵ-codepage’, forming a ‘codebook’.

Like using a dictionary, one may find out the ϵ-codepage in the codebook that best meets their

needs based on the desired error tolerance ϵ.

Ultimately, at the heart of these processes lies an encoding-decoding mechanism. Given any error

term ϵ, there is usually more than one way to encode the original source, i.e. more than one possible

‘codepage’. If we define a ‘codebook’ as a formula to assign for each error term an associated
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codepage, then there are possibly many such codebooks. As we also see in the previous example,

given their existence, we are also interested in finding an optimal codepage or codebook, i.e. one

that minimizes some cost functions. These are the questions that motivate the work in this thesis.

In other words, given an original data source and a space of codes, we sought to answer the following

questions:

(1) Given an error term ϵ > 0, does there exist a ‘codepage’, a set of codes that allow for the

encoding-decoding process of the original data source such that the error of the process is

smaller than ϵ? If such codepage exists, what are its properties?

(2) Does there exist a ‘codebook’, a formula that assigns for each error term its associated

codepage? If such codebook exists, what are its properties?

(3) Given some cost function, does there exist a codepage/codebook that minimizes this cost

function? If such optimal codepage/codebook exists, what are their properties?

Notice that the error term is calculated differently in the examples above. For lossy compression

and noisy channel coding, the error term is defined by the symmetric distance dP . Meanwhile, the

error term in autoencoder is EL
(
x, gθ ◦ fθ(x)

)
, with L being some loss function. If L is the metric

d on X, then the error term EL
(
x, gθ ◦ fθ(x)

)
is the L1 norm. Within the context of this thesis,

the error terms will be calculated with the L∞ distance.

1.2. Preliminaries

1.2.1. Cardinality. In chapter 2 we will examine the question of the existence of codepage

and codebook in the most general setting, one that imposes no additional conditions beyond the

basic definitions of the relevant concepts. Specifically, we will show that the criteria for the existence

of codepage are determined by counting the number of close balls with a fixed radius that covers

the data set. Since we do not assume the data set is totally bounded in this general case, the

number of such balls can be infinite. Similarly, the existence of a codebook is related to counting

a dense set, which, again, can also be infinite. Therefore, the concept of cardinality is applicable.

Recall that in set theory, cardinality is a concept that is used to measure the number of elements

in a set. For any two sets A and B, we use the expression A ≤c B to say that A has cardinal less

than or equal to B, i.e. there exists an injective map A 7→ B. The expression A =c B indicates A

and B has the same cardinal, i.e. there exists a bijective map A 7→ B.
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Theorem 1.2.1. [8, Theorem 2.26.(Schroeder-Bernstein)]. For any two sets A,B, if A ≤c B and

B ≤c A, then A =c B.

Definition 1.2.2. A cardinal assignment is a definite operation on sets A 7→ |A| which satisfies

(1) A =c |A|,

(2) if A =c B, then |A| = |B|,

(3) for each set E of sets, {|X| : X ∈ E} is a set.

The cardinal numbers, or cardinals, are the values of this assignment, i.e. κ is a cardinal number

if κ = |A|, for some set A.

Thus we can write |A| ≤ |B| to indicate A ≤c B, and |A| = |B| for A =c B. Recall also that the

Principle of Purity states that all mathematical objects are sets, including cardinal numbers.

Definition 1.2.3. Given a set X, a well ordering ≤ on X is a binary relation that satisfies the

following: For any x, y, z ∈ X :

(1) (Reflexivity) x ≤ x,

(2) (Transitivity) x ≤ y and y ≤ z ⇒ x ≤ z,

(3) (Antisymmetry) x ≤ y and y ≤ x ⇒ x = y,

(4) (Any 2 elements are comparable) Either x ≤ y or y ≤ x .

(5) (Every nonempty subset has a least element) Given a nonempty A ⊂ X, there exists an a∗ ∈ A

such that a∗ ≤ a, for all a ∈ A.

A set that admits a well-ordering is called a well-orderable set.

Theorem 1.2.4. [8, Theorem 9.16.] If κ and λ are non-zero, well-orderable cardinals and at least

one of them is infinite, then

κ+ λ = κ · λ = max{κ, λ}.

An important concept in Set Theory is the Axiom of Choice. A set S is a choice set for a family

of sets E if S ⊂
⋃
E , and for every X ∈ E , S

⋂
X is a singleton. The Axiom of Choice states that

every family of non-empty and pairwise disjoint sets admits a choice set. Accepting the Axiom of

Choice, we have the following important corollary.
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Corollary 1.2.1. [8, Corollary 9.17.] Suppose we accept the Axiom of Choice. For every indexed

family of sets (i 7→ κi)i∈I and every infinite κ, if |I| ≤ κ and for each i ∈ I, κi ≤ κ, then∑
i∈I κi ≤ κ.

The two following lemmas establish the concepts of infimum and supremum of sets of cardinalities.

Lemma 1.2.1. [8, Lemma 9.18.] There is a definite operation infc, such that for each non-empty

family E of well orderable sets, the value κ = infc(E) has the following properties:

(1) κ is a well-orderable cardinal number.

(2) For some A ∈ E , κ = |A|.

(3) For every B ∈ E , κ ≤ |B|.

(4) If κ′ is any cardinal that satisfies (1)-(3), then κ′ =c κ.

Lemma 1.2.2. [8, Lemma 9.20.] There is a definite operation supc, such that for each non-empty

family ϵ of well orderable sets, the value κ = supc(E) has the following properties:

(1) κ is a well-orderable cardinal number.

(2) For every A ∈ E , |A| ≤ κ.

(3) If B is well-orderable and for all A ∈ E , |A| ≤ |B|, then κ ≤ B.

(4) If κ′ is any cardinal that satisfies (1)-(3), then κ′ =c κ.

1.2.2. Covering number.

Definition 1.2.5. [11, Definition 3] (External covering number). Let (X, d) be a totally bounded

metric space. Given ϵ > 0, the external covering number σϵ(X) is the smallest number of points

x1, x2, x3, ..., xn such that

X ⊂
n⋃
i=1

B(xi, ϵ).

1.2.3. Compact-open topology.

Definition 1.2.6. (Compact-open topology). Let X,Y be two topological spaces, and C(X,Y )

denotes the set of all continuous maps from X to Y . The compact-open topology on C(X,Y ) is

generated by subsets of the following form

B(K,U) := {f ∈ C(X,Y ) : f(K) ⊂ U},

where K is a compact subset of X, and U is a compact subset of Y .
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If Y is a metric space, the compact-open topology is equivalent to the topology of compact conver-

gence.

Proposition 1.2.1. [6, Theorem 7.11] If Y is a metric space, fn converges to f in the compact-

open topology if and only if fn converges to f uniformly on any compact subset of X.

Suppose X is also a metric space, we say that a sequence of functions fn converges continuously

if for all convergent sequence xn in X, the sequence fn(xn) also converges. In the case of complex

functions, converging in the topology of compact convergence and converging continuously is one

and the same [9, Section 3.1.5]. Expanding on that idea, the following property will be useful.

Proposition 1.2.2. Let X,Y be two metric spaces, and C(X,Y ) denotes the set of all continuous

maps from X to Y . Suppose fn → f in the compact-open topology on C(X,Y ), and xn → x in X,

then fn(xn) → f(x) in Y .

Proof. The set S = {x, x1, x2, x3, ...} is sequentially compact, hence compact in the metric

space X. As fn → f in the compact-open topology, from Proposition 1.2.1, fn → f uniformly on

S. Combined with xn → x, fn(xn) converges to f(x). □

1.2.4. Distances between measures and sets.

1.2.4.1. Symmetric distance on measure space. Recall that for any two sets A,B,

A△B =
(
A/B

)⋃(
B/A

)
.

Definition 1.2.7. On a finite measure space (X,F , µ), we define the distance between A,B in F

as

dµ
(
A,B

)
:= µ

(
A△B).

This is called the Fréchet–Nikodym metric. It is a pseudometric on F [2, Section 1.12].

Proposition 1.2.3. dµ is a pseudometric on F .

Proof. For any two µ-measurable subsets A and B of X, dµ(A,B) = µ(A△B) = µ(B△A) =

dµ(B,A). Suppose C is another µ-measurable subset ofX, as A△B = (A△C)△(C△B) ⊂ (A△C)∪
10



(C△B),

dµ(A,B) = µ(A△B) = µ
(
(A△C)△(C△B)

)
≤ µ

(
(A△C) ∪ (C△B)

)
≤ µ

(
A△C

)
+ µ

(
C△B

)
= dµ(A,C) + dµ(C,B).

This shows dµ possesses symmetry and triangle inequality properties, thus it is a pseudometric. □

1.2.4.2. Wasserstein Distance. The error in the encoding-decoding process is defined as a dis-

tance. One such distance concept is called Wasserstein distance, which is a distance between

measures on the same metric space ( [10, Section 5.1]). For Ω ⊂ Rn, let P(Ω) be the collection of

all Borel probability measure on Ω. For p ≥ 1, we define

Pp(Ω) := {µ ∈ P(Ω) :

∫
Ω
|x|pdµ < +∞}.

We also define
∏
(µ, ν) to be the set of all Borel probability measures γ on Ω× Ω such that

γ(A× Ω) = µ(A), for all Borel set A in Ω; γ(Ω×B) = ν(B), for all Borel set B in Ω.

Wasserstein distance is then defined as follows.

Definition 1.2.8. For µ, ν ∈ Pp(Ω), we define the Wasserstein distance Wp between µ, ν as

Wp(µ, ν) :=

(
inf

γ∈
∏

(µ,ν)

{∫
|x− y|pdγ

}) 1
p

.

The Wasserstein Distance is a metric.

Proposition 1.2.4. [12, Theorem 7.3] For any p ≥ 1, the Wasserstein distance Wp defines a

metric on Pp(Ω).

1.2.4.3. Hausdorff Distance. Hausdorff distance is a concept of distance between subsets of a

metric space. Recall that in a metric space (X, d), the distance between a point x and a subset A

is defined as

d(x,A) := inf
a∈A

d(x, a).

The Hausdorff distance is defined as follows.
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Definition 1.2.9. Let (X, d) be a metric space. For any pair of non-empty subsets A,B of X, the

Hausdorff distance between A and B are defined as

dH(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

Figure 1.5. Hausdorff distance.

On the set of bounded subsets ofX, the Hausdorff distance is well-defined and finite. Unfortunately,

it does not define a metric. In particular, dH(A,B) = 0 does not necessary guarantee that A = B,

only that A = B. Hence, Hausdorff distance defines a metric on the space of non-empty, closed,

and bounded subsets of X. Still, on the space of non-empty, bounded subsets of a metric space, the

Hausdorff distance defines a pseudometric, i.e. it satisfies the symmetry and triangle inequality.

Such pseudometric is then sufficient to induce a topology on the space of bounded subsets of a

metric space. The following proposition summarizes these properties.

Proposition 1.2.5. [5] Let (X, d) be a non-empty metric space. On the space of non-empty

bounded subsets of X, the Hausdorff distance is well defined, finite, and satisfies the following

properties:

(1) For any A,B in S, dH(A,B) = 0 if and only if A = B;

(2) For any A,B in S, dH(A,B) = dH(B,A);

(3) For any A,B,C in S, dH(A,C) ≤ dH(A,B) + dH(B,C).

Consequently, the Hausdorff distance dH defines a pseudometric on the space of non-empty, bounded

subsets of X. Moreover, it defines a metric on the space of nonempty, close and bounded subsets

of X.
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One property of the Hausdorff distance is that for two sequentially compact sets, their Hausdorff

distance equals the distance between some two points in each set.

Proposition 1.2.6. Let A,B be two sequentially compact sets of a metric space (X, d). Then there

exists a∗ ∈ A and b∗ ∈ B such that

dH(A,B) = d(a∗, b∗).

Proof. Recall that

dH(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

Without loss of generality, suppose max{supa∈A d(a,B), supb∈B d(b, A)} = supa∈A d(a,B). Let an

be the minimizing sequence of d(a,B), i.e.

lim
n→∞

d(an, B) = sup
a∈A

d(a,B).

From sequentially compactness of A, an converges subsequently to some a∗ in A. From continuity

of d,

d(a∗, B) = lim
n→∞

d(an, B) = sup
a∈A

d(a,B).

Recall now that d(a∗, B) = infb∈B d(a
∗, b). Let bn be a minimizing sequence for d(a∗, b), i.e.

lim
n→∞

d(a∗, bn) = inf
b∈B

d(a∗, b).

From sequentially compactness of B, bn converges subsequently to some b∗ in B. From continuity

of d,

d(a∗, b∗) = lim
n→∞

d(a∗, bn) = inf
b∈B

d(a∗, b).

Thus,

d(a∗, b∗) = inf
b∈B

d(a∗, b) = d(a∗, B) = sup
a∈A

d(a,B)

= max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

= dH(A,B).

□
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1.2.5. Metric derivative and length of curve in a metric space.

Definition 1.2.10. Let (X, d) be a metric space. Given a curve γ : [a, b] → X, we denote its range

by Γ := γ([a, b]), and we define

Varb
′
a′ := sup

{n−1∑
i=1

d
(
γ(ti), γ(ti+1)

)
: a′ ≤ t1 < ... < tn ≤ b′

}
,

for every pair a′, b′ with a ≤ a′ ≤ b′ ≤ b. Varb
′
a′(γ) represents the length of the curve γ from γ(a′)

to γ(b′). We denote Varba(γ) as Var(γ). If Var(γ) <∞, we say that γ is rectifiable.

Definition 1.2.11. Given a curve γ : [a, b] → X, we define the metric derivative of γ at the point

t ∈ (a, b) as

|γ′|(t) := lim
h→0

d
(
γ(t+ h), γ(t)

)
|h|

.

Theorem 1.2.12. [1, Theorem 4.1.6.] Suppose γ : [a, b] → X is a Lipschitz curve. The metric

derivative exists at L1− almost every point in [a, b]. Moreover, it holds that

Var(γ) =

∫ b

a
|γ′|(t)dt.
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CHAPTER 2

Codepage and Codebook: General Set-up

This chapter formally introduces the concepts of codepage, codebook, and discusses their existence

in the most general setup. Section 2.1 describes the formal definition of codepage, codebook.

Section 2.2 illustrates the use of codebooks for compressing the MNIST dataset. Finally, section

2.3 discusses the criteria for the existence of codepage and codebook.

2.1. Definition of codepage and codebook

In this section, we formally define codepage and codebook.

Definition 2.1.1. Suppose N is a subset of a metric space (M,d), and F is a non-empty set.

Given ϵ ≥ 0, a set A ⊆ F is called an ϵ-codepage of N if there exist two functions:

f : N → A and g : A→M

such that d
(
g ◦ f(n), n

)
≤ ϵ for all n ∈ N .

If such a codepage exists, we say that F affords an ϵ-codepage for N .

Here, M represents the data space. N is the set of data we want to encode. F is the space of

codewords, and A is the set of codewords chosen from F for the coding of N . The function f is

called an encoder, and g is called a decoder. Namely, we first encode every element in N by a

codeword in A via the encoder f , and then decode it back to data in M via the decoder g, with the

requirement that the error, represented by the metric d, has to be within an acceptable range ϵ.

We also want to assign a proper term to the pair of functions (f, g) in Definition 2.1.1.

Definition 2.1.2. Let f : N → A and g : A→M . We say (f, g) is an ϵ-linkable pair of A if

d
(
g ◦ f(n), n

)
≤ ϵ, ∀n ∈ N.
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Remark 2.1.1. By definition, A being an ϵ-codepage means that A has at least one ϵ-linkable pair.

Equivalently, a pair (f, g) is ϵ-linkable if and only if

f−1(a) ⊂ B
(
g(a), ϵ

)
, ∀a ∈ A.

Every 0-codepage of N is called a perfect reconstruction of N . Note that if A is an ϵ-codepage of

N , then for any ϵ̃ ≥ ϵ, A is automatically an ϵ̃-codepage of N . In cases where perfect reconstruction

does not exist, the next best thing to hope for would be to find an ϵ− codepage, for small ϵ > 0.

This inspires the following definition.

Definition 2.1.3. A function A : (0,∞) → 2F is called a codebook of N if for every ϵ > 0, A(ϵ) is

an ϵ-codepage of N . If such a codebook exists, we say that F affords a codebook for N .

2.2. Constructing codepage and codebook for the MNIST dataset

In this section, we show a simple example of building a codebook for encoding the MNIST dataset.

The MNIST dataset is a collection of 60,000 images of handwritten numbers from 0 to 9. Each

image is in the form of a 28×28 pixel grayscale bounding box, where the value of each pixel ranges

from 0 (indicating black) to 255 (indicating white). Figure 2.1 shows some images taken from

MNIST.

Figure 2.1. Some images of handwritten numbers from MNIST.

Let M = [0, 1, ..., 255]28×28, then we consider N :=MNIST, which is a subset of M . We define a

metric dAve on N as

dAve(n1, n2) :=

∑28×28
i=1 |ni1 − ni2|
28× 28

.

Let AH = [0, 1, ..., 255]H for H ∈ {1, 2, ..., 28 × 28}. For m = 1, 2, ..., 28, we consider a mapping

fm : N → AH , where H = H(m) = [28m ]× [28m ]. This map partitions each MNIST image into m×m
16



blocks and then takes the average value of each block. More precisely,

fm(n)ij :=

∑m
h=1

∑m
p=1 n(mi+p)(mj+h)

m2
,

for each n = [nkl] ∈ N , 1 ≤ i ≤ [28m ], 1 ≤ j ≤ [28m ]. We also consider the mapping gm : AH → M

that expands each H ×H image in AH back to a 28× 28 image in M , by expanding each pixel in

the H ×H image into an m×m block with the same value. More precisely,

gm(a)ij :=


a[ i−1

m
]+1,[ j−1

m
]+1, if [

i−1
m ] + 1 ≤ [28m ], [ j−1

m ] + 1 ≤ [28m ],

0, otherwise.

Figure 2.2 displays two images of handwritten numbers 5 and 4 from MNIST, along with examples

of the reconstructed images applying gm ◦fm. Notice that as the dimension H increases the quality

of the reconstructed images improves.

Figure 2.2. Pictures of handwritten numbers 5 and 4 from MNIST dataset, along
with examples of the reconstructed images under the mapping gm ◦ fm. Here H =
H(m) represents AH , and m denotes the pair (fm, gm) used.

For each value ofm, Table A.1 shows the maximum values of dAve(n, gm◦fm(n)) and the Wasserstein

1 distance (Definition 1.2.8) among all elements n inside the MNIST. Based on this, Table A.2 and

A.3 display some possible ϵ-codepages corresponding to each range of ϵ. Table 2.1 and 2.2 illustrate

two examples of codebooks, based on dAve and the Wasserstein 1 distance, respectively.

In figure 2.3 we illustrate using the codebook in table 2.1 and 2.2 on an image from MNIST.

17



Table 2.1. An example of a codebookA(ϵ) := AHϵ . In the first column, the value of
ϵ’s shown are calculated based on dAve and are rounded up to 2 decimals. In the sec-
ond column, the corresponding Hϵ represents the ϵ-codepage AH = [0, 1, ..., 255]H .
In the third column, m’s represents the pairs (fm, gm), as defined above.

ϵ Hϵ Possible m’s for Hϵ

[98.21,∞) 1 15 ≤ m ≤ 28
[86.92, 98.21) 4 10 ≤ m ≤ 14
[82.35, 86.01) 9 8, 9
[58.78, 82.35) 16 6, 7
[53.47, 58.78) 25 5
[49.68, 53.47) 49 4
[37.61, 49.68) 81 3
[24.95, 37.61) 196 2
[0, 24.95) 784 1

Table 2.2. An example of a codebook A(ϵ) := AHϵ . In the first column, the
value of ϵ’s shown are calculated based on the Wasserstein distance W1 and are
rounded up to 2 decimals. In the second column, the corresponding Hϵ represents
the ϵ-codepage AH = [0, 1, ..., 255]H . In the third column, m’s represents the pairs
(fm, gm), as defined above.

ϵ Hϵ Possible m’s for Hϵ

[101.72,∞) 1 15 ≤ m ≤ 28
[97.12, 101.72) 4 10 ≤ m ≤ 14
[90.62, 97.12) 9 8, 9
[58.78, 90.62) 16 6, 7
[53.47, 58.78) 25 5
[49.68, 53.47) 49 4
[37.61, 49.68) 81 3
[24.95, 37.61) 196 2
[0, 24.95) 784 1
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Figure 2.3. Illustration of applying the codebook described in table 2.1 and 2.2 to
a handwritten image of the number 5 from MNIST.

2.3. Existence of codepages and codebook

Given N ⊆ M and F as above, we want to explore the existence of ϵ-codepage and codebooks of

N . We begin with one simple example of when a codepage or codebook exists. Recall that for a

set X, |X| represents the cardinality of X.

Proposition 2.3.1. If |F | ≥ |N |, then N has a 0-codepage A ⊆ F , and the function A0 : (0,∞) →

2F , A0(ϵ) = A for all ϵ ∈ (0,∞), is a codebook for N .

Proof. Since |F | ≥ |N |, by the definition of cardinality, there exists an injective function

φ : N → F . Let A = φ(N). Consider f = φ and g = (φ|A)−1. For every n ∈ N , we have

g ◦ f(n) = (φ−1) ◦φ(n) = n and d
(
g ◦ f(n), n

)
= d(n, n) = 0. As a result, A is a 0-codepage of N .

Since A is also an ϵ-codepage of N for all ϵ > 0, A0, as described in the proposition, is a (trivial)

codebook of N . □

The previous proposition suggests that the criteria for the existence of either codepage or codebook

involve the comparison between the cardinality of the space of codewords F and some subset of

the data space. First, we need some definitions. Recall the concept of external covering number
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for a totally bounded set (Definition 1.2.5). To expand this concept to any set, we introduce the

following definitions.

Definition 2.3.1. We define the following terms:

• For any set N , we formally denote σϵ(N) by

(2.1) σϵ(N) := inf c{|K| : K ⊆M such that N ⊆
⋃
k∈K

B(k, ϵ)}.

• Suppose A and B are subsets of a metric space M . We say that B is dense with respect

to A if A ⊂ B, the closure of B. With that, for any subset N of a metric space (M,d),

we denote the notion σ(N) as follows:

σ(N) := inf c{|N ′| : N ′ ⊂M, N ′ is dense with respect to N}(2.2)

= inf c{|N ′| : N ′ ⊂M, N ⊂ N ′ ⊂M}.

Remark 2.3.1. For any set N fixed, σϵ(N) can be thought of as a non-decreasing function of ϵ, in

the sense that for any 0 ≤ ϵ1 ≤ ϵ2, σϵ1(N) ≥ σϵ2(N).

Accepting the Axiom of Choice, we obtain the following criterion for the existence of codepage.

Theorem 2.3.2 (Existence Criterion for Codepage). Accepting the Axiom of Choice. Given ϵ > 0,

a subset A of F is an ϵ-codepage of N if and only if |A| ≥ σϵ(N). Therefore, an ϵ-codepage of N

exists in F if and only if

|F | ≥ σϵ(N).

Proof. ‘⇒’: Suppose A is an ϵ-codepage of N . By the definition of ϵ-codepage, there exist

two functions f : N → A and g : A → M such that d
(
g ◦ f(n), n

)
≤ ϵ for all n ∈ N . As a result,

{B
(
g[f(n)], ϵ

)
: n ∈ N} is a covering of N . From the definition of σϵ(N) and Lemma 1.2.1, this

implies

σϵ(N) ≤ |{g[f(n)] : n ∈ N}| ≤ |{f(n) : n ∈ N}| ≤ |A| ≤ |F |.

‘ ⇐’: Suppose |F | ≥ σϵ(N). Then there exists a subset Ñ ⊆ M with |Ñ | ≤ |F | and {B(x, ϵ) : x ∈

Ñ} covers N . Thus, there exists an injective map φ : Ñ → F . Define A = φ(Ñ), and g = φ−1. f

is defined as follows: For each n in N,n belong to a ball B(x, ϵ), for some x ∈ Ñ , and we use the
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axiom of choice to define f(n) = φ(x). Then, for each n in N , g ◦ f(n) = φ−1 ◦ φ(x) = x, and so

d
(
g ◦ f(n), n

)
= d(n, x) ≤ ϵ. This shows A is indeed an ϵ-codepage of N . □

Next we prove an existence criterion for codebook.

Theorem 2.3.3 (First Existence Criterion for Codebook). Accepting the Axiom of Choice. F

affords a codebook for N if and only if |F | ≥ supc{σϵ(N) : ϵ > 0}.

Proof. F affords a codebook for N if and only if, for all ϵ > 0, F affords an ϵ-codepage.

This is equivalent to the condition that for all ϵ > 0, |F | ≥ σϵ(N). This, in turn, is equivalent to

|F | ≥ supc{σϵ(N) : ϵ > 0}. □

One example of a case where a codebook exists is when the dataset N is totally bounded. In this

case, any infinite set F can afford a codebook.

Corollary 2.3.1. Suppose N is totally bounded, and F is an infinite set, then F affords a codebook

of N .

Proof. Since N is totally bounded, the function σϵ(N) is an integer-valued decreasing function

of ϵ. So,

|F | ≥ |N| ≥ sup
ϵ>0

cσϵ(N).

Thus, by Theorem 2.3.3, there exists a codebook of N in F . □

Accepting the Axiom of Choice again, we obtain the equality between σ(N)and supc{σϵ(N) : ϵ > 0}

for any set N .

Proposition 2.3.2. Accepting the Axiom of Choice, for any given N it holds that

σ(N) = sup
ϵ>0

cσϵ(N).

Proof. We first note that for any N ′ ⊆ M dense with respect to N and any ϵ > 0, it holds

that {B(x, ϵ) : x ∈ N ′} covers N . Thus, |N ′| ≥ σϵ(N) for every N ′. By definition of σ(N) this

implies that σ(N) ≥ σϵ(N) for every ϵ > 0. From Lemma 1.2.2, σ(N) ≥ supc{σϵ(N) : ϵ > 0}.

We now claim that σ(N) ≤ supc{σϵ(N) : ϵ > 0} and prove it in two cases:

Case 1. supc{σϵ(N) : ϵ > 0} = m is finite: For any ϵ > 0, σϵ(N) ≤ m. Therefore, there exists a

set Kϵ ⊆ M with |Kϵ| ≤ m such that N ⊆
⋃
k∈Kϵ

B(k, ϵ). We claim that N has at most
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m elements. Indeed, towards a contradiction, suppose N contains at least m+ 1 distinct

points {n1, ..., nm+1}. By the pigeonhole principle, at least two elements ofN are contained

in the same ball B(k, ϵ) for some k ∈ Kϵ. This is impossible when ϵ <
mini,j d(ni,nj)

2 . As a

result, since N is also dense in itself, we have

sup
ϵ>0

cσϵ(N) ≥ |N | ≥ σ(N).

Case 2. supc{σϵ(N) : ϵ > 0} is infinite: For any positive integer p, since supc{σϵ(N) : ϵ > 0} ≥

σ 1
p
(N), by the definition of σ 1

p
and Lemma 1.2.1 there exists a set Kp ⊂ M such that

{B(k, 1p) : k ∈ Kp} covers N , and supc{σϵ(N) : ϵ > 0} ≥ |Kp|. By Corollary 1.2.1,

sup
ϵ>0

cσϵ(N) ≥
∑
p∈Z+

|Kp| ≥ |
⋃
p∈Z+

Kp|.

As
⋃
p∈Z+ Kp is dense with respect to N , |

⋃
p∈Z+ Kp| ≥ σ(N), and we conclude that

supc{σϵ(N) : ϵ > 0} ≥ σ(N).

□

Combining Theorem 2.3.3 and Proposition 2.3.2 gives us a second criterion for the existence of

codebook.

Theorem 2.3.4 (Second Existence Criterion for Codebook). Accepting the Axiom of Choice, for

any given N , a set F affords a codebook for N if and only if

|F | ≥ σ(N).

Remark 2.3.2. We illustrate the behavior of σϵ(N) and σ(N) for finite and infinite cases in several

simple examples. Suppose M = R, equipped with the usual Euclidean metric.

• Suppose N = [0, 1]. In this case, a close ball with radius ϵ is a close interval with length 2ϵ. As

⌈ 1
2ϵ⌉ = inf{k ∈ N : k · 2ϵ ≥ 1}, σϵ(N) = ⌈ 1

2ϵ⌉. From Proposition 2.3.2,

σ(N) = sup
ϵ>0

cσϵ(N) = sup
ϵ>0

c⌈
1

2ϵ
⌉ = ℵ0,

where ℵ0 is the countably infinite cardinality. Indeed, as the set Q
⋂
[0, 1] is countable and dense in

[0, 1], and no finite sets are dense in [0, 1], it follows from the definition of σ (Definition 2.2) that

σ(N) = ℵ0.
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• Suppose N = M . Since N is unbounded, for any ϵ > 0, we require at least a countably infinitely

many close intervals with length 2ϵ to cover N . Thus, for any ϵ > 0, σϵ(N) = ℵ0. From Proposition

2.3.2,

σ(N) = sup
ϵ>0

cσϵ(N) = sup
ϵ>0

cℵ0 = ℵ0.

Indeed, as the set Q, which is countable, is dense in N = M = R, and no finite sets are dense in

R, again from the definition of σ, σ(N) = ℵ0.

• Suppose M = N = L2[−π, π], equipped with the L2 metric. As
{∑K

k=−K cke
ikx : ck ∈ Q,K ∈ N

}
is dense in L2[−π, π], and no finite set is dense in L2[−π, π],

σ(N) =
∣∣∣{ K∑
k=−K

cke
ikx : ck ∈ Q,K ∈ N

}∣∣∣ = ℵ0.

From Proposition 2.3.2, supc{σϵ(N) : ϵ > 0} = σ(N) = ℵ0. Thus, for any ϵ > 0, σϵ(N) ≤ ℵ0. On

the other hand, since N is unbounded, for any ϵ > 0, no finite set of close balls of radius ϵ can

cover L2[−π, π]. Consequently, σϵ(N) = ℵ0, for any ϵ > 0.

Indeed, suppose ϵ > 0 is given. Again as
{∑K

k=−K cke
ikx : ck ∈ Q,K ∈ N

}
is dense in L2[−π, π],

the set of close balls of the formB
(

K∑
k=−K

ckeikx, ϵ

)
: ck ∈ Q,K ∈ N


does cover L2[−π, π]. As the cardinality of

{∑K
k=−K cke

ikx : ck ∈ Q,K ∈ N
}

is ℵ0, σϵ(N) = ℵ0.
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CHAPTER 3

Optimal Codepage and Codebook: First-Type Cost Function

In Chapter 2, we provide the formal definitions of codepage and codebook, and discuss their prop-

erties in a general context. In Chapters 3 and 4, we explore the existence of optimal codepages

and codebooks—i.e., those that minimize specific cost functions. Chapter 3 considers a simple

cost function where the cost on each codepage only takes into account the cost of the codes used.

In section 3.1, we define the cost function C(A) on codebook and establish the general existence

criteria for this cost function (Theorem 3.1.2). In section 3.2 we simplify these existence criteria in

the case data set N is totally bounded. Assuming also that data space M is a Heine-Borel metric

space, in section 3.3 we derive a formula for the minimum C(A). Section 3.4 then briefly discusses

the case N not totally bounded.

Throughout Chapter 3, we continue to use the notations introduced in Definition 2.1.1.

3.1. Cost function and existence of optimal codebook

We begin this section with the definition of a cost function.

Definition 3.1.1. Given a Borel measure µ on the metric space F and a Borel measure ρ on

(0,∞), a map A : (0,∞) → 2F is called a (µ, ρ)-codebook if each A(ϵ) is a µ-measurable ϵ-codepage

of N in F , and µ(A(ϵ)) is a ρ-measurable function of ϵ.

Let Ω be the collection of all (µ, ρ)-codebooks. For any A ∈ Ω, define its cost by

C(A) :=

∫ ∞

0
µ
(
A(ϵ)

)
dρ(ϵ).

We want to consider the minimization problem

(3.1) min
A∈Ω

C(A).

The optimal codebooks are therefore those that solve Problem (3.1).
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Lemma 3.1.1. Suppose the minimization problem

min{µ(A) : A is a µ-measurable ϵ-codepage of N in F}

has a solution A∗(ϵ) for both ϵ = ϵ1, ϵ2 with 0 < ϵ1 ≤ ϵ2, then µ
(
A∗(ϵ1)

)
≥ µ

(
A∗(ϵ2)

)
.

Proof. By Theorem 2.3.2, a µ-measurable subset A of F is an ϵ-codepage if and only if

|A| ≥ σϵ(N). By Remark 2.3.1, when 0 < ϵ1 ≤ ϵ2, we have σϵ1(N) ≥ σϵ2(N). Consequently,

µ
(
A∗(ϵ1)

)
= min{µ(A) : A is a µ-measurable ϵ1-codepage of N in F}

= min{µ(A) : A is a µ-measurable and |A| ≥ σϵ1(N)}

≥ min{µ(A) : A is a µ-measurable and |A| ≥ σϵ2(N)}

= µ
(
A∗(ϵ2)

)
.

□

The following is the existence criteria for Problem (3.1) in a general setting.

Theorem 3.1.2. Suppose for ρ-a.e. ϵ > 0, the minimization problem

(3.2) min{µ(A) : A is a µ-measurable ϵ-codepage of N in F}

has a solution. Let A∗ be a (µ, ρ)-codebook.

(a) If A∗(ϵ) is a solution to (3.2) for ρ-a.e. ϵ > 0, then A∗ is a solution to the minimization

Problem (3.1).

(b) If A∗ is a solution to the minimization Problem (3.1) with C(A∗) finite, then A∗(ϵ) is a

solution to (3.2) for ρ-a.e. ϵ > 0.

Proof. (a) Suppose A∗(ϵ) is a solution to (3.2) for ρ-a.e. ϵ > 0. That is, for ρ-a.e. ϵ > 0,

A∗(ϵ) ∈ argmin{µ(A) : A is a µ-measurable ϵ-codepage of N in F}.

By Lemma 3.1.1, A∗(ϵ) is a non-increasing function of ϵ on (0,∞) ρ−a.e. and thus it is a (µ, ρ)-

codepage. By the µ-minimality of each A∗(ϵ), it follows that A∗ is a C-optimal codebook.
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(b) On the other hand, suppose A∗ is solution to (3.1). By assumption, one may construct a

(µ, ρ)-codepage A∗∗ such that A∗∗(ϵ) is a solution to (3.2) for ρ-a.e. ϵ > 0. Thus, 0 ≤ µ
(
A∗∗(ϵ)

)
≤

µ
(
A∗(ϵ)

)
. Note that when C(A∗) < +∞,

C(A∗∗) =

∫ ∞

0
µ
(
A∗∗(ϵ)

)
dρ(ϵ) ≤

∫ ∞

0
µ
(
A∗(ϵ)

)
dρ(ϵ) = C(A∗) ≤ C(A∗∗).

This implies that for ρ-a.e. ϵ > 0,

µ
(
A∗(ϵ)

)
= µ

(
A∗∗(ϵ)

)
.

That is, A∗(ϵ) is a solution to (3.2) for ρ-a.e. ϵ > 0. □

Remark 3.1.1. Theorem 3.1.2 illustrates that in the case (3.2) has solution for ρ − a.e., solving

(3.1) reduces to solving (3.2). From Theorem 2.3.2, solving (3.2) is equivalent to solving

(3.3) min{µ(A) : A ⊆ F is µ-measurable with |A| ≥ σϵ(N)}.

This leads us to consider the following Problem

(3.4) min{µ(A) : A ⊆ F is µ-measurable with |A| ≥ K},

for some cardinality K.

3.2. The case of totally bounded data set

We first consider the case when N is totally bounded, i.e. σϵ(N) is finite for any ϵ > 0. Note that

since µ is Borel on the metric space F , all singletons of F are µ-measurable. As σϵ(N) is finite,

based on remark 3.1.1 we are want to solve (3.4) when K is finite.

Proposition 3.2.1. If K is finite, Problem (3.4) has a solution if and only if there exists a subset

A∗ = {a1, ..., aK} ⊆ F such that

(3.5) max{µ({ai}) : i = 1, 2, · · · ,K} ≤ inf{µ({a′}) : a′ ∈ F \A∗},

in which case A∗ is a solution to (3.4).

Proof. Firstly, suppose such an A∗ exists, i.e. A∗ = {a1, ..., aK} with µ({a1}) ≤ µ({a2}) ≤

... ≤ µ({aK}) ≤ µ({a′}) for all a′ ∈ F \ A∗. Since µ is a Borel measure, A∗ is µ-measurable.
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For any A ⊂ F with |A| ≥ K, there exists a subset A′ ⊆ A with |A′| = K. Suppose A′ =

{a′1, ..., a′p, a′p+1, ..., a
′
K} with {a′1, ..., a′p} = A∗ ∩A′ and {a′p+1, ..., a

′
K} ⊂ F \A∗. Then,

µ(A∗) =

p∑
i=1

µ({ai}) +
K∑

i=p+1

µ({ai}) ≤
p∑
i=1

µ({a′i}) +
K∑

i=p+1

µ({a′i}) = µ(A′) ≤ µ(A).

This shows that A∗ is a solution for (3.4).

On the other hand, towards a contradiction, we assume that A∗ = {a1, ..., aK} ⊂ F is a solution to

(3.4) but does not satisfy (3.5). That is, there exists a point ai ∈ A∗ and a point a′ ∈ F \A∗ such

that µ({a′}) < µ({ai}). Set A = (A∗ \ {ai}) ∪ {a′}. Then,

µ(A) = µ(A∗)− µ({ai}) + µ({a′}) < µ(A∗),

a contradiction to the optimality of A∗. This shows that any solution to (3.4) must satisfy (3.5). □

Corollary 3.2.1. Suppose N is totally bounded. If (3.2) has no solution at ϵ = ϵ∗ > 0, then it

also has no solution for any 0 < ϵ < ϵ∗.

Proof. Towards a contradiction, assume that for some positive ϵ < ϵ∗, (3.2) has a solution.

From Proposition 3.2.1, this implies the existence of a set Aϵ = {a1, ..., aσϵ} ⊂ F with µ({a1}) ≤

µ({a2}) ≤ ... ≤ µ({aσϵ}) ≤ µ({a′}) for all a′ ∈ F \ Aϵ. As ϵ∗ > ϵ, σϵ∗ ≤ σϵ. Hence µ({a1}) ≤

µ({a2}) ≤ ... ≤ µ({aσϵ∗}) ≤ µ({a′}) for all a′ ∈ F \Aϵ∗ . This then implies that the set {a1, ..., aσϵ∗}

solves (3.2) for ϵ = ϵ∗, a contradiction. □

The following lemma will help simplify Theorem (3.1.2) under some conditions, which will be helpful

in solving Problem (3.1).

Lemma 3.2.1. Suppose N is totally bounded and (3.1) has a solution with finite C-cost, then for

any ϵ > 0 with ρ
(
(0, ϵ)

)
> 0, (3.2) has a solution.

Proof. Let A∗ be a minimizer for (3.1) with C(A∗) < ∞. Towards a contradiction, suppose

there exists an ϵ∗ > 0 for which ρ
(
(0, ϵ∗)

)
> 0 but (3.2) has no solution. From Corollary (3.2.1),

there is also no solution for (3.2) for any ϵ ∈ (0, ϵ∗).

Let 0 < ϵ0 < ϵ∗ be small enough so that ρ([ϵ0, ϵ
∗)) > 0. Let {ϵ0, ..., ϵH = ϵ∗} be a partition of

the interval [ϵ0, ϵ
∗] so that σϵ(N) is constant on each subinterval (ϵk, ϵk+1) for k = 0, 1, · · · , H − 1.

27



Since ρ([ϵ0, ϵ
∗)) > 0, without loss of generality, we may assume that ρ

(
[ϵ0, ϵ1)

)
> 0. Note that since

σϵ(N) is a constant on (ϵ0, ϵ1), the value

τ := inf{µ(A) : A ⊆ F is µ-measurable with |A| ≥ σϵ(N)}

is independent of the choice of ϵ ∈ (ϵ0, ϵ1). For each ϵ ∈ (ϵ0, ϵ1), since (3.2) has no solution at ϵ, we

have µ(A∗(ϵ)) > τ . Let {Ak}∞k=1 be a sequence of µ-measurable subsets in F with |Ak| ≥ σϵ(N)

for ϵ ∈ (ϵ0, ϵ1) and {µ(Ak)} is a decreasing sequence with limit τ . Also, since (3.2) has no solution

at ϵ0, there exists a µ-measurable subset A0 with |A0| ≥ σϵ0(N) and µ(A0) < µ(A∗(ϵ0)). For each

k, consider the (µ, ρ)-codebook Ak given by

Ak(ϵ) :=


A0, ϵ = ϵ0,

Ak, ϵ ∈ (ϵ0, ϵ1),

A∗(ϵ), otherwise.

Note that,

C(A∗)− C(Ak) =

∫
[ϵ0,ϵ1)

(
µ(A∗(ϵ))− µ(Ak(ϵ))

)
dρ

=

∫
(ϵ0,ϵ1)

(
µ(A∗(ϵ))− µ(Ak)

)
dρ+

(
µ(A∗(ϵ0))− µ(A0)

)
ρ({ϵ0}).

By the Monotone Convergence Theorem,

lim
k→∞

(
C(A∗)− C(Ak)

)
=

∫
(ϵ0,ϵ1)

(
µ(A∗(ϵ))− τ

)
dρ+

(
µ(A∗(ϵ0))− µ(A0)

)
ρ({ϵ0}) > 0,

because ρ([ϵ0, ϵ1)) > 0, µ(A∗(ϵ0)) > µ(A0) and µ(A∗(ϵ)) > τ on (ϵ0, ϵ1). As a result, when k is

large enough, C(A∗) > C(Ak), a contradiction to the minimality of A∗. □

Using Lemma 3.2.1, in the case where ρ satisfies ρ
(
(0, ϵ)

)
> 0 for any ϵ > 0, Theorem 3.1.2 can be

simplified as follow.

Theorem 3.2.1. Suppose N is totally bounded and ρ
(
(0, ϵ)

)
> 0 for any ϵ > 0. Let A∗ be a

(µ, ρ)-codebook.

(a) If A∗(ϵ) is a solution to (3.2) for ρ-a.e. ϵ > 0, then A∗ is a solution to the minimization

problem (3.1).
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(b) If A∗ is a solution to the minimization problem (3.1) with C(A∗) finite, then A∗(ϵ) is a

solution to (3.2) for ρ-a.e. ϵ > 0.

The next theorem then solves Problem (3.1) for the case N totally bounded.

Theorem 3.2.2. Suppose N is totally bounded and ρ
(
(0, ϵ)

)
> 0 for any ϵ > 0. Suppose also there

exists a (µ, ρ)-codebook A such that C(A) is finite. Then the minimization problem (3.1) has a

solution if and only if there exists a µ-measurable subset A∗ of F with |A∗| = σ(N) such that

(3.6) sup{µ({a}) : a ∈ A∗} ≤ inf{µ({a′}) : a′ ∈ F \A∗}.

Proof. From Theorem 3.2.1, C(A) admits a minimizer in Ω if and only if for ρ−a.e. ϵ > 0,

Problem (3.3) has a solution. As N is totally bounded, σϵ(N) < ∞ for any ϵ > 0. As ϵ ↓ 0,

σϵ(N) ↑ supc{σϵ(N) : ϵ > 0} = σ(N) , and we consider two cases:

• The case σ(N) < ℵ0: From the proof of Case 1 in Proposition 2.3.2, it follows that

sup
ϵ>0

cσϵ(N) = |N | = σ(N) <∞.

Since each σϵ(N) is integer-valued, there exists an ϵ′ > 0 such that σϵ(N) = σ(N) = |N |

for all ϵ ∈ (0, ϵ′). Now, suppose Problem (3.1) has a solution. By Theorem 3.2.1 and

Remark 3.1.1, Problem (3.3) has a solution for all ϵ > 0. Since ρ
(
(0, ϵ′)

)
> 0, for at least

one ϵ∗ ∈ (0, ϵ′), (3.3) has a solution. By Proposition 3.2.1, it follows that there exists an

A∗ ⊂ F with |A∗| = σϵ∗(N) = σ(N) that satisfies (3.6). Conversely, suppose there exists

an A∗ = {a1, ..., aσ(N)} ⊆ F satisfying (3.6). Without loss of generality, we may assume

that

µ({a1}) ≤ µ({a2}) ≤ ... ≤ µ({aσ(N)}) ≤ µ({a′}),

for any a′ ∈ F \A∗. For any ϵ > 0, let A∗(ϵ) := {a1, ..., aσϵ(N)}, which is a Borel and hence

µ-measurable subset of F . Since σϵ(N) ≤ σ(N), it follows that A∗(ϵ) satisfies (3.5), and

hence is a minimizer for min|A|≥σϵ(N) µ(A) by Proposition 3.2.1. Theorem 3.2.1 then tells

us that C(A) indeed has a minimizer A∗(ϵ) for ϵ > 0.

• The case σ(N) = ℵ0: Assume that (3.1) has a solution. From Proposition 3.2.1, for (3.3)

to admit a solution, we need the existence of a set Aϵ = {a1, a2, ..., aσϵ(N)} such that

µ({a1}) ≤ µ({a2}) ≤ ... ≤ µ({aσϵ(N)}) ≤ µ({a′}),∀a′ ∈ F −Aϵ. As ϵ ↓ 0, σϵ(N) → σ(N) =
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|N|, and we obtain the set A∗ =
⋃
ϵ>0Aϵ, with |A∗| = |N|, and A∗ satisfies (3.6).

Conversely, suppose there exists an A∗ = {a1, a2, a3, ...} such that µ({ai}) ≤ µ({ai+1}),

∀i ∈ N, and µ({ai}) ≤ µ({a′}), for any i ∈ N and any a′ ∈ F \ A∗, then for any ϵ > 0,

{a1, ..., aσϵ(N)} is a minimizer for (3.3). Theorem 3.2.1 now tells us that C(A) indeed has

a minimizer.

□

Remark 3.2.1. As shown in the following example, the existence of a µ-measurable subset A∗ of

F , with |A∗| = σ(N) and satisfying condition (3.6), depends on the choice of the measure µ on F .

Let M = N = {n1, n2}, and define a metric dM on M such that dM (n1, n2) = 1. Let

F =
{1
k
: k = 1, 2, 3, ...

}
∪ {0}.

Note that σϵ(N) = 1 for any ϵ ≥ 1 and σϵ(N) = 2 for any 0 < ϵ < 1, and thus σ(N) = 2.

(a) Let µ be a measure on F such that µ(a) = a2 for any a ∈ F . For any set A ⊂ F with

|A| = 2, it holds that

sup{µ({a}) : a ∈ A} > 0 = inf{µ({a′}) : a′ ∈ F \A}.

Thus, no subset A of F satisfies both |A| = σ(N) = 2 and condition (3.6).

(b) Let µ be the counting measure on F . Then, for any set A ⊂ F with |A| = 2, it holds that

sup{µ({a}) : a ∈ A} = 1 = inf{µ({a′}) : a′ ∈ F \A}.

Thus, every subset A of F with |A| = σ(N) = 2 also satisfies condition (3.6).

3.3. A formula for the minimum cost in Heine-Borel data space

The following theorem establishes a formula for the minimum value of C(A) in the case M is

Heine-Borel metric space.

Theorem 3.3.1. SupposeM is a Heine-Borel metric space, ρ is a measure on [0,∞) with ρ
(
(0, ϵ)

)
>

0 for all ϵ > 0 and ρ({0}) = 0. Also, suppose N is totally bounded and let {ϵi}Pi=1 be the correspond-

ing jump-discontinuity points, listed in decreasing order, of the right-continuous function σϵ(N) on

ϵ ∈ (0,∞) with P ∈ N ∪ {∞}. If (3.1) has a solution A∗ with C(A∗) < ∞, then there exists a
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subset A∗ = {ai}σ(N)
i=1 of F with {µ({ai})}σ(N)

i=1 increasing, and

µ({ai}) ≤ inf{µ(a′) : a′ ∈ F \A∗},∀i = 1, 2, · · · , σ(N);

such that the minimum value of C(A) is

min
A∈Ω

C(A) =

P+1∑
i=1

ρ([ϵi, ϵi−1)
) Ki∑
j=1

µ(aj)

 ,

where ϵ0 = ∞, Ki := σϵi(N) for each 1 ≤ i ≤ P and KP+1 = σ(N), ϵP+1 = 0 when P is finite.

First, we need the following proposition, which also gives us more insight into σϵ(N) as a function

of ϵ.

Proposition 3.3.1. Suppose M is a Heine-Borel metric space and N is totally bounded. The

function ϵ→ σϵ(N) is right continuous.

Proof. For any fixed ϵ > 0, since N is totally bounded, σϵ(N) < +∞. For ease of notation,

we denote K := σϵ(N). By the definition of σϵ(N), the collection of

Aϵ :=
{
(x1, ..., xK) ∈MK : N ⊆

K⋃
i=1

B(xi, ϵ)
}

is non-empty. We claim that Aϵ is a bounded and closed subset in the Heine-Borel space Mk :=

M ×M × · · · ×M .

• To prove Aϵ is bounded, we first fix an (x∗1, ..., x
∗
K) ∈ Aϵ. Let (x1, ..., xK) be another

point in Aϵ. If there is an xi such that no points of N is covered by B(xi, ϵ), the set

{B(x1, ϵ), ..., B(xK , ϵ)} \ {B(xi, ϵ)} covers N , and thus σϵ(N) ≤ K − 1 < K, a contra-

diction. Therefore, for all i ∈ {1, ...,K}, there exists an n ∈ N such that d(xi, n) ≤ ϵ.

As {B(x∗1, ϵ), ..., B(x∗K , ϵ)} covers N , for some x∗j , d(x
∗
j , n) ≤ ϵ, and thus d(xi, x

∗
j ) ≤

d(xi, n) + d(n, x∗j ) ≤ 2ϵ. As this is true for all xi, and (x∗1, ..., x
∗
k) is fixed, Aϵ is indeed

bounded.

• To prove Aϵ is closed, suppose {(xi1, ..., xiK)} is a sequence in Aϵ that converges to some

(x∗1, ..., x
∗
K). Given any point n ∈ N , and any i ∈ N, as {B(xi1, ϵ), ..., B(xiK , ϵ)} covers N ,
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min{d(xi1, n), ..., d(xiK , n)} ≤ ϵ for all i ∈ N. Therefore,

min{d(x∗1, n), . . . , d(x∗K , n)} = min{ lim
i→∞

d(xi1, n), . . . , lim
i→∞

d(xiK , n)}

= lim
i→∞

min{d(xi1, n), . . . , d(xiK , n)} ≤ ϵ.

As this is true for all n inN , N is covered by {B(x∗1, ϵ), ..., B(x∗K , ϵ)}, and thus (x∗1, ..., x
∗
K) ∈

Aϵ. This shows that Aϵ is closed.

As Aϵ is closed and bounded in the Heine-Borel metric space MK , it is compact.

We now fix an H ∈ N such that for some ϵ > 0, σϵ(N) = H, and let ϵ∗ = inf{ϵ′ > 0 : σϵ′(N) = H}.

As the function ϵ→ σϵ(N) is a decreasing step function with positive integer values, to prove that

it is right continuous, we need only show that σϵ∗(N) = H.

Consider a sequence ϵj in R such that σϵj (N) = H for all j ∈ N, and ϵj ↓ ϵ∗. The sets Aϵj then

form a decreasing nested sequence(i.e. Aϵ1 ⊃ Aϵ2 ⊃ Aϵ3 ⊃ ...). Since each Aϵn is compact and

nonempty, the intersection
⋂
j∈NAϵj is nonempty. Let (x′1, ..., x

′
H) be a point in

⋂
j∈NAϵj . Then,

for each j ∈ N, (x′1, ..., x′H) lies in Aϵj , and thus for any n ∈ N , we have

min{d(x′1, n), ..., d(x′H , n)} ≤ ϵj .

Taking the limit as j → ∞ on both sides, we obtain

min{d(x′1, n), ..., d(x′H , n)} ≤ ϵ∗.

Since this holds for any n ∈ N , {B(x′1, ϵ
∗), ..., B(x′H , ϵ

∗)} covers N . Therefore, σϵ∗(N) ≤ H. But

σϵ(N) is a decreasing function of ϵ, so σϵ∗(N) ≥ H. Therefore, σϵ∗(N) = H. This shows that the

function ϵ→ σϵ(N) is indeed right continuous. □

Proof of Theorem 3.3.1. We first consider the case where σ(N) is finite. LetA∗ be the min-

imizer of (3.1) with finite C(A∗). By Theorem 3.2.2, there exists a subset A∗ = {a1, a2, · · · , aσ(N)}

of F such that

µ({a1}) ≤ µ({a2}) ≤ µ({a3}) ≤ ... ≤ µ(aσ(N)) ≤ inf{µ(a′) : a′ ∈ F \A∗}.

Since ϵP > 0 is the smallest jump discontinuity point of the function σϵ(N) (as a function of ϵ), we

have σϵ(N) = σ(N) for any ϵ ∈ (0, ϵP ). Note that, by Proposition 3.2.1, A∗ is also a solution to
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(3.3) for each ϵ ∈ (0, ϵP ). Thus,

µ(A∗(ϵ)) = µ(A∗) =

σ(N)∑
i=1

µ({ai}).

Similarly, for each i ∈ {1, 2, · · · , P}, since the function ϵ → σϵ(N) is constant on (ϵi, ϵi−1) and

right continuous at ϵi, it follows that σϵ(N) = Ki for each ϵ ∈ [ϵi, ϵi−1). By Proposition 3.2.1,

{a1, a2, · · · , aKi} is also a solution to (3.3). Hence,

µ(A∗(ϵ)) =

Ki∑
j=1

µ({ai})

for each ϵ ∈ [ϵi, ϵi−1). Therefore,

min
A∈Ω

C(A) = C(A∗) =

∫ ∞

0
µ
(
A∗(ϵ)

)
dρ(ϵ)

=

P∑
i=1

∫
[ϵi,ϵi−1)

µ
(
A∗(ϵ)

)
dρ(ϵ) +

∫
[0,ϵP )

µ
(
A∗(ϵ)

)
dρ(ϵ)

=

P∑
i=1

∫
[ϵi,ϵi−1)

Ki∑
j=1

µ({ai})dρ(ϵ) +
∫
[0,ϵP )

σ(N)∑
j=1

µ({aj})dρ(ϵ)

=
P∑
i=1

(
ρ[ϵi, ϵi−1)

Ki∑
j=1

µ(aj)
)
+ ρ
(
[0, ϵP )

) σ(N)∑
j=1

µ(aj)

=
P+1∑
i=1

(
ρ[ϵi, ϵi−1)

Ki∑
j=1

µ(aj)
)
, since ρ({0}) = 0.

A similar argument confirms the formula for the case σ(N) = ∞. □

3.4. The case of not totally bounded data set

For the case N is not totally bounded, there exists an ϵ > 0 for which σϵ(N) is not finite. Thus we

are thus interested in solving (3.4),

min{µ(A) : A ⊆ F is µ-measurable with |A| ≥ K},

when K is not finite. Still assuming that µ is a Borel measure on F , and that the measure ρ satisfies

ρ
(
(0, ϵ)

)
> 0, for all ϵ > 0, we will show in this section that if a solution of (3.1) exists, the value

min C-cost is necessarily zero.
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We begin with the following proposition, which shows that if the solution to (3.4) exists and its

measure is finite, then it must be 0. Recall that for a measure µ, a µ-atom is defined as a positive

µ-measurable set that contains no subset of smaller positive µ-measure.

Proposition 3.4.1. Suppose K is infinite. If A∗ is the solution to (3.4) with µ(A∗) finite, then

µ(A∗) = 0.

Proof. Towards a contradiction, suppose 0 < µ(A∗) < ∞. Notice that since µ is a Borel

measure on the metric space F , all µ-atoms of F are singletons. If µ⌊A∗ is concentrated on such

a singleton a ∈ A∗, then µ(A∗ \ {a}) = 0 < µ(A∗). But as |A∗| is infinite, |A∗ \ {a}| = |A∗| ≥ K,

thus A∗ \ {a} is also a solution to (3.4), contradicting the minimality of µ(A∗). Therefore, there

exist two disjoint µ-measurable subsets A1 and A2 of A∗ such that A1 ∪A2 = A∗, with both µ(A1)

and µ(A2) strictly smaller than µ(A∗). As one of the sets A1 or A2 has the same cardinality as A∗,

that set is a solution of (3.4), which again contradicts the minimality of µ(A∗). □

Remark 3.4.1. With Proposition 3.4.1 in mind, for the case of infinite K, solving

(3.7) max{|A| : A µ-measurable such that µ(A) = 0}

can help us solve (3.4), since if max |A| ≥ K then (3.4) and (3.7) have the same solution. Otherwise,

(3.4) has no solution with finite measure.

As a consequence of Proposition 3.4.1, if A∗ solves (3.1) with finite C(A∗), then C(A∗) = 0.

Proposition 3.4.2. Suppose N is not totally bounded. Suppose ρ is a measure on (0,∞) such that

for all ϵ > 0, ρ
(
(0, ϵ)

)
> 0. Suppose also that for ρ-a.e. ϵ > 0 (3.2) has a solution. If A∗ solves

(3.1) with C(A∗) <∞, then C(A∗) = 0.

Proof. Let A∗ be a minimizer of C(A) with C(A∗) <∞. By Theorem 3.1.2, for ρ-a.e. ϵ > 0,

A∗(ϵ) is a solution of (3.3). Since∫ ∞

0
µ
(
A∗(ϵ)

)
dρ(ϵ) = C(A∗) <∞,

µ
(
A∗(ϵ)

)
is a non-increasing function of ϵ (Lemma 3.1.1), and ρ

(
(0, ϵ)

)
> 0 for all ϵ > 0, it follows

that µ
(
A∗(ϵ)

)
< ∞ for all ϵ > 0. As N is not totally bounded, there exists an ϵ∗ > 0 such that
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σϵ∗(N) is infinite. For all 0 < ϵ ≤ ϵ∗, since σϵ(N) is a non-increasing function of ϵ, it follows

that σϵ(N) ≥ σϵ∗(N), and hence σϵ(N) is also infinite. By Proposition 3.4.1, µ
(
A∗(ϵ)

)
= 0 for all

0 < ϵ ≤ ϵ∗. Again, as µ
(
A∗(ϵ)

)
is non-increasing in ϵ, we have µ

(
A∗(ϵ)

)
= 0 for all ϵ > 0. As a

result,

min
A∈Ω

C(A) = C(A∗) =

∫ ∞

0
µ
(
A∗(ϵ)

)
dρ(ϵ) =

∫ ∞

0
0dρ(ϵ) = 0.

□
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CHAPTER 4

Optimal Codepage and Codebook: Second-Type Cost Function

In Chapter 3, to compute the cost function we assign µ
(
A(ϵ)

)
as the cost for each codepage

A(ϵ), where µ is a pre-determined measure on F . The underlying assumption is that the cost

of each codepage depends solely on the cost of the codewords themselves. In general, instead of

representing the cost of A by µ(A) using a measure µ, we can represent it using a non-negative

function I, denoted as I(A). The function I that we focus on in Chapter 4 takes into account the

reconstruction error, as well as the cost of the encoding and decoding process. Section 4.1 gives a

proper definition for this cost function and proves the existence of an optimal codepage. Section 4.2

introduces a topology on the space of codepages based on dH,Lq , the Hausdorff distance between

the sets of pairs of encoder-decoder associated with those codepages. Section 4.3 describes a cost

function on codebooks and proves the existence of an optimal codebook. In section 4.4 we illustrate

an example of finding the optimal codebook. Finally, section 4.5 discusses the estimation of dH,Lq

under various conditions. Throughout Chapter 4 we continue to use the notations introduced in

Definition 2.1.1.

4.1. Cost function and existence theorem for optimal codepage

Suppose A ⊂ F is an ϵ-codepage. Consider the function C : N × F ×M → [0,∞) defined by

C(x, y, z) = C1(x, y) + C2(y, z) + C3(x, z),

where C1 : N × F → [0,∞), C2 : F ×M → [0,∞) and C3 : N ×M → [0,∞) are lower semi-

continuous. Suppose A is a subset of F . Note that for each n ∈ N , for each f : N → A and

g : A→M ,

C
(
n, f(n), g ◦ f(n)

)
= C1

(
n, f(n)

)
+ C2

(
f(n), g ◦ f(n)

)
+ C3

(
n, g ◦ f(n)

)
represents the sum of the encoding cost, the decoding cost, and the error cost, respectively. Suppose

ν is a measure on N , let E(N,A) be the space of all ν-measurable encoding functions from N to
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A. Let D(A,M) be the space of continuous decoding functions from A to M .

For Chapter 4, we relax the definition of ϵ-linkable pairs (Definition 2.1.2) as follows.

Definition 4.1.1. Let f : N → A and g : A→M . We say (f, g) is an a.e. ϵ-linkable if

d
(
g ◦ f(n), n

)
≤ ϵ, for ν − a.e.n ∈ N.

Suppose P is a subset of E(N,A)×D(A,M). Let L(ϵ, A;P) denote the subset of P which consists

of all a.e. ϵ−linkable pairs (f, g) in P. Let S : E(N,A) → [0,∞) represents the storage cost of

f ∈ E(N,A). We propose to consider the following Optimal Coding-Pair Problem:

(4.1) Minimize J(f, g) :=

∫
N
C
(
n, f(n), g ◦ f(n)

)
dν(n) + S(f),

among all (f, g) ∈ L(ϵ, A;P). The cost of the codepage A is then defined as

(4.2) I(A) := inf
(f,g)∈L(ϵ,A;P)

J(f, g).

In order to establish the existence of a solution to Problem (4.1), we first need an appropriate

topology on P. We endow E(N,A) with the pointwise convergence topopolgy, and D(A,M) with

the compact-open topology (Definition 1.2.6). The topology on E(N,A)×D(A,M) is the product

topology. Theorem 4.1.2 provides the conditions that guarantee the existence of a J-minimizer for

(4.1).

Theorem 4.1.2. Let A be an ϵ−codepage for some ϵ > 0. Suppose P is sequentially compact, and

C and S are lower semi-continuous. If the collection L(ϵ, A;P) is nonempty, then Problem (4.1)

has a solution.

Proof. Let (fk, gk) be a J−minimizing sequence in L(ϵ, A;P) ⊆ P. By the sequential com-

pactness of P, there exists a subsequence of (fk, gk), still denoted by (fk, gk), that converges to

some (f∗, g∗) ∈ P. That is, fk(n) → f∗(n) pointwise in N and gk → g∗ in the compact-open

topology of D(A,M). Thus, from Proposition 1.2.2, it follows that gk(fk(n)) → g∗(f∗(n)) for all

n ∈ N . Since each (fk, gk) is a.e. ϵ-linkable,

d
(
gk ◦ fk(n), n

)
≤ ϵ, for a.e n ∈ N.
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Let k → ∞, it gives

d
(
g∗ ◦ f∗(n), n

)
≤ ϵ, for a.e. n ∈ N.

Therefore (f∗, g∗) ∈ L(ϵ, A;P). By Fatou’s Lemma [3, Theorem 1.3.1] and the lower semi-continuity

of both C and S, we have

J(f∗, g∗)

=

∫
N
C
(
n, f∗(n), g∗ ◦ f∗(n)

)
dν(n) + S(f∗)

≤
∫
N
lim inf
k→∞

C
(
n, fk(n), gk ◦ fk(n)

)
dν(n) + lim inf

k→∞
S(fk)

≤ lim inf
k→∞

∫
N
C
(
n, fk(n), gk ◦ fk(n)

)
dν(n) + lim inf

k→∞
S(fk)

≤ lim inf
k→∞

[∫
N
C
(
n, fk(n), gk ◦ fk(n)

)
dν(n) + S(fk)

]
= lim inf

k→∞
J(fk, gk) = inf

(f,g)∈L(ϵ,A;P)
J(f, g).

Thus we achieve the desired result

J(f∗, g∗) = min
(f,g)∈L(ϵ,A;P)

J(f, g).

□

Remark 4.1.1. Under the conditions of Theorem 4.1.2, the cost function I from (4.2) becomes

(4.3) I(A) := min
(f,g)∈L(ϵ,A,PA)

J(f, g).

For the special case where P = E(N,A)×D(A,M), we may denote L(ϵ, A;P) = L(ϵ, A; E ,D).

Corollary 4.1.1. Let A be an ϵ−codepage for some ϵ > 0. Suppose both E(N,A) and D(A,M) are

sequentially compact. If the collection L(ϵ, A;D, E) is nonempty, then Problem (4.1) has a solution

for P = E(N,A)×D(A,M).

Example 4.1.3. In this example, we illustrate Theorem 4.1.2 for a simple Autoencoder. Suppose

X ⊂ Rn is a finite set, where X represents the data set. We equip X with the counting measure.

Let Y = Rm, with m < n, be the latent space. The encoders and decoders of the Autoencoder are
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defined based on the Sigmoid function S : R → R, which is defined by

S(z) :=
1

1 + e−z
, for any z ∈ R.

Let W ⊂ Rm×n and V ⊂ Rn×m represent the sets of weight matrices. Let B ⊂ Rm and A ⊂

Rn represent the sets of biases. The weight matrices and biases represent the parameters of the

Autoencoder. For any W ∈ W and β ∈ B, we define the encoding function EW,β : X → Rm by

EW,β(x) :=
(
S(−w1 · x− b1), . . . , S(−wn · x− βm)

)
, for any x ∈ X,

where wi(i = 1, . . . ,m) represents the i-th row of the matrix W , and βj(j = 1, ...,m) represents the

j-th entry of the vector β. Let E be the set of all such EW,β.

Similarly, for any V ∈ V and α ∈ A, we define the decoding DV,α : Rm → Rn by

DV,α(y) :=
(
S(−v1 · y − α1), . . . , S(−vn · y − αn)

)
, for any y ∈ Rm,

where vi(i = 1, . . . , n) represents the i-th row of the matrix V , and βj(j = 1, ..., n) represents the

j-th entry of the vector α. Let D be the set of all such DV,α.

Let ϵ > 0 be given. Suppose m,W,V, B,A are such that L(ϵ, A;D,E) is non empty. Recall that

the learning process for the Autoencoder aims at solving Problem (1.1). In this case, we consider

solving the following problem:

(4.4) min
(EW,β ,DV,α)∈E×D

∑
x∈X

|x−DV,α ◦ EW,β(x)|

Suppose the sets W,V, B,A are compact. For any x ∈ X, since W and B are compact, the sets

{−wi · x − bi : wi ∈ W, bi ∈ B}, for i = 1, . . . ,m, are sequentially compact. As S is continuous

{EW,β(x) : EW,β ∈ E} is then also sequentially compact. As X is finite, E is sequentially compact

in the pointwise convergence topology.

Similarly, the set {DV,α(x) : DV,α ∈ D} is sequentially compact for any x ∈ X. As X is finite,

pointwise convergence on X implies uniform convergence. Consequently, D is sequentially compact

in the compact open topology. From Corollary 4.1.1, Problem (4.4) has a solution.
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4.2. A topology on the space of codepages

This section describes a topology on the set of ϵ-codepages based on the Hausdorff distance (Def-

inition 1.2.9). We then show that the cost function I (4.2) is lower-semicontinuous under this

topology.

For any ϵ > 0, let Γϵ be a collection of ϵ-codepages of N in F and

Γ :=
⋃
ϵ>0

Γϵ.

For any ϵ-codepage A, we associate with it a unique PA ⊂ E(N,A)×D(A,M), and we denote

LΓ :=
⋃
A∈Γ

L(ϵ, A,PA).

Definition 4.2.1. Let (X, dX), (Y, dY ) be two metric spaces, ν is a measure on X, and q > 1. For

any two ν-measurable functions ϕ, ψ : X → Y , their Lq distance is defined as

Lq(ϕ, ψ) :=
(∫

X
dY

(
ϕ(x), ψ(x)

)q
dν(x)

)1/q
.

Remark 4.2.1. Two ν-measurable functions ψ and ϕ from X to Y are equivalent if ψ(x) = ϕ(x)

for ν-a.e x ∈ X. We establish the following properties for Lq.

• Given ϕ, ψ, θ : X → Y ν-measurable, from Minkowski’s and the triangle inequality

Lq(ϕ, ψ) =
(∫

X
d
(
ϕ(n), ψ(n)

)q
dν(n)

)1/q
≤

(∫
X

(
d
(
ϕ(n), θ(n)

)
+ d
(
θ(n), ψ(n)

))q
dν(n)

)1/q
≤

(∫
X
d
(
ϕ(n), θ(n)

)q
dν(n)

)1/q
+
(∫

X
d
(
θ(n), ψ(n)

)q
dν(n)

)1/q
= Lq(ϕ, θ) + Lq(θ, ψ).

This establishes the triangle inequality for Lq, thus showing that Lq defines a metric on

all equivalent ν-measurable functions from X to Y .

• For any two sequences of functions (ϕk) and (ψk) with Lq(ϕk, ψk) → 0, it follows that

dY (ϕk(x), ψk(x)) → 0 subsequently ν-a.e x ∈ X.
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Using Lq, we now introduce a distance on LΓ. For any two pairs of functions (f, g) and (f ′, g′) ∈ LΓ,

by viewing f, f ′ : N → F and g ◦ f, g′ ◦ f ′ : N →M as ν-measurable maps between metric spaces,

one can define the distance between them as

dq

(
(f, g), (f ′, g′)

)
:= Lq(f, f

′) + Lq(g ◦ f, g′ ◦ f ′).

It is straightforward to verify that dq is a pseudometric on LΓ, with (f, g) = (f ′, g′) if f = f ′

and g ◦ f = g′ ◦ f ′ ν-a.e. If we define the equivalence relation ∼ on LΓ by (f.g) = (f ′g′) when

f = f ′ and g ◦ f = g′ ◦ f ′ ν-a.e., dq defines a metric on LΓ/ ∼. We now use this metric and the

Hausdorff distance (Definition 1.2.9) to introduce a distance between codepages. For any codepage

A, the corresponding collection L(ϵA, A,PA) is a subset of the metric space (LΓ, dq). Using it, we

introduce a distance between codepages as follows.

Definition 4.2.2. For any two codepages A and B in Γ and q > 1, we define the distance dH,q

between A and B by

dH,q(A,B) := dH,Lq

(
L(ϵA, A,PA)/ ∼,L(ϵB, B,PB) ∼

)
.

Remark 4.2.2. Note that for dH,q, dH,q(A,B) = 0 does not necessarily mean A = B, but only

L(ϵA, A,PA)/ ∼ = L(ϵB, B,PB)/ ∼ (Proposition 1.2.5). Consequently, dH,q does not define a

metric, only a pseudometric. However, this pseudometric can still define a topology on Γ, whose

base consists of the open balls whose centers are elements in Γ.

The remainder of the section will be dedicated to showing that the cost function I is lower semi-

continuous. First, we establish the following proposition, which describes the lower semi-continuity

of J : LΓ → R given by

(4.5) J(f, g) =

∫
N
C
(
n, f(n), g ◦ f(n)

)
dν(n) + S(f).

Proposition 4.2.1. Suppose C : N ×F ×M → R and S : LΓ → R are both lower-semicontinuous.

For any sequence {(fk, gk)} and (f0, g0) in LΓ, if fk → f0 and gk ◦ fk → g0 ◦ f0 pointwise ν-a.e.,

then

J(f0, g0) ≤ lim inf
k→∞

J(fk, gk).

Proof. Suppose (fk, gk) → (f, g) ∈ LΓ. From lower-semicontinuity of C and S,
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• lim infk→∞C
(
n, fk(n), gk ◦ fk(n)

)
≥ C

(
n, f(n), g ◦ f(n)

)
,

• lim infk→∞ S(fk) ≥ S(f).

From Fatou’s Lemma,

lim inf
k→∞

∫
C
(
n, fk(n), gk ◦ fk(n)

)
dν(n) ≥

∫
lim inf
k→∞

C
(
n, fk(n), gk ◦ fk(n)

)
dν(n)

)
dν(n)

≥
∫
C
(
n, f(n), g ◦ f(n)

)
dν(n).

Hence,

lim inf
k→∞

J(fk, gk) = lim inf
k→∞

(∫
C
(
n, fk(n), gk ◦ fk(n)

)
dν(n) + S(fk)

)
≥ lim inf

k→∞

∫
C
(
n, fk(n), gk ◦ fk(n)

)
dν(n) + lim inf

k→∞
S(fk).

≥
∫
C
(
n, f(n), g ◦ f(n)

)
dν(n) + S(f) = J(f, g),

which is our desired result. □

Lemma 4.2.1 describes a useful property when Ak converges to A0 in dH,q.

Lemma 4.2.1. Let A0, Ak ∈ Γ be codepages and (fk, gk) ∈ L(ϵAk
, Ak,PAk

) for each k = 1, 2, · · · . If

Ak
dH,q−−−→ A0 and PA0 is sequentially compact, then there exists an element (f0, g0) ∈ L(ϵA0 , A0,PA0)

such that

fk(n) → f0(n), gk ◦ fk(x) → g0 ◦ f0(x)

subsequently pointwise ν-a.e. n ∈ N .

Proof. Since limk→0 dH,q(Ak, A0) = 0, by the definition of the distance dH,q, there is a sequence

(f0k , g
0
k) ∈ L(ϵ0, A0,P0) such that limk→0 dp

(
(fk, gk), (f

0
k , g

0
k)
)
= 0. Hence,

Lq(fk, f
0
k ) → 0, and Lq(gk ◦ fk, g0k ◦ f0k ) → 0.

From Remarks 4.2.1, this implies

d
(
fk(n), f

0
k (n)

)
→ 0, and d

(
gk ◦ fk(n), g0k ◦ f0k (n)

)
→ 0, subsequently ν − a.e.

On the other hand, as L(ϵ0, A0,P0) is a closed subset of the sequentially compact set P0, it is

itself sequentially compact. Hence (f0k , g
0
k) converges subsequently to some (f0, g0) in L(ϵ0, A0,P0),
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which implies that

f0k (n) → f0(n), and g
0
k ◦ f0k (n) → g0 ◦ f0(n),

for n ∈ N .

As a result, subsequently,

fk → f0, and gk ◦ fk → g0 ◦ f0,

subsequently pointwise ν-a.e. n ∈ N . □

The following proposition establishes the semicontinuousness of I.

Proposition 4.2.2. Assuming PAk
is sequentially compact for all k. If Ak

dH,q−−−→ A0, then

I(A0) ≤ lim inf
k→∞

I(Ak).

Proof. By picking a subsequence if necessary, without loss of generality, we may assume that

(4.6) lim
k→∞

I(Ak) = lim inf
k→∞

I(Ak).

For each k, since PAk
is sequentially compact, by Theorem 4.1.2, there exists a pair (fk, gk) ∈

L(ϵk, Ak,Pk) such that I(Ak) = J(fk, gk). From Lemma 4.2.1, there exists a pair (f0, g0) ∈

L(ϵ0, A0,P0) such that fk(n) → f0(n) and gk ◦ fk(x) → g0 ◦ f0(x) subsequently pointwise ν-a.e.

n ∈ N . By the minimality of I(A0), Proposition 4.2.1 and (4.6),

I(A0) ≤ J(f0, g0) ≤ lim inf
k→∞

J(fk, gk) = lim inf
k→∞

I(Ak).

□

4.3. Existence of optimal codebook

In the previous section, we have defined a topology on the space of codepage. In this section, we

define a cost function on codebook and prove the existence of an optimal codebook. First, we need

some notations. Recall that the Hausdorff pseudometric on LΓ generates a topology on Γ. We let

BH,q denote the σ-algebra on Γ generated by this topology.

Now let

Ω0 := {A : (0,∞) → Γ;A(ϵ) ∈ Γϵ, ∀ϵ > 0,A is (ρ,BH,q)-measurable}.
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Suppose I : Γ → [0,∞] is a cost function, and ρ is a measure on (0,∞), we define the cost on the

codebook A as

(4.7) S(A) :=

∫ ∞

0
I
(
A(ϵ)

)
dρ(ϵ).

whenever I ◦ A is ρ-measurable.

Let Ω ⊂ Ω0 be non-empty, we consider the problem:

(4.8) Minimize S(A) among all A ∈ Ω.

In the following theorem PA is sequentially compact for any A ∈ Γ, and I is defined as in (4.3).

Theorem 4.3.1. Suppose Ω is either compact or sequentially compact in the ρ-a.e. pointwise

topology, then Problem (4.8) has a solution.

Proof. From Proposition 4.2.2, I is lower-semicontinuous on Γ, thus it is Borel measurable.

For any A in Ω, A is (ρ,BH,q)-measurable, thus I ◦ A is ρ-measurable. S is therefore well-defined.

When Ω is either compact or sequentially compact, to establish the existence of an S-minimizer

for the Problem (4.8), it is sufficient to show that S : Ω → [0,∞] is lower-semicontinuous. Indeed,

suppose (An) converges pointwisely ρ-a.e. to A in Ω, then for ρ-a.e. ϵ > 0, An(ϵ)
dH,q−−−→ A(ϵ) in Γϵ.

From Proposition 4.2.2,

I ◦ A(ϵ) ≤ lim inf
n→∞

I ◦ An(ϵ).

By Fatou’s Lemma,

S(A) =

∫ ∞

0
I ◦ A(ϵ)dρ(ϵ) ≤

∫ ∞

0
lim inf
n→∞

I ◦ An(ϵ)dρ(ϵ)

≤ lim inf
n→∞

∫ ∞

0
I ◦ An(ϵ)dρ(ϵ) = lim inf

n→∞
S(An).

Therefore, S is lower semicontinuous, and hence Problem (4.8) has a solution. □

Remark 4.3.1. Note that in general, sequentially compactness is not equivalent to compactness.

Corollary 4.3.1. Suppose for ρ-a.e. ϵ > 0, Γϵ is compact. Suppose the measure ρ is such that

any A : (0,∞) → Γ : A(ϵ) ∈ Γϵ, ∀ϵ > 0, is (ρ,BH,q)-measurable. Then (4.8) has a solution.
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Proof. As

Ω = {A : supp(ρ) → Γ,A(ϵ) ∈ Γϵ,∀ϵ} =
∏

ϵ∈supp(ρ)

Γϵ,

Ω is compact(Tychonoff’s Theorem). By Theorem 4.3.1, Problem (4.8) has a solution. □

4.4. An illustrative example

Let M = R, N = [0, 1], F = Q and ν be a non-atomic measure on N . For each k ∈ N, define

Ak = {0, 1
k
,
2

k
, · · · , 1, 1 + 1

k
}.

Lemma 4.4.1. For any ϵ > 0, if k ≥ 1
2ϵ , then Ak is an ϵ-codepage.

Proof. We define f : N → Ak and gk : Ak →M as follow:

fk(n) :=
[kn+ 1

2 ]

k
,∀n ∈ N and gk(a) := a,∀a ∈ Ak.

Then, fk ∈ E(N,Ak) and gk ∈ D(Ak,M) with

|gk(fk(n))− n| =
∣∣∣∣ [kn+ 1

2 ]

k
− n

∣∣∣∣ = ∣∣∣∣ [kn+ 1
2 ]− kn

k

∣∣∣∣ ≤ 1/2

k
=

1

2k
.

Thus, when k ≥ 1
2ϵ , (fk, gk) is an ϵ-linkable pair and hence Ak is an ϵ-codepage. □

We now consider pairs of functions in the following form: for each α ∈ [0, 1] and β ∈ [−1, 1],

consider the functions

fαk : [0, 1] → Ak with fαk (n) =
[kn+ α]

k
,

and

gβk : Ak → R with gβk (a) = a+
β

k
.

Remark 4.4.1. We want to illustrate how the pairs (fαk , g
β
k ) can be used for encoding images using

the MNIST and CIFAR-10 datasets. Recall The MNIST dataset consists of images of handwritten

numbers from 0 to 9. Each image is in the form of a 28 × 28 pixel grayscale bounding box, with

pixel values ranging from 0 (black) to 255 (white). The CIFAR 10 dataset on the other hand is a

collection of color images, each measuring 32× 32 pixels. Each pixel contains three channels (red,

green, blue), with values ranging from 0 to 255.

For the MNIST dataset, we consider N = {0, 1, 2, 3, ..., 255}. Let Fαk : N28×28 → Q28×28, where
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Fαk = (fαk )
28×28, and Gβk = (gβk )

28×28. For CIFAR 10, again we consider N = {0, 1, 2, 3, ..., 255}.

Let Fαk : N28×28×3 → Q28×28×3, where Fαk = (fαk )
28×28×3, and Gβk = (gβk )

28×28×3.

Figure 4.1 illustrates an example of applying Gβk ◦ F
α
k to an MNIST and a CIFAR image.

Figure 4.1. Example of applying Gβk ◦ F
α
k to an MNIST and CIFAR image.

Consider the collection

Pk := {(fαk , g
β
k ) : α ∈ [0, 1], β ∈ [−1, 1]}.

Lemma 4.4.2. Pk is a sequentially compact subset of E(N,Ak)×D(Ak,M).

Proof. Suppose (fαi
k , gβik ) is a sequence in Pk. As [0, 1]× [−1, 1] is compact, (αi, βi) converges

subsequently to some (α, β) in [0, 1] × [−1, 1]. We still denote the converging subsequence as

(αi, βi). For each n ∈ N = [0, 1] with kn+ α ̸∈ Z, it follows that [kn+ αi] → [kn+ α], and hence

fαi
k (n) → fαk (n) as i → ∞. This shows that fαi

k converges to fαk pointwise ν−a.e. since ν has no

atoms. Also, since βi
k → β

k , the continuous functions gβik (a) converges to gβk (a) uniformly on Ak.

Thus (fαi
k , gβik ) converges to (fαk , g

β
k ), and Pk is indeed sequentially compact. □

The following lemma establishes the criteria under which a pair (fαk , g
β
k ) is ϵ-linkable.

Lemma 4.4.3. For any ϵ > 0, a pair (fαk , g
β
k ) in Pk is ϵ-linkable if and only if

kϵ ≥ max {|α+ β|, |α+ β − 1|} .

Proof. By definition, (fαk , g
β
k ) is ϵ-linkable if and only if

sup
n∈[0,1]

∣∣gβk ◦ fαk (n)− n
∣∣ ≤ ϵ.
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For any n ∈ [0, 1],

∣∣gβk ◦ fαk (n)− n
∣∣ = ∣∣∣∣ [kn+ α]

k
+
β

k
− n

∣∣∣∣ = 1

k

∣∣[kn+ α]− kn+ β
∣∣.

Also, since kn+ α− 1 < [kn+ α] ≤ kn+ α, it follows that

∣∣[kn+ α]− kn+ β
∣∣ ≤ max {|α+ β|, |α+ β − 1|} .

Indeed,

sup
n∈[0,1]

∣∣[kn+ α]− kn+ β
∣∣ = max {|α+ β|, |α+ β − 1|} .

Therefore, (fαk , g
β
k ) is ϵ-linkable if and only if max {|α+ β|, |α+ β − 1|} ≤ kϵ. □

The following lemma establishes the criteria for L(ϵ, Ak;Pk) to be nonempty.

Lemma 4.4.4. For any ϵ > 0, the collection L(ϵ, Ak;Pk) is nonempty if and only if k ≥ ⌈ 1
2ϵ⌉.

Proof. If k ≥ 1
2ϵ , by the proof of Lemma 4.4.1, it follows that (f

1/2
k , g0k) = (fk, gk) is an ϵ-

linkable pair in Pk, and hence L(ϵ, Ak;Pk) is nonempty. On the other hand, suppose L(ϵ, Ak;Pk)

is nonempty. Let (fαk , g
β
k ) be any ϵ-linkable pair in Pk. By Lemma 4.4.3,

kϵ ≥ max {|α+ β|, |α+ β − 1|} =
∣∣(α+ β)− 1

2

∣∣+ 1

2
≥ 1

2
.

Thus, k ≥ ⌈ 1
2ϵ⌉. □

We now consider the cost function on Pk given by

J(fαk , g
β
k ) :=

∫
N
|gβk ◦ fαk (n)− n|dν(n) + Λkp.

J represents the sum of the total error cost and the storage cost, where Λ, p > 0 are fixed constants.

By the above lemmas and Theorem 4.1.2, whenever k ≥ 1
2ϵ , the corresponding Optimal Coding-Pair

Problem

(4.9) min{J(fαk , g
β
k ) : (f

α
k , g

β
k ) ∈ L(ϵ, Ak;Pk)}
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has a solution. Suppose dν(n) = θ(n)dn, this solution can be explicitly computed as follows: for

each k, ∫
N
|gβk ◦ fαk (n)− n|dν(n)

=

∫ 1

0

∣∣∣∣ [kn+ α]

k
+
β

k
− n

∣∣∣∣θ(n)dn =
1

k2

∫ k

0

∣∣[y + α] + β − y
∣∣θ(y

k

)
dy

=
1

k2

k−1∑
i=0

∫ i+1

i

∣∣[y + α] + β − y
∣∣θ(y

k

)
dy =

1

k2

k−1∑
i=0

∫ 1

0
|[y + α] + β − y|θ

(y + i

k

)
dy

=
1

k2

k−1∑
i=0

(∫ 1−α

0
|[y + α] + β − y|θ

(y + i

k

)
dy +

∫ 1

1−α
|[y + α] + β − y|θ

(y + i

k

)
dy

)

=
1

k2

k−1∑
i=0

(∫ 1−α

0
|β − y|θ

(y + i

k

)
dy +

∫ 1

1−α
|1 + β − y|θ

(y + i

k

)
dy

)

=
1

k2

k−1∑
i=0

(∫ 1−α

0
|β − y|θ

(y + i

k

)
dy +

∫ 0

−α
|β − y|θ

(y + i+ 1

k

)
dy

)

=
1

k2

(∫ 1−α

0
|β − y|

k−1∑
i=0

θ
(y + i

k

)
dy +

∫ 0

−α
|β − y|

[
θ
(y + k

k

)
− θ
(y
k

)
+

k−1∑
i=0

θ
(y + i

k

)]
dy

)

=
1

k2

(∫ 1−α

−α

∣∣∣β − y
∣∣∣ k−1∑
i=0

θ
(y + i

k

)
dy +

∫ 0

−α

∣∣∣β − y
∣∣∣(θ(y

k
+ 1
)
− θ
(y
k

))
dy

)

=
1

k2

(∫ 1

0

∣∣∣y − (α+ β)
∣∣∣ k−1∑
i=0

θ
(y + i− α

k

)
dy +

∫ 0

−α

∣∣∣β − y
∣∣∣(θ(y

k
+ 1
)
− θ
(y
k

))
dy

)
.

In particular, when ν is the Lebesgue measure restricted on N , θ(n) = 1 for all n ∈ N . Thus,∫
N
|gβk ◦ fαk (n)− n|dn =

1

k

∫ 1

0

∣∣∣y − (α+ β)
∣∣∣dy,

whose minimum value is 1
4k , achieved when α+ β = 1

2 . As a result, in (4.9), the minimum value of

J(fαk , g
β
k ) =

1

k

∫ 1

0

∣∣∣y − (α+ β)
∣∣∣dy + Λkp

is 1
4k +Λkp, achieved when α+ β = 1

2 . Hence, in this example, the cost of the codepage Ak, in the

form of 4.3, is

(4.10) I(Ak) =
1

4k
+ Λkp.
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Next, we describe the cost on codebook in the form of (4.7). Suppose a measure ρ on (0,∞) is

given. For any function h : (0,∞) → N with h(ϵ) ≥ 1
2ϵ , it associates with a codebook function

Ah : (0,∞) → 2F , where each Ah(ϵ) = Ah(ϵ). Let Ω denotes the set of all such ρ-measurable Ah.

The cost on each individual codepage Ah(ϵ) is defined as

I(A) = inf
(fαk ,g

β
k )∈Pk

J(fαk , g
β
k ).

From (4.10),

I(Ah(ϵ)) =
1

4h(ϵ)
+ Λh(ϵ)p.

The cost of Ah is then defined as

(4.11) P (Ah) :=

∫ ∞

0
I(Ah(ϵ))dρ(ϵ) =

∫ ∞

0

( 1

4h(ϵ)
+ Λh(ϵ)p

)
dρ(ϵ).

And we consider the problem

(4.12) min
Ah∈Ω

P (Ah).

Proposition 4.4.1. Problem (4.12) has a solution.

Proof. Note that for any ϵ > 0, the set Γϵ = {Ak : k ∈ N, k ≥ ⌈ 1
2ϵ⌉} is not compact, so

Corollary 4.3.1 cannot be directly applied. However, it can still be applied indirectly as follows:

Define A∞ := [0, 1]. If we define f∞ : [0, 1] → A∞ and g∞ : A∞ → [0, 1] by

f∞(n) := n, ∀n ∈ [0, 1], and g∞(a) := a,∀a ∈ A∞,

(f∞, g∞) is an ϵ-linkable pair. This shows that A∞ is indeed an ϵ-codepage. For any ϵ > 0, let

Γ′
ϵ = Γϵ ∪ {A∞}, Γ′ =

⋃
ϵ>0 Γ

′
ϵ, and Ω′ =

∏
ϵ∈[0,∞) Γ

′
ϵ. From direct calculation,

|fαk (n)− fα
′

h (n)| =
∣∣∣ [kn+ α]

k
− [hn+ α′]

h

∣∣∣ ≤ 6
∣∣∣1
k
− 1

h

∣∣∣,
|gβk ◦ fαk (n)− gβ

′

h ◦ fα′
h (n)| =

∣∣∣ [kn+ α]

k
+
β

k
− [hn+ α′]

h
− β′

h

∣∣∣ ≤ 6
∣∣∣1
k
− 1

h

∣∣∣,
|fαk (n)− f∞(n)| =

∣∣∣ [kn+ α]

k
− n

∣∣∣ ≤ 2

k
,

|gβk ◦ fαk (n)− g∞ ◦ f∞(n)| =
∣∣∣ [kn+ α]

k
+
β

k
− n

∣∣∣ ≤ 2

k
.
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For n ∈ [0, 1], α ∈ [0, 1], and β ∈ [−1, 1]. Therefore,

||fαk − fα
′

h ||1 ≤ 6
∣∣∣1
k
− 1

h

∣∣∣ρ([0, 1]),
||gβk ◦ fαk − gβ

′

h ◦ fα′
h ||1 ≤ 6

∣∣∣1
k
− 1

h

∣∣∣ρ([0, 1]),
||fαk − f∞||1 ≤

2

k
ρ
(
[0, 1]

)
,

||gβk ◦ fαk − g∞ ◦ f∞||1 ≤
2

k
ρ
(
[0, 1]

)
.

Thus,

d(Ak, Ak′) ≤


12| 1k − 1

k′ |ρ
(
[0, 1]

)
, k and k′ ∈ N

4
kρ
(
[0, 1]

)
, k ∈ N and k′ = ∞.

Hence, if we endow Γ with the topology induced by the psedometric dH,1, each set Γ′
ϵ = {Ak; k ∈

Z∪{∞}, k ≥ 1
2ϵ} is compact. Define I(A∞) = ∞. As I is lower-semicontinuous, and Γ′

ϵ is compact

for all ϵ > 0, by Corollary 4.3.1, Problem (4.8) has a solution on Ω′, henceforth denoted as A∗.

As
∫
I ◦ A∗(ϵ)dρ(ϵ) < ∞, the set of ϵ′s where I

(
A∗(ϵ)

)
= ∞, thus A∗(ϵ) = A∞, must be ρ-null.

By re-assigning the values of A∗ on this ρ-null set appropriately, we obtain a codebook A′
∗ ∈ Ω. As

A′
∗ differs from A∗ on this ρ-null set,

∫
I ◦ A′

∗(ϵ)dρ(ϵ) =
∫
I ◦ A∗(ϵ)dρ(ϵ). A′

∗ is thus a solution for

(4.8) on Ω. □

In this case, we can compute one such solution directly, by noticing that any such codebook must

minimize the integrand of (4.11) for ρ-a.e. By direct calculation this is obtained when

h(ϵ) = max
{
argmin{I(Ah(ϵ)) : h(ϵ) = ⌊(4Λp)−

1
p+1 ⌋, ⌈(4Λp)−

1
p+1 ⌉}, ⌈ 1

2ϵ
⌉
}
.

4.5. Estimation of the Hausdorff distance

In section 4.2 we defined the distance between two codepages A,B using dH,Lq , the Hausdorff

distance between two sets of encoding-decoding pairs on them. In this section, we will explore how

to compute or estimate this distance in various specific scenarios. Specifically, suppose we want to

encode a set X using two codepages A,B subsets of the metric space (Y, dY ).

4.5.1. The case X is a singleton. Let X = {x} be a singleton, endowed with a probability

measure. Let A,B are two subsets of a metric space (Y, dY ). Suppose PA is the set of all pairs

(ϕA, ψA) where ϕA : X → A and ψA : A → X, and PB is the set of all pairs (ϕB, ψB) where
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ϕB : X → B and ψB : B → X. We claim that, for any q ≥ 1,

dH,Lq(PA, PB) = dH,d(A,B).

Proof. By direct calculation,

dq

(
(ϕA, ψA), (ϕB, ψB)

)
= dY

(
ϕA(x), ϕB(x)

)
+ dX

(
ψA ◦ ϕA(x), ψB ◦ ϕB(x)

)
.

Thus, for any pair (ϕA, ψA) ∈ PA,

dq

(
(ϕA, ψA), PB

)
= inf

(ϕB ,ψB)∈PB

dq

(
(ϕA, ψA), (ϕB, ψB)

)
= inf

(ϕB ,ψB)∈PB

dY

(
ϕA(x), ϕB(x)

)
= dY

(
ϕA(x), B

)
.

As a consequence,

dH,Lq(PA, PB) = max
{

sup
(ϕA,ψA)∈PA

dq

(
(ϕA, ψA), PB

)
, sup
(ϕB ,ψB)∈PB

dq

(
(ϕB, ψB), PA

)}
= max

{
sup

(ϕA,ψA)∈PA

dY (ϕA(x), B), sup
(ϕB ,ψB)∈PB

dY (ϕB(x), A)
}

= max
{
sup
a∈A

dY (a,B), sup
b∈B

dY (b, A)
}
= dH,d(A,B).

□

4.5.2. The case X is finite. Let X = {x1, ..., xn} subset of a metric space Z, endowed with

a measure µ = 1
n

∑n
i=1 δxi . Let A,B be two subsets of a metric space (Y, dY ). Suppose LA is the

set of all ϵ-linkable pairs (ϕA, ψA) where ϕA : X → A and ψA : A → Z, and LB is the set of all

ϵ-linkable pairs (ϕB, ψB) where ϕB : X → B and ψB : B → Z. We claim that for each q ≥ 1,

(4.13) dH,d(A,B) ≤ dH,Lq(LA,LB) ≤ n1−1/q
(
dH,d(A,B) + 2ϵ

)
.

Proof. Indeed, by direct calculation,

dq

(
(ϕa, ψA), (ϕB, ψB)

)
=

(
1

n

n∑
i=1

dY

(
ϕA(xi), ϕB(xi)

)q)1/q

+

(
1

n

n∑
i=1

dX

(
ψA◦ϕA(xi), ψB◦ϕB(xi)

)q)1/q

.

Thus, from Holder’s inequality,

dq

(
(ϕA, ψA),LB

)
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= inf
(ϕB ,ψB)∈LB

[(
1

n

n∑
i=1

dY

(
ϕA(xi), ϕB(xi)

)q)1/q

+

(
1

n

n∑
i=1

dX

(
ψA ◦ ϕA(xi), ψB ◦ ϕB(xi)

)q)1/q]

≥ inf
(ϕB ,ψB)∈LB

(
1

n

n∑
i=1

dY

(
ϕA(xi), ϕB(xi)

)q)1/q

≥ 1

n
inf

(ϕB ,ψB)∈LB

(
n∑
i=1

dY

(
ϕA(xi), ϕB(xi)

))
=

1

n

n∑
i=1

dY

(
ϕA(xi), B

)
,

where the last equality is obtained by picking ϕB(xi) = argminb∈B dY

(
ϕA(xi), b

)
. By a similar

argument, we have

dq

(
(ϕB, ψB),LA

)
≥ 1

n

n∑
i=1

dY

(
ϕB(xi), A

)
.

Consequently,

dH,Lq(LA,LB) = max
{

sup
(ϕA,ψA)∈LA

dq

(
(ϕA, ψA), PB

)
, sup
(ϕB ,ψB)∈LB

dq

(
(ϕB, ψB), PA

)}
≥ max

{ 1

n
sup

(ϕA,ψA)∈LA

n∑
i=1

dY

(
ϕA(xi), B

)
,
1

n
sup

(ϕB ,ψB)∈LB

n∑
i=1

dY

(
ϕB(xi), A

)}
=

1

n
max

{
nmax
a∈A

dY (a,B), nmax
b∈B

dY (b, A)
}
= dH,d(A,B),

where the second to last equality is obtained by picking

ϕA(xi) = argmaxa∈A dY (a,B) and ϕB(xi) = argmaxb∈B dY (b, A),

for any xi in X.

On the other hand,

dq

(
(ϕA, ψA,LB

)
= inf

(ϕB ,ψB)∈LB

[(
1

n

n∑
i=1

dY

(
ϕA(xi), ϕB(xi)

)q)1/q

+

(
1

n

n∑
i=1

dX

(
ψA ◦ ϕA(xi), ψB ◦ ϕB(xi)

)q)1/q]

≤ n−1/q inf
(ϕB ,ψB)∈LB

[(
n∑
i=1

dY

(
ϕA(xi), ϕB(xi)

)
+

n∑
i=1

dX

(
ψA ◦ ϕA(xi), ψB ◦ ϕB(xi)

)]

≤ n−1/q
( n∑
i=1

dY

(
ϕA(xi), B

)
+ 2nϵ

)
,
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where the last inequality is obtained by noticing the existence of a pair (ϕB, ψB) such that

ϕB(xi) = argminb∈B

(
ϕA(xi), b

)
,

and that dX

(
ψA ◦ ϕA(xi), ψB ◦ ϕB(xi)

)
≤ 2ϵ, for any xi in X. By a similar argument,

dq

(
(ϕB, ψB,LA

)
≤ n−1/q

( n∑
i=1

dY

(
ϕB(xi), A

)
+ 2nϵ

)
.

Consequently,

dH,Lq(LA,LB)

= max
{

sup
(ϕA,ψA)∈LA

dq

(
(ϕA, ψA),LB

)
, sup
(ϕB ,ψB)∈LB

dq

(
(ϕB, ψB),LA

)}
≤ max

{
n−1/q

(
sup

(ϕA,ψA)∈LA

n∑
i=1

dY

(
ϕA(xi), B

)
+ 2nϵ

)
, n−1/q

(
sup

(ϕB ,ψB)∈LB

n∑
i=1

dY

(
ϕB(xi), A

)
+ 2nϵ

)}
= n−1/qmax

{
nmax
a∈A

dY (a,B) + 2nϵ, nmax
b∈B

dY (b, A) + 2nϵ
}
m = n1−1/q

(
dH,d(A,B) + 2ϵ

)
,

where the second to last equality is obtained by picking ϕA(xi) = argmaxa∈A dY (a,B), and ϕB(xi) =

argmaxb∈B dY (b, A). □

Remark 4.5.1. Suppose we want to estimate the Hausdorff distance between two objects A and

B that are far away from our position, X. Suppose we can send signals from our position at X

to A and B, represented by the sets of functions ϕA’s and ϕB’s, respectively. We then record the

reflection of these signals at X, represented by the functions ψA and ψB, respectively. Let LA be the

set of ϵ-linkable pairs (ϕA, ψA), and LB be the set of ϵ-linkable pairs (ϕB, ψB). If we can compute the

Hausdorff distance dH,Lq(LA,LB), we can estimate the distance dH(A,B) by rearranging equation

(4.13) as

n
1−q
q dH,q(LA,LB)− 2ϵ ≤ dH,d(A,B) ≤ dH,q(LA,LB).

4.5.3. The case LA and LB are sequentially compact. From Proposition 1.2.6 the Haus-

dorff distance between two sequentially compact sets equals the distance between some two points

in each set. Under the right conditions, as described in Proposition 4.5.1, the sets of pairs LA and

LB are sequentially compact by the topology generated by dq.
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Proposition 4.5.1. Suppose ν is finite, A is bounded, and LA is sequentially compact in the product

topology of the pointwise convergence topology on AX and the compact-open topology on C(A,Z).

Then LA is also sequentially compact with respect to the topology generated by dq.

Proof. For any sequence (ϕA, ψA) in LA, the sequential compactness of LA in the compact

open topology implies (ϕA, ψA) converges subsequently to some (ϕA∗ , ψA∗) in LA. Still denoting

this subsequence (ϕA, ψA), this means ϕAk
→ ϕA∗ , and ψAk

◦ϕAk
→ ψA∗ ◦ϕA∗ pointwisely. As A is

bounded, there exists an M ∈ R+ such that dY

(
ϕAk

(x), ϕA∗(x)
)
≤M for all x ∈ X, k ∈ N. As LA

is ϵ-linkable, dX

(
ψAk

◦ϕAk
(x), ψA∗ ◦ϕA∗(x)

)
≤ 2ϵ. As ν is finite, we can then apply the dominated

converge Theorem [3, Theorem 1.3.3] to get

dq

(
(ϕAk

, ψAk
), (ϕA∗ , ψA∗)

)
=

(∫
X
dY

(
ϕAk

(x), ϕA∗(x)
)q
dν(x)

)1/q

+

(∫
X
dX

(
ψAk

◦ ϕAk
(x), ψA∗ ◦ ϕA∗(x)

)q
dν(x)

)1/q

→ 0.

Hence LA is sequentially compact in the topology generated by dq. □

Proposition 4.5.1, together with Proposition 1.2.6, allow us to make the following conclusion.

Corollary 4.5.1. Suppose ν is finite, A and B are bounded; LA is sequentially compact in the

product topology of the pointwise convergence topology on AX and the compact-open topology on

C(A,Z), and LB is sequentially compact in the product topology of the pointwise convergence topol-

ogy on BX and the compact-open topology on C(B,Z). Then there exists a pair (ϕA, ψA) ∈ LA and

a pair (ϕB, ψB) ∈ LB such that dH,Lq(LA,LB) = dq

(
(ϕA, ψA), (ϕB, ψB)

)
.
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CHAPTER 5

Future Works

In this chapter, we explore several possible future directions to expand the work discussed in this

thesis.

5.1. First-type cost function: Additional questions about existence

Recall in chapter 3 on the set Ω of (µ, ρ)-codebook (Definition 3.1.1), we define the cost function

C(A) :=

∫ ∞

0
µ
(
A(ϵ)

)
dρ(ϵ).

And we want to consider the minimization problem (3.1),

min
A∈Ω

C(A).

In section (3.2) we solved Problem (3.1) for the case µ, ρ are Borel measures, and N is totally

bounded. In section (3.4) we briefly discussed the case N not totally bounded (still assuming that

the measure µ on F is Borel). This leads to the following problem:

(5.1) min{µ(A) : A ⊂ F is µ-measurable with |A| ≥ K}.

when K is infinite. In Proposition (3.4.1) we showed that under this circumstance any solution to

Problem (5.1) must have zero measure. We have not however solved this problem. Thus we may

ask the following question.

Question 5.1.1. Under what conditions does Problem (5.1) have a solution?

Proposition 3.4.2 also shows that in the case N not totally bounded, and ρ
(
(0, ϵ)

)
> 0 for all ϵ > 0,

any A∗ that solves (3.1) then must satisfy C(A∗) = 0. Yet again we have not solved this problem.

Thus, we can ask:

Question 5.1.2. For the case N is not totally bounded, under what conditions does Problem (3.1)

have a solution?
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5.2. Second-type cost function: Finding the optimal codebook

In Chapter 4 we discussed the cost function

J(f, g) :=

∫
N
C
(
n, f)n), g ◦ f(n)

)
dν(n) + S(f)

on a set L(ϵ, A;P) of ϵ-linkable pairs. We then consider the the problem of minimizing J(f, g) among

all pairs (f, g) in L(ϵ, A;P) (Problem 4.1). Theorem 4.1.2 proves this problem has a solution in the

case P is sequentially compact. However, we have not yet understood what the solution looks like,

or what the minimum value is. Thus we may ask the following questions.

Question 5.2.1. Can the solutions to Problem (4.1) be computed or estimated?

Question 5.2.2. Suppose P is sequentially compact. Can we compute or estimate the value of

min{J(f, g) : (f, g) ∈ L(ϵ, A;P)}?

We then define the cost function on a codepage A as

I(A) := inf
(f,g)∈L(ϵ,A;P)

J(f, g),

and the cost function on a codebook A as

S(A) :=

∫ ∞

0
I
(
A(ϵ)

)
dρ(ϵ).

In section (4.3) we prove the existence of a solution to Problem (4.8), min{S(A) : A ∈ Ω}, for a

compact or sequentially compact Ω. Yet again the question of how to compute the actual optimal

codebook or the minimal value of S is left unanswered. Therefore, we may ask the following

questions.

Question 5.2.3. Can we compute, or estimate, the codebook A that solves Problem (4.8)?

Question 5.2.4. Suppose Ω is compact or sequentially compact, can we compute or estimate the

value of min{S(A) : A ∈ Ω}?

5.3. Cost function of other types

We continue using the notations introduced in Definition 2.1.1. Let (C(2F ), d) be a metric subspace

of 2F . A codebook A : (0,∞) → C(2F ) is called Lipschitz continuous if there exists a KA > 0 such
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that d
(
A(ϵ1),A(ϵ2)

)
≤ KA|ϵ1 − ϵ2|, for any ϵ1 and ϵ2 in (0,∞). Let ΩLip be the set of Lipschitz

continuous codebooks A : (0,∞) → C(2F ).

Question 5.3.1. Under what conditions is a codebook A : (0,∞) → C(2F ) a Lipschitz continuous?

Given 0 < α < β <∞, for any partition P = {ϵ0, ϵ1, ..., ϵk} of [α, β] and A ∈ ΩLip, we define

Lβα(P,A) :=
k∑
i=1

d
(
A(ϵi),A(ϵi−1)

)
.

And define the length of codebook A as

Lβα(A) := sup
All partitions P of [0,1]

Lβα(P,A).

Since A is Lipschitz continuous, Lβα(P,A) ≤
∑k

i=1KA|ϵi − ϵi−1| = KA, therefore L
β
α(A) is finite.

We consider the minimization problem:

(5.2) min
A∈Ω

Lβα(A)

for some Ω ⊂ ΩLip.

Question 5.3.2. Under what conditions does Problem (5.2) have a solution?

At any point ϵ > 0, the Metric Derivative of A at ϵ, henceforth denoted as |Ȧ|(ϵ), is defined as

|Ȧ|(ϵ) := lim
h→0

d
(
A(ϵ+ h),A(ϵ)

)
|h|

.

If a metric derivative exists at some ϵ > 0 we say that A is differentiable at ϵ.

For any Lipschitz A : (0,∞) → C(2F ), A is differentiable L-a.e. . From Theorem 1.2.12, for any

interval [α, β],

Lβα(A) =

∫ β

α
|Ȧ|(ϵ)dϵ.

And thus if we consider the set ΩLip ⊂ Ω consisting of Lipschitz curves A, Problem (5.2) can be

rephrased as

(5.3) min
A∈ΩLip

∫ β

α
|Ȧ|(ϵ)dϵ.

Question 5.3.3. Under what conditions does Problem (5.3) have a solution?
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APPENDIX A

Tables and figures

Table A.1. Maximum value of dAve and W1 for each value of m. The values
dAve(n, g ◦ f(n)) and W1(n, g ◦ f(n)) are computed across all 60,000 elements of
MNIST and are rounded up to 2 decimals. Here H = H(m) = [28m ]× [28m ].

m H max dAve(n, g ◦ f(n)) maxW1(n, g ◦ f(n))
1 784 0 0
2 196 24.95 16.37
3 81 37.61 26.69
4 49 49.68 40.77
5 25 53.47 43.34
6 16 58.78 46.87
7 16 82.34 67.05
8 9 74.86 57.27
9 9 86.92 73.75
10 4 85.65 54.71
11 4 87.57 67.29
12 4 86.01 71.85
13 4 98.20 89.37
14 4 113.56 108.00
15 1 104.47 71.68
16 1 103.27 65.40
17 1 101.72 58.43
18 1 99.63 59.20
19 1 97.12 62.42
20 1 94.68 66.82
21 1 92.68 72.31
22 1 90.62 78.36
23 1 89.69 84.36
24 1 91.56 90.01
25 1 95.23 95.23
26 1 101.87 101.87
27 1 108.71 108.71
28 1 114.86 114.86
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Table A.2. Some possible ϵ-codepages corresponding to each range of ϵ. The value
of ϵ’s shown are calculated based on dAve, and are rounded up to 2 decimals. m
represents the pair (fm, gm), and H = H(m) = [28m ]× [28m ] represents corresponding

AH = [0, 1, ..., 255]H .

ϵ Possible m’s Corresponding H

[114.86,∞) 1-28 1, 4, 9, 16, 25, 49, 81, 196, 784
[113.56, 114.86) 1-27 1, 4, 9, 16, 25, 49, 81, 196, 784
[108.71, 113.56) 1-13,15-27 1, 4, 9, 16, 25, 49, 81, 196, 784
[104.47, 108.71) 1-13, 15-26 1, 4, 9, 16, 25, 49, 81, 196, 784
[103.27, 104.47) 1-13,16-26 1, 4, 9, 16, 25, 49, 81, 196, 784
[101.87, 103.27) 1-13,17-26 1, 4, 9, 16, 25, 49, 81, 196, 784
[101.72, 101.87) 1-13, 17-25 1, 4, 9, 16, 25, 49, 81, 196, 784
[99.63, 101.72) 1-13,18-25 1, 4, 9, 16, 25, 49, 81, 196, 784
[98.21, 99.63) 1-13, 19-25 1, 4, 9, 16, 25, 49, 81, 196, 784
[97.12, 98.21) 1-12, 20-25 1, 4, 9, 16, 25, 49, 81, 196, 784
[95.23, 97.12) 1-12, 20-25 1, 4, 9, 16, 25, 49, 81, 196, 784
[94.68, 95.23) 1-12,20-24 1, 4, 9, 16, 25, 49, 81, 196, 784
[92.68, 94.68) 1-12, 21-24 1, 4, 9, 16, 25, 49, 81, 196, 784
[91.56, 92.68) 1-12, 22-24 1, 4, 9, 16, 25, 49, 81, 196, 784
[90.62, 91.56) 1-12, 23 1, 4, 9, 16, 25, 49, 81, 196, 784
[89.69, 90.62) 1-12, 23 1, 4, 9, 16, 25, 49, 81, 196, 784
[87.57, 89.69) 1-12 4, 9, 16, 25, 49, 81, 196, 784
[86.92, 87.57) 1-10, 12 4, 9, 16, 25, 49, 81, 196, 784
[86.01, 86.92) 1-10, 12 4, 9, 16, 25, 49, 81, 196, 784
[85.65, 86.01) 1-8, 10 4, 9, 16, 25, 49, 81, 196, 784
[82.35, 85.65) 1-8 9, 16, 25, 49, 81, 196, 784
[74.86, 82.35) 1-6, 8 9, 16, 25, 49, 81, 196, 784
[58.78, 74.86) 1-6 16, 25, 49, 81, 196, 784
[53.47, 58.78) 1-5 25, 49, 81, 196, 784
[49.68, 53.47) 1-4 49, 81, 196, 784
[37.61, 49.68) 1, 2, 3 81, 196, 784
[24.95, 37.61) 1,2 196, 784
[0, 24.95) 1 784
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Table A.3. Some possible ϵ-codepages corresponding to each range of ϵ. The
value of ϵ’s shown are calculated based on W1, and are rounded up to 2 decimals. m
represents the pair (fm, gm), and H = H(m) = [28m ]× [28m ] represents corresponding

AH = [0, 1, ..., 255]H .

ϵ Possible m’s Corresponding H

[114.86,∞) 1-28 1, 4, 9, 16, 25, 49, 81, 196, 784
[108.71, 114.86) 1-27 1, 4, 9, 16, 25, 49, 81, 196, 784
[108.00, 108.71) 1-26 1, 4, 9, 16, 25, 49, 81, 196, 784
[101.87, 108.00) 1-13, 15-26 1, 4, 9, 16, 25, 49, 81, 196, 784
[95.23, 101.87) 1-13,15-25 1, 4, 9, 16, 25, 49, 81, 196, 784
[90.01, 95.23) 1-13,15-24 1, 4, 9, 16, 25, 49, 81, 196, 784
[89.37, 90.01) 1-13, 15-23 1, 4, 9, 16, 25, 49, 81, 196, 784
[84.36, 89.37) 1-12, 15-23 1, 4, 9, 16, 25, 49, 81, 196, 784
[78.36, 84.36) 1-12, 15-22 1, 4, 9, 16, 25, 49, 81, 196, 784
[73.75, 78.36) 1-12, 15-21 1, 4, 9, 16, 25, 49, 81, 196, 784
[72.31, 73.75) 1-8, 10-12, 15-21 1, 4, 9, 16, 25, 49, 81, 196, 784
[71.85, 72.31) 1-8, 10-12, 15-20 1, 4, 9, 16, 25, 49, 81, 196, 784
[71.68, 71.85) 1-8, 10-11, 15-20 1, 4, 9, 16, 25, 49, 81, 196, 784
[67.29, 71.68) 1-8. 10-11, 16-20 1, 4, 9, 16, 25, 49, 81, 196, 784
[67.05, 67.29) 1-8, 10, 16-20 1, 4, 9, 16, 25, 49, 81, 196, 784
[66.82, 67.05) 1-6, 8, 10, 16-20 1, 4, 9, 16, 25, 49, 81, 196, 784
[65.40, 66.82) 1-6, 8, 10, 16-19 1, 4, 9, 16, 25, 49, 81, 196, 784
[62.42, 65.40) 1-6, 8, 10, 17-19 1, 4, 9, 16, 25, 49, 81, 196, 784
[59.20, 62.42) 1-6, 8, 10, 17-18 1, 4, 9, 16, 25, 49, 81, 196, 784
[58.43, 59.20) 1-6, 8, 10, 17 1, 4, 9, 16, 25, 49, 81, 196, 784
[57.27, 58.43) 1-6, 10 4, 9, 16, 25, 49, 81, 196, 784
[54.71, 57.27) 1-6, 10 4, 16, 25, 49, 81, 196, 784
[46.87, 54.71) 1-6 16, 25, 49, 81, 196, 784
[43.34, 46.87) 1-5 25, 49, 81, 196, 784
[40.76, 43.34) 1-4 49, 81, 196, 784
[26.69, 40.76) 1-3 81, 196, 784
[16.37, 26.69) 1,2 196, 784
[0, 16.37) 1 784
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